xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 11976fe2)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 /* Shifts in ar5008_phy.c and ar9003_phy.c are equal for all revisions */
38 #define ATH9K_PWRTBL_11NA_OFDM_SHIFT    0
39 #define ATH9K_PWRTBL_11NG_OFDM_SHIFT    4
40 #define ATH9K_PWRTBL_11NA_HT_SHIFT      8
41 #define ATH9K_PWRTBL_11NG_HT_SHIFT      12
42 
43 
44 static u16 bits_per_symbol[][2] = {
45 	/* 20MHz 40MHz */
46 	{    26,   54 },     /*  0: BPSK */
47 	{    52,  108 },     /*  1: QPSK 1/2 */
48 	{    78,  162 },     /*  2: QPSK 3/4 */
49 	{   104,  216 },     /*  3: 16-QAM 1/2 */
50 	{   156,  324 },     /*  4: 16-QAM 3/4 */
51 	{   208,  432 },     /*  5: 64-QAM 2/3 */
52 	{   234,  486 },     /*  6: 64-QAM 3/4 */
53 	{   260,  540 },     /*  7: 64-QAM 5/6 */
54 };
55 
56 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
57 			       struct ath_atx_tid *tid, struct sk_buff *skb);
58 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
59 			    int tx_flags, struct ath_txq *txq,
60 			    struct ieee80211_sta *sta);
61 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
62 				struct ath_txq *txq, struct list_head *bf_q,
63 				struct ieee80211_sta *sta,
64 				struct ath_tx_status *ts, int txok);
65 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
66 			     struct list_head *head, bool internal);
67 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
68 			     struct ath_tx_status *ts, int nframes, int nbad,
69 			     int txok);
70 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
71 			      struct ath_buf *bf);
72 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
73 					   struct ath_txq *txq,
74 					   struct ath_atx_tid *tid,
75 					   struct sk_buff *skb);
76 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
77 			  struct ath_tx_control *txctl);
78 
79 enum {
80 	MCS_HT20,
81 	MCS_HT20_SGI,
82 	MCS_HT40,
83 	MCS_HT40_SGI,
84 };
85 
86 /*********************/
87 /* Aggregation logic */
88 /*********************/
89 
90 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
91 {
92 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
93 	struct ieee80211_sta *sta = info->status.status_driver_data[0];
94 
95 	if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS |
96 			   IEEE80211_TX_STATUS_EOSP)) {
97 		ieee80211_tx_status(hw, skb);
98 		return;
99 	}
100 
101 	if (sta)
102 		ieee80211_tx_status_noskb(hw, sta, info);
103 
104 	dev_kfree_skb(skb);
105 }
106 
107 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
108 	__releases(&txq->axq_lock)
109 {
110 	struct ieee80211_hw *hw = sc->hw;
111 	struct sk_buff_head q;
112 	struct sk_buff *skb;
113 
114 	__skb_queue_head_init(&q);
115 	skb_queue_splice_init(&txq->complete_q, &q);
116 	spin_unlock_bh(&txq->axq_lock);
117 
118 	while ((skb = __skb_dequeue(&q)))
119 		ath_tx_status(hw, skb);
120 }
121 
122 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
123 {
124 	struct ieee80211_txq *queue =
125 		container_of((void *)tid, struct ieee80211_txq, drv_priv);
126 
127 	ieee80211_schedule_txq(sc->hw, queue);
128 }
129 
130 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue)
131 {
132 	struct ath_softc *sc = hw->priv;
133 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
134 	struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv;
135 	struct ath_txq *txq = tid->txq;
136 
137 	ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n",
138 		queue->sta ? queue->sta->addr : queue->vif->addr,
139 		tid->tidno);
140 
141 	ath_txq_lock(sc, txq);
142 	ath_txq_schedule(sc, txq);
143 	ath_txq_unlock(sc, txq);
144 }
145 
146 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
147 {
148 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
149 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
150 		     sizeof(tx_info->status.status_driver_data));
151 	return (struct ath_frame_info *) &tx_info->status.status_driver_data[0];
152 }
153 
154 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
155 {
156 	if (!tid->an->sta)
157 		return;
158 
159 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
160 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
161 }
162 
163 static bool ath_merge_ratetbl(struct ieee80211_sta *sta, struct ath_buf *bf,
164 			      struct ieee80211_tx_info *tx_info)
165 {
166 	struct ieee80211_sta_rates *ratetbl;
167 	u8 i;
168 
169 	if (!sta)
170 		return false;
171 
172 	ratetbl = rcu_dereference(sta->rates);
173 	if (!ratetbl)
174 		return false;
175 
176 	if (tx_info->control.rates[0].idx < 0 ||
177 	    tx_info->control.rates[0].count == 0)
178 	{
179 		i = 0;
180 	} else {
181 		bf->rates[0] = tx_info->control.rates[0];
182 		i = 1;
183 	}
184 
185 	for ( ; i < IEEE80211_TX_MAX_RATES; i++) {
186 		bf->rates[i].idx = ratetbl->rate[i].idx;
187 		bf->rates[i].flags = ratetbl->rate[i].flags;
188 		if (tx_info->control.use_rts)
189 			bf->rates[i].count = ratetbl->rate[i].count_rts;
190 		else if (tx_info->control.use_cts_prot)
191 			bf->rates[i].count = ratetbl->rate[i].count_cts;
192 		else
193 			bf->rates[i].count = ratetbl->rate[i].count;
194 	}
195 
196 	return true;
197 }
198 
199 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
200 			  struct ath_buf *bf)
201 {
202 	struct ieee80211_tx_info *tx_info;
203 
204 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
205 
206 	if (!ath_merge_ratetbl(sta, bf, tx_info))
207 		ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
208 				       ARRAY_SIZE(bf->rates));
209 }
210 
211 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
212 			     struct sk_buff *skb)
213 {
214 	struct ath_frame_info *fi = get_frame_info(skb);
215 	int q = fi->txq;
216 
217 	if (q < 0)
218 		return;
219 
220 	txq = sc->tx.txq_map[q];
221 	if (WARN_ON(--txq->pending_frames < 0))
222 		txq->pending_frames = 0;
223 
224 }
225 
226 static struct ath_atx_tid *
227 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
228 {
229 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
230 	return ATH_AN_2_TID(an, tidno);
231 }
232 
233 static int
234 ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf)
235 {
236 	struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv);
237 	struct ath_softc *sc = tid->an->sc;
238 	struct ieee80211_hw *hw = sc->hw;
239 	struct ath_tx_control txctl = {
240 		.txq = tid->txq,
241 		.sta = tid->an->sta,
242 	};
243 	struct sk_buff *skb;
244 	struct ath_frame_info *fi;
245 	int q, ret;
246 
247 	skb = ieee80211_tx_dequeue(hw, txq);
248 	if (!skb)
249 		return -ENOENT;
250 
251 	ret = ath_tx_prepare(hw, skb, &txctl);
252 	if (ret) {
253 		ieee80211_free_txskb(hw, skb);
254 		return ret;
255 	}
256 
257 	q = skb_get_queue_mapping(skb);
258 	if (tid->txq == sc->tx.txq_map[q]) {
259 		fi = get_frame_info(skb);
260 		fi->txq = q;
261 		++tid->txq->pending_frames;
262 	}
263 
264 	*skbuf = skb;
265 	return 0;
266 }
267 
268 static int ath_tid_dequeue(struct ath_atx_tid *tid,
269 			   struct sk_buff **skb)
270 {
271 	int ret = 0;
272 	*skb = __skb_dequeue(&tid->retry_q);
273 	if (!*skb)
274 		ret = ath_tid_pull(tid, skb);
275 
276 	return ret;
277 }
278 
279 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
280 {
281 	struct ath_txq *txq = tid->txq;
282 	struct sk_buff *skb;
283 	struct ath_buf *bf;
284 	struct list_head bf_head;
285 	struct ath_tx_status ts;
286 	struct ath_frame_info *fi;
287 	bool sendbar = false;
288 
289 	INIT_LIST_HEAD(&bf_head);
290 
291 	memset(&ts, 0, sizeof(ts));
292 
293 	while ((skb = __skb_dequeue(&tid->retry_q))) {
294 		fi = get_frame_info(skb);
295 		bf = fi->bf;
296 		if (!bf) {
297 			ath_txq_skb_done(sc, txq, skb);
298 			ieee80211_free_txskb(sc->hw, skb);
299 			continue;
300 		}
301 
302 		if (fi->baw_tracked) {
303 			ath_tx_update_baw(sc, tid, bf);
304 			sendbar = true;
305 		}
306 
307 		list_add_tail(&bf->list, &bf_head);
308 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
309 	}
310 
311 	if (sendbar) {
312 		ath_txq_unlock(sc, txq);
313 		ath_send_bar(tid, tid->seq_start);
314 		ath_txq_lock(sc, txq);
315 	}
316 }
317 
318 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
319 			      struct ath_buf *bf)
320 {
321 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
322 	u16 seqno = bf->bf_state.seqno;
323 	int index, cindex;
324 
325 	if (!fi->baw_tracked)
326 		return;
327 
328 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
329 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
330 
331 	__clear_bit(cindex, tid->tx_buf);
332 
333 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
334 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
335 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
336 		if (tid->bar_index >= 0)
337 			tid->bar_index--;
338 	}
339 }
340 
341 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
342 			     struct ath_buf *bf)
343 {
344 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
345 	u16 seqno = bf->bf_state.seqno;
346 	int index, cindex;
347 
348 	if (fi->baw_tracked)
349 		return;
350 
351 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
352 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
353 	__set_bit(cindex, tid->tx_buf);
354 	fi->baw_tracked = 1;
355 
356 	if (index >= ((tid->baw_tail - tid->baw_head) &
357 		(ATH_TID_MAX_BUFS - 1))) {
358 		tid->baw_tail = cindex;
359 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
360 	}
361 }
362 
363 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
364 			  struct ath_atx_tid *tid)
365 
366 {
367 	struct sk_buff *skb;
368 	struct ath_buf *bf;
369 	struct list_head bf_head;
370 	struct ath_tx_status ts;
371 	struct ath_frame_info *fi;
372 	int ret;
373 
374 	memset(&ts, 0, sizeof(ts));
375 	INIT_LIST_HEAD(&bf_head);
376 
377 	while ((ret = ath_tid_dequeue(tid, &skb)) == 0) {
378 		fi = get_frame_info(skb);
379 		bf = fi->bf;
380 
381 		if (!bf) {
382 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
383 			continue;
384 		}
385 
386 		list_add_tail(&bf->list, &bf_head);
387 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
388 	}
389 }
390 
391 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
392 			     struct sk_buff *skb, int count)
393 {
394 	struct ath_frame_info *fi = get_frame_info(skb);
395 	struct ath_buf *bf = fi->bf;
396 	struct ieee80211_hdr *hdr;
397 	int prev = fi->retries;
398 
399 	TX_STAT_INC(sc, txq->axq_qnum, a_retries);
400 	fi->retries += count;
401 
402 	if (prev > 0)
403 		return;
404 
405 	hdr = (struct ieee80211_hdr *)skb->data;
406 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
407 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
408 		sizeof(*hdr), DMA_TO_DEVICE);
409 }
410 
411 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
412 {
413 	struct ath_buf *bf = NULL;
414 
415 	spin_lock_bh(&sc->tx.txbuflock);
416 
417 	if (unlikely(list_empty(&sc->tx.txbuf))) {
418 		spin_unlock_bh(&sc->tx.txbuflock);
419 		return NULL;
420 	}
421 
422 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
423 	list_del(&bf->list);
424 
425 	spin_unlock_bh(&sc->tx.txbuflock);
426 
427 	return bf;
428 }
429 
430 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
431 {
432 	spin_lock_bh(&sc->tx.txbuflock);
433 	list_add_tail(&bf->list, &sc->tx.txbuf);
434 	spin_unlock_bh(&sc->tx.txbuflock);
435 }
436 
437 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
438 {
439 	struct ath_buf *tbf;
440 
441 	tbf = ath_tx_get_buffer(sc);
442 	if (WARN_ON(!tbf))
443 		return NULL;
444 
445 	ATH_TXBUF_RESET(tbf);
446 
447 	tbf->bf_mpdu = bf->bf_mpdu;
448 	tbf->bf_buf_addr = bf->bf_buf_addr;
449 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
450 	tbf->bf_state = bf->bf_state;
451 	tbf->bf_state.stale = false;
452 
453 	return tbf;
454 }
455 
456 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
457 			        struct ath_tx_status *ts, int txok,
458 			        int *nframes, int *nbad)
459 {
460 	u16 seq_st = 0;
461 	u32 ba[WME_BA_BMP_SIZE >> 5];
462 	int ba_index;
463 	int isaggr = 0;
464 
465 	*nbad = 0;
466 	*nframes = 0;
467 
468 	isaggr = bf_isaggr(bf);
469 	if (isaggr) {
470 		seq_st = ts->ts_seqnum;
471 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
472 	}
473 
474 	while (bf) {
475 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
476 
477 		(*nframes)++;
478 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
479 			(*nbad)++;
480 
481 		bf = bf->bf_next;
482 	}
483 }
484 
485 
486 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
487 				 struct ath_buf *bf, struct list_head *bf_q,
488 				 struct ieee80211_sta *sta,
489 				 struct ath_atx_tid *tid,
490 				 struct ath_tx_status *ts, int txok)
491 {
492 	struct ath_node *an = NULL;
493 	struct sk_buff *skb;
494 	struct ieee80211_tx_info *tx_info;
495 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
496 	struct list_head bf_head;
497 	struct sk_buff_head bf_pending;
498 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
499 	u32 ba[WME_BA_BMP_SIZE >> 5];
500 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
501 	bool rc_update = true, isba;
502 	struct ieee80211_tx_rate rates[4];
503 	struct ath_frame_info *fi;
504 	int nframes;
505 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
506 	int i, retries;
507 	int bar_index = -1;
508 
509 	skb = bf->bf_mpdu;
510 	tx_info = IEEE80211_SKB_CB(skb);
511 
512 	memcpy(rates, bf->rates, sizeof(rates));
513 
514 	retries = ts->ts_longretry + 1;
515 	for (i = 0; i < ts->ts_rateindex; i++)
516 		retries += rates[i].count;
517 
518 	if (!sta) {
519 		INIT_LIST_HEAD(&bf_head);
520 		while (bf) {
521 			bf_next = bf->bf_next;
522 
523 			if (!bf->bf_state.stale || bf_next != NULL)
524 				list_move_tail(&bf->list, &bf_head);
525 
526 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
527 
528 			bf = bf_next;
529 		}
530 		return;
531 	}
532 
533 	an = (struct ath_node *)sta->drv_priv;
534 	seq_first = tid->seq_start;
535 	isba = ts->ts_flags & ATH9K_TX_BA;
536 
537 	/*
538 	 * The hardware occasionally sends a tx status for the wrong TID.
539 	 * In this case, the BA status cannot be considered valid and all
540 	 * subframes need to be retransmitted
541 	 *
542 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
543 	 * checked
544 	 */
545 	if (isba && tid->tidno != ts->tid)
546 		txok = false;
547 
548 	isaggr = bf_isaggr(bf);
549 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
550 
551 	if (isaggr && txok) {
552 		if (ts->ts_flags & ATH9K_TX_BA) {
553 			seq_st = ts->ts_seqnum;
554 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
555 		} else {
556 			/*
557 			 * AR5416 can become deaf/mute when BA
558 			 * issue happens. Chip needs to be reset.
559 			 * But AP code may have sychronization issues
560 			 * when perform internal reset in this routine.
561 			 * Only enable reset in STA mode for now.
562 			 */
563 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
564 				needreset = 1;
565 		}
566 	}
567 
568 	__skb_queue_head_init(&bf_pending);
569 
570 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
571 	while (bf) {
572 		u16 seqno = bf->bf_state.seqno;
573 
574 		txfail = txpending = sendbar = 0;
575 		bf_next = bf->bf_next;
576 
577 		skb = bf->bf_mpdu;
578 		tx_info = IEEE80211_SKB_CB(skb);
579 		fi = get_frame_info(skb);
580 
581 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
582 		    !tid->active) {
583 			/*
584 			 * Outside of the current BlockAck window,
585 			 * maybe part of a previous session
586 			 */
587 			txfail = 1;
588 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
589 			/* transmit completion, subframe is
590 			 * acked by block ack */
591 			acked_cnt++;
592 		} else if (!isaggr && txok) {
593 			/* transmit completion */
594 			acked_cnt++;
595 		} else if (flush) {
596 			txpending = 1;
597 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
598 			if (txok || !an->sleeping)
599 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
600 						 retries);
601 
602 			txpending = 1;
603 		} else {
604 			txfail = 1;
605 			txfail_cnt++;
606 			bar_index = max_t(int, bar_index,
607 				ATH_BA_INDEX(seq_first, seqno));
608 		}
609 
610 		/*
611 		 * Make sure the last desc is reclaimed if it
612 		 * not a holding desc.
613 		 */
614 		INIT_LIST_HEAD(&bf_head);
615 		if (bf_next != NULL || !bf_last->bf_state.stale)
616 			list_move_tail(&bf->list, &bf_head);
617 
618 		if (!txpending) {
619 			/*
620 			 * complete the acked-ones/xretried ones; update
621 			 * block-ack window
622 			 */
623 			ath_tx_update_baw(sc, tid, bf);
624 
625 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
626 				memcpy(tx_info->control.rates, rates, sizeof(rates));
627 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
628 				rc_update = false;
629 				if (bf == bf->bf_lastbf)
630 					ath_dynack_sample_tx_ts(sc->sc_ah,
631 								bf->bf_mpdu,
632 								ts, sta);
633 			}
634 
635 			ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
636 				!txfail);
637 		} else {
638 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
639 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
640 				ieee80211_sta_eosp(sta);
641 			}
642 			/* retry the un-acked ones */
643 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
644 				struct ath_buf *tbf;
645 
646 				tbf = ath_clone_txbuf(sc, bf_last);
647 				/*
648 				 * Update tx baw and complete the
649 				 * frame with failed status if we
650 				 * run out of tx buf.
651 				 */
652 				if (!tbf) {
653 					ath_tx_update_baw(sc, tid, bf);
654 
655 					ath_tx_complete_buf(sc, bf, txq,
656 							    &bf_head, NULL, ts,
657 							    0);
658 					bar_index = max_t(int, bar_index,
659 						ATH_BA_INDEX(seq_first, seqno));
660 					break;
661 				}
662 
663 				fi->bf = tbf;
664 			}
665 
666 			/*
667 			 * Put this buffer to the temporary pending
668 			 * queue to retain ordering
669 			 */
670 			__skb_queue_tail(&bf_pending, skb);
671 		}
672 
673 		bf = bf_next;
674 	}
675 
676 	/* prepend un-acked frames to the beginning of the pending frame queue */
677 	if (!skb_queue_empty(&bf_pending)) {
678 		if (an->sleeping)
679 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
680 
681 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
682 		if (!an->sleeping) {
683 			ath_tx_queue_tid(sc, tid);
684 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
685 				tid->clear_ps_filter = true;
686 		}
687 	}
688 
689 	if (bar_index >= 0) {
690 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
691 
692 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
693 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
694 
695 		ath_txq_unlock(sc, txq);
696 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
697 		ath_txq_lock(sc, txq);
698 	}
699 
700 	if (needreset)
701 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
702 }
703 
704 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
705 {
706     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
707     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
708 }
709 
710 static void ath_tx_count_airtime(struct ath_softc *sc,
711 				 struct ieee80211_sta *sta,
712 				 struct ath_buf *bf,
713 				 struct ath_tx_status *ts,
714 				 u8 tid)
715 {
716 	u32 airtime = 0;
717 	int i;
718 
719 	airtime += ts->duration * (ts->ts_longretry + 1);
720 	for(i = 0; i < ts->ts_rateindex; i++) {
721 		int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i);
722 		airtime += rate_dur * bf->rates[i].count;
723 	}
724 
725 	ieee80211_sta_register_airtime(sta, tid, airtime, 0);
726 }
727 
728 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
729 				  struct ath_tx_status *ts, struct ath_buf *bf,
730 				  struct list_head *bf_head)
731 {
732 	struct ieee80211_hw *hw = sc->hw;
733 	struct ieee80211_tx_info *info;
734 	struct ieee80211_sta *sta;
735 	struct ieee80211_hdr *hdr;
736 	struct ath_atx_tid *tid = NULL;
737 	bool txok, flush;
738 
739 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
740 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
741 	txq->axq_tx_inprogress = false;
742 
743 	txq->axq_depth--;
744 	if (bf_is_ampdu_not_probing(bf))
745 		txq->axq_ampdu_depth--;
746 
747 	ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
748 					     ts->ts_rateindex);
749 
750 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
751 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
752 	if (sta) {
753 		struct ath_node *an = (struct ath_node *)sta->drv_priv;
754 		tid = ath_get_skb_tid(sc, an, bf->bf_mpdu);
755 		ath_tx_count_airtime(sc, sta, bf, ts, tid->tidno);
756 		if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
757 			tid->clear_ps_filter = true;
758 	}
759 
760 	if (!bf_isampdu(bf)) {
761 		if (!flush) {
762 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
763 			memcpy(info->control.rates, bf->rates,
764 			       sizeof(info->control.rates));
765 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
766 			ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts,
767 						sta);
768 		}
769 		ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
770 	} else
771 		ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
772 
773 	if (!flush)
774 		ath_txq_schedule(sc, txq);
775 }
776 
777 static bool ath_lookup_legacy(struct ath_buf *bf)
778 {
779 	struct sk_buff *skb;
780 	struct ieee80211_tx_info *tx_info;
781 	struct ieee80211_tx_rate *rates;
782 	int i;
783 
784 	skb = bf->bf_mpdu;
785 	tx_info = IEEE80211_SKB_CB(skb);
786 	rates = tx_info->control.rates;
787 
788 	for (i = 0; i < 4; i++) {
789 		if (!rates[i].count || rates[i].idx < 0)
790 			break;
791 
792 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
793 			return true;
794 	}
795 
796 	return false;
797 }
798 
799 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
800 			   struct ath_atx_tid *tid)
801 {
802 	struct sk_buff *skb;
803 	struct ieee80211_tx_info *tx_info;
804 	struct ieee80211_tx_rate *rates;
805 	u32 max_4ms_framelen, frmlen;
806 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
807 	int q = tid->txq->mac80211_qnum;
808 	int i;
809 
810 	skb = bf->bf_mpdu;
811 	tx_info = IEEE80211_SKB_CB(skb);
812 	rates = bf->rates;
813 
814 	/*
815 	 * Find the lowest frame length among the rate series that will have a
816 	 * 4ms (or TXOP limited) transmit duration.
817 	 */
818 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
819 
820 	for (i = 0; i < 4; i++) {
821 		int modeidx;
822 
823 		if (!rates[i].count)
824 			continue;
825 
826 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
827 			legacy = 1;
828 			break;
829 		}
830 
831 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
832 			modeidx = MCS_HT40;
833 		else
834 			modeidx = MCS_HT20;
835 
836 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
837 			modeidx++;
838 
839 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
840 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
841 	}
842 
843 	/*
844 	 * limit aggregate size by the minimum rate if rate selected is
845 	 * not a probe rate, if rate selected is a probe rate then
846 	 * avoid aggregation of this packet.
847 	 */
848 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
849 		return 0;
850 
851 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
852 
853 	/*
854 	 * Override the default aggregation limit for BTCOEX.
855 	 */
856 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
857 	if (bt_aggr_limit)
858 		aggr_limit = bt_aggr_limit;
859 
860 	if (tid->an->maxampdu)
861 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
862 
863 	return aggr_limit;
864 }
865 
866 /*
867  * Returns the number of delimiters to be added to
868  * meet the minimum required mpdudensity.
869  */
870 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
871 				  struct ath_buf *bf, u16 frmlen,
872 				  bool first_subfrm)
873 {
874 #define FIRST_DESC_NDELIMS 60
875 	u32 nsymbits, nsymbols;
876 	u16 minlen;
877 	u8 flags, rix;
878 	int width, streams, half_gi, ndelim, mindelim;
879 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
880 
881 	/* Select standard number of delimiters based on frame length alone */
882 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
883 
884 	/*
885 	 * If encryption enabled, hardware requires some more padding between
886 	 * subframes.
887 	 * TODO - this could be improved to be dependent on the rate.
888 	 *      The hardware can keep up at lower rates, but not higher rates
889 	 */
890 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
891 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
892 		ndelim += ATH_AGGR_ENCRYPTDELIM;
893 
894 	/*
895 	 * Add delimiter when using RTS/CTS with aggregation
896 	 * and non enterprise AR9003 card
897 	 */
898 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
899 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
900 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
901 
902 	/*
903 	 * Convert desired mpdu density from microeconds to bytes based
904 	 * on highest rate in rate series (i.e. first rate) to determine
905 	 * required minimum length for subframe. Take into account
906 	 * whether high rate is 20 or 40Mhz and half or full GI.
907 	 *
908 	 * If there is no mpdu density restriction, no further calculation
909 	 * is needed.
910 	 */
911 
912 	if (tid->an->mpdudensity == 0)
913 		return ndelim;
914 
915 	rix = bf->rates[0].idx;
916 	flags = bf->rates[0].flags;
917 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
918 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
919 
920 	if (half_gi)
921 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
922 	else
923 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
924 
925 	if (nsymbols == 0)
926 		nsymbols = 1;
927 
928 	streams = HT_RC_2_STREAMS(rix);
929 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
930 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
931 
932 	if (frmlen < minlen) {
933 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
934 		ndelim = max(mindelim, ndelim);
935 	}
936 
937 	return ndelim;
938 }
939 
940 static int
941 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
942 			struct ath_atx_tid *tid, struct ath_buf **buf)
943 {
944 	struct ieee80211_tx_info *tx_info;
945 	struct ath_frame_info *fi;
946 	struct ath_buf *bf;
947 	struct sk_buff *skb, *first_skb = NULL;
948 	u16 seqno;
949 	int ret;
950 
951 	while (1) {
952 		ret = ath_tid_dequeue(tid, &skb);
953 		if (ret < 0)
954 			return ret;
955 
956 		fi = get_frame_info(skb);
957 		bf = fi->bf;
958 		if (!fi->bf)
959 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
960 		else
961 			bf->bf_state.stale = false;
962 
963 		if (!bf) {
964 			ath_txq_skb_done(sc, txq, skb);
965 			ieee80211_free_txskb(sc->hw, skb);
966 			continue;
967 		}
968 
969 		bf->bf_next = NULL;
970 		bf->bf_lastbf = bf;
971 
972 		tx_info = IEEE80211_SKB_CB(skb);
973 		tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
974 				    IEEE80211_TX_STATUS_EOSP);
975 
976 		/*
977 		 * No aggregation session is running, but there may be frames
978 		 * from a previous session or a failed attempt in the queue.
979 		 * Send them out as normal data frames
980 		 */
981 		if (!tid->active)
982 			tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
983 
984 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
985 			bf->bf_state.bf_type = 0;
986 			break;
987 		}
988 
989 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
990 		seqno = bf->bf_state.seqno;
991 
992 		/* do not step over block-ack window */
993 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
994 			__skb_queue_tail(&tid->retry_q, skb);
995 
996 			/* If there are other skbs in the retry q, they are
997 			 * probably within the BAW, so loop immediately to get
998 			 * one of them. Otherwise the queue can get stuck. */
999 			if (!skb_queue_is_first(&tid->retry_q, skb) &&
1000 			    !WARN_ON(skb == first_skb)) {
1001 				if(!first_skb) /* infinite loop prevention */
1002 					first_skb = skb;
1003 				continue;
1004 			}
1005 			return -EINPROGRESS;
1006 		}
1007 
1008 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
1009 			struct ath_tx_status ts = {};
1010 			struct list_head bf_head;
1011 
1012 			INIT_LIST_HEAD(&bf_head);
1013 			list_add(&bf->list, &bf_head);
1014 			ath_tx_update_baw(sc, tid, bf);
1015 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
1016 			continue;
1017 		}
1018 
1019 		if (bf_isampdu(bf))
1020 			ath_tx_addto_baw(sc, tid, bf);
1021 
1022 		break;
1023 	}
1024 
1025 	*buf = bf;
1026 	return 0;
1027 }
1028 
1029 static int
1030 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
1031 		 struct ath_atx_tid *tid, struct list_head *bf_q,
1032 		 struct ath_buf *bf_first)
1033 {
1034 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1035 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1036 	int nframes = 0, ndelim, ret;
1037 	u16 aggr_limit = 0, al = 0, bpad = 0,
1038 	    al_delta, h_baw = tid->baw_size / 2;
1039 	struct ieee80211_tx_info *tx_info;
1040 	struct ath_frame_info *fi;
1041 	struct sk_buff *skb;
1042 
1043 
1044 	bf = bf_first;
1045 	aggr_limit = ath_lookup_rate(sc, bf, tid);
1046 
1047 	while (bf)
1048 	{
1049 		skb = bf->bf_mpdu;
1050 		fi = get_frame_info(skb);
1051 
1052 		/* do not exceed aggregation limit */
1053 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
1054 		if (nframes) {
1055 			if (aggr_limit < al + bpad + al_delta ||
1056 			    ath_lookup_legacy(bf) || nframes >= h_baw)
1057 				goto stop;
1058 
1059 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1060 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
1061 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
1062 				goto stop;
1063 		}
1064 
1065 		/* add padding for previous frame to aggregation length */
1066 		al += bpad + al_delta;
1067 
1068 		/*
1069 		 * Get the delimiters needed to meet the MPDU
1070 		 * density for this node.
1071 		 */
1072 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
1073 						!nframes);
1074 		bpad = PADBYTES(al_delta) + (ndelim << 2);
1075 
1076 		nframes++;
1077 		bf->bf_next = NULL;
1078 
1079 		/* link buffers of this frame to the aggregate */
1080 		bf->bf_state.ndelim = ndelim;
1081 
1082 		list_add_tail(&bf->list, bf_q);
1083 		if (bf_prev)
1084 			bf_prev->bf_next = bf;
1085 
1086 		bf_prev = bf;
1087 
1088 		ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1089 		if (ret < 0)
1090 			break;
1091 	}
1092 	goto finish;
1093 stop:
1094 	__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1095 finish:
1096 	bf = bf_first;
1097 	bf->bf_lastbf = bf_prev;
1098 
1099 	if (bf == bf_prev) {
1100 		al = get_frame_info(bf->bf_mpdu)->framelen;
1101 		bf->bf_state.bf_type = BUF_AMPDU;
1102 	} else {
1103 		TX_STAT_INC(sc, txq->axq_qnum, a_aggr);
1104 	}
1105 
1106 	return al;
1107 #undef PADBYTES
1108 }
1109 
1110 /*
1111  * rix - rate index
1112  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1113  * width  - 0 for 20 MHz, 1 for 40 MHz
1114  * half_gi - to use 4us v/s 3.6 us for symbol time
1115  */
1116 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1117 		     int width, int half_gi, bool shortPreamble)
1118 {
1119 	u32 nbits, nsymbits, duration, nsymbols;
1120 	int streams;
1121 
1122 	/* find number of symbols: PLCP + data */
1123 	streams = HT_RC_2_STREAMS(rix);
1124 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1125 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1126 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1127 
1128 	if (!half_gi)
1129 		duration = SYMBOL_TIME(nsymbols);
1130 	else
1131 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1132 
1133 	/* addup duration for legacy/ht training and signal fields */
1134 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1135 
1136 	return duration;
1137 }
1138 
1139 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1140 {
1141 	int streams = HT_RC_2_STREAMS(mcs);
1142 	int symbols, bits;
1143 	int bytes = 0;
1144 
1145 	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1146 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1147 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1148 	bits -= OFDM_PLCP_BITS;
1149 	bytes = bits / 8;
1150 	if (bytes > 65532)
1151 		bytes = 65532;
1152 
1153 	return bytes;
1154 }
1155 
1156 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1157 {
1158 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1159 	int mcs;
1160 
1161 	/* 4ms is the default (and maximum) duration */
1162 	if (!txop || txop > 4096)
1163 		txop = 4096;
1164 
1165 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1166 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1167 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1168 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1169 	for (mcs = 0; mcs < 32; mcs++) {
1170 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1171 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1172 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1173 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1174 	}
1175 }
1176 
1177 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1178 			       u8 rateidx, bool is_40, bool is_cck, bool is_mcs)
1179 {
1180 	u8 max_power;
1181 	struct sk_buff *skb;
1182 	struct ath_frame_info *fi;
1183 	struct ieee80211_tx_info *info;
1184 	struct ath_hw *ah = sc->sc_ah;
1185 	bool is_2ghz, is_5ghz, use_stbc;
1186 
1187 	if (sc->tx99_state || !ah->tpc_enabled)
1188 		return MAX_RATE_POWER;
1189 
1190 	skb = bf->bf_mpdu;
1191 	fi = get_frame_info(skb);
1192 	info = IEEE80211_SKB_CB(skb);
1193 
1194 	is_2ghz = info->band == NL80211_BAND_2GHZ;
1195 	is_5ghz = info->band == NL80211_BAND_5GHZ;
1196 	use_stbc = is_mcs && rateidx < 8 && (info->flags &
1197 					     IEEE80211_TX_CTL_STBC);
1198 
1199 	if (is_mcs)
1200 		rateidx += is_5ghz ? ATH9K_PWRTBL_11NA_HT_SHIFT
1201 				   : ATH9K_PWRTBL_11NG_HT_SHIFT;
1202 	else if (is_2ghz && !is_cck)
1203 		rateidx += ATH9K_PWRTBL_11NG_OFDM_SHIFT;
1204 	else
1205 		rateidx += ATH9K_PWRTBL_11NA_OFDM_SHIFT;
1206 
1207 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1208 		int txpower = fi->tx_power;
1209 
1210 		if (is_40) {
1211 			u8 power_ht40delta;
1212 			struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1213 			u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah);
1214 
1215 			if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) {
1216 				struct modal_eep_header *pmodal;
1217 
1218 				pmodal = &eep->modalHeader[is_2ghz];
1219 				power_ht40delta = pmodal->ht40PowerIncForPdadc;
1220 			} else {
1221 				power_ht40delta = 2;
1222 			}
1223 			txpower += power_ht40delta;
1224 		}
1225 
1226 		if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1227 		    AR_SREV_9271(ah)) {
1228 			txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1229 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
1230 			s8 power_offset;
1231 
1232 			power_offset = ah->eep_ops->get_eeprom(ah,
1233 							EEP_PWR_TABLE_OFFSET);
1234 			txpower -= 2 * power_offset;
1235 		}
1236 
1237 		if (OLC_FOR_AR9280_20_LATER(ah) && is_cck)
1238 			txpower -= 2;
1239 
1240 		txpower = max(txpower, 0);
1241 		max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1242 
1243 		/* XXX: clamp minimum TX power at 1 for AR9160 since if
1244 		 * max_power is set to 0, frames are transmitted at max
1245 		 * TX power
1246 		 */
1247 		if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1248 			max_power = 1;
1249 	} else if (!bf->bf_state.bfs_paprd) {
1250 		if (use_stbc)
1251 			max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1252 					  fi->tx_power);
1253 		else
1254 			max_power = min_t(u8, ah->tx_power[rateidx],
1255 					  fi->tx_power);
1256 	} else {
1257 		max_power = ah->paprd_training_power;
1258 	}
1259 
1260 	return max_power;
1261 }
1262 
1263 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1264 			     struct ath_tx_info *info, int len, bool rts)
1265 {
1266 	struct ath_hw *ah = sc->sc_ah;
1267 	struct ath_common *common = ath9k_hw_common(ah);
1268 	struct sk_buff *skb;
1269 	struct ieee80211_tx_info *tx_info;
1270 	struct ieee80211_tx_rate *rates;
1271 	const struct ieee80211_rate *rate;
1272 	struct ieee80211_hdr *hdr;
1273 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1274 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1275 	int i;
1276 	u8 rix = 0;
1277 
1278 	skb = bf->bf_mpdu;
1279 	tx_info = IEEE80211_SKB_CB(skb);
1280 	rates = bf->rates;
1281 	hdr = (struct ieee80211_hdr *)skb->data;
1282 
1283 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1284 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1285 	info->rtscts_rate = fi->rtscts_rate;
1286 
1287 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1288 		bool is_40, is_sgi, is_sp, is_cck;
1289 		int phy;
1290 
1291 		if (!rates[i].count || (rates[i].idx < 0))
1292 			break;
1293 
1294 		rix = rates[i].idx;
1295 		info->rates[i].Tries = rates[i].count;
1296 
1297 		/*
1298 		 * Handle RTS threshold for unaggregated HT frames.
1299 		 */
1300 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1301 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1302 		    unlikely(rts_thresh != (u32) -1)) {
1303 			if (!rts_thresh || (len > rts_thresh))
1304 				rts = true;
1305 		}
1306 
1307 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1308 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1309 			info->flags |= ATH9K_TXDESC_RTSENA;
1310 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1311 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1312 			info->flags |= ATH9K_TXDESC_CTSENA;
1313 		}
1314 
1315 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1316 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1317 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1318 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1319 
1320 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1321 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1322 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1323 
1324 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1325 			/* MCS rates */
1326 			info->rates[i].Rate = rix | 0x80;
1327 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1328 					ah->txchainmask, info->rates[i].Rate);
1329 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1330 				 is_40, is_sgi, is_sp);
1331 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1332 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1333 			if (rix >= 8 && fi->dyn_smps) {
1334 				info->rates[i].RateFlags |=
1335 					ATH9K_RATESERIES_RTS_CTS;
1336 				info->flags |= ATH9K_TXDESC_CTSENA;
1337 			}
1338 
1339 			info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1340 								is_40, false, true);
1341 			continue;
1342 		}
1343 
1344 		/* legacy rates */
1345 		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1346 		if ((tx_info->band == NL80211_BAND_2GHZ) &&
1347 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1348 			phy = WLAN_RC_PHY_CCK;
1349 		else
1350 			phy = WLAN_RC_PHY_OFDM;
1351 
1352 		info->rates[i].Rate = rate->hw_value;
1353 		if (rate->hw_value_short) {
1354 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1355 				info->rates[i].Rate |= rate->hw_value_short;
1356 		} else {
1357 			is_sp = false;
1358 		}
1359 
1360 		if (bf->bf_state.bfs_paprd)
1361 			info->rates[i].ChSel = ah->txchainmask;
1362 		else
1363 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1364 					ah->txchainmask, info->rates[i].Rate);
1365 
1366 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1367 			phy, rate->bitrate * 100, len, rix, is_sp);
1368 
1369 		is_cck = IS_CCK_RATE(info->rates[i].Rate);
1370 		info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1371 							is_cck, false);
1372 	}
1373 
1374 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1375 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1376 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1377 
1378 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1379 	if (info->flags & ATH9K_TXDESC_RTSENA)
1380 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1381 }
1382 
1383 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1384 {
1385 	struct ieee80211_hdr *hdr;
1386 	enum ath9k_pkt_type htype;
1387 	__le16 fc;
1388 
1389 	hdr = (struct ieee80211_hdr *)skb->data;
1390 	fc = hdr->frame_control;
1391 
1392 	if (ieee80211_is_beacon(fc))
1393 		htype = ATH9K_PKT_TYPE_BEACON;
1394 	else if (ieee80211_is_probe_resp(fc))
1395 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1396 	else if (ieee80211_is_atim(fc))
1397 		htype = ATH9K_PKT_TYPE_ATIM;
1398 	else if (ieee80211_is_pspoll(fc))
1399 		htype = ATH9K_PKT_TYPE_PSPOLL;
1400 	else
1401 		htype = ATH9K_PKT_TYPE_NORMAL;
1402 
1403 	return htype;
1404 }
1405 
1406 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1407 			     struct ath_txq *txq, int len)
1408 {
1409 	struct ath_hw *ah = sc->sc_ah;
1410 	struct ath_buf *bf_first = NULL;
1411 	struct ath_tx_info info;
1412 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1413 	bool rts = false;
1414 
1415 	memset(&info, 0, sizeof(info));
1416 	info.is_first = true;
1417 	info.is_last = true;
1418 	info.qcu = txq->axq_qnum;
1419 
1420 	while (bf) {
1421 		struct sk_buff *skb = bf->bf_mpdu;
1422 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1423 		struct ath_frame_info *fi = get_frame_info(skb);
1424 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1425 
1426 		info.type = get_hw_packet_type(skb);
1427 		if (bf->bf_next)
1428 			info.link = bf->bf_next->bf_daddr;
1429 		else
1430 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1431 
1432 		if (!bf_first) {
1433 			bf_first = bf;
1434 
1435 			if (!sc->tx99_state)
1436 				info.flags = ATH9K_TXDESC_INTREQ;
1437 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1438 			    txq == sc->tx.uapsdq)
1439 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1440 
1441 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1442 				info.flags |= ATH9K_TXDESC_NOACK;
1443 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1444 				info.flags |= ATH9K_TXDESC_LDPC;
1445 
1446 			if (bf->bf_state.bfs_paprd)
1447 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1448 					      ATH9K_TXDESC_PAPRD_S;
1449 
1450 			/*
1451 			 * mac80211 doesn't handle RTS threshold for HT because
1452 			 * the decision has to be taken based on AMPDU length
1453 			 * and aggregation is done entirely inside ath9k.
1454 			 * Set the RTS/CTS flag for the first subframe based
1455 			 * on the threshold.
1456 			 */
1457 			if (aggr && (bf == bf_first) &&
1458 			    unlikely(rts_thresh != (u32) -1)) {
1459 				/*
1460 				 * "len" is the size of the entire AMPDU.
1461 				 */
1462 				if (!rts_thresh || (len > rts_thresh))
1463 					rts = true;
1464 			}
1465 
1466 			if (!aggr)
1467 				len = fi->framelen;
1468 
1469 			ath_buf_set_rate(sc, bf, &info, len, rts);
1470 		}
1471 
1472 		info.buf_addr[0] = bf->bf_buf_addr;
1473 		info.buf_len[0] = skb->len;
1474 		info.pkt_len = fi->framelen;
1475 		info.keyix = fi->keyix;
1476 		info.keytype = fi->keytype;
1477 
1478 		if (aggr) {
1479 			if (bf == bf_first)
1480 				info.aggr = AGGR_BUF_FIRST;
1481 			else if (bf == bf_first->bf_lastbf)
1482 				info.aggr = AGGR_BUF_LAST;
1483 			else
1484 				info.aggr = AGGR_BUF_MIDDLE;
1485 
1486 			info.ndelim = bf->bf_state.ndelim;
1487 			info.aggr_len = len;
1488 		}
1489 
1490 		if (bf == bf_first->bf_lastbf)
1491 			bf_first = NULL;
1492 
1493 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1494 		bf = bf->bf_next;
1495 	}
1496 }
1497 
1498 static void
1499 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1500 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1501 		  struct ath_buf *bf_first)
1502 {
1503 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1504 	int nframes = 0, ret;
1505 
1506 	do {
1507 		struct ieee80211_tx_info *tx_info;
1508 
1509 		nframes++;
1510 		list_add_tail(&bf->list, bf_q);
1511 		if (bf_prev)
1512 			bf_prev->bf_next = bf;
1513 		bf_prev = bf;
1514 
1515 		if (nframes >= 2)
1516 			break;
1517 
1518 		ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1519 		if (ret < 0)
1520 			break;
1521 
1522 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1523 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1524 			__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1525 			break;
1526 		}
1527 
1528 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1529 	} while (1);
1530 }
1531 
1532 static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1533 			     struct ath_atx_tid *tid)
1534 {
1535 	struct ath_buf *bf = NULL;
1536 	struct ieee80211_tx_info *tx_info;
1537 	struct list_head bf_q;
1538 	int aggr_len = 0, ret;
1539 	bool aggr;
1540 
1541 	INIT_LIST_HEAD(&bf_q);
1542 
1543 	ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1544 	if (ret < 0)
1545 		return ret;
1546 
1547 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1548 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1549 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1550 	    (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1551 		__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1552 		return -EBUSY;
1553 	}
1554 
1555 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1556 	if (aggr)
1557 		aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf);
1558 	else
1559 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf);
1560 
1561 	if (list_empty(&bf_q))
1562 		return -EAGAIN;
1563 
1564 	if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1565 		tid->clear_ps_filter = false;
1566 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1567 	}
1568 
1569 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1570 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1571 	return 0;
1572 }
1573 
1574 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1575 		      u16 tid, u16 *ssn)
1576 {
1577 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1578 	struct ath_atx_tid *txtid;
1579 	struct ath_txq *txq;
1580 	struct ath_node *an;
1581 	u8 density;
1582 
1583 	ath_dbg(common, XMIT, "%s called\n", __func__);
1584 
1585 	an = (struct ath_node *)sta->drv_priv;
1586 	txtid = ATH_AN_2_TID(an, tid);
1587 	txq = txtid->txq;
1588 
1589 	ath_txq_lock(sc, txq);
1590 
1591 	/* update ampdu factor/density, they may have changed. This may happen
1592 	 * in HT IBSS when a beacon with HT-info is received after the station
1593 	 * has already been added.
1594 	 */
1595 	if (sta->deflink.ht_cap.ht_supported) {
1596 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1597 				      sta->deflink.ht_cap.ampdu_factor)) - 1;
1598 		density = ath9k_parse_mpdudensity(sta->deflink.ht_cap.ampdu_density);
1599 		an->mpdudensity = density;
1600 	}
1601 
1602 	txtid->active = true;
1603 	*ssn = txtid->seq_start = txtid->seq_next;
1604 	txtid->bar_index = -1;
1605 
1606 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1607 	txtid->baw_head = txtid->baw_tail = 0;
1608 
1609 	ath_txq_unlock_complete(sc, txq);
1610 
1611 	return 0;
1612 }
1613 
1614 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1615 {
1616 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1617 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1618 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1619 	struct ath_txq *txq = txtid->txq;
1620 
1621 	ath_dbg(common, XMIT, "%s called\n", __func__);
1622 
1623 	ath_txq_lock(sc, txq);
1624 	txtid->active = false;
1625 	ath_tx_flush_tid(sc, txtid);
1626 	ath_txq_unlock_complete(sc, txq);
1627 }
1628 
1629 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1630 		       struct ath_node *an)
1631 {
1632 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1633 	struct ath_atx_tid *tid;
1634 	int tidno;
1635 
1636 	ath_dbg(common, XMIT, "%s called\n", __func__);
1637 
1638 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1639 		tid = ath_node_to_tid(an, tidno);
1640 
1641 		if (!skb_queue_empty(&tid->retry_q))
1642 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
1643 
1644 	}
1645 }
1646 
1647 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1648 {
1649 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1650 	struct ath_atx_tid *tid;
1651 	struct ath_txq *txq;
1652 	int tidno;
1653 
1654 	ath_dbg(common, XMIT, "%s called\n", __func__);
1655 
1656 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1657 		tid = ath_node_to_tid(an, tidno);
1658 		txq = tid->txq;
1659 
1660 		ath_txq_lock(sc, txq);
1661 		tid->clear_ps_filter = true;
1662 		if (!skb_queue_empty(&tid->retry_q)) {
1663 			ath_tx_queue_tid(sc, tid);
1664 			ath_txq_schedule(sc, txq);
1665 		}
1666 		ath_txq_unlock_complete(sc, txq);
1667 
1668 	}
1669 }
1670 
1671 
1672 static void
1673 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val)
1674 {
1675 	struct ieee80211_hdr *hdr;
1676 	u16 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1677 	u16 mask_val = mask * val;
1678 
1679 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
1680 	if ((hdr->frame_control & mask) != mask_val) {
1681 		hdr->frame_control = (hdr->frame_control & ~mask) | mask_val;
1682 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
1683 			sizeof(*hdr), DMA_TO_DEVICE);
1684 	}
1685 }
1686 
1687 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1688 				   struct ieee80211_sta *sta,
1689 				   u16 tids, int nframes,
1690 				   enum ieee80211_frame_release_type reason,
1691 				   bool more_data)
1692 {
1693 	struct ath_softc *sc = hw->priv;
1694 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1695 	struct ath_txq *txq = sc->tx.uapsdq;
1696 	struct ieee80211_tx_info *info;
1697 	struct list_head bf_q;
1698 	struct ath_buf *bf_tail = NULL, *bf = NULL;
1699 	int i, ret;
1700 
1701 	INIT_LIST_HEAD(&bf_q);
1702 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1703 		struct ath_atx_tid *tid;
1704 
1705 		if (!(tids & 1))
1706 			continue;
1707 
1708 		tid = ATH_AN_2_TID(an, i);
1709 
1710 		ath_txq_lock(sc, tid->txq);
1711 		while (nframes > 0) {
1712 			ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq,
1713 						      tid, &bf);
1714 			if (ret < 0)
1715 				break;
1716 
1717 			ath9k_set_moredata(sc, bf, true);
1718 			list_add_tail(&bf->list, &bf_q);
1719 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1720 			if (bf_isampdu(bf))
1721 				bf->bf_state.bf_type &= ~BUF_AGGR;
1722 			if (bf_tail)
1723 				bf_tail->bf_next = bf;
1724 
1725 			bf_tail = bf;
1726 			nframes--;
1727 			TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw);
1728 
1729 			if (an->sta && skb_queue_empty(&tid->retry_q))
1730 				ieee80211_sta_set_buffered(an->sta, i, false);
1731 		}
1732 		ath_txq_unlock_complete(sc, tid->txq);
1733 	}
1734 
1735 	if (list_empty(&bf_q))
1736 		return;
1737 
1738 	if (!more_data)
1739 		ath9k_set_moredata(sc, bf_tail, false);
1740 
1741 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1742 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1743 
1744 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1745 	ath_txq_lock(sc, txq);
1746 	ath_tx_fill_desc(sc, bf, txq, 0);
1747 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1748 	ath_txq_unlock(sc, txq);
1749 }
1750 
1751 /********************/
1752 /* Queue Management */
1753 /********************/
1754 
1755 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1756 {
1757 	struct ath_hw *ah = sc->sc_ah;
1758 	struct ath9k_tx_queue_info qi;
1759 	static const int subtype_txq_to_hwq[] = {
1760 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1761 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1762 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1763 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1764 	};
1765 	int axq_qnum, i;
1766 
1767 	memset(&qi, 0, sizeof(qi));
1768 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1769 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1770 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1771 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1772 	qi.tqi_physCompBuf = 0;
1773 
1774 	/*
1775 	 * Enable interrupts only for EOL and DESC conditions.
1776 	 * We mark tx descriptors to receive a DESC interrupt
1777 	 * when a tx queue gets deep; otherwise waiting for the
1778 	 * EOL to reap descriptors.  Note that this is done to
1779 	 * reduce interrupt load and this only defers reaping
1780 	 * descriptors, never transmitting frames.  Aside from
1781 	 * reducing interrupts this also permits more concurrency.
1782 	 * The only potential downside is if the tx queue backs
1783 	 * up in which case the top half of the kernel may backup
1784 	 * due to a lack of tx descriptors.
1785 	 *
1786 	 * The UAPSD queue is an exception, since we take a desc-
1787 	 * based intr on the EOSP frames.
1788 	 */
1789 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1790 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1791 	} else {
1792 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1793 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1794 		else
1795 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1796 					TXQ_FLAG_TXDESCINT_ENABLE;
1797 	}
1798 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1799 	if (axq_qnum == -1) {
1800 		/*
1801 		 * NB: don't print a message, this happens
1802 		 * normally on parts with too few tx queues
1803 		 */
1804 		return NULL;
1805 	}
1806 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1807 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1808 
1809 		txq->axq_qnum = axq_qnum;
1810 		txq->mac80211_qnum = -1;
1811 		txq->axq_link = NULL;
1812 		__skb_queue_head_init(&txq->complete_q);
1813 		INIT_LIST_HEAD(&txq->axq_q);
1814 		spin_lock_init(&txq->axq_lock);
1815 		txq->axq_depth = 0;
1816 		txq->axq_ampdu_depth = 0;
1817 		txq->axq_tx_inprogress = false;
1818 		sc->tx.txqsetup |= 1<<axq_qnum;
1819 
1820 		txq->txq_headidx = txq->txq_tailidx = 0;
1821 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1822 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1823 	}
1824 	return &sc->tx.txq[axq_qnum];
1825 }
1826 
1827 int ath_txq_update(struct ath_softc *sc, int qnum,
1828 		   struct ath9k_tx_queue_info *qinfo)
1829 {
1830 	struct ath_hw *ah = sc->sc_ah;
1831 	int error = 0;
1832 	struct ath9k_tx_queue_info qi;
1833 
1834 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1835 
1836 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1837 	qi.tqi_aifs = qinfo->tqi_aifs;
1838 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1839 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1840 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1841 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1842 
1843 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1844 		ath_err(ath9k_hw_common(sc->sc_ah),
1845 			"Unable to update hardware queue %u!\n", qnum);
1846 		error = -EIO;
1847 	} else {
1848 		ath9k_hw_resettxqueue(ah, qnum);
1849 	}
1850 
1851 	return error;
1852 }
1853 
1854 int ath_cabq_update(struct ath_softc *sc)
1855 {
1856 	struct ath9k_tx_queue_info qi;
1857 	struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1858 	int qnum = sc->beacon.cabq->axq_qnum;
1859 
1860 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1861 
1862 	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1863 			    ATH_CABQ_READY_TIME) / 100;
1864 	ath_txq_update(sc, qnum, &qi);
1865 
1866 	return 0;
1867 }
1868 
1869 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1870 			       struct list_head *list)
1871 {
1872 	struct ath_buf *bf, *lastbf;
1873 	struct list_head bf_head;
1874 	struct ath_tx_status ts;
1875 
1876 	memset(&ts, 0, sizeof(ts));
1877 	ts.ts_status = ATH9K_TX_FLUSH;
1878 	INIT_LIST_HEAD(&bf_head);
1879 
1880 	while (!list_empty(list)) {
1881 		bf = list_first_entry(list, struct ath_buf, list);
1882 
1883 		if (bf->bf_state.stale) {
1884 			list_del(&bf->list);
1885 
1886 			ath_tx_return_buffer(sc, bf);
1887 			continue;
1888 		}
1889 
1890 		lastbf = bf->bf_lastbf;
1891 		list_cut_position(&bf_head, list, &lastbf->list);
1892 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1893 	}
1894 }
1895 
1896 /*
1897  * Drain a given TX queue (could be Beacon or Data)
1898  *
1899  * This assumes output has been stopped and
1900  * we do not need to block ath_tx_tasklet.
1901  */
1902 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1903 {
1904 	rcu_read_lock();
1905 	ath_txq_lock(sc, txq);
1906 
1907 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1908 		int idx = txq->txq_tailidx;
1909 
1910 		while (!list_empty(&txq->txq_fifo[idx])) {
1911 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1912 
1913 			INCR(idx, ATH_TXFIFO_DEPTH);
1914 		}
1915 		txq->txq_tailidx = idx;
1916 	}
1917 
1918 	txq->axq_link = NULL;
1919 	txq->axq_tx_inprogress = false;
1920 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1921 
1922 	ath_txq_unlock_complete(sc, txq);
1923 	rcu_read_unlock();
1924 }
1925 
1926 bool ath_drain_all_txq(struct ath_softc *sc)
1927 {
1928 	struct ath_hw *ah = sc->sc_ah;
1929 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1930 	struct ath_txq *txq;
1931 	int i;
1932 	u32 npend = 0;
1933 
1934 	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1935 		return true;
1936 
1937 	ath9k_hw_abort_tx_dma(ah);
1938 
1939 	/* Check if any queue remains active */
1940 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1941 		if (!ATH_TXQ_SETUP(sc, i))
1942 			continue;
1943 
1944 		if (!sc->tx.txq[i].axq_depth)
1945 			continue;
1946 
1947 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1948 			npend |= BIT(i);
1949 	}
1950 
1951 	if (npend) {
1952 		RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1953 		ath_dbg(common, RESET,
1954 			"Failed to stop TX DMA, queues=0x%03x!\n", npend);
1955 	}
1956 
1957 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1958 		if (!ATH_TXQ_SETUP(sc, i))
1959 			continue;
1960 
1961 		txq = &sc->tx.txq[i];
1962 		ath_draintxq(sc, txq);
1963 	}
1964 
1965 	return !npend;
1966 }
1967 
1968 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1969 {
1970 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1971 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1972 }
1973 
1974 /* For each acq entry, for each tid, try to schedule packets
1975  * for transmit until ampdu_depth has reached min Q depth.
1976  */
1977 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1978 {
1979 	struct ieee80211_hw *hw = sc->hw;
1980 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1981 	struct ieee80211_txq *queue;
1982 	struct ath_atx_tid *tid;
1983 	int ret;
1984 
1985 	if (txq->mac80211_qnum < 0)
1986 		return;
1987 
1988 	if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1989 		return;
1990 
1991 	ieee80211_txq_schedule_start(hw, txq->mac80211_qnum);
1992 	spin_lock_bh(&sc->chan_lock);
1993 	rcu_read_lock();
1994 
1995 	if (sc->cur_chan->stopped)
1996 		goto out;
1997 
1998 	while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) {
1999 		bool force;
2000 
2001 		tid = (struct ath_atx_tid *)queue->drv_priv;
2002 
2003 		ret = ath_tx_sched_aggr(sc, txq, tid);
2004 		ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret);
2005 
2006 		force = !skb_queue_empty(&tid->retry_q);
2007 		ieee80211_return_txq(hw, queue, force);
2008 	}
2009 
2010 out:
2011 	rcu_read_unlock();
2012 	spin_unlock_bh(&sc->chan_lock);
2013 	ieee80211_txq_schedule_end(hw, txq->mac80211_qnum);
2014 }
2015 
2016 void ath_txq_schedule_all(struct ath_softc *sc)
2017 {
2018 	struct ath_txq *txq;
2019 	int i;
2020 
2021 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
2022 		txq = sc->tx.txq_map[i];
2023 
2024 		spin_lock_bh(&txq->axq_lock);
2025 		ath_txq_schedule(sc, txq);
2026 		spin_unlock_bh(&txq->axq_lock);
2027 	}
2028 }
2029 
2030 /***********/
2031 /* TX, DMA */
2032 /***********/
2033 
2034 /*
2035  * Insert a chain of ath_buf (descriptors) on a txq and
2036  * assume the descriptors are already chained together by caller.
2037  */
2038 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2039 			     struct list_head *head, bool internal)
2040 {
2041 	struct ath_hw *ah = sc->sc_ah;
2042 	struct ath_common *common = ath9k_hw_common(ah);
2043 	struct ath_buf *bf, *bf_last;
2044 	bool puttxbuf = false;
2045 	bool edma;
2046 
2047 	/*
2048 	 * Insert the frame on the outbound list and
2049 	 * pass it on to the hardware.
2050 	 */
2051 
2052 	if (list_empty(head))
2053 		return;
2054 
2055 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2056 	bf = list_first_entry(head, struct ath_buf, list);
2057 	bf_last = list_entry(head->prev, struct ath_buf, list);
2058 
2059 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2060 		txq->axq_qnum, txq->axq_depth);
2061 
2062 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2063 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2064 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2065 		puttxbuf = true;
2066 	} else {
2067 		list_splice_tail_init(head, &txq->axq_q);
2068 
2069 		if (txq->axq_link) {
2070 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2071 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2072 				txq->axq_qnum, txq->axq_link,
2073 				ito64(bf->bf_daddr), bf->bf_desc);
2074 		} else if (!edma)
2075 			puttxbuf = true;
2076 
2077 		txq->axq_link = bf_last->bf_desc;
2078 	}
2079 
2080 	if (puttxbuf) {
2081 		TX_STAT_INC(sc, txq->axq_qnum, puttxbuf);
2082 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2083 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2084 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2085 	}
2086 
2087 	if (!edma || sc->tx99_state) {
2088 		TX_STAT_INC(sc, txq->axq_qnum, txstart);
2089 		ath9k_hw_txstart(ah, txq->axq_qnum);
2090 	}
2091 
2092 	if (!internal) {
2093 		while (bf) {
2094 			txq->axq_depth++;
2095 			if (bf_is_ampdu_not_probing(bf))
2096 				txq->axq_ampdu_depth++;
2097 
2098 			bf_last = bf->bf_lastbf;
2099 			bf = bf_last->bf_next;
2100 			bf_last->bf_next = NULL;
2101 		}
2102 	}
2103 }
2104 
2105 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2106 			       struct ath_atx_tid *tid, struct sk_buff *skb)
2107 {
2108 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2109 	struct ath_frame_info *fi = get_frame_info(skb);
2110 	struct list_head bf_head;
2111 	struct ath_buf *bf = fi->bf;
2112 
2113 	INIT_LIST_HEAD(&bf_head);
2114 	list_add_tail(&bf->list, &bf_head);
2115 	bf->bf_state.bf_type = 0;
2116 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2117 		bf->bf_state.bf_type = BUF_AMPDU;
2118 		ath_tx_addto_baw(sc, tid, bf);
2119 	}
2120 
2121 	bf->bf_next = NULL;
2122 	bf->bf_lastbf = bf;
2123 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2124 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2125 	TX_STAT_INC(sc, txq->axq_qnum, queued);
2126 }
2127 
2128 static void setup_frame_info(struct ieee80211_hw *hw,
2129 			     struct ieee80211_sta *sta,
2130 			     struct sk_buff *skb,
2131 			     int framelen)
2132 {
2133 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2134 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2135 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2136 	const struct ieee80211_rate *rate;
2137 	struct ath_frame_info *fi = get_frame_info(skb);
2138 	struct ath_node *an = NULL;
2139 	enum ath9k_key_type keytype;
2140 	bool short_preamble = false;
2141 	u8 txpower;
2142 
2143 	/*
2144 	 * We check if Short Preamble is needed for the CTS rate by
2145 	 * checking the BSS's global flag.
2146 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2147 	 */
2148 	if (tx_info->control.vif &&
2149 	    tx_info->control.vif->bss_conf.use_short_preamble)
2150 		short_preamble = true;
2151 
2152 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2153 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2154 
2155 	if (sta)
2156 		an = (struct ath_node *) sta->drv_priv;
2157 
2158 	if (tx_info->control.vif) {
2159 		struct ieee80211_vif *vif = tx_info->control.vif;
2160 		if (vif->bss_conf.txpower == INT_MIN)
2161 			goto nonvifpower;
2162 		txpower = 2 * vif->bss_conf.txpower;
2163 	} else {
2164 		struct ath_softc *sc;
2165 	nonvifpower:
2166 		sc = hw->priv;
2167 
2168 		txpower = sc->cur_chan->cur_txpower;
2169 	}
2170 
2171 	memset(fi, 0, sizeof(*fi));
2172 	fi->txq = -1;
2173 	if (hw_key)
2174 		fi->keyix = hw_key->hw_key_idx;
2175 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2176 		fi->keyix = an->ps_key;
2177 	else
2178 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2179 	fi->dyn_smps = sta && sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC;
2180 	fi->keytype = keytype;
2181 	fi->framelen = framelen;
2182 	fi->tx_power = txpower;
2183 
2184 	if (!rate)
2185 		return;
2186 	fi->rtscts_rate = rate->hw_value;
2187 	if (short_preamble)
2188 		fi->rtscts_rate |= rate->hw_value_short;
2189 }
2190 
2191 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2192 {
2193 	struct ath_hw *ah = sc->sc_ah;
2194 	struct ath9k_channel *curchan = ah->curchan;
2195 
2196 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2197 	    (chainmask == 0x7) && (rate < 0x90))
2198 		return 0x3;
2199 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2200 		 IS_CCK_RATE(rate))
2201 		return 0x2;
2202 	else
2203 		return chainmask;
2204 }
2205 
2206 /*
2207  * Assign a descriptor (and sequence number if necessary,
2208  * and map buffer for DMA. Frees skb on error
2209  */
2210 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2211 					   struct ath_txq *txq,
2212 					   struct ath_atx_tid *tid,
2213 					   struct sk_buff *skb)
2214 {
2215 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2216 	struct ath_frame_info *fi = get_frame_info(skb);
2217 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2218 	struct ath_buf *bf;
2219 	int fragno;
2220 	u16 seqno;
2221 
2222 	bf = ath_tx_get_buffer(sc);
2223 	if (!bf) {
2224 		ath_dbg(common, XMIT, "TX buffers are full\n");
2225 		return NULL;
2226 	}
2227 
2228 	ATH_TXBUF_RESET(bf);
2229 
2230 	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2231 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2232 		seqno = tid->seq_next;
2233 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2234 
2235 		if (fragno)
2236 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2237 
2238 		if (!ieee80211_has_morefrags(hdr->frame_control))
2239 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2240 
2241 		bf->bf_state.seqno = seqno;
2242 	}
2243 
2244 	bf->bf_mpdu = skb;
2245 
2246 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2247 					 skb->len, DMA_TO_DEVICE);
2248 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2249 		bf->bf_mpdu = NULL;
2250 		bf->bf_buf_addr = 0;
2251 		ath_err(ath9k_hw_common(sc->sc_ah),
2252 			"dma_mapping_error() on TX\n");
2253 		ath_tx_return_buffer(sc, bf);
2254 		return NULL;
2255 	}
2256 
2257 	fi->bf = bf;
2258 
2259 	return bf;
2260 }
2261 
2262 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2263 {
2264 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2265 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2266 	struct ieee80211_vif *vif = info->control.vif;
2267 	struct ath_vif *avp;
2268 
2269 	if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2270 		return;
2271 
2272 	if (!vif)
2273 		return;
2274 
2275 	avp = (struct ath_vif *)vif->drv_priv;
2276 
2277 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2278 		avp->seq_no += 0x10;
2279 
2280 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2281 	hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2282 }
2283 
2284 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2285 			  struct ath_tx_control *txctl)
2286 {
2287 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2288 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2289 	struct ieee80211_sta *sta = txctl->sta;
2290 	struct ieee80211_vif *vif = info->control.vif;
2291 	struct ath_vif *avp;
2292 	struct ath_softc *sc = hw->priv;
2293 	int frmlen = skb->len + FCS_LEN;
2294 	int padpos, padsize;
2295 
2296 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2297 	if (sta)
2298 		txctl->an = (struct ath_node *)sta->drv_priv;
2299 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2300 		avp = (void *)vif->drv_priv;
2301 		txctl->an = &avp->mcast_node;
2302 	}
2303 
2304 	if (info->control.hw_key)
2305 		frmlen += info->control.hw_key->icv_len;
2306 
2307 	ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2308 
2309 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2310 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2311 	    !ieee80211_is_data(hdr->frame_control))
2312 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2313 
2314 	/* Add the padding after the header if this is not already done */
2315 	padpos = ieee80211_hdrlen(hdr->frame_control);
2316 	padsize = padpos & 3;
2317 	if (padsize && skb->len > padpos) {
2318 		if (skb_headroom(skb) < padsize)
2319 			return -ENOMEM;
2320 
2321 		skb_push(skb, padsize);
2322 		memmove(skb->data, skb->data + padsize, padpos);
2323 	}
2324 
2325 	setup_frame_info(hw, sta, skb, frmlen);
2326 	return 0;
2327 }
2328 
2329 
2330 /* Upon failure caller should free skb */
2331 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2332 		 struct ath_tx_control *txctl)
2333 {
2334 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2335 	struct ieee80211_sta *sta = txctl->sta;
2336 	struct ieee80211_vif *vif = info->control.vif;
2337 	struct ath_frame_info *fi = get_frame_info(skb);
2338 	struct ath_softc *sc = hw->priv;
2339 	struct ath_txq *txq = txctl->txq;
2340 	struct ath_atx_tid *tid = NULL;
2341 	struct ath_node *an = NULL;
2342 	struct ath_buf *bf;
2343 	bool ps_resp;
2344 	int q, ret;
2345 
2346 	ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2347 
2348 	ret = ath_tx_prepare(hw, skb, txctl);
2349 	if (ret)
2350 	    return ret;
2351 
2352 	/*
2353 	 * At this point, the vif, hw_key and sta pointers in the tx control
2354 	 * info are no longer valid (overwritten by the ath_frame_info data.
2355 	 */
2356 
2357 	q = skb_get_queue_mapping(skb);
2358 
2359 	if (ps_resp)
2360 		txq = sc->tx.uapsdq;
2361 
2362 	if (txctl->sta) {
2363 		an = (struct ath_node *) sta->drv_priv;
2364 		tid = ath_get_skb_tid(sc, an, skb);
2365 	}
2366 
2367 	ath_txq_lock(sc, txq);
2368 	if (txq == sc->tx.txq_map[q]) {
2369 		fi->txq = q;
2370 		++txq->pending_frames;
2371 	}
2372 
2373 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2374 	if (!bf) {
2375 		ath_txq_skb_done(sc, txq, skb);
2376 		if (txctl->paprd)
2377 			dev_kfree_skb_any(skb);
2378 		else
2379 			ieee80211_free_txskb(sc->hw, skb);
2380 		goto out;
2381 	}
2382 
2383 	bf->bf_state.bfs_paprd = txctl->paprd;
2384 
2385 	if (txctl->paprd)
2386 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2387 
2388 	ath_set_rates(vif, sta, bf);
2389 	ath_tx_send_normal(sc, txq, tid, skb);
2390 
2391 out:
2392 	ath_txq_unlock(sc, txq);
2393 
2394 	return 0;
2395 }
2396 
2397 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2398 		 struct sk_buff *skb)
2399 {
2400 	struct ath_softc *sc = hw->priv;
2401 	struct ath_tx_control txctl = {
2402 		.txq = sc->beacon.cabq
2403 	};
2404 	struct ath_tx_info info = {};
2405 	struct ath_buf *bf_tail = NULL;
2406 	struct ath_buf *bf;
2407 	LIST_HEAD(bf_q);
2408 	int duration = 0;
2409 	int max_duration;
2410 
2411 	max_duration =
2412 		sc->cur_chan->beacon.beacon_interval * 1000 *
2413 		sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2414 
2415 	do {
2416 		struct ath_frame_info *fi = get_frame_info(skb);
2417 
2418 		if (ath_tx_prepare(hw, skb, &txctl))
2419 			break;
2420 
2421 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2422 		if (!bf)
2423 			break;
2424 
2425 		bf->bf_lastbf = bf;
2426 		ath_set_rates(vif, NULL, bf);
2427 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2428 		duration += info.rates[0].PktDuration;
2429 		if (bf_tail)
2430 			bf_tail->bf_next = bf;
2431 
2432 		list_add_tail(&bf->list, &bf_q);
2433 		bf_tail = bf;
2434 		skb = NULL;
2435 
2436 		if (duration > max_duration)
2437 			break;
2438 
2439 		skb = ieee80211_get_buffered_bc(hw, vif);
2440 	} while(skb);
2441 
2442 	if (skb)
2443 		ieee80211_free_txskb(hw, skb);
2444 
2445 	if (list_empty(&bf_q))
2446 		return;
2447 
2448 	bf = list_last_entry(&bf_q, struct ath_buf, list);
2449 	ath9k_set_moredata(sc, bf, false);
2450 
2451 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2452 	ath_txq_lock(sc, txctl.txq);
2453 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2454 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2455 	TX_STAT_INC(sc, txctl.txq->axq_qnum, queued);
2456 	ath_txq_unlock(sc, txctl.txq);
2457 }
2458 
2459 /*****************/
2460 /* TX Completion */
2461 /*****************/
2462 
2463 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2464 			    int tx_flags, struct ath_txq *txq,
2465 			    struct ieee80211_sta *sta)
2466 {
2467 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2468 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2469 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2470 	int padpos, padsize;
2471 	unsigned long flags;
2472 
2473 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2474 
2475 	if (sc->sc_ah->caldata)
2476 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2477 
2478 	if (!(tx_flags & ATH_TX_ERROR)) {
2479 		if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2480 			tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2481 		else
2482 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
2483 	}
2484 
2485 	if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
2486 		padpos = ieee80211_hdrlen(hdr->frame_control);
2487 		padsize = padpos & 3;
2488 		if (padsize && skb->len>padpos+padsize) {
2489 			/*
2490 			 * Remove MAC header padding before giving the frame back to
2491 			 * mac80211.
2492 			 */
2493 			memmove(skb->data + padsize, skb->data, padpos);
2494 			skb_pull(skb, padsize);
2495 		}
2496 	}
2497 
2498 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2499 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2500 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2501 		ath_dbg(common, PS,
2502 			"Going back to sleep after having received TX status (0x%lx)\n",
2503 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2504 					PS_WAIT_FOR_CAB |
2505 					PS_WAIT_FOR_PSPOLL_DATA |
2506 					PS_WAIT_FOR_TX_ACK));
2507 	}
2508 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2509 
2510 	ath_txq_skb_done(sc, txq, skb);
2511 	tx_info->status.status_driver_data[0] = sta;
2512 	__skb_queue_tail(&txq->complete_q, skb);
2513 }
2514 
2515 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2516 				struct ath_txq *txq, struct list_head *bf_q,
2517 				struct ieee80211_sta *sta,
2518 				struct ath_tx_status *ts, int txok)
2519 {
2520 	struct sk_buff *skb = bf->bf_mpdu;
2521 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2522 	unsigned long flags;
2523 	int tx_flags = 0;
2524 
2525 	if (!txok)
2526 		tx_flags |= ATH_TX_ERROR;
2527 
2528 	if (ts->ts_status & ATH9K_TXERR_FILT)
2529 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2530 
2531 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2532 	bf->bf_buf_addr = 0;
2533 	if (sc->tx99_state)
2534 		goto skip_tx_complete;
2535 
2536 	if (bf->bf_state.bfs_paprd) {
2537 		if (time_after(jiffies,
2538 				bf->bf_state.bfs_paprd_timestamp +
2539 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2540 			dev_kfree_skb_any(skb);
2541 		else
2542 			complete(&sc->paprd_complete);
2543 	} else {
2544 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2545 		ath_tx_complete(sc, skb, tx_flags, txq, sta);
2546 	}
2547 skip_tx_complete:
2548 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2549 	 * accidentally reference it later.
2550 	 */
2551 	bf->bf_mpdu = NULL;
2552 
2553 	/*
2554 	 * Return the list of ath_buf of this mpdu to free queue
2555 	 */
2556 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2557 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2558 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2559 }
2560 
2561 static void ath_clear_tx_status(struct ieee80211_tx_info *tx_info)
2562 {
2563 	void *ptr = &tx_info->status;
2564 
2565 	memset(ptr + sizeof(tx_info->status.rates), 0,
2566 	       sizeof(tx_info->status) -
2567 	       sizeof(tx_info->status.rates) -
2568 	       sizeof(tx_info->status.status_driver_data));
2569 }
2570 
2571 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2572 			     struct ath_tx_status *ts, int nframes, int nbad,
2573 			     int txok)
2574 {
2575 	struct sk_buff *skb = bf->bf_mpdu;
2576 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2577 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2578 	struct ieee80211_hw *hw = sc->hw;
2579 	struct ath_hw *ah = sc->sc_ah;
2580 	u8 i, tx_rateindex;
2581 
2582 	ath_clear_tx_status(tx_info);
2583 
2584 	if (txok)
2585 		tx_info->status.ack_signal = ts->ts_rssi;
2586 
2587 	tx_rateindex = ts->ts_rateindex;
2588 	WARN_ON(tx_rateindex >= hw->max_rates);
2589 
2590 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2591 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2592 
2593 		BUG_ON(nbad > nframes);
2594 	}
2595 	tx_info->status.ampdu_len = nframes;
2596 	tx_info->status.ampdu_ack_len = nframes - nbad;
2597 
2598 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2599 
2600 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2601 		tx_info->status.rates[i].count = 0;
2602 		tx_info->status.rates[i].idx = -1;
2603 	}
2604 
2605 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2606 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2607 		/*
2608 		 * If an underrun error is seen assume it as an excessive
2609 		 * retry only if max frame trigger level has been reached
2610 		 * (2 KB for single stream, and 4 KB for dual stream).
2611 		 * Adjust the long retry as if the frame was tried
2612 		 * hw->max_rate_tries times to affect how rate control updates
2613 		 * PER for the failed rate.
2614 		 * In case of congestion on the bus penalizing this type of
2615 		 * underruns should help hardware actually transmit new frames
2616 		 * successfully by eventually preferring slower rates.
2617 		 * This itself should also alleviate congestion on the bus.
2618 		 */
2619 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2620 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2621 		    ieee80211_is_data(hdr->frame_control) &&
2622 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2623 			tx_info->status.rates[tx_rateindex].count =
2624 				hw->max_rate_tries;
2625 	}
2626 }
2627 
2628 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2629 {
2630 	struct ath_hw *ah = sc->sc_ah;
2631 	struct ath_common *common = ath9k_hw_common(ah);
2632 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2633 	struct list_head bf_head;
2634 	struct ath_desc *ds;
2635 	struct ath_tx_status ts;
2636 	int status;
2637 
2638 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2639 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2640 		txq->axq_link);
2641 
2642 	ath_txq_lock(sc, txq);
2643 	for (;;) {
2644 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2645 			break;
2646 
2647 		if (list_empty(&txq->axq_q)) {
2648 			txq->axq_link = NULL;
2649 			ath_txq_schedule(sc, txq);
2650 			break;
2651 		}
2652 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2653 
2654 		/*
2655 		 * There is a race condition that a BH gets scheduled
2656 		 * after sw writes TxE and before hw re-load the last
2657 		 * descriptor to get the newly chained one.
2658 		 * Software must keep the last DONE descriptor as a
2659 		 * holding descriptor - software does so by marking
2660 		 * it with the STALE flag.
2661 		 */
2662 		bf_held = NULL;
2663 		if (bf->bf_state.stale) {
2664 			bf_held = bf;
2665 			if (list_is_last(&bf_held->list, &txq->axq_q))
2666 				break;
2667 
2668 			bf = list_entry(bf_held->list.next, struct ath_buf,
2669 					list);
2670 		}
2671 
2672 		lastbf = bf->bf_lastbf;
2673 		ds = lastbf->bf_desc;
2674 
2675 		memset(&ts, 0, sizeof(ts));
2676 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2677 		if (status == -EINPROGRESS)
2678 			break;
2679 
2680 		TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2681 
2682 		/*
2683 		 * Remove ath_buf's of the same transmit unit from txq,
2684 		 * however leave the last descriptor back as the holding
2685 		 * descriptor for hw.
2686 		 */
2687 		lastbf->bf_state.stale = true;
2688 		INIT_LIST_HEAD(&bf_head);
2689 		if (!list_is_singular(&lastbf->list))
2690 			list_cut_position(&bf_head,
2691 				&txq->axq_q, lastbf->list.prev);
2692 
2693 		if (bf_held) {
2694 			list_del(&bf_held->list);
2695 			ath_tx_return_buffer(sc, bf_held);
2696 		}
2697 
2698 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2699 	}
2700 	ath_txq_unlock_complete(sc, txq);
2701 }
2702 
2703 void ath_tx_tasklet(struct ath_softc *sc)
2704 {
2705 	struct ath_hw *ah = sc->sc_ah;
2706 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2707 	int i;
2708 
2709 	rcu_read_lock();
2710 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2711 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2712 			ath_tx_processq(sc, &sc->tx.txq[i]);
2713 	}
2714 	rcu_read_unlock();
2715 }
2716 
2717 void ath_tx_edma_tasklet(struct ath_softc *sc)
2718 {
2719 	struct ath_tx_status ts;
2720 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2721 	struct ath_hw *ah = sc->sc_ah;
2722 	struct ath_txq *txq;
2723 	struct ath_buf *bf, *lastbf;
2724 	struct list_head bf_head;
2725 	struct list_head *fifo_list;
2726 	int status;
2727 
2728 	rcu_read_lock();
2729 	for (;;) {
2730 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2731 			break;
2732 
2733 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2734 		if (status == -EINPROGRESS)
2735 			break;
2736 		if (status == -EIO) {
2737 			ath_dbg(common, XMIT, "Error processing tx status\n");
2738 			break;
2739 		}
2740 
2741 		/* Process beacon completions separately */
2742 		if (ts.qid == sc->beacon.beaconq) {
2743 			sc->beacon.tx_processed = true;
2744 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2745 
2746 			if (ath9k_is_chanctx_enabled()) {
2747 				ath_chanctx_event(sc, NULL,
2748 						  ATH_CHANCTX_EVENT_BEACON_SENT);
2749 			}
2750 
2751 			ath9k_csa_update(sc);
2752 			continue;
2753 		}
2754 
2755 		txq = &sc->tx.txq[ts.qid];
2756 
2757 		ath_txq_lock(sc, txq);
2758 
2759 		TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2760 
2761 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2762 		if (list_empty(fifo_list)) {
2763 			ath_txq_unlock(sc, txq);
2764 			break;
2765 		}
2766 
2767 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2768 		if (bf->bf_state.stale) {
2769 			list_del(&bf->list);
2770 			ath_tx_return_buffer(sc, bf);
2771 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2772 		}
2773 
2774 		lastbf = bf->bf_lastbf;
2775 
2776 		INIT_LIST_HEAD(&bf_head);
2777 		if (list_is_last(&lastbf->list, fifo_list)) {
2778 			list_splice_tail_init(fifo_list, &bf_head);
2779 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2780 
2781 			if (!list_empty(&txq->axq_q)) {
2782 				struct list_head bf_q;
2783 
2784 				INIT_LIST_HEAD(&bf_q);
2785 				txq->axq_link = NULL;
2786 				list_splice_tail_init(&txq->axq_q, &bf_q);
2787 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2788 			}
2789 		} else {
2790 			lastbf->bf_state.stale = true;
2791 			if (bf != lastbf)
2792 				list_cut_position(&bf_head, fifo_list,
2793 						  lastbf->list.prev);
2794 		}
2795 
2796 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2797 		ath_txq_unlock_complete(sc, txq);
2798 	}
2799 	rcu_read_unlock();
2800 }
2801 
2802 /*****************/
2803 /* Init, Cleanup */
2804 /*****************/
2805 
2806 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2807 {
2808 	struct ath_descdma *dd = &sc->txsdma;
2809 	u8 txs_len = sc->sc_ah->caps.txs_len;
2810 
2811 	dd->dd_desc_len = size * txs_len;
2812 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2813 					  &dd->dd_desc_paddr, GFP_KERNEL);
2814 	if (!dd->dd_desc)
2815 		return -ENOMEM;
2816 
2817 	return 0;
2818 }
2819 
2820 static int ath_tx_edma_init(struct ath_softc *sc)
2821 {
2822 	int err;
2823 
2824 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2825 	if (!err)
2826 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2827 					  sc->txsdma.dd_desc_paddr,
2828 					  ATH_TXSTATUS_RING_SIZE);
2829 
2830 	return err;
2831 }
2832 
2833 int ath_tx_init(struct ath_softc *sc, int nbufs)
2834 {
2835 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2836 	int error = 0;
2837 
2838 	spin_lock_init(&sc->tx.txbuflock);
2839 
2840 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2841 				  "tx", nbufs, 1, 1);
2842 	if (error != 0) {
2843 		ath_err(common,
2844 			"Failed to allocate tx descriptors: %d\n", error);
2845 		return error;
2846 	}
2847 
2848 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2849 				  "beacon", ATH_BCBUF, 1, 1);
2850 	if (error != 0) {
2851 		ath_err(common,
2852 			"Failed to allocate beacon descriptors: %d\n", error);
2853 		return error;
2854 	}
2855 
2856 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2857 		error = ath_tx_edma_init(sc);
2858 
2859 	return error;
2860 }
2861 
2862 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2863 {
2864 	struct ath_atx_tid *tid;
2865 	int tidno, acno;
2866 
2867 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2868 		tid = ath_node_to_tid(an, tidno);
2869 		tid->an        = an;
2870 		tid->tidno     = tidno;
2871 		tid->seq_start = tid->seq_next = 0;
2872 		tid->baw_size  = WME_MAX_BA;
2873 		tid->baw_head  = tid->baw_tail = 0;
2874 		tid->active	   = false;
2875 		tid->clear_ps_filter = true;
2876 		__skb_queue_head_init(&tid->retry_q);
2877 		INIT_LIST_HEAD(&tid->list);
2878 		acno = TID_TO_WME_AC(tidno);
2879 		tid->txq = sc->tx.txq_map[acno];
2880 
2881 		if (!an->sta)
2882 			break; /* just one multicast ath_atx_tid */
2883 	}
2884 }
2885 
2886 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2887 {
2888 	struct ath_atx_tid *tid;
2889 	struct ath_txq *txq;
2890 	int tidno;
2891 
2892 	rcu_read_lock();
2893 
2894 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2895 		tid = ath_node_to_tid(an, tidno);
2896 		txq = tid->txq;
2897 
2898 		ath_txq_lock(sc, txq);
2899 
2900 		if (!list_empty(&tid->list))
2901 			list_del_init(&tid->list);
2902 
2903 		ath_tid_drain(sc, txq, tid);
2904 		tid->active = false;
2905 
2906 		ath_txq_unlock(sc, txq);
2907 
2908 		if (!an->sta)
2909 			break; /* just one multicast ath_atx_tid */
2910 	}
2911 
2912 	rcu_read_unlock();
2913 }
2914 
2915 #ifdef CONFIG_ATH9K_TX99
2916 
2917 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2918 		    struct ath_tx_control *txctl)
2919 {
2920 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2921 	struct ath_frame_info *fi = get_frame_info(skb);
2922 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2923 	struct ath_buf *bf;
2924 	int padpos, padsize;
2925 
2926 	padpos = ieee80211_hdrlen(hdr->frame_control);
2927 	padsize = padpos & 3;
2928 
2929 	if (padsize && skb->len > padpos) {
2930 		if (skb_headroom(skb) < padsize) {
2931 			ath_dbg(common, XMIT,
2932 				"tx99 padding failed\n");
2933 			return -EINVAL;
2934 		}
2935 
2936 		skb_push(skb, padsize);
2937 		memmove(skb->data, skb->data + padsize, padpos);
2938 	}
2939 
2940 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2941 	fi->framelen = skb->len + FCS_LEN;
2942 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2943 
2944 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2945 	if (!bf) {
2946 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2947 		return -EINVAL;
2948 	}
2949 
2950 	ath_set_rates(sc->tx99_vif, NULL, bf);
2951 
2952 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2953 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2954 
2955 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2956 
2957 	return 0;
2958 }
2959 
2960 #endif /* CONFIG_ATH9K_TX99 */
2961