xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 0e73f1ba602d953ee8ceda5cea3a381bf212b80b)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 /* Shifts in ar5008_phy.c and ar9003_phy.c are equal for all revisions */
38 #define ATH9K_PWRTBL_11NA_OFDM_SHIFT    0
39 #define ATH9K_PWRTBL_11NG_OFDM_SHIFT    4
40 #define ATH9K_PWRTBL_11NA_HT_SHIFT      8
41 #define ATH9K_PWRTBL_11NG_HT_SHIFT      12
42 
43 
44 static u16 bits_per_symbol[][2] = {
45 	/* 20MHz 40MHz */
46 	{    26,   54 },     /*  0: BPSK */
47 	{    52,  108 },     /*  1: QPSK 1/2 */
48 	{    78,  162 },     /*  2: QPSK 3/4 */
49 	{   104,  216 },     /*  3: 16-QAM 1/2 */
50 	{   156,  324 },     /*  4: 16-QAM 3/4 */
51 	{   208,  432 },     /*  5: 64-QAM 2/3 */
52 	{   234,  486 },     /*  6: 64-QAM 3/4 */
53 	{   260,  540 },     /*  7: 64-QAM 5/6 */
54 };
55 
56 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
57 			       struct ath_atx_tid *tid, struct sk_buff *skb);
58 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
59 			    int tx_flags, struct ath_txq *txq,
60 			    struct ieee80211_sta *sta);
61 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
62 				struct ath_txq *txq, struct list_head *bf_q,
63 				struct ieee80211_sta *sta,
64 				struct ath_tx_status *ts, int txok);
65 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
66 			     struct list_head *head, bool internal);
67 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
68 			     struct ath_tx_status *ts, int nframes, int nbad,
69 			     int txok);
70 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
71 			      struct ath_buf *bf);
72 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
73 					   struct ath_txq *txq,
74 					   struct ath_atx_tid *tid,
75 					   struct sk_buff *skb);
76 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
77 			  struct ath_tx_control *txctl);
78 
79 enum {
80 	MCS_HT20,
81 	MCS_HT20_SGI,
82 	MCS_HT40,
83 	MCS_HT40_SGI,
84 };
85 
86 /*********************/
87 /* Aggregation logic */
88 /*********************/
89 
90 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb)
91 {
92 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
93 	struct ieee80211_sta *sta = info->status.status_driver_data[0];
94 
95 	if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS |
96 			   IEEE80211_TX_STATUS_EOSP)) {
97 		ieee80211_tx_status(hw, skb);
98 		return;
99 	}
100 
101 	if (sta)
102 		ieee80211_tx_status_noskb(hw, sta, info);
103 
104 	dev_kfree_skb(skb);
105 }
106 
107 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
108 	__releases(&txq->axq_lock)
109 {
110 	struct ieee80211_hw *hw = sc->hw;
111 	struct sk_buff_head q;
112 	struct sk_buff *skb;
113 
114 	__skb_queue_head_init(&q);
115 	skb_queue_splice_init(&txq->complete_q, &q);
116 	spin_unlock_bh(&txq->axq_lock);
117 
118 	while ((skb = __skb_dequeue(&q)))
119 		ath_tx_status(hw, skb);
120 }
121 
122 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
123 {
124 	struct ieee80211_txq *queue =
125 		container_of((void *)tid, struct ieee80211_txq, drv_priv);
126 
127 	ieee80211_schedule_txq(sc->hw, queue);
128 }
129 
130 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue)
131 {
132 	struct ath_softc *sc = hw->priv;
133 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
134 	struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv;
135 	struct ath_txq *txq = tid->txq;
136 
137 	ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n",
138 		queue->sta ? queue->sta->addr : queue->vif->addr,
139 		tid->tidno);
140 
141 	ath_txq_lock(sc, txq);
142 	ath_txq_schedule(sc, txq);
143 	ath_txq_unlock(sc, txq);
144 }
145 
146 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
147 {
148 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
149 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
150 		     sizeof(tx_info->status.status_driver_data));
151 	return (struct ath_frame_info *) &tx_info->status.status_driver_data[0];
152 }
153 
154 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
155 {
156 	if (!tid->an->sta)
157 		return;
158 
159 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
160 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
161 }
162 
163 static bool ath_merge_ratetbl(struct ieee80211_sta *sta, struct ath_buf *bf,
164 			      struct ieee80211_tx_info *tx_info)
165 {
166 	struct ieee80211_sta_rates *ratetbl;
167 	u8 i;
168 
169 	if (!sta)
170 		return false;
171 
172 	ratetbl = rcu_dereference(sta->rates);
173 	if (!ratetbl)
174 		return false;
175 
176 	if (tx_info->control.rates[0].idx < 0 ||
177 	    tx_info->control.rates[0].count == 0)
178 	{
179 		i = 0;
180 	} else {
181 		bf->rates[0] = tx_info->control.rates[0];
182 		i = 1;
183 	}
184 
185 	for ( ; i < IEEE80211_TX_MAX_RATES; i++) {
186 		bf->rates[i].idx = ratetbl->rate[i].idx;
187 		bf->rates[i].flags = ratetbl->rate[i].flags;
188 		if (tx_info->control.use_rts)
189 			bf->rates[i].count = ratetbl->rate[i].count_rts;
190 		else if (tx_info->control.use_cts_prot)
191 			bf->rates[i].count = ratetbl->rate[i].count_cts;
192 		else
193 			bf->rates[i].count = ratetbl->rate[i].count;
194 	}
195 
196 	return true;
197 }
198 
199 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta,
200 			  struct ath_buf *bf)
201 {
202 	struct ieee80211_tx_info *tx_info;
203 
204 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
205 
206 	if (!ath_merge_ratetbl(sta, bf, tx_info))
207 		ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates,
208 				       ARRAY_SIZE(bf->rates));
209 }
210 
211 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq,
212 			     struct sk_buff *skb)
213 {
214 	struct ath_frame_info *fi = get_frame_info(skb);
215 	int q = fi->txq;
216 
217 	if (q < 0)
218 		return;
219 
220 	txq = sc->tx.txq_map[q];
221 	if (WARN_ON(--txq->pending_frames < 0))
222 		txq->pending_frames = 0;
223 
224 }
225 
226 static struct ath_atx_tid *
227 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb)
228 {
229 	u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK;
230 	return ATH_AN_2_TID(an, tidno);
231 }
232 
233 static int
234 ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf)
235 {
236 	struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv);
237 	struct ath_softc *sc = tid->an->sc;
238 	struct ieee80211_hw *hw = sc->hw;
239 	struct ath_tx_control txctl = {
240 		.txq = tid->txq,
241 		.sta = tid->an->sta,
242 	};
243 	struct sk_buff *skb;
244 	struct ath_frame_info *fi;
245 	int q, ret;
246 
247 	skb = ieee80211_tx_dequeue(hw, txq);
248 	if (!skb)
249 		return -ENOENT;
250 
251 	ret = ath_tx_prepare(hw, skb, &txctl);
252 	if (ret) {
253 		ieee80211_free_txskb(hw, skb);
254 		return ret;
255 	}
256 
257 	q = skb_get_queue_mapping(skb);
258 	if (tid->txq == sc->tx.txq_map[q]) {
259 		fi = get_frame_info(skb);
260 		fi->txq = q;
261 		++tid->txq->pending_frames;
262 	}
263 
264 	*skbuf = skb;
265 	return 0;
266 }
267 
268 static int ath_tid_dequeue(struct ath_atx_tid *tid,
269 			   struct sk_buff **skb)
270 {
271 	int ret = 0;
272 	*skb = __skb_dequeue(&tid->retry_q);
273 	if (!*skb)
274 		ret = ath_tid_pull(tid, skb);
275 
276 	return ret;
277 }
278 
279 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
280 {
281 	struct ath_txq *txq = tid->txq;
282 	struct sk_buff *skb;
283 	struct ath_buf *bf;
284 	struct list_head bf_head;
285 	struct ath_tx_status ts;
286 	struct ath_frame_info *fi;
287 	bool sendbar = false;
288 
289 	INIT_LIST_HEAD(&bf_head);
290 
291 	memset(&ts, 0, sizeof(ts));
292 
293 	while ((skb = __skb_dequeue(&tid->retry_q))) {
294 		fi = get_frame_info(skb);
295 		bf = fi->bf;
296 		if (!bf) {
297 			ath_txq_skb_done(sc, txq, skb);
298 			ieee80211_free_txskb(sc->hw, skb);
299 			continue;
300 		}
301 
302 		if (fi->baw_tracked) {
303 			ath_tx_update_baw(sc, tid, bf);
304 			sendbar = true;
305 		}
306 
307 		list_add_tail(&bf->list, &bf_head);
308 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
309 	}
310 
311 	if (sendbar) {
312 		ath_txq_unlock(sc, txq);
313 		ath_send_bar(tid, tid->seq_start);
314 		ath_txq_lock(sc, txq);
315 	}
316 }
317 
318 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
319 			      struct ath_buf *bf)
320 {
321 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
322 	u16 seqno = bf->bf_state.seqno;
323 	int index, cindex;
324 
325 	if (!fi->baw_tracked)
326 		return;
327 
328 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
329 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
330 
331 	__clear_bit(cindex, tid->tx_buf);
332 
333 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
334 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
335 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
336 		if (tid->bar_index >= 0)
337 			tid->bar_index--;
338 	}
339 }
340 
341 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
342 			     struct ath_buf *bf)
343 {
344 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
345 	u16 seqno = bf->bf_state.seqno;
346 	int index, cindex;
347 
348 	if (fi->baw_tracked)
349 		return;
350 
351 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
352 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
353 	__set_bit(cindex, tid->tx_buf);
354 	fi->baw_tracked = 1;
355 
356 	if (index >= ((tid->baw_tail - tid->baw_head) &
357 		(ATH_TID_MAX_BUFS - 1))) {
358 		tid->baw_tail = cindex;
359 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
360 	}
361 }
362 
363 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
364 			  struct ath_atx_tid *tid)
365 
366 {
367 	struct sk_buff *skb;
368 	struct ath_buf *bf;
369 	struct list_head bf_head;
370 	struct ath_tx_status ts;
371 	struct ath_frame_info *fi;
372 	int ret;
373 
374 	memset(&ts, 0, sizeof(ts));
375 	INIT_LIST_HEAD(&bf_head);
376 
377 	while ((ret = ath_tid_dequeue(tid, &skb)) == 0) {
378 		fi = get_frame_info(skb);
379 		bf = fi->bf;
380 
381 		if (!bf) {
382 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL);
383 			continue;
384 		}
385 
386 		list_add_tail(&bf->list, &bf_head);
387 		ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
388 	}
389 }
390 
391 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
392 			     struct sk_buff *skb, int count)
393 {
394 	struct ath_frame_info *fi = get_frame_info(skb);
395 	struct ath_buf *bf = fi->bf;
396 	struct ieee80211_hdr *hdr;
397 	int prev = fi->retries;
398 
399 	TX_STAT_INC(sc, txq->axq_qnum, a_retries);
400 	fi->retries += count;
401 
402 	if (prev > 0)
403 		return;
404 
405 	hdr = (struct ieee80211_hdr *)skb->data;
406 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
407 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
408 		sizeof(*hdr), DMA_TO_DEVICE);
409 }
410 
411 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
412 {
413 	struct ath_buf *bf = NULL;
414 
415 	spin_lock_bh(&sc->tx.txbuflock);
416 
417 	if (unlikely(list_empty(&sc->tx.txbuf))) {
418 		spin_unlock_bh(&sc->tx.txbuflock);
419 		return NULL;
420 	}
421 
422 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
423 	list_del(&bf->list);
424 
425 	spin_unlock_bh(&sc->tx.txbuflock);
426 
427 	return bf;
428 }
429 
430 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
431 {
432 	spin_lock_bh(&sc->tx.txbuflock);
433 	list_add_tail(&bf->list, &sc->tx.txbuf);
434 	spin_unlock_bh(&sc->tx.txbuflock);
435 }
436 
437 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
438 {
439 	struct ath_buf *tbf;
440 
441 	tbf = ath_tx_get_buffer(sc);
442 	if (WARN_ON(!tbf))
443 		return NULL;
444 
445 	ATH_TXBUF_RESET(tbf);
446 
447 	tbf->bf_mpdu = bf->bf_mpdu;
448 	tbf->bf_buf_addr = bf->bf_buf_addr;
449 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
450 	tbf->bf_state = bf->bf_state;
451 	tbf->bf_state.stale = false;
452 
453 	return tbf;
454 }
455 
456 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
457 			        struct ath_tx_status *ts, int txok,
458 			        int *nframes, int *nbad)
459 {
460 	u16 seq_st = 0;
461 	u32 ba[WME_BA_BMP_SIZE >> 5];
462 	int ba_index;
463 	int isaggr = 0;
464 
465 	*nbad = 0;
466 	*nframes = 0;
467 
468 	isaggr = bf_isaggr(bf);
469 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
470 
471 	if (isaggr) {
472 		seq_st = ts->ts_seqnum;
473 		memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3);
474 	}
475 
476 	while (bf) {
477 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
478 
479 		(*nframes)++;
480 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
481 			(*nbad)++;
482 
483 		bf = bf->bf_next;
484 	}
485 }
486 
487 
488 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
489 				 struct ath_buf *bf, struct list_head *bf_q,
490 				 struct ieee80211_sta *sta,
491 				 struct ath_atx_tid *tid,
492 				 struct ath_tx_status *ts, int txok)
493 {
494 	struct ath_node *an = NULL;
495 	struct sk_buff *skb;
496 	struct ieee80211_tx_info *tx_info;
497 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
498 	struct list_head bf_head;
499 	struct sk_buff_head bf_pending;
500 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
501 	u32 ba[WME_BA_BMP_SIZE >> 5];
502 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
503 	bool rc_update = true, isba;
504 	struct ieee80211_tx_rate rates[4];
505 	struct ath_frame_info *fi;
506 	int nframes;
507 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
508 	int i, retries;
509 	int bar_index = -1;
510 
511 	skb = bf->bf_mpdu;
512 	tx_info = IEEE80211_SKB_CB(skb);
513 
514 	memcpy(rates, bf->rates, sizeof(rates));
515 
516 	retries = ts->ts_longretry + 1;
517 	for (i = 0; i < ts->ts_rateindex; i++)
518 		retries += rates[i].count;
519 
520 	if (!sta) {
521 		INIT_LIST_HEAD(&bf_head);
522 		while (bf) {
523 			bf_next = bf->bf_next;
524 
525 			if (!bf->bf_state.stale || bf_next != NULL)
526 				list_move_tail(&bf->list, &bf_head);
527 
528 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0);
529 
530 			bf = bf_next;
531 		}
532 		return;
533 	}
534 
535 	an = (struct ath_node *)sta->drv_priv;
536 	seq_first = tid->seq_start;
537 	isba = ts->ts_flags & ATH9K_TX_BA;
538 
539 	/*
540 	 * The hardware occasionally sends a tx status for the wrong TID.
541 	 * In this case, the BA status cannot be considered valid and all
542 	 * subframes need to be retransmitted
543 	 *
544 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
545 	 * checked
546 	 */
547 	if (isba && tid->tidno != ts->tid)
548 		txok = false;
549 
550 	isaggr = bf_isaggr(bf);
551 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
552 
553 	if (isaggr && txok) {
554 		if (ts->ts_flags & ATH9K_TX_BA) {
555 			seq_st = ts->ts_seqnum;
556 			memcpy(ba, &ts->ba, WME_BA_BMP_SIZE >> 3);
557 		} else {
558 			/*
559 			 * AR5416 can become deaf/mute when BA
560 			 * issue happens. Chip needs to be reset.
561 			 * But AP code may have sychronization issues
562 			 * when perform internal reset in this routine.
563 			 * Only enable reset in STA mode for now.
564 			 */
565 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
566 				needreset = 1;
567 		}
568 	}
569 
570 	__skb_queue_head_init(&bf_pending);
571 
572 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
573 	while (bf) {
574 		u16 seqno = bf->bf_state.seqno;
575 
576 		txfail = txpending = sendbar = 0;
577 		bf_next = bf->bf_next;
578 
579 		skb = bf->bf_mpdu;
580 		tx_info = IEEE80211_SKB_CB(skb);
581 		fi = get_frame_info(skb);
582 
583 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) ||
584 		    !tid->active) {
585 			/*
586 			 * Outside of the current BlockAck window,
587 			 * maybe part of a previous session
588 			 */
589 			txfail = 1;
590 		} else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
591 			/* transmit completion, subframe is
592 			 * acked by block ack */
593 			acked_cnt++;
594 		} else if (!isaggr && txok) {
595 			/* transmit completion */
596 			acked_cnt++;
597 		} else if (flush) {
598 			txpending = 1;
599 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
600 			if (txok || !an->sleeping)
601 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
602 						 retries);
603 
604 			txpending = 1;
605 		} else {
606 			txfail = 1;
607 			txfail_cnt++;
608 			bar_index = max_t(int, bar_index,
609 				ATH_BA_INDEX(seq_first, seqno));
610 		}
611 
612 		/*
613 		 * Make sure the last desc is reclaimed if it
614 		 * not a holding desc.
615 		 */
616 		INIT_LIST_HEAD(&bf_head);
617 		if (bf_next != NULL || !bf_last->bf_state.stale)
618 			list_move_tail(&bf->list, &bf_head);
619 
620 		if (!txpending) {
621 			/*
622 			 * complete the acked-ones/xretried ones; update
623 			 * block-ack window
624 			 */
625 			ath_tx_update_baw(sc, tid, bf);
626 
627 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
628 				memcpy(tx_info->control.rates, rates, sizeof(rates));
629 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
630 				rc_update = false;
631 				if (bf == bf->bf_lastbf)
632 					ath_dynack_sample_tx_ts(sc->sc_ah,
633 								bf->bf_mpdu,
634 								ts, sta);
635 			}
636 
637 			ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts,
638 				!txfail);
639 		} else {
640 			if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) {
641 				tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP;
642 				ieee80211_sta_eosp(sta);
643 			}
644 			/* retry the un-acked ones */
645 			if (bf->bf_next == NULL && bf_last->bf_state.stale) {
646 				struct ath_buf *tbf;
647 
648 				tbf = ath_clone_txbuf(sc, bf_last);
649 				/*
650 				 * Update tx baw and complete the
651 				 * frame with failed status if we
652 				 * run out of tx buf.
653 				 */
654 				if (!tbf) {
655 					ath_tx_update_baw(sc, tid, bf);
656 
657 					ath_tx_complete_buf(sc, bf, txq,
658 							    &bf_head, NULL, ts,
659 							    0);
660 					bar_index = max_t(int, bar_index,
661 						ATH_BA_INDEX(seq_first, seqno));
662 					break;
663 				}
664 
665 				fi->bf = tbf;
666 			}
667 
668 			/*
669 			 * Put this buffer to the temporary pending
670 			 * queue to retain ordering
671 			 */
672 			__skb_queue_tail(&bf_pending, skb);
673 		}
674 
675 		bf = bf_next;
676 	}
677 
678 	/* prepend un-acked frames to the beginning of the pending frame queue */
679 	if (!skb_queue_empty(&bf_pending)) {
680 		if (an->sleeping)
681 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
682 
683 		skb_queue_splice_tail(&bf_pending, &tid->retry_q);
684 		if (!an->sleeping) {
685 			ath_tx_queue_tid(sc, tid);
686 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
687 				tid->clear_ps_filter = true;
688 		}
689 	}
690 
691 	if (bar_index >= 0) {
692 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
693 
694 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
695 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
696 
697 		ath_txq_unlock(sc, txq);
698 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
699 		ath_txq_lock(sc, txq);
700 	}
701 
702 	if (needreset)
703 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
704 }
705 
706 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
707 {
708     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
709     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
710 }
711 
712 static void ath_tx_count_airtime(struct ath_softc *sc,
713 				 struct ieee80211_sta *sta,
714 				 struct ath_buf *bf,
715 				 struct ath_tx_status *ts,
716 				 u8 tid)
717 {
718 	u32 airtime = 0;
719 	int i;
720 
721 	airtime += ts->duration * (ts->ts_longretry + 1);
722 	for(i = 0; i < ts->ts_rateindex; i++) {
723 		int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i);
724 		airtime += rate_dur * bf->rates[i].count;
725 	}
726 
727 	ieee80211_sta_register_airtime(sta, tid, airtime, 0);
728 }
729 
730 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
731 				  struct ath_tx_status *ts, struct ath_buf *bf,
732 				  struct list_head *bf_head)
733 {
734 	struct ieee80211_hw *hw = sc->hw;
735 	struct ieee80211_tx_info *info;
736 	struct ieee80211_sta *sta;
737 	struct ieee80211_hdr *hdr;
738 	struct ath_atx_tid *tid = NULL;
739 	bool txok, flush;
740 
741 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
742 	flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
743 	txq->axq_tx_inprogress = false;
744 
745 	txq->axq_depth--;
746 	if (bf_is_ampdu_not_probing(bf))
747 		txq->axq_ampdu_depth--;
748 
749 	ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc,
750 					     ts->ts_rateindex);
751 
752 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
753 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
754 	if (sta) {
755 		struct ath_node *an = (struct ath_node *)sta->drv_priv;
756 		tid = ath_get_skb_tid(sc, an, bf->bf_mpdu);
757 		ath_tx_count_airtime(sc, sta, bf, ts, tid->tidno);
758 		if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
759 			tid->clear_ps_filter = true;
760 	}
761 
762 	if (!bf_isampdu(bf)) {
763 		if (!flush) {
764 			info = IEEE80211_SKB_CB(bf->bf_mpdu);
765 			memcpy(info->control.rates, bf->rates,
766 			       sizeof(info->control.rates));
767 			ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
768 			ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts,
769 						sta);
770 		}
771 		ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok);
772 	} else
773 		ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok);
774 
775 	if (!flush)
776 		ath_txq_schedule(sc, txq);
777 }
778 
779 static bool ath_lookup_legacy(struct ath_buf *bf)
780 {
781 	struct sk_buff *skb;
782 	struct ieee80211_tx_info *tx_info;
783 	struct ieee80211_tx_rate *rates;
784 	int i;
785 
786 	skb = bf->bf_mpdu;
787 	tx_info = IEEE80211_SKB_CB(skb);
788 	rates = tx_info->control.rates;
789 
790 	for (i = 0; i < 4; i++) {
791 		if (!rates[i].count || rates[i].idx < 0)
792 			break;
793 
794 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
795 			return true;
796 	}
797 
798 	return false;
799 }
800 
801 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
802 			   struct ath_atx_tid *tid)
803 {
804 	struct sk_buff *skb;
805 	struct ieee80211_tx_info *tx_info;
806 	struct ieee80211_tx_rate *rates;
807 	u32 max_4ms_framelen, frmlen;
808 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
809 	int q = tid->txq->mac80211_qnum;
810 	int i;
811 
812 	skb = bf->bf_mpdu;
813 	tx_info = IEEE80211_SKB_CB(skb);
814 	rates = bf->rates;
815 
816 	/*
817 	 * Find the lowest frame length among the rate series that will have a
818 	 * 4ms (or TXOP limited) transmit duration.
819 	 */
820 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
821 
822 	for (i = 0; i < 4; i++) {
823 		int modeidx;
824 
825 		if (!rates[i].count)
826 			continue;
827 
828 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
829 			legacy = 1;
830 			break;
831 		}
832 
833 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
834 			modeidx = MCS_HT40;
835 		else
836 			modeidx = MCS_HT20;
837 
838 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
839 			modeidx++;
840 
841 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
842 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
843 	}
844 
845 	/*
846 	 * limit aggregate size by the minimum rate if rate selected is
847 	 * not a probe rate, if rate selected is a probe rate then
848 	 * avoid aggregation of this packet.
849 	 */
850 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
851 		return 0;
852 
853 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
854 
855 	/*
856 	 * Override the default aggregation limit for BTCOEX.
857 	 */
858 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
859 	if (bt_aggr_limit)
860 		aggr_limit = bt_aggr_limit;
861 
862 	if (tid->an->maxampdu)
863 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
864 
865 	return aggr_limit;
866 }
867 
868 /*
869  * Returns the number of delimiters to be added to
870  * meet the minimum required mpdudensity.
871  */
872 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
873 				  struct ath_buf *bf, u16 frmlen,
874 				  bool first_subfrm)
875 {
876 #define FIRST_DESC_NDELIMS 60
877 	u32 nsymbits, nsymbols;
878 	u16 minlen;
879 	u8 flags, rix;
880 	int width, streams, half_gi, ndelim, mindelim;
881 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
882 
883 	/* Select standard number of delimiters based on frame length alone */
884 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
885 
886 	/*
887 	 * If encryption enabled, hardware requires some more padding between
888 	 * subframes.
889 	 * TODO - this could be improved to be dependent on the rate.
890 	 *      The hardware can keep up at lower rates, but not higher rates
891 	 */
892 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
893 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
894 		ndelim += ATH_AGGR_ENCRYPTDELIM;
895 
896 	/*
897 	 * Add delimiter when using RTS/CTS with aggregation
898 	 * and non enterprise AR9003 card
899 	 */
900 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
901 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
902 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
903 
904 	/*
905 	 * Convert desired mpdu density from microeconds to bytes based
906 	 * on highest rate in rate series (i.e. first rate) to determine
907 	 * required minimum length for subframe. Take into account
908 	 * whether high rate is 20 or 40Mhz and half or full GI.
909 	 *
910 	 * If there is no mpdu density restriction, no further calculation
911 	 * is needed.
912 	 */
913 
914 	if (tid->an->mpdudensity == 0)
915 		return ndelim;
916 
917 	rix = bf->rates[0].idx;
918 	flags = bf->rates[0].flags;
919 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
920 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
921 
922 	if (half_gi)
923 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
924 	else
925 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
926 
927 	if (nsymbols == 0)
928 		nsymbols = 1;
929 
930 	streams = HT_RC_2_STREAMS(rix);
931 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
932 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
933 
934 	if (frmlen < minlen) {
935 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
936 		ndelim = max(mindelim, ndelim);
937 	}
938 
939 	return ndelim;
940 }
941 
942 static int
943 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq,
944 			struct ath_atx_tid *tid, struct ath_buf **buf)
945 {
946 	struct ieee80211_tx_info *tx_info;
947 	struct ath_frame_info *fi;
948 	struct ath_buf *bf;
949 	struct sk_buff *skb, *first_skb = NULL;
950 	u16 seqno;
951 	int ret;
952 
953 	while (1) {
954 		ret = ath_tid_dequeue(tid, &skb);
955 		if (ret < 0)
956 			return ret;
957 
958 		fi = get_frame_info(skb);
959 		bf = fi->bf;
960 		if (!fi->bf)
961 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
962 		else
963 			bf->bf_state.stale = false;
964 
965 		if (!bf) {
966 			ath_txq_skb_done(sc, txq, skb);
967 			ieee80211_free_txskb(sc->hw, skb);
968 			continue;
969 		}
970 
971 		bf->bf_next = NULL;
972 		bf->bf_lastbf = bf;
973 
974 		tx_info = IEEE80211_SKB_CB(skb);
975 		tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT |
976 				    IEEE80211_TX_STATUS_EOSP);
977 
978 		/*
979 		 * No aggregation session is running, but there may be frames
980 		 * from a previous session or a failed attempt in the queue.
981 		 * Send them out as normal data frames
982 		 */
983 		if (!tid->active)
984 			tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU;
985 
986 		if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
987 			bf->bf_state.bf_type = 0;
988 			break;
989 		}
990 
991 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
992 		seqno = bf->bf_state.seqno;
993 
994 		/* do not step over block-ack window */
995 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
996 			__skb_queue_tail(&tid->retry_q, skb);
997 
998 			/* If there are other skbs in the retry q, they are
999 			 * probably within the BAW, so loop immediately to get
1000 			 * one of them. Otherwise the queue can get stuck. */
1001 			if (!skb_queue_is_first(&tid->retry_q, skb) &&
1002 			    !WARN_ON(skb == first_skb)) {
1003 				if(!first_skb) /* infinite loop prevention */
1004 					first_skb = skb;
1005 				continue;
1006 			}
1007 			return -EINPROGRESS;
1008 		}
1009 
1010 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
1011 			struct ath_tx_status ts = {};
1012 			struct list_head bf_head;
1013 
1014 			INIT_LIST_HEAD(&bf_head);
1015 			list_add(&bf->list, &bf_head);
1016 			ath_tx_update_baw(sc, tid, bf);
1017 			ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0);
1018 			continue;
1019 		}
1020 
1021 		if (bf_isampdu(bf))
1022 			ath_tx_addto_baw(sc, tid, bf);
1023 
1024 		break;
1025 	}
1026 
1027 	*buf = bf;
1028 	return 0;
1029 }
1030 
1031 static int
1032 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq,
1033 		 struct ath_atx_tid *tid, struct list_head *bf_q,
1034 		 struct ath_buf *bf_first)
1035 {
1036 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
1037 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1038 	int nframes = 0, ndelim, ret;
1039 	u16 aggr_limit = 0, al = 0, bpad = 0,
1040 	    al_delta, h_baw = tid->baw_size / 2;
1041 	struct ieee80211_tx_info *tx_info;
1042 	struct ath_frame_info *fi;
1043 	struct sk_buff *skb;
1044 
1045 
1046 	bf = bf_first;
1047 	aggr_limit = ath_lookup_rate(sc, bf, tid);
1048 
1049 	while (bf)
1050 	{
1051 		skb = bf->bf_mpdu;
1052 		fi = get_frame_info(skb);
1053 
1054 		/* do not exceed aggregation limit */
1055 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
1056 		if (nframes) {
1057 			if (aggr_limit < al + bpad + al_delta ||
1058 			    ath_lookup_legacy(bf) || nframes >= h_baw)
1059 				goto stop;
1060 
1061 			tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1062 			if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) ||
1063 			    !(tx_info->flags & IEEE80211_TX_CTL_AMPDU))
1064 				goto stop;
1065 		}
1066 
1067 		/* add padding for previous frame to aggregation length */
1068 		al += bpad + al_delta;
1069 
1070 		/*
1071 		 * Get the delimiters needed to meet the MPDU
1072 		 * density for this node.
1073 		 */
1074 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
1075 						!nframes);
1076 		bpad = PADBYTES(al_delta) + (ndelim << 2);
1077 
1078 		nframes++;
1079 		bf->bf_next = NULL;
1080 
1081 		/* link buffers of this frame to the aggregate */
1082 		bf->bf_state.ndelim = ndelim;
1083 
1084 		list_add_tail(&bf->list, bf_q);
1085 		if (bf_prev)
1086 			bf_prev->bf_next = bf;
1087 
1088 		bf_prev = bf;
1089 
1090 		ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1091 		if (ret < 0)
1092 			break;
1093 	}
1094 	goto finish;
1095 stop:
1096 	__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1097 finish:
1098 	bf = bf_first;
1099 	bf->bf_lastbf = bf_prev;
1100 
1101 	if (bf == bf_prev) {
1102 		al = get_frame_info(bf->bf_mpdu)->framelen;
1103 		bf->bf_state.bf_type = BUF_AMPDU;
1104 	} else {
1105 		TX_STAT_INC(sc, txq->axq_qnum, a_aggr);
1106 	}
1107 
1108 	return al;
1109 #undef PADBYTES
1110 }
1111 
1112 /*
1113  * rix - rate index
1114  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
1115  * width  - 0 for 20 MHz, 1 for 40 MHz
1116  * half_gi - to use 4us v/s 3.6 us for symbol time
1117  */
1118 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
1119 		     int width, int half_gi, bool shortPreamble)
1120 {
1121 	u32 nbits, nsymbits, duration, nsymbols;
1122 	int streams;
1123 
1124 	/* find number of symbols: PLCP + data */
1125 	streams = HT_RC_2_STREAMS(rix);
1126 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
1127 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
1128 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
1129 
1130 	if (!half_gi)
1131 		duration = SYMBOL_TIME(nsymbols);
1132 	else
1133 		duration = SYMBOL_TIME_HALFGI(nsymbols);
1134 
1135 	/* addup duration for legacy/ht training and signal fields */
1136 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1137 
1138 	return duration;
1139 }
1140 
1141 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
1142 {
1143 	int streams = HT_RC_2_STREAMS(mcs);
1144 	int symbols, bits;
1145 	int bytes = 0;
1146 
1147 	usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
1148 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
1149 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
1150 	bits -= OFDM_PLCP_BITS;
1151 	bytes = bits / 8;
1152 	if (bytes > 65532)
1153 		bytes = 65532;
1154 
1155 	return bytes;
1156 }
1157 
1158 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
1159 {
1160 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
1161 	int mcs;
1162 
1163 	/* 4ms is the default (and maximum) duration */
1164 	if (!txop || txop > 4096)
1165 		txop = 4096;
1166 
1167 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
1168 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
1169 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
1170 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
1171 	for (mcs = 0; mcs < 32; mcs++) {
1172 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
1173 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
1174 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
1175 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
1176 	}
1177 }
1178 
1179 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf,
1180 			       u8 rateidx, bool is_40, bool is_cck, bool is_mcs)
1181 {
1182 	u8 max_power;
1183 	struct sk_buff *skb;
1184 	struct ath_frame_info *fi;
1185 	struct ieee80211_tx_info *info;
1186 	struct ath_hw *ah = sc->sc_ah;
1187 	bool is_2ghz, is_5ghz, use_stbc;
1188 
1189 	if (sc->tx99_state || !ah->tpc_enabled)
1190 		return MAX_RATE_POWER;
1191 
1192 	skb = bf->bf_mpdu;
1193 	fi = get_frame_info(skb);
1194 	info = IEEE80211_SKB_CB(skb);
1195 
1196 	is_2ghz = info->band == NL80211_BAND_2GHZ;
1197 	is_5ghz = info->band == NL80211_BAND_5GHZ;
1198 	use_stbc = is_mcs && rateidx < 8 && (info->flags &
1199 					     IEEE80211_TX_CTL_STBC);
1200 
1201 	if (is_mcs)
1202 		rateidx += is_5ghz ? ATH9K_PWRTBL_11NA_HT_SHIFT
1203 				   : ATH9K_PWRTBL_11NG_HT_SHIFT;
1204 	else if (is_2ghz && !is_cck)
1205 		rateidx += ATH9K_PWRTBL_11NG_OFDM_SHIFT;
1206 	else
1207 		rateidx += ATH9K_PWRTBL_11NA_OFDM_SHIFT;
1208 
1209 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1210 		int txpower = fi->tx_power;
1211 
1212 		if (is_40) {
1213 			u8 power_ht40delta;
1214 			struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1215 			u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah);
1216 
1217 			if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) {
1218 				struct modal_eep_header *pmodal;
1219 
1220 				pmodal = &eep->modalHeader[is_2ghz];
1221 				power_ht40delta = pmodal->ht40PowerIncForPdadc;
1222 			} else {
1223 				power_ht40delta = 2;
1224 			}
1225 			txpower += power_ht40delta;
1226 		}
1227 
1228 		if (AR_SREV_9287(ah) || AR_SREV_9285(ah) ||
1229 		    AR_SREV_9271(ah)) {
1230 			txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB;
1231 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
1232 			s8 power_offset;
1233 
1234 			power_offset = ah->eep_ops->get_eeprom(ah,
1235 							EEP_PWR_TABLE_OFFSET);
1236 			txpower -= 2 * power_offset;
1237 		}
1238 
1239 		if (OLC_FOR_AR9280_20_LATER(ah) && is_cck)
1240 			txpower -= 2;
1241 
1242 		txpower = max(txpower, 0);
1243 		max_power = min_t(u8, ah->tx_power[rateidx], txpower);
1244 
1245 		/* XXX: clamp minimum TX power at 1 for AR9160 since if
1246 		 * max_power is set to 0, frames are transmitted at max
1247 		 * TX power
1248 		 */
1249 		if (!max_power && !AR_SREV_9280_20_OR_LATER(ah))
1250 			max_power = 1;
1251 	} else if (!bf->bf_state.bfs_paprd) {
1252 		if (use_stbc)
1253 			max_power = min_t(u8, ah->tx_power_stbc[rateidx],
1254 					  fi->tx_power);
1255 		else
1256 			max_power = min_t(u8, ah->tx_power[rateidx],
1257 					  fi->tx_power);
1258 	} else {
1259 		max_power = ah->paprd_training_power;
1260 	}
1261 
1262 	return max_power;
1263 }
1264 
1265 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
1266 			     struct ath_tx_info *info, int len, bool rts)
1267 {
1268 	struct ath_hw *ah = sc->sc_ah;
1269 	struct ath_common *common = ath9k_hw_common(ah);
1270 	struct sk_buff *skb;
1271 	struct ieee80211_tx_info *tx_info;
1272 	struct ieee80211_tx_rate *rates;
1273 	const struct ieee80211_rate *rate;
1274 	struct ieee80211_hdr *hdr;
1275 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
1276 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1277 	int i;
1278 	u8 rix = 0;
1279 
1280 	skb = bf->bf_mpdu;
1281 	tx_info = IEEE80211_SKB_CB(skb);
1282 	rates = bf->rates;
1283 	hdr = (struct ieee80211_hdr *)skb->data;
1284 
1285 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
1286 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
1287 	info->rtscts_rate = fi->rtscts_rate;
1288 
1289 	for (i = 0; i < ARRAY_SIZE(bf->rates); i++) {
1290 		bool is_40, is_sgi, is_sp, is_cck;
1291 		int phy;
1292 
1293 		if (!rates[i].count || (rates[i].idx < 0))
1294 			break;
1295 
1296 		rix = rates[i].idx;
1297 		info->rates[i].Tries = rates[i].count;
1298 
1299 		/*
1300 		 * Handle RTS threshold for unaggregated HT frames.
1301 		 */
1302 		if (bf_isampdu(bf) && !bf_isaggr(bf) &&
1303 		    (rates[i].flags & IEEE80211_TX_RC_MCS) &&
1304 		    unlikely(rts_thresh != (u32) -1)) {
1305 			if (!rts_thresh || (len > rts_thresh))
1306 				rts = true;
1307 		}
1308 
1309 		if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
1310 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1311 			info->flags |= ATH9K_TXDESC_RTSENA;
1312 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
1313 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
1314 			info->flags |= ATH9K_TXDESC_CTSENA;
1315 		}
1316 
1317 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
1318 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1319 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1320 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1321 
1322 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1323 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1324 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1325 
1326 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1327 			/* MCS rates */
1328 			info->rates[i].Rate = rix | 0x80;
1329 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1330 					ah->txchainmask, info->rates[i].Rate);
1331 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1332 				 is_40, is_sgi, is_sp);
1333 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1334 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1335 			if (rix >= 8 && fi->dyn_smps) {
1336 				info->rates[i].RateFlags |=
1337 					ATH9K_RATESERIES_RTS_CTS;
1338 				info->flags |= ATH9K_TXDESC_CTSENA;
1339 			}
1340 
1341 			info->txpower[i] = ath_get_rate_txpower(sc, bf, rix,
1342 								is_40, false, true);
1343 			continue;
1344 		}
1345 
1346 		/* legacy rates */
1347 		rate = &common->sbands[tx_info->band].bitrates[rates[i].idx];
1348 		if ((tx_info->band == NL80211_BAND_2GHZ) &&
1349 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1350 			phy = WLAN_RC_PHY_CCK;
1351 		else
1352 			phy = WLAN_RC_PHY_OFDM;
1353 
1354 		info->rates[i].Rate = rate->hw_value;
1355 		if (rate->hw_value_short) {
1356 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1357 				info->rates[i].Rate |= rate->hw_value_short;
1358 		} else {
1359 			is_sp = false;
1360 		}
1361 
1362 		if (bf->bf_state.bfs_paprd)
1363 			info->rates[i].ChSel = ah->txchainmask;
1364 		else
1365 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1366 					ah->txchainmask, info->rates[i].Rate);
1367 
1368 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1369 			phy, rate->bitrate * 100, len, rix, is_sp);
1370 
1371 		is_cck = IS_CCK_RATE(info->rates[i].Rate);
1372 		info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false,
1373 							is_cck, false);
1374 	}
1375 
1376 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1377 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1378 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1379 
1380 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1381 	if (info->flags & ATH9K_TXDESC_RTSENA)
1382 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1383 }
1384 
1385 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1386 {
1387 	struct ieee80211_hdr *hdr;
1388 	enum ath9k_pkt_type htype;
1389 	__le16 fc;
1390 
1391 	hdr = (struct ieee80211_hdr *)skb->data;
1392 	fc = hdr->frame_control;
1393 
1394 	if (ieee80211_is_beacon(fc))
1395 		htype = ATH9K_PKT_TYPE_BEACON;
1396 	else if (ieee80211_is_probe_resp(fc))
1397 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1398 	else if (ieee80211_is_atim(fc))
1399 		htype = ATH9K_PKT_TYPE_ATIM;
1400 	else if (ieee80211_is_pspoll(fc))
1401 		htype = ATH9K_PKT_TYPE_PSPOLL;
1402 	else
1403 		htype = ATH9K_PKT_TYPE_NORMAL;
1404 
1405 	return htype;
1406 }
1407 
1408 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1409 			     struct ath_txq *txq, int len)
1410 {
1411 	struct ath_hw *ah = sc->sc_ah;
1412 	struct ath_buf *bf_first = NULL;
1413 	struct ath_tx_info info;
1414 	u32 rts_thresh = sc->hw->wiphy->rts_threshold;
1415 	bool rts = false;
1416 
1417 	memset(&info, 0, sizeof(info));
1418 	info.is_first = true;
1419 	info.is_last = true;
1420 	info.qcu = txq->axq_qnum;
1421 
1422 	while (bf) {
1423 		struct sk_buff *skb = bf->bf_mpdu;
1424 		struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1425 		struct ath_frame_info *fi = get_frame_info(skb);
1426 		bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1427 
1428 		info.type = get_hw_packet_type(skb);
1429 		if (bf->bf_next)
1430 			info.link = bf->bf_next->bf_daddr;
1431 		else
1432 			info.link = (sc->tx99_state) ? bf->bf_daddr : 0;
1433 
1434 		if (!bf_first) {
1435 			bf_first = bf;
1436 
1437 			if (!sc->tx99_state)
1438 				info.flags = ATH9K_TXDESC_INTREQ;
1439 			if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) ||
1440 			    txq == sc->tx.uapsdq)
1441 				info.flags |= ATH9K_TXDESC_CLRDMASK;
1442 
1443 			if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1444 				info.flags |= ATH9K_TXDESC_NOACK;
1445 			if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1446 				info.flags |= ATH9K_TXDESC_LDPC;
1447 
1448 			if (bf->bf_state.bfs_paprd)
1449 				info.flags |= (u32) bf->bf_state.bfs_paprd <<
1450 					      ATH9K_TXDESC_PAPRD_S;
1451 
1452 			/*
1453 			 * mac80211 doesn't handle RTS threshold for HT because
1454 			 * the decision has to be taken based on AMPDU length
1455 			 * and aggregation is done entirely inside ath9k.
1456 			 * Set the RTS/CTS flag for the first subframe based
1457 			 * on the threshold.
1458 			 */
1459 			if (aggr && (bf == bf_first) &&
1460 			    unlikely(rts_thresh != (u32) -1)) {
1461 				/*
1462 				 * "len" is the size of the entire AMPDU.
1463 				 */
1464 				if (!rts_thresh || (len > rts_thresh))
1465 					rts = true;
1466 			}
1467 
1468 			if (!aggr)
1469 				len = fi->framelen;
1470 
1471 			ath_buf_set_rate(sc, bf, &info, len, rts);
1472 		}
1473 
1474 		info.buf_addr[0] = bf->bf_buf_addr;
1475 		info.buf_len[0] = skb->len;
1476 		info.pkt_len = fi->framelen;
1477 		info.keyix = fi->keyix;
1478 		info.keytype = fi->keytype;
1479 
1480 		if (aggr) {
1481 			if (bf == bf_first)
1482 				info.aggr = AGGR_BUF_FIRST;
1483 			else if (bf == bf_first->bf_lastbf)
1484 				info.aggr = AGGR_BUF_LAST;
1485 			else
1486 				info.aggr = AGGR_BUF_MIDDLE;
1487 
1488 			info.ndelim = bf->bf_state.ndelim;
1489 			info.aggr_len = len;
1490 		}
1491 
1492 		if (bf == bf_first->bf_lastbf)
1493 			bf_first = NULL;
1494 
1495 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1496 		bf = bf->bf_next;
1497 	}
1498 }
1499 
1500 static void
1501 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq,
1502 		  struct ath_atx_tid *tid, struct list_head *bf_q,
1503 		  struct ath_buf *bf_first)
1504 {
1505 	struct ath_buf *bf = bf_first, *bf_prev = NULL;
1506 	int nframes = 0, ret;
1507 
1508 	do {
1509 		struct ieee80211_tx_info *tx_info;
1510 
1511 		nframes++;
1512 		list_add_tail(&bf->list, bf_q);
1513 		if (bf_prev)
1514 			bf_prev->bf_next = bf;
1515 		bf_prev = bf;
1516 
1517 		if (nframes >= 2)
1518 			break;
1519 
1520 		ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1521 		if (ret < 0)
1522 			break;
1523 
1524 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1525 		if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
1526 			__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1527 			break;
1528 		}
1529 
1530 		ath_set_rates(tid->an->vif, tid->an->sta, bf);
1531 	} while (1);
1532 }
1533 
1534 static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1535 			     struct ath_atx_tid *tid)
1536 {
1537 	struct ath_buf *bf = NULL;
1538 	struct ieee80211_tx_info *tx_info;
1539 	struct list_head bf_q;
1540 	int aggr_len = 0, ret;
1541 	bool aggr;
1542 
1543 	INIT_LIST_HEAD(&bf_q);
1544 
1545 	ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf);
1546 	if (ret < 0)
1547 		return ret;
1548 
1549 	tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1550 	aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU);
1551 	if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) ||
1552 	    (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) {
1553 		__skb_queue_tail(&tid->retry_q, bf->bf_mpdu);
1554 		return -EBUSY;
1555 	}
1556 
1557 	ath_set_rates(tid->an->vif, tid->an->sta, bf);
1558 	if (aggr)
1559 		aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf);
1560 	else
1561 		ath_tx_form_burst(sc, txq, tid, &bf_q, bf);
1562 
1563 	if (list_empty(&bf_q))
1564 		return -EAGAIN;
1565 
1566 	if (tid->clear_ps_filter || tid->an->no_ps_filter) {
1567 		tid->clear_ps_filter = false;
1568 		tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1569 	}
1570 
1571 	ath_tx_fill_desc(sc, bf, txq, aggr_len);
1572 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1573 	return 0;
1574 }
1575 
1576 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1577 		      u16 tid, u16 *ssn)
1578 {
1579 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1580 	struct ath_atx_tid *txtid;
1581 	struct ath_txq *txq;
1582 	struct ath_node *an;
1583 	u8 density;
1584 
1585 	ath_dbg(common, XMIT, "%s called\n", __func__);
1586 
1587 	an = (struct ath_node *)sta->drv_priv;
1588 	txtid = ATH_AN_2_TID(an, tid);
1589 	txq = txtid->txq;
1590 
1591 	ath_txq_lock(sc, txq);
1592 
1593 	/* update ampdu factor/density, they may have changed. This may happen
1594 	 * in HT IBSS when a beacon with HT-info is received after the station
1595 	 * has already been added.
1596 	 */
1597 	if (sta->deflink.ht_cap.ht_supported) {
1598 		an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1599 				      sta->deflink.ht_cap.ampdu_factor)) - 1;
1600 		density = ath9k_parse_mpdudensity(sta->deflink.ht_cap.ampdu_density);
1601 		an->mpdudensity = density;
1602 	}
1603 
1604 	txtid->active = true;
1605 	*ssn = txtid->seq_start = txtid->seq_next;
1606 	txtid->bar_index = -1;
1607 
1608 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1609 	txtid->baw_head = txtid->baw_tail = 0;
1610 
1611 	ath_txq_unlock_complete(sc, txq);
1612 
1613 	return 0;
1614 }
1615 
1616 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1617 {
1618 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1619 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1620 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1621 	struct ath_txq *txq = txtid->txq;
1622 
1623 	ath_dbg(common, XMIT, "%s called\n", __func__);
1624 
1625 	ath_txq_lock(sc, txq);
1626 	txtid->active = false;
1627 	ath_tx_flush_tid(sc, txtid);
1628 	ath_txq_unlock_complete(sc, txq);
1629 }
1630 
1631 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1632 		       struct ath_node *an)
1633 {
1634 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1635 	struct ath_atx_tid *tid;
1636 	int tidno;
1637 
1638 	ath_dbg(common, XMIT, "%s called\n", __func__);
1639 
1640 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1641 		tid = ath_node_to_tid(an, tidno);
1642 
1643 		if (!skb_queue_empty(&tid->retry_q))
1644 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
1645 
1646 	}
1647 }
1648 
1649 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1650 {
1651 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1652 	struct ath_atx_tid *tid;
1653 	struct ath_txq *txq;
1654 	int tidno;
1655 
1656 	ath_dbg(common, XMIT, "%s called\n", __func__);
1657 
1658 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
1659 		tid = ath_node_to_tid(an, tidno);
1660 		txq = tid->txq;
1661 
1662 		ath_txq_lock(sc, txq);
1663 		tid->clear_ps_filter = true;
1664 		if (!skb_queue_empty(&tid->retry_q)) {
1665 			ath_tx_queue_tid(sc, tid);
1666 			ath_txq_schedule(sc, txq);
1667 		}
1668 		ath_txq_unlock_complete(sc, txq);
1669 
1670 	}
1671 }
1672 
1673 
1674 static void
1675 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val)
1676 {
1677 	struct ieee80211_hdr *hdr;
1678 	u16 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA);
1679 	u16 mask_val = mask * val;
1680 
1681 	hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data;
1682 	if ((hdr->frame_control & mask) != mask_val) {
1683 		hdr->frame_control = (hdr->frame_control & ~mask) | mask_val;
1684 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
1685 			sizeof(*hdr), DMA_TO_DEVICE);
1686 	}
1687 }
1688 
1689 void ath9k_release_buffered_frames(struct ieee80211_hw *hw,
1690 				   struct ieee80211_sta *sta,
1691 				   u16 tids, int nframes,
1692 				   enum ieee80211_frame_release_type reason,
1693 				   bool more_data)
1694 {
1695 	struct ath_softc *sc = hw->priv;
1696 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1697 	struct ath_txq *txq = sc->tx.uapsdq;
1698 	struct ieee80211_tx_info *info;
1699 	struct list_head bf_q;
1700 	struct ath_buf *bf_tail = NULL, *bf = NULL;
1701 	int i, ret;
1702 
1703 	INIT_LIST_HEAD(&bf_q);
1704 	for (i = 0; tids && nframes; i++, tids >>= 1) {
1705 		struct ath_atx_tid *tid;
1706 
1707 		if (!(tids & 1))
1708 			continue;
1709 
1710 		tid = ATH_AN_2_TID(an, i);
1711 
1712 		ath_txq_lock(sc, tid->txq);
1713 		while (nframes > 0) {
1714 			ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq,
1715 						      tid, &bf);
1716 			if (ret < 0)
1717 				break;
1718 
1719 			ath9k_set_moredata(sc, bf, true);
1720 			list_add_tail(&bf->list, &bf_q);
1721 			ath_set_rates(tid->an->vif, tid->an->sta, bf);
1722 			if (bf_isampdu(bf))
1723 				bf->bf_state.bf_type &= ~BUF_AGGR;
1724 			if (bf_tail)
1725 				bf_tail->bf_next = bf;
1726 
1727 			bf_tail = bf;
1728 			nframes--;
1729 			TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw);
1730 
1731 			if (an->sta && skb_queue_empty(&tid->retry_q))
1732 				ieee80211_sta_set_buffered(an->sta, i, false);
1733 		}
1734 		ath_txq_unlock_complete(sc, tid->txq);
1735 	}
1736 
1737 	if (list_empty(&bf_q))
1738 		return;
1739 
1740 	if (!more_data)
1741 		ath9k_set_moredata(sc, bf_tail, false);
1742 
1743 	info = IEEE80211_SKB_CB(bf_tail->bf_mpdu);
1744 	info->flags |= IEEE80211_TX_STATUS_EOSP;
1745 
1746 	bf = list_first_entry(&bf_q, struct ath_buf, list);
1747 	ath_txq_lock(sc, txq);
1748 	ath_tx_fill_desc(sc, bf, txq, 0);
1749 	ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1750 	ath_txq_unlock(sc, txq);
1751 }
1752 
1753 /********************/
1754 /* Queue Management */
1755 /********************/
1756 
1757 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1758 {
1759 	struct ath_hw *ah = sc->sc_ah;
1760 	struct ath9k_tx_queue_info qi;
1761 	static const int subtype_txq_to_hwq[] = {
1762 		[IEEE80211_AC_BE] = ATH_TXQ_AC_BE,
1763 		[IEEE80211_AC_BK] = ATH_TXQ_AC_BK,
1764 		[IEEE80211_AC_VI] = ATH_TXQ_AC_VI,
1765 		[IEEE80211_AC_VO] = ATH_TXQ_AC_VO,
1766 	};
1767 	int axq_qnum, i;
1768 
1769 	memset(&qi, 0, sizeof(qi));
1770 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1771 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1772 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1773 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1774 	qi.tqi_physCompBuf = 0;
1775 
1776 	/*
1777 	 * Enable interrupts only for EOL and DESC conditions.
1778 	 * We mark tx descriptors to receive a DESC interrupt
1779 	 * when a tx queue gets deep; otherwise waiting for the
1780 	 * EOL to reap descriptors.  Note that this is done to
1781 	 * reduce interrupt load and this only defers reaping
1782 	 * descriptors, never transmitting frames.  Aside from
1783 	 * reducing interrupts this also permits more concurrency.
1784 	 * The only potential downside is if the tx queue backs
1785 	 * up in which case the top half of the kernel may backup
1786 	 * due to a lack of tx descriptors.
1787 	 *
1788 	 * The UAPSD queue is an exception, since we take a desc-
1789 	 * based intr on the EOSP frames.
1790 	 */
1791 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1792 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1793 	} else {
1794 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1795 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1796 		else
1797 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1798 					TXQ_FLAG_TXDESCINT_ENABLE;
1799 	}
1800 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1801 	if (axq_qnum == -1) {
1802 		/*
1803 		 * NB: don't print a message, this happens
1804 		 * normally on parts with too few tx queues
1805 		 */
1806 		return NULL;
1807 	}
1808 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1809 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1810 
1811 		txq->axq_qnum = axq_qnum;
1812 		txq->mac80211_qnum = -1;
1813 		txq->axq_link = NULL;
1814 		__skb_queue_head_init(&txq->complete_q);
1815 		INIT_LIST_HEAD(&txq->axq_q);
1816 		spin_lock_init(&txq->axq_lock);
1817 		txq->axq_depth = 0;
1818 		txq->axq_ampdu_depth = 0;
1819 		txq->axq_tx_inprogress = false;
1820 		sc->tx.txqsetup |= 1<<axq_qnum;
1821 
1822 		txq->txq_headidx = txq->txq_tailidx = 0;
1823 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1824 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1825 	}
1826 	return &sc->tx.txq[axq_qnum];
1827 }
1828 
1829 int ath_txq_update(struct ath_softc *sc, int qnum,
1830 		   struct ath9k_tx_queue_info *qinfo)
1831 {
1832 	struct ath_hw *ah = sc->sc_ah;
1833 	int error = 0;
1834 	struct ath9k_tx_queue_info qi;
1835 
1836 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1837 
1838 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1839 	qi.tqi_aifs = qinfo->tqi_aifs;
1840 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1841 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1842 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1843 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1844 
1845 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1846 		ath_err(ath9k_hw_common(sc->sc_ah),
1847 			"Unable to update hardware queue %u!\n", qnum);
1848 		error = -EIO;
1849 	} else {
1850 		ath9k_hw_resettxqueue(ah, qnum);
1851 	}
1852 
1853 	return error;
1854 }
1855 
1856 int ath_cabq_update(struct ath_softc *sc)
1857 {
1858 	struct ath9k_tx_queue_info qi;
1859 	struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon;
1860 	int qnum = sc->beacon.cabq->axq_qnum;
1861 
1862 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1863 
1864 	qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) *
1865 			    ATH_CABQ_READY_TIME) / 100;
1866 	ath_txq_update(sc, qnum, &qi);
1867 
1868 	return 0;
1869 }
1870 
1871 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1872 			       struct list_head *list)
1873 {
1874 	struct ath_buf *bf, *lastbf;
1875 	struct list_head bf_head;
1876 	struct ath_tx_status ts;
1877 
1878 	memset(&ts, 0, sizeof(ts));
1879 	ts.ts_status = ATH9K_TX_FLUSH;
1880 	INIT_LIST_HEAD(&bf_head);
1881 
1882 	while (!list_empty(list)) {
1883 		bf = list_first_entry(list, struct ath_buf, list);
1884 
1885 		if (bf->bf_state.stale) {
1886 			list_del(&bf->list);
1887 
1888 			ath_tx_return_buffer(sc, bf);
1889 			continue;
1890 		}
1891 
1892 		lastbf = bf->bf_lastbf;
1893 		list_cut_position(&bf_head, list, &lastbf->list);
1894 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
1895 	}
1896 }
1897 
1898 /*
1899  * Drain a given TX queue (could be Beacon or Data)
1900  *
1901  * This assumes output has been stopped and
1902  * we do not need to block ath_tx_tasklet.
1903  */
1904 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq)
1905 {
1906 	rcu_read_lock();
1907 	ath_txq_lock(sc, txq);
1908 
1909 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1910 		int idx = txq->txq_tailidx;
1911 
1912 		while (!list_empty(&txq->txq_fifo[idx])) {
1913 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]);
1914 
1915 			INCR(idx, ATH_TXFIFO_DEPTH);
1916 		}
1917 		txq->txq_tailidx = idx;
1918 	}
1919 
1920 	txq->axq_link = NULL;
1921 	txq->axq_tx_inprogress = false;
1922 	ath_drain_txq_list(sc, txq, &txq->axq_q);
1923 
1924 	ath_txq_unlock_complete(sc, txq);
1925 	rcu_read_unlock();
1926 }
1927 
1928 bool ath_drain_all_txq(struct ath_softc *sc)
1929 {
1930 	struct ath_hw *ah = sc->sc_ah;
1931 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1932 	struct ath_txq *txq;
1933 	int i;
1934 	u32 npend = 0;
1935 
1936 	if (test_bit(ATH_OP_INVALID, &common->op_flags))
1937 		return true;
1938 
1939 	ath9k_hw_abort_tx_dma(ah);
1940 
1941 	/* Check if any queue remains active */
1942 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1943 		if (!ATH_TXQ_SETUP(sc, i))
1944 			continue;
1945 
1946 		if (!sc->tx.txq[i].axq_depth)
1947 			continue;
1948 
1949 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1950 			npend |= BIT(i);
1951 	}
1952 
1953 	if (npend) {
1954 		RESET_STAT_INC(sc, RESET_TX_DMA_ERROR);
1955 		ath_dbg(common, RESET,
1956 			"Failed to stop TX DMA, queues=0x%03x!\n", npend);
1957 	}
1958 
1959 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1960 		if (!ATH_TXQ_SETUP(sc, i))
1961 			continue;
1962 
1963 		txq = &sc->tx.txq[i];
1964 		ath_draintxq(sc, txq);
1965 	}
1966 
1967 	return !npend;
1968 }
1969 
1970 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1971 {
1972 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1973 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1974 }
1975 
1976 /* For each acq entry, for each tid, try to schedule packets
1977  * for transmit until ampdu_depth has reached min Q depth.
1978  */
1979 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1980 {
1981 	struct ieee80211_hw *hw = sc->hw;
1982 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1983 	struct ieee80211_txq *queue;
1984 	struct ath_atx_tid *tid;
1985 	int ret;
1986 
1987 	if (txq->mac80211_qnum < 0)
1988 		return;
1989 
1990 	if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
1991 		return;
1992 
1993 	ieee80211_txq_schedule_start(hw, txq->mac80211_qnum);
1994 	spin_lock_bh(&sc->chan_lock);
1995 	rcu_read_lock();
1996 
1997 	if (sc->cur_chan->stopped)
1998 		goto out;
1999 
2000 	while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) {
2001 		bool force;
2002 
2003 		tid = (struct ath_atx_tid *)queue->drv_priv;
2004 
2005 		ret = ath_tx_sched_aggr(sc, txq, tid);
2006 		ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret);
2007 
2008 		force = !skb_queue_empty(&tid->retry_q);
2009 		ieee80211_return_txq(hw, queue, force);
2010 	}
2011 
2012 out:
2013 	rcu_read_unlock();
2014 	spin_unlock_bh(&sc->chan_lock);
2015 	ieee80211_txq_schedule_end(hw, txq->mac80211_qnum);
2016 }
2017 
2018 void ath_txq_schedule_all(struct ath_softc *sc)
2019 {
2020 	struct ath_txq *txq;
2021 	int i;
2022 
2023 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
2024 		txq = sc->tx.txq_map[i];
2025 
2026 		spin_lock_bh(&txq->axq_lock);
2027 		ath_txq_schedule(sc, txq);
2028 		spin_unlock_bh(&txq->axq_lock);
2029 	}
2030 }
2031 
2032 /***********/
2033 /* TX, DMA */
2034 /***********/
2035 
2036 /*
2037  * Insert a chain of ath_buf (descriptors) on a txq and
2038  * assume the descriptors are already chained together by caller.
2039  */
2040 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
2041 			     struct list_head *head, bool internal)
2042 {
2043 	struct ath_hw *ah = sc->sc_ah;
2044 	struct ath_common *common = ath9k_hw_common(ah);
2045 	struct ath_buf *bf, *bf_last;
2046 	bool puttxbuf = false;
2047 	bool edma;
2048 
2049 	/*
2050 	 * Insert the frame on the outbound list and
2051 	 * pass it on to the hardware.
2052 	 */
2053 
2054 	if (list_empty(head))
2055 		return;
2056 
2057 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
2058 	bf = list_first_entry(head, struct ath_buf, list);
2059 	bf_last = list_entry(head->prev, struct ath_buf, list);
2060 
2061 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
2062 		txq->axq_qnum, txq->axq_depth);
2063 
2064 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
2065 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
2066 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
2067 		puttxbuf = true;
2068 	} else {
2069 		list_splice_tail_init(head, &txq->axq_q);
2070 
2071 		if (txq->axq_link) {
2072 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
2073 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
2074 				txq->axq_qnum, txq->axq_link,
2075 				ito64(bf->bf_daddr), bf->bf_desc);
2076 		} else if (!edma)
2077 			puttxbuf = true;
2078 
2079 		txq->axq_link = bf_last->bf_desc;
2080 	}
2081 
2082 	if (puttxbuf) {
2083 		TX_STAT_INC(sc, txq->axq_qnum, puttxbuf);
2084 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
2085 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
2086 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
2087 	}
2088 
2089 	if (!edma || sc->tx99_state) {
2090 		TX_STAT_INC(sc, txq->axq_qnum, txstart);
2091 		ath9k_hw_txstart(ah, txq->axq_qnum);
2092 	}
2093 
2094 	if (!internal) {
2095 		while (bf) {
2096 			txq->axq_depth++;
2097 			if (bf_is_ampdu_not_probing(bf))
2098 				txq->axq_ampdu_depth++;
2099 
2100 			bf_last = bf->bf_lastbf;
2101 			bf = bf_last->bf_next;
2102 			bf_last->bf_next = NULL;
2103 		}
2104 	}
2105 }
2106 
2107 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
2108 			       struct ath_atx_tid *tid, struct sk_buff *skb)
2109 {
2110 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2111 	struct ath_frame_info *fi = get_frame_info(skb);
2112 	struct list_head bf_head;
2113 	struct ath_buf *bf = fi->bf;
2114 
2115 	INIT_LIST_HEAD(&bf_head);
2116 	list_add_tail(&bf->list, &bf_head);
2117 	bf->bf_state.bf_type = 0;
2118 	if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) {
2119 		bf->bf_state.bf_type = BUF_AMPDU;
2120 		ath_tx_addto_baw(sc, tid, bf);
2121 	}
2122 
2123 	bf->bf_next = NULL;
2124 	bf->bf_lastbf = bf;
2125 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
2126 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
2127 	TX_STAT_INC(sc, txq->axq_qnum, queued);
2128 }
2129 
2130 static void setup_frame_info(struct ieee80211_hw *hw,
2131 			     struct ieee80211_sta *sta,
2132 			     struct sk_buff *skb,
2133 			     int framelen)
2134 {
2135 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2136 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
2137 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2138 	const struct ieee80211_rate *rate;
2139 	struct ath_frame_info *fi = get_frame_info(skb);
2140 	struct ath_node *an = NULL;
2141 	enum ath9k_key_type keytype;
2142 	bool short_preamble = false;
2143 	u8 txpower;
2144 
2145 	/*
2146 	 * We check if Short Preamble is needed for the CTS rate by
2147 	 * checking the BSS's global flag.
2148 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
2149 	 */
2150 	if (tx_info->control.vif &&
2151 	    tx_info->control.vif->bss_conf.use_short_preamble)
2152 		short_preamble = true;
2153 
2154 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
2155 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
2156 
2157 	if (sta)
2158 		an = (struct ath_node *) sta->drv_priv;
2159 
2160 	if (tx_info->control.vif) {
2161 		struct ieee80211_vif *vif = tx_info->control.vif;
2162 		if (vif->bss_conf.txpower == INT_MIN)
2163 			goto nonvifpower;
2164 		txpower = 2 * vif->bss_conf.txpower;
2165 	} else {
2166 		struct ath_softc *sc;
2167 	nonvifpower:
2168 		sc = hw->priv;
2169 
2170 		txpower = sc->cur_chan->cur_txpower;
2171 	}
2172 
2173 	memset(fi, 0, sizeof(*fi));
2174 	fi->txq = -1;
2175 	if (hw_key)
2176 		fi->keyix = hw_key->hw_key_idx;
2177 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
2178 		fi->keyix = an->ps_key;
2179 	else
2180 		fi->keyix = ATH9K_TXKEYIX_INVALID;
2181 	fi->dyn_smps = sta && sta->deflink.smps_mode == IEEE80211_SMPS_DYNAMIC;
2182 	fi->keytype = keytype;
2183 	fi->framelen = framelen;
2184 	fi->tx_power = txpower;
2185 
2186 	if (!rate)
2187 		return;
2188 	fi->rtscts_rate = rate->hw_value;
2189 	if (short_preamble)
2190 		fi->rtscts_rate |= rate->hw_value_short;
2191 }
2192 
2193 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
2194 {
2195 	struct ath_hw *ah = sc->sc_ah;
2196 	struct ath9k_channel *curchan = ah->curchan;
2197 
2198 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) &&
2199 	    (chainmask == 0x7) && (rate < 0x90))
2200 		return 0x3;
2201 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
2202 		 IS_CCK_RATE(rate))
2203 		return 0x2;
2204 	else
2205 		return chainmask;
2206 }
2207 
2208 /*
2209  * Assign a descriptor (and sequence number if necessary,
2210  * and map buffer for DMA. Frees skb on error
2211  */
2212 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
2213 					   struct ath_txq *txq,
2214 					   struct ath_atx_tid *tid,
2215 					   struct sk_buff *skb)
2216 {
2217 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2218 	struct ath_frame_info *fi = get_frame_info(skb);
2219 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2220 	struct ath_buf *bf;
2221 	int fragno;
2222 	u16 seqno;
2223 
2224 	bf = ath_tx_get_buffer(sc);
2225 	if (!bf) {
2226 		ath_dbg(common, XMIT, "TX buffers are full\n");
2227 		return NULL;
2228 	}
2229 
2230 	ATH_TXBUF_RESET(bf);
2231 
2232 	if (tid && ieee80211_is_data_present(hdr->frame_control)) {
2233 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
2234 		seqno = tid->seq_next;
2235 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
2236 
2237 		if (fragno)
2238 			hdr->seq_ctrl |= cpu_to_le16(fragno);
2239 
2240 		if (!ieee80211_has_morefrags(hdr->frame_control))
2241 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
2242 
2243 		bf->bf_state.seqno = seqno;
2244 	}
2245 
2246 	bf->bf_mpdu = skb;
2247 
2248 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
2249 					 skb->len, DMA_TO_DEVICE);
2250 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
2251 		bf->bf_mpdu = NULL;
2252 		bf->bf_buf_addr = 0;
2253 		ath_err(ath9k_hw_common(sc->sc_ah),
2254 			"dma_mapping_error() on TX\n");
2255 		ath_tx_return_buffer(sc, bf);
2256 		return NULL;
2257 	}
2258 
2259 	fi->bf = bf;
2260 
2261 	return bf;
2262 }
2263 
2264 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb)
2265 {
2266 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2267 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2268 	struct ieee80211_vif *vif = info->control.vif;
2269 	struct ath_vif *avp;
2270 
2271 	if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ))
2272 		return;
2273 
2274 	if (!vif)
2275 		return;
2276 
2277 	avp = (struct ath_vif *)vif->drv_priv;
2278 
2279 	if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
2280 		avp->seq_no += 0x10;
2281 
2282 	hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
2283 	hdr->seq_ctrl |= cpu_to_le16(avp->seq_no);
2284 }
2285 
2286 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb,
2287 			  struct ath_tx_control *txctl)
2288 {
2289 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2290 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2291 	struct ieee80211_sta *sta = txctl->sta;
2292 	struct ieee80211_vif *vif = info->control.vif;
2293 	struct ath_vif *avp;
2294 	struct ath_softc *sc = hw->priv;
2295 	int frmlen = skb->len + FCS_LEN;
2296 	int padpos, padsize;
2297 
2298 	/* NOTE:  sta can be NULL according to net/mac80211.h */
2299 	if (sta)
2300 		txctl->an = (struct ath_node *)sta->drv_priv;
2301 	else if (vif && ieee80211_is_data(hdr->frame_control)) {
2302 		avp = (void *)vif->drv_priv;
2303 		txctl->an = &avp->mcast_node;
2304 	}
2305 
2306 	if (info->control.hw_key)
2307 		frmlen += info->control.hw_key->icv_len;
2308 
2309 	ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb);
2310 
2311 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
2312 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
2313 	    !ieee80211_is_data(hdr->frame_control))
2314 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
2315 
2316 	/* Add the padding after the header if this is not already done */
2317 	padpos = ieee80211_hdrlen(hdr->frame_control);
2318 	padsize = padpos & 3;
2319 	if (padsize && skb->len > padpos) {
2320 		if (skb_headroom(skb) < padsize)
2321 			return -ENOMEM;
2322 
2323 		skb_push(skb, padsize);
2324 		memmove(skb->data, skb->data + padsize, padpos);
2325 	}
2326 
2327 	setup_frame_info(hw, sta, skb, frmlen);
2328 	return 0;
2329 }
2330 
2331 
2332 /* Upon failure caller should free skb */
2333 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
2334 		 struct ath_tx_control *txctl)
2335 {
2336 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
2337 	struct ieee80211_sta *sta = txctl->sta;
2338 	struct ieee80211_vif *vif = info->control.vif;
2339 	struct ath_frame_info *fi = get_frame_info(skb);
2340 	struct ath_softc *sc = hw->priv;
2341 	struct ath_txq *txq = txctl->txq;
2342 	struct ath_atx_tid *tid = NULL;
2343 	struct ath_node *an = NULL;
2344 	struct ath_buf *bf;
2345 	bool ps_resp;
2346 	int q, ret;
2347 
2348 	ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE);
2349 
2350 	ret = ath_tx_prepare(hw, skb, txctl);
2351 	if (ret)
2352 	    return ret;
2353 
2354 	/*
2355 	 * At this point, the vif, hw_key and sta pointers in the tx control
2356 	 * info are no longer valid (overwritten by the ath_frame_info data.
2357 	 */
2358 
2359 	q = skb_get_queue_mapping(skb);
2360 
2361 	if (ps_resp)
2362 		txq = sc->tx.uapsdq;
2363 
2364 	if (txctl->sta) {
2365 		an = (struct ath_node *) sta->drv_priv;
2366 		tid = ath_get_skb_tid(sc, an, skb);
2367 	}
2368 
2369 	ath_txq_lock(sc, txq);
2370 	if (txq == sc->tx.txq_map[q]) {
2371 		fi->txq = q;
2372 		++txq->pending_frames;
2373 	}
2374 
2375 	bf = ath_tx_setup_buffer(sc, txq, tid, skb);
2376 	if (!bf) {
2377 		ath_txq_skb_done(sc, txq, skb);
2378 		if (txctl->paprd)
2379 			dev_kfree_skb_any(skb);
2380 		else
2381 			ieee80211_free_txskb(sc->hw, skb);
2382 		goto out;
2383 	}
2384 
2385 	bf->bf_state.bfs_paprd = txctl->paprd;
2386 
2387 	if (txctl->paprd)
2388 		bf->bf_state.bfs_paprd_timestamp = jiffies;
2389 
2390 	ath_set_rates(vif, sta, bf);
2391 	ath_tx_send_normal(sc, txq, tid, skb);
2392 
2393 out:
2394 	ath_txq_unlock(sc, txq);
2395 
2396 	return 0;
2397 }
2398 
2399 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif,
2400 		 struct sk_buff *skb)
2401 {
2402 	struct ath_softc *sc = hw->priv;
2403 	struct ath_tx_control txctl = {
2404 		.txq = sc->beacon.cabq
2405 	};
2406 	struct ath_tx_info info = {};
2407 	struct ath_buf *bf_tail = NULL;
2408 	struct ath_buf *bf;
2409 	LIST_HEAD(bf_q);
2410 	int duration = 0;
2411 	int max_duration;
2412 
2413 	max_duration =
2414 		sc->cur_chan->beacon.beacon_interval * 1000 *
2415 		sc->cur_chan->beacon.dtim_period / ATH_BCBUF;
2416 
2417 	do {
2418 		struct ath_frame_info *fi = get_frame_info(skb);
2419 
2420 		if (ath_tx_prepare(hw, skb, &txctl))
2421 			break;
2422 
2423 		bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb);
2424 		if (!bf)
2425 			break;
2426 
2427 		bf->bf_lastbf = bf;
2428 		ath_set_rates(vif, NULL, bf);
2429 		ath_buf_set_rate(sc, bf, &info, fi->framelen, false);
2430 		duration += info.rates[0].PktDuration;
2431 		if (bf_tail)
2432 			bf_tail->bf_next = bf;
2433 
2434 		list_add_tail(&bf->list, &bf_q);
2435 		bf_tail = bf;
2436 		skb = NULL;
2437 
2438 		if (duration > max_duration)
2439 			break;
2440 
2441 		skb = ieee80211_get_buffered_bc(hw, vif);
2442 	} while(skb);
2443 
2444 	if (skb)
2445 		ieee80211_free_txskb(hw, skb);
2446 
2447 	if (list_empty(&bf_q))
2448 		return;
2449 
2450 	bf = list_last_entry(&bf_q, struct ath_buf, list);
2451 	ath9k_set_moredata(sc, bf, false);
2452 
2453 	bf = list_first_entry(&bf_q, struct ath_buf, list);
2454 	ath_txq_lock(sc, txctl.txq);
2455 	ath_tx_fill_desc(sc, bf, txctl.txq, 0);
2456 	ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false);
2457 	TX_STAT_INC(sc, txctl.txq->axq_qnum, queued);
2458 	ath_txq_unlock(sc, txctl.txq);
2459 }
2460 
2461 /*****************/
2462 /* TX Completion */
2463 /*****************/
2464 
2465 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2466 			    int tx_flags, struct ath_txq *txq,
2467 			    struct ieee80211_sta *sta)
2468 {
2469 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2470 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2471 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2472 	int padpos, padsize;
2473 	unsigned long flags;
2474 
2475 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2476 
2477 	if (sc->sc_ah->caldata)
2478 		set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags);
2479 
2480 	if (!(tx_flags & ATH_TX_ERROR)) {
2481 		if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
2482 			tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED;
2483 		else
2484 			tx_info->flags |= IEEE80211_TX_STAT_ACK;
2485 	}
2486 
2487 	if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) {
2488 		padpos = ieee80211_hdrlen(hdr->frame_control);
2489 		padsize = padpos & 3;
2490 		if (padsize && skb->len>padpos+padsize) {
2491 			/*
2492 			 * Remove MAC header padding before giving the frame back to
2493 			 * mac80211.
2494 			 */
2495 			memmove(skb->data + padsize, skb->data, padpos);
2496 			skb_pull(skb, padsize);
2497 		}
2498 	}
2499 
2500 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2501 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2502 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2503 		ath_dbg(common, PS,
2504 			"Going back to sleep after having received TX status (0x%lx)\n",
2505 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2506 					PS_WAIT_FOR_CAB |
2507 					PS_WAIT_FOR_PSPOLL_DATA |
2508 					PS_WAIT_FOR_TX_ACK));
2509 	}
2510 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2511 
2512 	ath_txq_skb_done(sc, txq, skb);
2513 	tx_info->status.status_driver_data[0] = sta;
2514 	__skb_queue_tail(&txq->complete_q, skb);
2515 }
2516 
2517 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2518 				struct ath_txq *txq, struct list_head *bf_q,
2519 				struct ieee80211_sta *sta,
2520 				struct ath_tx_status *ts, int txok)
2521 {
2522 	struct sk_buff *skb = bf->bf_mpdu;
2523 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2524 	unsigned long flags;
2525 	int tx_flags = 0;
2526 
2527 	if (!txok)
2528 		tx_flags |= ATH_TX_ERROR;
2529 
2530 	if (ts->ts_status & ATH9K_TXERR_FILT)
2531 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2532 
2533 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2534 	bf->bf_buf_addr = 0;
2535 	if (sc->tx99_state)
2536 		goto skip_tx_complete;
2537 
2538 	if (bf->bf_state.bfs_paprd) {
2539 		if (time_after(jiffies,
2540 				bf->bf_state.bfs_paprd_timestamp +
2541 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2542 			dev_kfree_skb_any(skb);
2543 		else
2544 			complete(&sc->paprd_complete);
2545 	} else {
2546 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2547 		ath_tx_complete(sc, skb, tx_flags, txq, sta);
2548 	}
2549 skip_tx_complete:
2550 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2551 	 * accidentally reference it later.
2552 	 */
2553 	bf->bf_mpdu = NULL;
2554 
2555 	/*
2556 	 * Return the list of ath_buf of this mpdu to free queue
2557 	 */
2558 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2559 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2560 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2561 }
2562 
2563 static void ath_clear_tx_status(struct ieee80211_tx_info *tx_info)
2564 {
2565 	void *ptr = &tx_info->status;
2566 
2567 	memset(ptr + sizeof(tx_info->status.rates), 0,
2568 	       sizeof(tx_info->status) -
2569 	       sizeof(tx_info->status.rates) -
2570 	       sizeof(tx_info->status.status_driver_data));
2571 }
2572 
2573 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2574 			     struct ath_tx_status *ts, int nframes, int nbad,
2575 			     int txok)
2576 {
2577 	struct sk_buff *skb = bf->bf_mpdu;
2578 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2579 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2580 	struct ieee80211_hw *hw = sc->hw;
2581 	struct ath_hw *ah = sc->sc_ah;
2582 	u8 i, tx_rateindex;
2583 
2584 	ath_clear_tx_status(tx_info);
2585 
2586 	if (txok)
2587 		tx_info->status.ack_signal = ts->ts_rssi;
2588 
2589 	tx_rateindex = ts->ts_rateindex;
2590 	WARN_ON(tx_rateindex >= hw->max_rates);
2591 
2592 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2593 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2594 
2595 		BUG_ON(nbad > nframes);
2596 	}
2597 	tx_info->status.ampdu_len = nframes;
2598 	tx_info->status.ampdu_ack_len = nframes - nbad;
2599 
2600 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2601 
2602 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2603 		tx_info->status.rates[i].count = 0;
2604 		tx_info->status.rates[i].idx = -1;
2605 	}
2606 
2607 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2608 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2609 		/*
2610 		 * If an underrun error is seen assume it as an excessive
2611 		 * retry only if max frame trigger level has been reached
2612 		 * (2 KB for single stream, and 4 KB for dual stream).
2613 		 * Adjust the long retry as if the frame was tried
2614 		 * hw->max_rate_tries times to affect how rate control updates
2615 		 * PER for the failed rate.
2616 		 * In case of congestion on the bus penalizing this type of
2617 		 * underruns should help hardware actually transmit new frames
2618 		 * successfully by eventually preferring slower rates.
2619 		 * This itself should also alleviate congestion on the bus.
2620 		 */
2621 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2622 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2623 		    ieee80211_is_data(hdr->frame_control) &&
2624 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2625 			tx_info->status.rates[tx_rateindex].count =
2626 				hw->max_rate_tries;
2627 	}
2628 }
2629 
2630 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2631 {
2632 	struct ath_hw *ah = sc->sc_ah;
2633 	struct ath_common *common = ath9k_hw_common(ah);
2634 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2635 	struct list_head bf_head;
2636 	struct ath_desc *ds;
2637 	struct ath_tx_status ts;
2638 	int status;
2639 
2640 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2641 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2642 		txq->axq_link);
2643 
2644 	ath_txq_lock(sc, txq);
2645 	for (;;) {
2646 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2647 			break;
2648 
2649 		if (list_empty(&txq->axq_q)) {
2650 			txq->axq_link = NULL;
2651 			ath_txq_schedule(sc, txq);
2652 			break;
2653 		}
2654 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2655 
2656 		/*
2657 		 * There is a race condition that a BH gets scheduled
2658 		 * after sw writes TxE and before hw re-load the last
2659 		 * descriptor to get the newly chained one.
2660 		 * Software must keep the last DONE descriptor as a
2661 		 * holding descriptor - software does so by marking
2662 		 * it with the STALE flag.
2663 		 */
2664 		bf_held = NULL;
2665 		if (bf->bf_state.stale) {
2666 			bf_held = bf;
2667 			if (list_is_last(&bf_held->list, &txq->axq_q))
2668 				break;
2669 
2670 			bf = list_entry(bf_held->list.next, struct ath_buf,
2671 					list);
2672 		}
2673 
2674 		lastbf = bf->bf_lastbf;
2675 		ds = lastbf->bf_desc;
2676 
2677 		memset(&ts, 0, sizeof(ts));
2678 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2679 		if (status == -EINPROGRESS)
2680 			break;
2681 
2682 		TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2683 
2684 		/*
2685 		 * Remove ath_buf's of the same transmit unit from txq,
2686 		 * however leave the last descriptor back as the holding
2687 		 * descriptor for hw.
2688 		 */
2689 		lastbf->bf_state.stale = true;
2690 		INIT_LIST_HEAD(&bf_head);
2691 		if (!list_is_singular(&lastbf->list))
2692 			list_cut_position(&bf_head,
2693 				&txq->axq_q, lastbf->list.prev);
2694 
2695 		if (bf_held) {
2696 			list_del(&bf_held->list);
2697 			ath_tx_return_buffer(sc, bf_held);
2698 		}
2699 
2700 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2701 	}
2702 	ath_txq_unlock_complete(sc, txq);
2703 }
2704 
2705 void ath_tx_tasklet(struct ath_softc *sc)
2706 {
2707 	struct ath_hw *ah = sc->sc_ah;
2708 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2709 	int i;
2710 
2711 	rcu_read_lock();
2712 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2713 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2714 			ath_tx_processq(sc, &sc->tx.txq[i]);
2715 	}
2716 	rcu_read_unlock();
2717 }
2718 
2719 void ath_tx_edma_tasklet(struct ath_softc *sc)
2720 {
2721 	struct ath_tx_status ts;
2722 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2723 	struct ath_hw *ah = sc->sc_ah;
2724 	struct ath_txq *txq;
2725 	struct ath_buf *bf, *lastbf;
2726 	struct list_head bf_head;
2727 	struct list_head *fifo_list;
2728 	int status;
2729 
2730 	rcu_read_lock();
2731 	for (;;) {
2732 		if (test_bit(ATH_OP_HW_RESET, &common->op_flags))
2733 			break;
2734 
2735 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2736 		if (status == -EINPROGRESS)
2737 			break;
2738 		if (status == -EIO) {
2739 			ath_dbg(common, XMIT, "Error processing tx status\n");
2740 			break;
2741 		}
2742 
2743 		/* Process beacon completions separately */
2744 		if (ts.qid == sc->beacon.beaconq) {
2745 			sc->beacon.tx_processed = true;
2746 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2747 
2748 			if (ath9k_is_chanctx_enabled()) {
2749 				ath_chanctx_event(sc, NULL,
2750 						  ATH_CHANCTX_EVENT_BEACON_SENT);
2751 			}
2752 
2753 			ath9k_csa_update(sc);
2754 			continue;
2755 		}
2756 
2757 		txq = &sc->tx.txq[ts.qid];
2758 
2759 		ath_txq_lock(sc, txq);
2760 
2761 		TX_STAT_INC(sc, txq->axq_qnum, txprocdesc);
2762 
2763 		fifo_list = &txq->txq_fifo[txq->txq_tailidx];
2764 		if (list_empty(fifo_list)) {
2765 			ath_txq_unlock(sc, txq);
2766 			break;
2767 		}
2768 
2769 		bf = list_first_entry(fifo_list, struct ath_buf, list);
2770 		if (bf->bf_state.stale) {
2771 			list_del(&bf->list);
2772 			ath_tx_return_buffer(sc, bf);
2773 			bf = list_first_entry(fifo_list, struct ath_buf, list);
2774 		}
2775 
2776 		lastbf = bf->bf_lastbf;
2777 
2778 		INIT_LIST_HEAD(&bf_head);
2779 		if (list_is_last(&lastbf->list, fifo_list)) {
2780 			list_splice_tail_init(fifo_list, &bf_head);
2781 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2782 
2783 			if (!list_empty(&txq->axq_q)) {
2784 				struct list_head bf_q;
2785 
2786 				INIT_LIST_HEAD(&bf_q);
2787 				txq->axq_link = NULL;
2788 				list_splice_tail_init(&txq->axq_q, &bf_q);
2789 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2790 			}
2791 		} else {
2792 			lastbf->bf_state.stale = true;
2793 			if (bf != lastbf)
2794 				list_cut_position(&bf_head, fifo_list,
2795 						  lastbf->list.prev);
2796 		}
2797 
2798 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2799 		ath_txq_unlock_complete(sc, txq);
2800 	}
2801 	rcu_read_unlock();
2802 }
2803 
2804 /*****************/
2805 /* Init, Cleanup */
2806 /*****************/
2807 
2808 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2809 {
2810 	struct ath_descdma *dd = &sc->txsdma;
2811 	u8 txs_len = sc->sc_ah->caps.txs_len;
2812 
2813 	dd->dd_desc_len = size * txs_len;
2814 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
2815 					  &dd->dd_desc_paddr, GFP_KERNEL);
2816 	if (!dd->dd_desc)
2817 		return -ENOMEM;
2818 
2819 	return 0;
2820 }
2821 
2822 static int ath_tx_edma_init(struct ath_softc *sc)
2823 {
2824 	int err;
2825 
2826 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2827 	if (!err)
2828 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2829 					  sc->txsdma.dd_desc_paddr,
2830 					  ATH_TXSTATUS_RING_SIZE);
2831 
2832 	return err;
2833 }
2834 
2835 int ath_tx_init(struct ath_softc *sc, int nbufs)
2836 {
2837 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2838 	int error = 0;
2839 
2840 	spin_lock_init(&sc->tx.txbuflock);
2841 
2842 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2843 				  "tx", nbufs, 1, 1);
2844 	if (error != 0) {
2845 		ath_err(common,
2846 			"Failed to allocate tx descriptors: %d\n", error);
2847 		return error;
2848 	}
2849 
2850 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2851 				  "beacon", ATH_BCBUF, 1, 1);
2852 	if (error != 0) {
2853 		ath_err(common,
2854 			"Failed to allocate beacon descriptors: %d\n", error);
2855 		return error;
2856 	}
2857 
2858 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2859 		error = ath_tx_edma_init(sc);
2860 
2861 	return error;
2862 }
2863 
2864 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2865 {
2866 	struct ath_atx_tid *tid;
2867 	int tidno, acno;
2868 
2869 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2870 		tid = ath_node_to_tid(an, tidno);
2871 		tid->an        = an;
2872 		tid->tidno     = tidno;
2873 		tid->seq_start = tid->seq_next = 0;
2874 		tid->baw_size  = WME_MAX_BA;
2875 		tid->baw_head  = tid->baw_tail = 0;
2876 		tid->active	   = false;
2877 		tid->clear_ps_filter = true;
2878 		__skb_queue_head_init(&tid->retry_q);
2879 		INIT_LIST_HEAD(&tid->list);
2880 		acno = TID_TO_WME_AC(tidno);
2881 		tid->txq = sc->tx.txq_map[acno];
2882 
2883 		if (!an->sta)
2884 			break; /* just one multicast ath_atx_tid */
2885 	}
2886 }
2887 
2888 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2889 {
2890 	struct ath_atx_tid *tid;
2891 	struct ath_txq *txq;
2892 	int tidno;
2893 
2894 	rcu_read_lock();
2895 
2896 	for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) {
2897 		tid = ath_node_to_tid(an, tidno);
2898 		txq = tid->txq;
2899 
2900 		ath_txq_lock(sc, txq);
2901 
2902 		if (!list_empty(&tid->list))
2903 			list_del_init(&tid->list);
2904 
2905 		ath_tid_drain(sc, txq, tid);
2906 		tid->active = false;
2907 
2908 		ath_txq_unlock(sc, txq);
2909 
2910 		if (!an->sta)
2911 			break; /* just one multicast ath_atx_tid */
2912 	}
2913 
2914 	rcu_read_unlock();
2915 }
2916 
2917 #ifdef CONFIG_ATH9K_TX99
2918 
2919 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb,
2920 		    struct ath_tx_control *txctl)
2921 {
2922 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
2923 	struct ath_frame_info *fi = get_frame_info(skb);
2924 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2925 	struct ath_buf *bf;
2926 	int padpos, padsize;
2927 
2928 	padpos = ieee80211_hdrlen(hdr->frame_control);
2929 	padsize = padpos & 3;
2930 
2931 	if (padsize && skb->len > padpos) {
2932 		if (skb_headroom(skb) < padsize) {
2933 			ath_dbg(common, XMIT,
2934 				"tx99 padding failed\n");
2935 			return -EINVAL;
2936 		}
2937 
2938 		skb_push(skb, padsize);
2939 		memmove(skb->data, skb->data + padsize, padpos);
2940 	}
2941 
2942 	fi->keyix = ATH9K_TXKEYIX_INVALID;
2943 	fi->framelen = skb->len + FCS_LEN;
2944 	fi->keytype = ATH9K_KEY_TYPE_CLEAR;
2945 
2946 	bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb);
2947 	if (!bf) {
2948 		ath_dbg(common, XMIT, "tx99 buffer setup failed\n");
2949 		return -EINVAL;
2950 	}
2951 
2952 	ath_set_rates(sc->tx99_vif, NULL, bf);
2953 
2954 	ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr);
2955 	ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum);
2956 
2957 	ath_tx_send_normal(sc, txctl->txq, NULL, skb);
2958 
2959 	return 0;
2960 }
2961 
2962 #endif /* CONFIG_ATH9K_TX99 */
2963