xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/xmit.c (revision 05bcf503)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define BITS_PER_BYTE           8
22 #define OFDM_PLCP_BITS          22
23 #define HT_RC_2_STREAMS(_rc)    ((((_rc) & 0x78) >> 3) + 1)
24 #define L_STF                   8
25 #define L_LTF                   8
26 #define L_SIG                   4
27 #define HT_SIG                  8
28 #define HT_STF                  4
29 #define HT_LTF(_ns)             (4 * (_ns))
30 #define SYMBOL_TIME(_ns)        ((_ns) << 2) /* ns * 4 us */
31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5)  /* ns * 3.6 us */
32 #define TIME_SYMBOLS(t)         ((t) >> 2)
33 #define TIME_SYMBOLS_HALFGI(t)  (((t) * 5 - 4) / 18)
34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2)
35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18)
36 
37 
38 static u16 bits_per_symbol[][2] = {
39 	/* 20MHz 40MHz */
40 	{    26,   54 },     /*  0: BPSK */
41 	{    52,  108 },     /*  1: QPSK 1/2 */
42 	{    78,  162 },     /*  2: QPSK 3/4 */
43 	{   104,  216 },     /*  3: 16-QAM 1/2 */
44 	{   156,  324 },     /*  4: 16-QAM 3/4 */
45 	{   208,  432 },     /*  5: 64-QAM 2/3 */
46 	{   234,  486 },     /*  6: 64-QAM 3/4 */
47 	{   260,  540 },     /*  7: 64-QAM 5/6 */
48 };
49 
50 #define IS_HT_RATE(_rate)     ((_rate) & 0x80)
51 
52 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
53 			       struct ath_atx_tid *tid, struct sk_buff *skb);
54 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
55 			    int tx_flags, struct ath_txq *txq);
56 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
57 				struct ath_txq *txq, struct list_head *bf_q,
58 				struct ath_tx_status *ts, int txok);
59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
60 			     struct list_head *head, bool internal);
61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
62 			     struct ath_tx_status *ts, int nframes, int nbad,
63 			     int txok);
64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
65 			      int seqno);
66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
67 					   struct ath_txq *txq,
68 					   struct ath_atx_tid *tid,
69 					   struct sk_buff *skb);
70 
71 enum {
72 	MCS_HT20,
73 	MCS_HT20_SGI,
74 	MCS_HT40,
75 	MCS_HT40_SGI,
76 };
77 
78 /*********************/
79 /* Aggregation logic */
80 /*********************/
81 
82 void ath_txq_lock(struct ath_softc *sc, struct ath_txq *txq)
83 	__acquires(&txq->axq_lock)
84 {
85 	spin_lock_bh(&txq->axq_lock);
86 }
87 
88 void ath_txq_unlock(struct ath_softc *sc, struct ath_txq *txq)
89 	__releases(&txq->axq_lock)
90 {
91 	spin_unlock_bh(&txq->axq_lock);
92 }
93 
94 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq)
95 	__releases(&txq->axq_lock)
96 {
97 	struct sk_buff_head q;
98 	struct sk_buff *skb;
99 
100 	__skb_queue_head_init(&q);
101 	skb_queue_splice_init(&txq->complete_q, &q);
102 	spin_unlock_bh(&txq->axq_lock);
103 
104 	while ((skb = __skb_dequeue(&q)))
105 		ieee80211_tx_status(sc->hw, skb);
106 }
107 
108 static void ath_tx_queue_tid(struct ath_txq *txq, struct ath_atx_tid *tid)
109 {
110 	struct ath_atx_ac *ac = tid->ac;
111 
112 	if (tid->paused)
113 		return;
114 
115 	if (tid->sched)
116 		return;
117 
118 	tid->sched = true;
119 	list_add_tail(&tid->list, &ac->tid_q);
120 
121 	if (ac->sched)
122 		return;
123 
124 	ac->sched = true;
125 	list_add_tail(&ac->list, &txq->axq_acq);
126 }
127 
128 static void ath_tx_resume_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
129 {
130 	struct ath_txq *txq = tid->ac->txq;
131 
132 	WARN_ON(!tid->paused);
133 
134 	ath_txq_lock(sc, txq);
135 	tid->paused = false;
136 
137 	if (skb_queue_empty(&tid->buf_q))
138 		goto unlock;
139 
140 	ath_tx_queue_tid(txq, tid);
141 	ath_txq_schedule(sc, txq);
142 unlock:
143 	ath_txq_unlock_complete(sc, txq);
144 }
145 
146 static struct ath_frame_info *get_frame_info(struct sk_buff *skb)
147 {
148 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
149 	BUILD_BUG_ON(sizeof(struct ath_frame_info) >
150 		     sizeof(tx_info->rate_driver_data));
151 	return (struct ath_frame_info *) &tx_info->rate_driver_data[0];
152 }
153 
154 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno)
155 {
156 	ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno,
157 			   seqno << IEEE80211_SEQ_SEQ_SHIFT);
158 }
159 
160 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid)
161 {
162 	struct ath_txq *txq = tid->ac->txq;
163 	struct sk_buff *skb;
164 	struct ath_buf *bf;
165 	struct list_head bf_head;
166 	struct ath_tx_status ts;
167 	struct ath_frame_info *fi;
168 	bool sendbar = false;
169 
170 	INIT_LIST_HEAD(&bf_head);
171 
172 	memset(&ts, 0, sizeof(ts));
173 
174 	while ((skb = __skb_dequeue(&tid->buf_q))) {
175 		fi = get_frame_info(skb);
176 		bf = fi->bf;
177 
178 		if (!bf) {
179 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
180 			if (!bf) {
181 				ieee80211_free_txskb(sc->hw, skb);
182 				continue;
183 			}
184 		}
185 
186 		if (fi->retries) {
187 			list_add_tail(&bf->list, &bf_head);
188 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
189 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
190 			sendbar = true;
191 		} else {
192 			ath_tx_send_normal(sc, txq, NULL, skb);
193 		}
194 	}
195 
196 	if (tid->baw_head == tid->baw_tail) {
197 		tid->state &= ~AGGR_ADDBA_COMPLETE;
198 		tid->state &= ~AGGR_CLEANUP;
199 	}
200 
201 	if (sendbar) {
202 		ath_txq_unlock(sc, txq);
203 		ath_send_bar(tid, tid->seq_start);
204 		ath_txq_lock(sc, txq);
205 	}
206 }
207 
208 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
209 			      int seqno)
210 {
211 	int index, cindex;
212 
213 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
214 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
215 
216 	__clear_bit(cindex, tid->tx_buf);
217 
218 	while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) {
219 		INCR(tid->seq_start, IEEE80211_SEQ_MAX);
220 		INCR(tid->baw_head, ATH_TID_MAX_BUFS);
221 		if (tid->bar_index >= 0)
222 			tid->bar_index--;
223 	}
224 }
225 
226 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid,
227 			     u16 seqno)
228 {
229 	int index, cindex;
230 
231 	index  = ATH_BA_INDEX(tid->seq_start, seqno);
232 	cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1);
233 	__set_bit(cindex, tid->tx_buf);
234 
235 	if (index >= ((tid->baw_tail - tid->baw_head) &
236 		(ATH_TID_MAX_BUFS - 1))) {
237 		tid->baw_tail = cindex;
238 		INCR(tid->baw_tail, ATH_TID_MAX_BUFS);
239 	}
240 }
241 
242 /*
243  * TODO: For frame(s) that are in the retry state, we will reuse the
244  * sequence number(s) without setting the retry bit. The
245  * alternative is to give up on these and BAR the receiver's window
246  * forward.
247  */
248 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq,
249 			  struct ath_atx_tid *tid)
250 
251 {
252 	struct sk_buff *skb;
253 	struct ath_buf *bf;
254 	struct list_head bf_head;
255 	struct ath_tx_status ts;
256 	struct ath_frame_info *fi;
257 
258 	memset(&ts, 0, sizeof(ts));
259 	INIT_LIST_HEAD(&bf_head);
260 
261 	while ((skb = __skb_dequeue(&tid->buf_q))) {
262 		fi = get_frame_info(skb);
263 		bf = fi->bf;
264 
265 		if (!bf) {
266 			ath_tx_complete(sc, skb, ATH_TX_ERROR, txq);
267 			continue;
268 		}
269 
270 		list_add_tail(&bf->list, &bf_head);
271 
272 		if (fi->retries)
273 			ath_tx_update_baw(sc, tid, bf->bf_state.seqno);
274 
275 		ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
276 	}
277 
278 	tid->seq_next = tid->seq_start;
279 	tid->baw_tail = tid->baw_head;
280 	tid->bar_index = -1;
281 }
282 
283 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq,
284 			     struct sk_buff *skb, int count)
285 {
286 	struct ath_frame_info *fi = get_frame_info(skb);
287 	struct ath_buf *bf = fi->bf;
288 	struct ieee80211_hdr *hdr;
289 	int prev = fi->retries;
290 
291 	TX_STAT_INC(txq->axq_qnum, a_retries);
292 	fi->retries += count;
293 
294 	if (prev > 0)
295 		return;
296 
297 	hdr = (struct ieee80211_hdr *)skb->data;
298 	hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY);
299 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
300 		sizeof(*hdr), DMA_TO_DEVICE);
301 }
302 
303 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc)
304 {
305 	struct ath_buf *bf = NULL;
306 
307 	spin_lock_bh(&sc->tx.txbuflock);
308 
309 	if (unlikely(list_empty(&sc->tx.txbuf))) {
310 		spin_unlock_bh(&sc->tx.txbuflock);
311 		return NULL;
312 	}
313 
314 	bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list);
315 	bf->bf_next = NULL;
316 	list_del(&bf->list);
317 
318 	spin_unlock_bh(&sc->tx.txbuflock);
319 
320 	return bf;
321 }
322 
323 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf)
324 {
325 	spin_lock_bh(&sc->tx.txbuflock);
326 	list_add_tail(&bf->list, &sc->tx.txbuf);
327 	spin_unlock_bh(&sc->tx.txbuflock);
328 }
329 
330 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf)
331 {
332 	struct ath_buf *tbf;
333 
334 	tbf = ath_tx_get_buffer(sc);
335 	if (WARN_ON(!tbf))
336 		return NULL;
337 
338 	ATH_TXBUF_RESET(tbf);
339 
340 	tbf->bf_mpdu = bf->bf_mpdu;
341 	tbf->bf_buf_addr = bf->bf_buf_addr;
342 	memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len);
343 	tbf->bf_state = bf->bf_state;
344 
345 	return tbf;
346 }
347 
348 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf,
349 			        struct ath_tx_status *ts, int txok,
350 			        int *nframes, int *nbad)
351 {
352 	struct ath_frame_info *fi;
353 	u16 seq_st = 0;
354 	u32 ba[WME_BA_BMP_SIZE >> 5];
355 	int ba_index;
356 	int isaggr = 0;
357 
358 	*nbad = 0;
359 	*nframes = 0;
360 
361 	isaggr = bf_isaggr(bf);
362 	if (isaggr) {
363 		seq_st = ts->ts_seqnum;
364 		memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
365 	}
366 
367 	while (bf) {
368 		fi = get_frame_info(bf->bf_mpdu);
369 		ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno);
370 
371 		(*nframes)++;
372 		if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index)))
373 			(*nbad)++;
374 
375 		bf = bf->bf_next;
376 	}
377 }
378 
379 
380 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq,
381 				 struct ath_buf *bf, struct list_head *bf_q,
382 				 struct ath_tx_status *ts, int txok, bool retry)
383 {
384 	struct ath_node *an = NULL;
385 	struct sk_buff *skb;
386 	struct ieee80211_sta *sta;
387 	struct ieee80211_hw *hw = sc->hw;
388 	struct ieee80211_hdr *hdr;
389 	struct ieee80211_tx_info *tx_info;
390 	struct ath_atx_tid *tid = NULL;
391 	struct ath_buf *bf_next, *bf_last = bf->bf_lastbf;
392 	struct list_head bf_head;
393 	struct sk_buff_head bf_pending;
394 	u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first;
395 	u32 ba[WME_BA_BMP_SIZE >> 5];
396 	int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0;
397 	bool rc_update = true, isba;
398 	struct ieee80211_tx_rate rates[4];
399 	struct ath_frame_info *fi;
400 	int nframes;
401 	u8 tidno;
402 	bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH);
403 	int i, retries;
404 	int bar_index = -1;
405 
406 	skb = bf->bf_mpdu;
407 	hdr = (struct ieee80211_hdr *)skb->data;
408 
409 	tx_info = IEEE80211_SKB_CB(skb);
410 
411 	memcpy(rates, tx_info->control.rates, sizeof(rates));
412 
413 	retries = ts->ts_longretry + 1;
414 	for (i = 0; i < ts->ts_rateindex; i++)
415 		retries += rates[i].count;
416 
417 	rcu_read_lock();
418 
419 	sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2);
420 	if (!sta) {
421 		rcu_read_unlock();
422 
423 		INIT_LIST_HEAD(&bf_head);
424 		while (bf) {
425 			bf_next = bf->bf_next;
426 
427 			if (!bf->bf_stale || bf_next != NULL)
428 				list_move_tail(&bf->list, &bf_head);
429 
430 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts, 0);
431 
432 			bf = bf_next;
433 		}
434 		return;
435 	}
436 
437 	an = (struct ath_node *)sta->drv_priv;
438 	tidno = ieee80211_get_qos_ctl(hdr)[0] & IEEE80211_QOS_CTL_TID_MASK;
439 	tid = ATH_AN_2_TID(an, tidno);
440 	seq_first = tid->seq_start;
441 	isba = ts->ts_flags & ATH9K_TX_BA;
442 
443 	/*
444 	 * The hardware occasionally sends a tx status for the wrong TID.
445 	 * In this case, the BA status cannot be considered valid and all
446 	 * subframes need to be retransmitted
447 	 *
448 	 * Only BlockAcks have a TID and therefore normal Acks cannot be
449 	 * checked
450 	 */
451 	if (isba && tidno != ts->tid)
452 		txok = false;
453 
454 	isaggr = bf_isaggr(bf);
455 	memset(ba, 0, WME_BA_BMP_SIZE >> 3);
456 
457 	if (isaggr && txok) {
458 		if (ts->ts_flags & ATH9K_TX_BA) {
459 			seq_st = ts->ts_seqnum;
460 			memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3);
461 		} else {
462 			/*
463 			 * AR5416 can become deaf/mute when BA
464 			 * issue happens. Chip needs to be reset.
465 			 * But AP code may have sychronization issues
466 			 * when perform internal reset in this routine.
467 			 * Only enable reset in STA mode for now.
468 			 */
469 			if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION)
470 				needreset = 1;
471 		}
472 	}
473 
474 	__skb_queue_head_init(&bf_pending);
475 
476 	ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad);
477 	while (bf) {
478 		u16 seqno = bf->bf_state.seqno;
479 
480 		txfail = txpending = sendbar = 0;
481 		bf_next = bf->bf_next;
482 
483 		skb = bf->bf_mpdu;
484 		tx_info = IEEE80211_SKB_CB(skb);
485 		fi = get_frame_info(skb);
486 
487 		if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) {
488 			/* transmit completion, subframe is
489 			 * acked by block ack */
490 			acked_cnt++;
491 		} else if (!isaggr && txok) {
492 			/* transmit completion */
493 			acked_cnt++;
494 		} else if ((tid->state & AGGR_CLEANUP) || !retry) {
495 			/*
496 			 * cleanup in progress, just fail
497 			 * the un-acked sub-frames
498 			 */
499 			txfail = 1;
500 		} else if (flush) {
501 			txpending = 1;
502 		} else if (fi->retries < ATH_MAX_SW_RETRIES) {
503 			if (txok || !an->sleeping)
504 				ath_tx_set_retry(sc, txq, bf->bf_mpdu,
505 						 retries);
506 
507 			txpending = 1;
508 		} else {
509 			txfail = 1;
510 			txfail_cnt++;
511 			bar_index = max_t(int, bar_index,
512 				ATH_BA_INDEX(seq_first, seqno));
513 		}
514 
515 		/*
516 		 * Make sure the last desc is reclaimed if it
517 		 * not a holding desc.
518 		 */
519 		INIT_LIST_HEAD(&bf_head);
520 		if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) ||
521 		    bf_next != NULL || !bf_last->bf_stale)
522 			list_move_tail(&bf->list, &bf_head);
523 
524 		if (!txpending || (tid->state & AGGR_CLEANUP)) {
525 			/*
526 			 * complete the acked-ones/xretried ones; update
527 			 * block-ack window
528 			 */
529 			ath_tx_update_baw(sc, tid, seqno);
530 
531 			if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) {
532 				memcpy(tx_info->control.rates, rates, sizeof(rates));
533 				ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok);
534 				rc_update = false;
535 			}
536 
537 			ath_tx_complete_buf(sc, bf, txq, &bf_head, ts,
538 				!txfail);
539 		} else {
540 			/* retry the un-acked ones */
541 			if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) &&
542 			    bf->bf_next == NULL && bf_last->bf_stale) {
543 				struct ath_buf *tbf;
544 
545 				tbf = ath_clone_txbuf(sc, bf_last);
546 				/*
547 				 * Update tx baw and complete the
548 				 * frame with failed status if we
549 				 * run out of tx buf.
550 				 */
551 				if (!tbf) {
552 					ath_tx_update_baw(sc, tid, seqno);
553 
554 					ath_tx_complete_buf(sc, bf, txq,
555 							    &bf_head, ts, 0);
556 					bar_index = max_t(int, bar_index,
557 						ATH_BA_INDEX(seq_first, seqno));
558 					break;
559 				}
560 
561 				fi->bf = tbf;
562 			}
563 
564 			/*
565 			 * Put this buffer to the temporary pending
566 			 * queue to retain ordering
567 			 */
568 			__skb_queue_tail(&bf_pending, skb);
569 		}
570 
571 		bf = bf_next;
572 	}
573 
574 	/* prepend un-acked frames to the beginning of the pending frame queue */
575 	if (!skb_queue_empty(&bf_pending)) {
576 		if (an->sleeping)
577 			ieee80211_sta_set_buffered(sta, tid->tidno, true);
578 
579 		skb_queue_splice(&bf_pending, &tid->buf_q);
580 		if (!an->sleeping) {
581 			ath_tx_queue_tid(txq, tid);
582 
583 			if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY))
584 				tid->ac->clear_ps_filter = true;
585 		}
586 	}
587 
588 	if (bar_index >= 0) {
589 		u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index);
590 
591 		if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq))
592 			tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq);
593 
594 		ath_txq_unlock(sc, txq);
595 		ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1));
596 		ath_txq_lock(sc, txq);
597 	}
598 
599 	if (tid->state & AGGR_CLEANUP)
600 		ath_tx_flush_tid(sc, tid);
601 
602 	rcu_read_unlock();
603 
604 	if (needreset)
605 		ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR);
606 }
607 
608 static bool ath_lookup_legacy(struct ath_buf *bf)
609 {
610 	struct sk_buff *skb;
611 	struct ieee80211_tx_info *tx_info;
612 	struct ieee80211_tx_rate *rates;
613 	int i;
614 
615 	skb = bf->bf_mpdu;
616 	tx_info = IEEE80211_SKB_CB(skb);
617 	rates = tx_info->control.rates;
618 
619 	for (i = 0; i < 4; i++) {
620 		if (!rates[i].count || rates[i].idx < 0)
621 			break;
622 
623 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS))
624 			return true;
625 	}
626 
627 	return false;
628 }
629 
630 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf,
631 			   struct ath_atx_tid *tid)
632 {
633 	struct sk_buff *skb;
634 	struct ieee80211_tx_info *tx_info;
635 	struct ieee80211_tx_rate *rates;
636 	u32 max_4ms_framelen, frmlen;
637 	u16 aggr_limit, bt_aggr_limit, legacy = 0;
638 	int q = tid->ac->txq->mac80211_qnum;
639 	int i;
640 
641 	skb = bf->bf_mpdu;
642 	tx_info = IEEE80211_SKB_CB(skb);
643 	rates = tx_info->control.rates;
644 
645 	/*
646 	 * Find the lowest frame length among the rate series that will have a
647 	 * 4ms (or TXOP limited) transmit duration.
648 	 */
649 	max_4ms_framelen = ATH_AMPDU_LIMIT_MAX;
650 
651 	for (i = 0; i < 4; i++) {
652 		int modeidx;
653 
654 		if (!rates[i].count)
655 			continue;
656 
657 		if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) {
658 			legacy = 1;
659 			break;
660 		}
661 
662 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
663 			modeidx = MCS_HT40;
664 		else
665 			modeidx = MCS_HT20;
666 
667 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
668 			modeidx++;
669 
670 		frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx];
671 		max_4ms_framelen = min(max_4ms_framelen, frmlen);
672 	}
673 
674 	/*
675 	 * limit aggregate size by the minimum rate if rate selected is
676 	 * not a probe rate, if rate selected is a probe rate then
677 	 * avoid aggregation of this packet.
678 	 */
679 	if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy)
680 		return 0;
681 
682 	aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX);
683 
684 	/*
685 	 * Override the default aggregation limit for BTCOEX.
686 	 */
687 	bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen);
688 	if (bt_aggr_limit)
689 		aggr_limit = bt_aggr_limit;
690 
691 	/*
692 	 * h/w can accept aggregates up to 16 bit lengths (65535).
693 	 * The IE, however can hold up to 65536, which shows up here
694 	 * as zero. Ignore 65536 since we  are constrained by hw.
695 	 */
696 	if (tid->an->maxampdu)
697 		aggr_limit = min(aggr_limit, tid->an->maxampdu);
698 
699 	return aggr_limit;
700 }
701 
702 /*
703  * Returns the number of delimiters to be added to
704  * meet the minimum required mpdudensity.
705  */
706 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid,
707 				  struct ath_buf *bf, u16 frmlen,
708 				  bool first_subfrm)
709 {
710 #define FIRST_DESC_NDELIMS 60
711 	struct sk_buff *skb = bf->bf_mpdu;
712 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
713 	u32 nsymbits, nsymbols;
714 	u16 minlen;
715 	u8 flags, rix;
716 	int width, streams, half_gi, ndelim, mindelim;
717 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
718 
719 	/* Select standard number of delimiters based on frame length alone */
720 	ndelim = ATH_AGGR_GET_NDELIM(frmlen);
721 
722 	/*
723 	 * If encryption enabled, hardware requires some more padding between
724 	 * subframes.
725 	 * TODO - this could be improved to be dependent on the rate.
726 	 *      The hardware can keep up at lower rates, but not higher rates
727 	 */
728 	if ((fi->keyix != ATH9K_TXKEYIX_INVALID) &&
729 	    !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA))
730 		ndelim += ATH_AGGR_ENCRYPTDELIM;
731 
732 	/*
733 	 * Add delimiter when using RTS/CTS with aggregation
734 	 * and non enterprise AR9003 card
735 	 */
736 	if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) &&
737 	    (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE))
738 		ndelim = max(ndelim, FIRST_DESC_NDELIMS);
739 
740 	/*
741 	 * Convert desired mpdu density from microeconds to bytes based
742 	 * on highest rate in rate series (i.e. first rate) to determine
743 	 * required minimum length for subframe. Take into account
744 	 * whether high rate is 20 or 40Mhz and half or full GI.
745 	 *
746 	 * If there is no mpdu density restriction, no further calculation
747 	 * is needed.
748 	 */
749 
750 	if (tid->an->mpdudensity == 0)
751 		return ndelim;
752 
753 	rix = tx_info->control.rates[0].idx;
754 	flags = tx_info->control.rates[0].flags;
755 	width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0;
756 	half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0;
757 
758 	if (half_gi)
759 		nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity);
760 	else
761 		nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity);
762 
763 	if (nsymbols == 0)
764 		nsymbols = 1;
765 
766 	streams = HT_RC_2_STREAMS(rix);
767 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
768 	minlen = (nsymbols * nsymbits) / BITS_PER_BYTE;
769 
770 	if (frmlen < minlen) {
771 		mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ;
772 		ndelim = max(mindelim, ndelim);
773 	}
774 
775 	return ndelim;
776 }
777 
778 static enum ATH_AGGR_STATUS ath_tx_form_aggr(struct ath_softc *sc,
779 					     struct ath_txq *txq,
780 					     struct ath_atx_tid *tid,
781 					     struct list_head *bf_q,
782 					     int *aggr_len)
783 {
784 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4)
785 	struct ath_buf *bf, *bf_first = NULL, *bf_prev = NULL;
786 	int rl = 0, nframes = 0, ndelim, prev_al = 0;
787 	u16 aggr_limit = 0, al = 0, bpad = 0,
788 		al_delta, h_baw = tid->baw_size / 2;
789 	enum ATH_AGGR_STATUS status = ATH_AGGR_DONE;
790 	struct ieee80211_tx_info *tx_info;
791 	struct ath_frame_info *fi;
792 	struct sk_buff *skb;
793 	u16 seqno;
794 
795 	do {
796 		skb = skb_peek(&tid->buf_q);
797 		fi = get_frame_info(skb);
798 		bf = fi->bf;
799 		if (!fi->bf)
800 			bf = ath_tx_setup_buffer(sc, txq, tid, skb);
801 
802 		if (!bf) {
803 			__skb_unlink(skb, &tid->buf_q);
804 			ieee80211_free_txskb(sc->hw, skb);
805 			continue;
806 		}
807 
808 		bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR;
809 		seqno = bf->bf_state.seqno;
810 
811 		/* do not step over block-ack window */
812 		if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) {
813 			status = ATH_AGGR_BAW_CLOSED;
814 			break;
815 		}
816 
817 		if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) {
818 			struct ath_tx_status ts = {};
819 			struct list_head bf_head;
820 
821 			INIT_LIST_HEAD(&bf_head);
822 			list_add(&bf->list, &bf_head);
823 			__skb_unlink(skb, &tid->buf_q);
824 			ath_tx_update_baw(sc, tid, seqno);
825 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
826 			continue;
827 		}
828 
829 		if (!bf_first)
830 			bf_first = bf;
831 
832 		if (!rl) {
833 			aggr_limit = ath_lookup_rate(sc, bf, tid);
834 			rl = 1;
835 		}
836 
837 		/* do not exceed aggregation limit */
838 		al_delta = ATH_AGGR_DELIM_SZ + fi->framelen;
839 
840 		if (nframes &&
841 		    ((aggr_limit < (al + bpad + al_delta + prev_al)) ||
842 		     ath_lookup_legacy(bf))) {
843 			status = ATH_AGGR_LIMITED;
844 			break;
845 		}
846 
847 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
848 		if (nframes && (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE))
849 			break;
850 
851 		/* do not exceed subframe limit */
852 		if (nframes >= min((int)h_baw, ATH_AMPDU_SUBFRAME_DEFAULT)) {
853 			status = ATH_AGGR_LIMITED;
854 			break;
855 		}
856 
857 		/* add padding for previous frame to aggregation length */
858 		al += bpad + al_delta;
859 
860 		/*
861 		 * Get the delimiters needed to meet the MPDU
862 		 * density for this node.
863 		 */
864 		ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen,
865 						!nframes);
866 		bpad = PADBYTES(al_delta) + (ndelim << 2);
867 
868 		nframes++;
869 		bf->bf_next = NULL;
870 
871 		/* link buffers of this frame to the aggregate */
872 		if (!fi->retries)
873 			ath_tx_addto_baw(sc, tid, seqno);
874 		bf->bf_state.ndelim = ndelim;
875 
876 		__skb_unlink(skb, &tid->buf_q);
877 		list_add_tail(&bf->list, bf_q);
878 		if (bf_prev)
879 			bf_prev->bf_next = bf;
880 
881 		bf_prev = bf;
882 
883 	} while (!skb_queue_empty(&tid->buf_q));
884 
885 	*aggr_len = al;
886 
887 	return status;
888 #undef PADBYTES
889 }
890 
891 /*
892  * rix - rate index
893  * pktlen - total bytes (delims + data + fcs + pads + pad delims)
894  * width  - 0 for 20 MHz, 1 for 40 MHz
895  * half_gi - to use 4us v/s 3.6 us for symbol time
896  */
897 static u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen,
898 			    int width, int half_gi, bool shortPreamble)
899 {
900 	u32 nbits, nsymbits, duration, nsymbols;
901 	int streams;
902 
903 	/* find number of symbols: PLCP + data */
904 	streams = HT_RC_2_STREAMS(rix);
905 	nbits = (pktlen << 3) + OFDM_PLCP_BITS;
906 	nsymbits = bits_per_symbol[rix % 8][width] * streams;
907 	nsymbols = (nbits + nsymbits - 1) / nsymbits;
908 
909 	if (!half_gi)
910 		duration = SYMBOL_TIME(nsymbols);
911 	else
912 		duration = SYMBOL_TIME_HALFGI(nsymbols);
913 
914 	/* addup duration for legacy/ht training and signal fields */
915 	duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
916 
917 	return duration;
918 }
919 
920 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi)
921 {
922 	int streams = HT_RC_2_STREAMS(mcs);
923 	int symbols, bits;
924 	int bytes = 0;
925 
926 	symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec);
927 	bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams;
928 	bits -= OFDM_PLCP_BITS;
929 	bytes = bits / 8;
930 	bytes -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams);
931 	if (bytes > 65532)
932 		bytes = 65532;
933 
934 	return bytes;
935 }
936 
937 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop)
938 {
939 	u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi;
940 	int mcs;
941 
942 	/* 4ms is the default (and maximum) duration */
943 	if (!txop || txop > 4096)
944 		txop = 4096;
945 
946 	cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20];
947 	cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI];
948 	cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40];
949 	cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI];
950 	for (mcs = 0; mcs < 32; mcs++) {
951 		cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false);
952 		cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true);
953 		cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false);
954 		cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true);
955 	}
956 }
957 
958 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf,
959 			     struct ath_tx_info *info, int len)
960 {
961 	struct ath_hw *ah = sc->sc_ah;
962 	struct sk_buff *skb;
963 	struct ieee80211_tx_info *tx_info;
964 	struct ieee80211_tx_rate *rates;
965 	const struct ieee80211_rate *rate;
966 	struct ieee80211_hdr *hdr;
967 	struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu);
968 	int i;
969 	u8 rix = 0;
970 
971 	skb = bf->bf_mpdu;
972 	tx_info = IEEE80211_SKB_CB(skb);
973 	rates = tx_info->control.rates;
974 	hdr = (struct ieee80211_hdr *)skb->data;
975 
976 	/* set dur_update_en for l-sig computation except for PS-Poll frames */
977 	info->dur_update = !ieee80211_is_pspoll(hdr->frame_control);
978 	info->rtscts_rate = fi->rtscts_rate;
979 
980 	for (i = 0; i < 4; i++) {
981 		bool is_40, is_sgi, is_sp;
982 		int phy;
983 
984 		if (!rates[i].count || (rates[i].idx < 0))
985 			continue;
986 
987 		rix = rates[i].idx;
988 		info->rates[i].Tries = rates[i].count;
989 
990 		    if (rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) {
991 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
992 			info->flags |= ATH9K_TXDESC_RTSENA;
993 		} else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) {
994 			info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS;
995 			info->flags |= ATH9K_TXDESC_CTSENA;
996 		}
997 
998 		if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH)
999 			info->rates[i].RateFlags |= ATH9K_RATESERIES_2040;
1000 		if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI)
1001 			info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI;
1002 
1003 		is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI);
1004 		is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH);
1005 		is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE);
1006 
1007 		if (rates[i].flags & IEEE80211_TX_RC_MCS) {
1008 			/* MCS rates */
1009 			info->rates[i].Rate = rix | 0x80;
1010 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1011 					ah->txchainmask, info->rates[i].Rate);
1012 			info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len,
1013 				 is_40, is_sgi, is_sp);
1014 			if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC))
1015 				info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC;
1016 			continue;
1017 		}
1018 
1019 		/* legacy rates */
1020 		rate = &sc->sbands[tx_info->band].bitrates[rates[i].idx];
1021 		if ((tx_info->band == IEEE80211_BAND_2GHZ) &&
1022 		    !(rate->flags & IEEE80211_RATE_ERP_G))
1023 			phy = WLAN_RC_PHY_CCK;
1024 		else
1025 			phy = WLAN_RC_PHY_OFDM;
1026 
1027 		info->rates[i].Rate = rate->hw_value;
1028 		if (rate->hw_value_short) {
1029 			if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE)
1030 				info->rates[i].Rate |= rate->hw_value_short;
1031 		} else {
1032 			is_sp = false;
1033 		}
1034 
1035 		if (bf->bf_state.bfs_paprd)
1036 			info->rates[i].ChSel = ah->txchainmask;
1037 		else
1038 			info->rates[i].ChSel = ath_txchainmask_reduction(sc,
1039 					ah->txchainmask, info->rates[i].Rate);
1040 
1041 		info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah,
1042 			phy, rate->bitrate * 100, len, rix, is_sp);
1043 	}
1044 
1045 	/* For AR5416 - RTS cannot be followed by a frame larger than 8K */
1046 	if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit))
1047 		info->flags &= ~ATH9K_TXDESC_RTSENA;
1048 
1049 	/* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */
1050 	if (info->flags & ATH9K_TXDESC_RTSENA)
1051 		info->flags &= ~ATH9K_TXDESC_CTSENA;
1052 }
1053 
1054 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb)
1055 {
1056 	struct ieee80211_hdr *hdr;
1057 	enum ath9k_pkt_type htype;
1058 	__le16 fc;
1059 
1060 	hdr = (struct ieee80211_hdr *)skb->data;
1061 	fc = hdr->frame_control;
1062 
1063 	if (ieee80211_is_beacon(fc))
1064 		htype = ATH9K_PKT_TYPE_BEACON;
1065 	else if (ieee80211_is_probe_resp(fc))
1066 		htype = ATH9K_PKT_TYPE_PROBE_RESP;
1067 	else if (ieee80211_is_atim(fc))
1068 		htype = ATH9K_PKT_TYPE_ATIM;
1069 	else if (ieee80211_is_pspoll(fc))
1070 		htype = ATH9K_PKT_TYPE_PSPOLL;
1071 	else
1072 		htype = ATH9K_PKT_TYPE_NORMAL;
1073 
1074 	return htype;
1075 }
1076 
1077 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf,
1078 			     struct ath_txq *txq, int len)
1079 {
1080 	struct ath_hw *ah = sc->sc_ah;
1081 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1082 	struct ath_buf *bf_first = bf;
1083 	struct ath_tx_info info;
1084 	bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR);
1085 
1086 	memset(&info, 0, sizeof(info));
1087 	info.is_first = true;
1088 	info.is_last = true;
1089 	info.txpower = MAX_RATE_POWER;
1090 	info.qcu = txq->axq_qnum;
1091 
1092 	info.flags = ATH9K_TXDESC_INTREQ;
1093 	if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK)
1094 		info.flags |= ATH9K_TXDESC_NOACK;
1095 	if (tx_info->flags & IEEE80211_TX_CTL_LDPC)
1096 		info.flags |= ATH9K_TXDESC_LDPC;
1097 
1098 	ath_buf_set_rate(sc, bf, &info, len);
1099 
1100 	if (tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT)
1101 		info.flags |= ATH9K_TXDESC_CLRDMASK;
1102 
1103 	if (bf->bf_state.bfs_paprd)
1104 		info.flags |= (u32) bf->bf_state.bfs_paprd << ATH9K_TXDESC_PAPRD_S;
1105 
1106 
1107 	while (bf) {
1108 		struct sk_buff *skb = bf->bf_mpdu;
1109 		struct ath_frame_info *fi = get_frame_info(skb);
1110 
1111 		info.type = get_hw_packet_type(skb);
1112 		if (bf->bf_next)
1113 			info.link = bf->bf_next->bf_daddr;
1114 		else
1115 			info.link = 0;
1116 
1117 		info.buf_addr[0] = bf->bf_buf_addr;
1118 		info.buf_len[0] = skb->len;
1119 		info.pkt_len = fi->framelen;
1120 		info.keyix = fi->keyix;
1121 		info.keytype = fi->keytype;
1122 
1123 		if (aggr) {
1124 			if (bf == bf_first)
1125 				info.aggr = AGGR_BUF_FIRST;
1126 			else if (!bf->bf_next)
1127 				info.aggr = AGGR_BUF_LAST;
1128 			else
1129 				info.aggr = AGGR_BUF_MIDDLE;
1130 
1131 			info.ndelim = bf->bf_state.ndelim;
1132 			info.aggr_len = len;
1133 		}
1134 
1135 		ath9k_hw_set_txdesc(ah, bf->bf_desc, &info);
1136 		bf = bf->bf_next;
1137 	}
1138 }
1139 
1140 static void ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq,
1141 			      struct ath_atx_tid *tid)
1142 {
1143 	struct ath_buf *bf;
1144 	enum ATH_AGGR_STATUS status;
1145 	struct ieee80211_tx_info *tx_info;
1146 	struct list_head bf_q;
1147 	int aggr_len;
1148 
1149 	do {
1150 		if (skb_queue_empty(&tid->buf_q))
1151 			return;
1152 
1153 		INIT_LIST_HEAD(&bf_q);
1154 
1155 		status = ath_tx_form_aggr(sc, txq, tid, &bf_q, &aggr_len);
1156 
1157 		/*
1158 		 * no frames picked up to be aggregated;
1159 		 * block-ack window is not open.
1160 		 */
1161 		if (list_empty(&bf_q))
1162 			break;
1163 
1164 		bf = list_first_entry(&bf_q, struct ath_buf, list);
1165 		bf->bf_lastbf = list_entry(bf_q.prev, struct ath_buf, list);
1166 		tx_info = IEEE80211_SKB_CB(bf->bf_mpdu);
1167 
1168 		if (tid->ac->clear_ps_filter) {
1169 			tid->ac->clear_ps_filter = false;
1170 			tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1171 		} else {
1172 			tx_info->flags &= ~IEEE80211_TX_CTL_CLEAR_PS_FILT;
1173 		}
1174 
1175 		/* if only one frame, send as non-aggregate */
1176 		if (bf == bf->bf_lastbf) {
1177 			aggr_len = get_frame_info(bf->bf_mpdu)->framelen;
1178 			bf->bf_state.bf_type = BUF_AMPDU;
1179 		} else {
1180 			TX_STAT_INC(txq->axq_qnum, a_aggr);
1181 		}
1182 
1183 		ath_tx_fill_desc(sc, bf, txq, aggr_len);
1184 		ath_tx_txqaddbuf(sc, txq, &bf_q, false);
1185 	} while (txq->axq_ampdu_depth < ATH_AGGR_MIN_QDEPTH &&
1186 		 status != ATH_AGGR_BAW_CLOSED);
1187 }
1188 
1189 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta,
1190 		      u16 tid, u16 *ssn)
1191 {
1192 	struct ath_atx_tid *txtid;
1193 	struct ath_node *an;
1194 	u8 density;
1195 
1196 	an = (struct ath_node *)sta->drv_priv;
1197 	txtid = ATH_AN_2_TID(an, tid);
1198 
1199 	if (txtid->state & (AGGR_CLEANUP | AGGR_ADDBA_COMPLETE))
1200 		return -EAGAIN;
1201 
1202 	/* update ampdu factor/density, they may have changed. This may happen
1203 	 * in HT IBSS when a beacon with HT-info is received after the station
1204 	 * has already been added.
1205 	 */
1206 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
1207 		an->maxampdu = 1 << (IEEE80211_HT_MAX_AMPDU_FACTOR +
1208 				     sta->ht_cap.ampdu_factor);
1209 		density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density);
1210 		an->mpdudensity = density;
1211 	}
1212 
1213 	txtid->state |= AGGR_ADDBA_PROGRESS;
1214 	txtid->paused = true;
1215 	*ssn = txtid->seq_start = txtid->seq_next;
1216 	txtid->bar_index = -1;
1217 
1218 	memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf));
1219 	txtid->baw_head = txtid->baw_tail = 0;
1220 
1221 	return 0;
1222 }
1223 
1224 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1225 {
1226 	struct ath_node *an = (struct ath_node *)sta->drv_priv;
1227 	struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid);
1228 	struct ath_txq *txq = txtid->ac->txq;
1229 
1230 	if (txtid->state & AGGR_CLEANUP)
1231 		return;
1232 
1233 	if (!(txtid->state & AGGR_ADDBA_COMPLETE)) {
1234 		txtid->state &= ~AGGR_ADDBA_PROGRESS;
1235 		return;
1236 	}
1237 
1238 	ath_txq_lock(sc, txq);
1239 	txtid->paused = true;
1240 
1241 	/*
1242 	 * If frames are still being transmitted for this TID, they will be
1243 	 * cleaned up during tx completion. To prevent race conditions, this
1244 	 * TID can only be reused after all in-progress subframes have been
1245 	 * completed.
1246 	 */
1247 	if (txtid->baw_head != txtid->baw_tail)
1248 		txtid->state |= AGGR_CLEANUP;
1249 	else
1250 		txtid->state &= ~AGGR_ADDBA_COMPLETE;
1251 
1252 	ath_tx_flush_tid(sc, txtid);
1253 	ath_txq_unlock_complete(sc, txq);
1254 }
1255 
1256 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc,
1257 		       struct ath_node *an)
1258 {
1259 	struct ath_atx_tid *tid;
1260 	struct ath_atx_ac *ac;
1261 	struct ath_txq *txq;
1262 	bool buffered;
1263 	int tidno;
1264 
1265 	for (tidno = 0, tid = &an->tid[tidno];
1266 	     tidno < WME_NUM_TID; tidno++, tid++) {
1267 
1268 		if (!tid->sched)
1269 			continue;
1270 
1271 		ac = tid->ac;
1272 		txq = ac->txq;
1273 
1274 		ath_txq_lock(sc, txq);
1275 
1276 		buffered = !skb_queue_empty(&tid->buf_q);
1277 
1278 		tid->sched = false;
1279 		list_del(&tid->list);
1280 
1281 		if (ac->sched) {
1282 			ac->sched = false;
1283 			list_del(&ac->list);
1284 		}
1285 
1286 		ath_txq_unlock(sc, txq);
1287 
1288 		ieee80211_sta_set_buffered(sta, tidno, buffered);
1289 	}
1290 }
1291 
1292 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an)
1293 {
1294 	struct ath_atx_tid *tid;
1295 	struct ath_atx_ac *ac;
1296 	struct ath_txq *txq;
1297 	int tidno;
1298 
1299 	for (tidno = 0, tid = &an->tid[tidno];
1300 	     tidno < WME_NUM_TID; tidno++, tid++) {
1301 
1302 		ac = tid->ac;
1303 		txq = ac->txq;
1304 
1305 		ath_txq_lock(sc, txq);
1306 		ac->clear_ps_filter = true;
1307 
1308 		if (!skb_queue_empty(&tid->buf_q) && !tid->paused) {
1309 			ath_tx_queue_tid(txq, tid);
1310 			ath_txq_schedule(sc, txq);
1311 		}
1312 
1313 		ath_txq_unlock_complete(sc, txq);
1314 	}
1315 }
1316 
1317 void ath_tx_aggr_resume(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid)
1318 {
1319 	struct ath_atx_tid *txtid;
1320 	struct ath_node *an;
1321 
1322 	an = (struct ath_node *)sta->drv_priv;
1323 
1324 	txtid = ATH_AN_2_TID(an, tid);
1325 	txtid->baw_size = IEEE80211_MIN_AMPDU_BUF << sta->ht_cap.ampdu_factor;
1326 	txtid->state |= AGGR_ADDBA_COMPLETE;
1327 	txtid->state &= ~AGGR_ADDBA_PROGRESS;
1328 	ath_tx_resume_tid(sc, txtid);
1329 }
1330 
1331 /********************/
1332 /* Queue Management */
1333 /********************/
1334 
1335 static void ath_txq_drain_pending_buffers(struct ath_softc *sc,
1336 					  struct ath_txq *txq)
1337 {
1338 	struct ath_atx_ac *ac, *ac_tmp;
1339 	struct ath_atx_tid *tid, *tid_tmp;
1340 
1341 	list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1342 		list_del(&ac->list);
1343 		ac->sched = false;
1344 		list_for_each_entry_safe(tid, tid_tmp, &ac->tid_q, list) {
1345 			list_del(&tid->list);
1346 			tid->sched = false;
1347 			ath_tid_drain(sc, txq, tid);
1348 		}
1349 	}
1350 }
1351 
1352 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype)
1353 {
1354 	struct ath_hw *ah = sc->sc_ah;
1355 	struct ath9k_tx_queue_info qi;
1356 	static const int subtype_txq_to_hwq[] = {
1357 		[WME_AC_BE] = ATH_TXQ_AC_BE,
1358 		[WME_AC_BK] = ATH_TXQ_AC_BK,
1359 		[WME_AC_VI] = ATH_TXQ_AC_VI,
1360 		[WME_AC_VO] = ATH_TXQ_AC_VO,
1361 	};
1362 	int axq_qnum, i;
1363 
1364 	memset(&qi, 0, sizeof(qi));
1365 	qi.tqi_subtype = subtype_txq_to_hwq[subtype];
1366 	qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT;
1367 	qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
1368 	qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT;
1369 	qi.tqi_physCompBuf = 0;
1370 
1371 	/*
1372 	 * Enable interrupts only for EOL and DESC conditions.
1373 	 * We mark tx descriptors to receive a DESC interrupt
1374 	 * when a tx queue gets deep; otherwise waiting for the
1375 	 * EOL to reap descriptors.  Note that this is done to
1376 	 * reduce interrupt load and this only defers reaping
1377 	 * descriptors, never transmitting frames.  Aside from
1378 	 * reducing interrupts this also permits more concurrency.
1379 	 * The only potential downside is if the tx queue backs
1380 	 * up in which case the top half of the kernel may backup
1381 	 * due to a lack of tx descriptors.
1382 	 *
1383 	 * The UAPSD queue is an exception, since we take a desc-
1384 	 * based intr on the EOSP frames.
1385 	 */
1386 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1387 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
1388 	} else {
1389 		if (qtype == ATH9K_TX_QUEUE_UAPSD)
1390 			qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE;
1391 		else
1392 			qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE |
1393 					TXQ_FLAG_TXDESCINT_ENABLE;
1394 	}
1395 	axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi);
1396 	if (axq_qnum == -1) {
1397 		/*
1398 		 * NB: don't print a message, this happens
1399 		 * normally on parts with too few tx queues
1400 		 */
1401 		return NULL;
1402 	}
1403 	if (!ATH_TXQ_SETUP(sc, axq_qnum)) {
1404 		struct ath_txq *txq = &sc->tx.txq[axq_qnum];
1405 
1406 		txq->axq_qnum = axq_qnum;
1407 		txq->mac80211_qnum = -1;
1408 		txq->axq_link = NULL;
1409 		__skb_queue_head_init(&txq->complete_q);
1410 		INIT_LIST_HEAD(&txq->axq_q);
1411 		INIT_LIST_HEAD(&txq->axq_acq);
1412 		spin_lock_init(&txq->axq_lock);
1413 		txq->axq_depth = 0;
1414 		txq->axq_ampdu_depth = 0;
1415 		txq->axq_tx_inprogress = false;
1416 		sc->tx.txqsetup |= 1<<axq_qnum;
1417 
1418 		txq->txq_headidx = txq->txq_tailidx = 0;
1419 		for (i = 0; i < ATH_TXFIFO_DEPTH; i++)
1420 			INIT_LIST_HEAD(&txq->txq_fifo[i]);
1421 	}
1422 	return &sc->tx.txq[axq_qnum];
1423 }
1424 
1425 int ath_txq_update(struct ath_softc *sc, int qnum,
1426 		   struct ath9k_tx_queue_info *qinfo)
1427 {
1428 	struct ath_hw *ah = sc->sc_ah;
1429 	int error = 0;
1430 	struct ath9k_tx_queue_info qi;
1431 
1432 	BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum);
1433 
1434 	ath9k_hw_get_txq_props(ah, qnum, &qi);
1435 	qi.tqi_aifs = qinfo->tqi_aifs;
1436 	qi.tqi_cwmin = qinfo->tqi_cwmin;
1437 	qi.tqi_cwmax = qinfo->tqi_cwmax;
1438 	qi.tqi_burstTime = qinfo->tqi_burstTime;
1439 	qi.tqi_readyTime = qinfo->tqi_readyTime;
1440 
1441 	if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) {
1442 		ath_err(ath9k_hw_common(sc->sc_ah),
1443 			"Unable to update hardware queue %u!\n", qnum);
1444 		error = -EIO;
1445 	} else {
1446 		ath9k_hw_resettxqueue(ah, qnum);
1447 	}
1448 
1449 	return error;
1450 }
1451 
1452 int ath_cabq_update(struct ath_softc *sc)
1453 {
1454 	struct ath9k_tx_queue_info qi;
1455 	struct ath_beacon_config *cur_conf = &sc->cur_beacon_conf;
1456 	int qnum = sc->beacon.cabq->axq_qnum;
1457 
1458 	ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi);
1459 	/*
1460 	 * Ensure the readytime % is within the bounds.
1461 	 */
1462 	if (sc->config.cabqReadytime < ATH9K_READY_TIME_LO_BOUND)
1463 		sc->config.cabqReadytime = ATH9K_READY_TIME_LO_BOUND;
1464 	else if (sc->config.cabqReadytime > ATH9K_READY_TIME_HI_BOUND)
1465 		sc->config.cabqReadytime = ATH9K_READY_TIME_HI_BOUND;
1466 
1467 	qi.tqi_readyTime = (cur_conf->beacon_interval *
1468 			    sc->config.cabqReadytime) / 100;
1469 	ath_txq_update(sc, qnum, &qi);
1470 
1471 	return 0;
1472 }
1473 
1474 static bool bf_is_ampdu_not_probing(struct ath_buf *bf)
1475 {
1476     struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu);
1477     return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE);
1478 }
1479 
1480 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq,
1481 			       struct list_head *list, bool retry_tx)
1482 {
1483 	struct ath_buf *bf, *lastbf;
1484 	struct list_head bf_head;
1485 	struct ath_tx_status ts;
1486 
1487 	memset(&ts, 0, sizeof(ts));
1488 	ts.ts_status = ATH9K_TX_FLUSH;
1489 	INIT_LIST_HEAD(&bf_head);
1490 
1491 	while (!list_empty(list)) {
1492 		bf = list_first_entry(list, struct ath_buf, list);
1493 
1494 		if (bf->bf_stale) {
1495 			list_del(&bf->list);
1496 
1497 			ath_tx_return_buffer(sc, bf);
1498 			continue;
1499 		}
1500 
1501 		lastbf = bf->bf_lastbf;
1502 		list_cut_position(&bf_head, list, &lastbf->list);
1503 
1504 		txq->axq_depth--;
1505 		if (bf_is_ampdu_not_probing(bf))
1506 			txq->axq_ampdu_depth--;
1507 
1508 		if (bf_isampdu(bf))
1509 			ath_tx_complete_aggr(sc, txq, bf, &bf_head, &ts, 0,
1510 					     retry_tx);
1511 		else
1512 			ath_tx_complete_buf(sc, bf, txq, &bf_head, &ts, 0);
1513 	}
1514 }
1515 
1516 /*
1517  * Drain a given TX queue (could be Beacon or Data)
1518  *
1519  * This assumes output has been stopped and
1520  * we do not need to block ath_tx_tasklet.
1521  */
1522 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq, bool retry_tx)
1523 {
1524 	ath_txq_lock(sc, txq);
1525 
1526 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
1527 		int idx = txq->txq_tailidx;
1528 
1529 		while (!list_empty(&txq->txq_fifo[idx])) {
1530 			ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx],
1531 					   retry_tx);
1532 
1533 			INCR(idx, ATH_TXFIFO_DEPTH);
1534 		}
1535 		txq->txq_tailidx = idx;
1536 	}
1537 
1538 	txq->axq_link = NULL;
1539 	txq->axq_tx_inprogress = false;
1540 	ath_drain_txq_list(sc, txq, &txq->axq_q, retry_tx);
1541 
1542 	/* flush any pending frames if aggregation is enabled */
1543 	if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && !retry_tx)
1544 		ath_txq_drain_pending_buffers(sc, txq);
1545 
1546 	ath_txq_unlock_complete(sc, txq);
1547 }
1548 
1549 bool ath_drain_all_txq(struct ath_softc *sc, bool retry_tx)
1550 {
1551 	struct ath_hw *ah = sc->sc_ah;
1552 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1553 	struct ath_txq *txq;
1554 	int i;
1555 	u32 npend = 0;
1556 
1557 	if (test_bit(SC_OP_INVALID, &sc->sc_flags))
1558 		return true;
1559 
1560 	ath9k_hw_abort_tx_dma(ah);
1561 
1562 	/* Check if any queue remains active */
1563 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1564 		if (!ATH_TXQ_SETUP(sc, i))
1565 			continue;
1566 
1567 		if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum))
1568 			npend |= BIT(i);
1569 	}
1570 
1571 	if (npend)
1572 		ath_err(common, "Failed to stop TX DMA, queues=0x%03x!\n", npend);
1573 
1574 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
1575 		if (!ATH_TXQ_SETUP(sc, i))
1576 			continue;
1577 
1578 		/*
1579 		 * The caller will resume queues with ieee80211_wake_queues.
1580 		 * Mark the queue as not stopped to prevent ath_tx_complete
1581 		 * from waking the queue too early.
1582 		 */
1583 		txq = &sc->tx.txq[i];
1584 		txq->stopped = false;
1585 		ath_draintxq(sc, txq, retry_tx);
1586 	}
1587 
1588 	return !npend;
1589 }
1590 
1591 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq)
1592 {
1593 	ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum);
1594 	sc->tx.txqsetup &= ~(1<<txq->axq_qnum);
1595 }
1596 
1597 /* For each axq_acq entry, for each tid, try to schedule packets
1598  * for transmit until ampdu_depth has reached min Q depth.
1599  */
1600 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq)
1601 {
1602 	struct ath_atx_ac *ac, *ac_tmp, *last_ac;
1603 	struct ath_atx_tid *tid, *last_tid;
1604 
1605 	if (test_bit(SC_OP_HW_RESET, &sc->sc_flags) ||
1606 	    list_empty(&txq->axq_acq) ||
1607 	    txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1608 		return;
1609 
1610 	ac = list_first_entry(&txq->axq_acq, struct ath_atx_ac, list);
1611 	last_ac = list_entry(txq->axq_acq.prev, struct ath_atx_ac, list);
1612 
1613 	list_for_each_entry_safe(ac, ac_tmp, &txq->axq_acq, list) {
1614 		last_tid = list_entry(ac->tid_q.prev, struct ath_atx_tid, list);
1615 		list_del(&ac->list);
1616 		ac->sched = false;
1617 
1618 		while (!list_empty(&ac->tid_q)) {
1619 			tid = list_first_entry(&ac->tid_q, struct ath_atx_tid,
1620 					       list);
1621 			list_del(&tid->list);
1622 			tid->sched = false;
1623 
1624 			if (tid->paused)
1625 				continue;
1626 
1627 			ath_tx_sched_aggr(sc, txq, tid);
1628 
1629 			/*
1630 			 * add tid to round-robin queue if more frames
1631 			 * are pending for the tid
1632 			 */
1633 			if (!skb_queue_empty(&tid->buf_q))
1634 				ath_tx_queue_tid(txq, tid);
1635 
1636 			if (tid == last_tid ||
1637 			    txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1638 				break;
1639 		}
1640 
1641 		if (!list_empty(&ac->tid_q) && !ac->sched) {
1642 			ac->sched = true;
1643 			list_add_tail(&ac->list, &txq->axq_acq);
1644 		}
1645 
1646 		if (ac == last_ac ||
1647 		    txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH)
1648 			return;
1649 	}
1650 }
1651 
1652 /***********/
1653 /* TX, DMA */
1654 /***********/
1655 
1656 /*
1657  * Insert a chain of ath_buf (descriptors) on a txq and
1658  * assume the descriptors are already chained together by caller.
1659  */
1660 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq,
1661 			     struct list_head *head, bool internal)
1662 {
1663 	struct ath_hw *ah = sc->sc_ah;
1664 	struct ath_common *common = ath9k_hw_common(ah);
1665 	struct ath_buf *bf, *bf_last;
1666 	bool puttxbuf = false;
1667 	bool edma;
1668 
1669 	/*
1670 	 * Insert the frame on the outbound list and
1671 	 * pass it on to the hardware.
1672 	 */
1673 
1674 	if (list_empty(head))
1675 		return;
1676 
1677 	edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1678 	bf = list_first_entry(head, struct ath_buf, list);
1679 	bf_last = list_entry(head->prev, struct ath_buf, list);
1680 
1681 	ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n",
1682 		txq->axq_qnum, txq->axq_depth);
1683 
1684 	if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) {
1685 		list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]);
1686 		INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH);
1687 		puttxbuf = true;
1688 	} else {
1689 		list_splice_tail_init(head, &txq->axq_q);
1690 
1691 		if (txq->axq_link) {
1692 			ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr);
1693 			ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n",
1694 				txq->axq_qnum, txq->axq_link,
1695 				ito64(bf->bf_daddr), bf->bf_desc);
1696 		} else if (!edma)
1697 			puttxbuf = true;
1698 
1699 		txq->axq_link = bf_last->bf_desc;
1700 	}
1701 
1702 	if (puttxbuf) {
1703 		TX_STAT_INC(txq->axq_qnum, puttxbuf);
1704 		ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr);
1705 		ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n",
1706 			txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc);
1707 	}
1708 
1709 	if (!edma) {
1710 		TX_STAT_INC(txq->axq_qnum, txstart);
1711 		ath9k_hw_txstart(ah, txq->axq_qnum);
1712 	}
1713 
1714 	if (!internal) {
1715 		txq->axq_depth++;
1716 		if (bf_is_ampdu_not_probing(bf))
1717 			txq->axq_ampdu_depth++;
1718 	}
1719 }
1720 
1721 static void ath_tx_send_ampdu(struct ath_softc *sc, struct ath_atx_tid *tid,
1722 			      struct sk_buff *skb, struct ath_tx_control *txctl)
1723 {
1724 	struct ath_frame_info *fi = get_frame_info(skb);
1725 	struct list_head bf_head;
1726 	struct ath_buf *bf;
1727 
1728 	/*
1729 	 * Do not queue to h/w when any of the following conditions is true:
1730 	 * - there are pending frames in software queue
1731 	 * - the TID is currently paused for ADDBA/BAR request
1732 	 * - seqno is not within block-ack window
1733 	 * - h/w queue depth exceeds low water mark
1734 	 */
1735 	if (!skb_queue_empty(&tid->buf_q) || tid->paused ||
1736 	    !BAW_WITHIN(tid->seq_start, tid->baw_size, tid->seq_next) ||
1737 	    txctl->txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) {
1738 		/*
1739 		 * Add this frame to software queue for scheduling later
1740 		 * for aggregation.
1741 		 */
1742 		TX_STAT_INC(txctl->txq->axq_qnum, a_queued_sw);
1743 		__skb_queue_tail(&tid->buf_q, skb);
1744 		if (!txctl->an || !txctl->an->sleeping)
1745 			ath_tx_queue_tid(txctl->txq, tid);
1746 		return;
1747 	}
1748 
1749 	bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
1750 	if (!bf) {
1751 		ieee80211_free_txskb(sc->hw, skb);
1752 		return;
1753 	}
1754 
1755 	bf->bf_state.bf_type = BUF_AMPDU;
1756 	INIT_LIST_HEAD(&bf_head);
1757 	list_add(&bf->list, &bf_head);
1758 
1759 	/* Add sub-frame to BAW */
1760 	ath_tx_addto_baw(sc, tid, bf->bf_state.seqno);
1761 
1762 	/* Queue to h/w without aggregation */
1763 	TX_STAT_INC(txctl->txq->axq_qnum, a_queued_hw);
1764 	bf->bf_lastbf = bf;
1765 	ath_tx_fill_desc(sc, bf, txctl->txq, fi->framelen);
1766 	ath_tx_txqaddbuf(sc, txctl->txq, &bf_head, false);
1767 }
1768 
1769 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq,
1770 			       struct ath_atx_tid *tid, struct sk_buff *skb)
1771 {
1772 	struct ath_frame_info *fi = get_frame_info(skb);
1773 	struct list_head bf_head;
1774 	struct ath_buf *bf;
1775 
1776 	bf = fi->bf;
1777 
1778 	INIT_LIST_HEAD(&bf_head);
1779 	list_add_tail(&bf->list, &bf_head);
1780 	bf->bf_state.bf_type = 0;
1781 
1782 	bf->bf_next = NULL;
1783 	bf->bf_lastbf = bf;
1784 	ath_tx_fill_desc(sc, bf, txq, fi->framelen);
1785 	ath_tx_txqaddbuf(sc, txq, &bf_head, false);
1786 	TX_STAT_INC(txq->axq_qnum, queued);
1787 }
1788 
1789 static void setup_frame_info(struct ieee80211_hw *hw,
1790 			     struct ieee80211_sta *sta,
1791 			     struct sk_buff *skb,
1792 			     int framelen)
1793 {
1794 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1795 	struct ieee80211_key_conf *hw_key = tx_info->control.hw_key;
1796 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1797 	const struct ieee80211_rate *rate;
1798 	struct ath_frame_info *fi = get_frame_info(skb);
1799 	struct ath_node *an = NULL;
1800 	enum ath9k_key_type keytype;
1801 	bool short_preamble = false;
1802 
1803 	/*
1804 	 * We check if Short Preamble is needed for the CTS rate by
1805 	 * checking the BSS's global flag.
1806 	 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used.
1807 	 */
1808 	if (tx_info->control.vif &&
1809 	    tx_info->control.vif->bss_conf.use_short_preamble)
1810 		short_preamble = true;
1811 
1812 	rate = ieee80211_get_rts_cts_rate(hw, tx_info);
1813 	keytype = ath9k_cmn_get_hw_crypto_keytype(skb);
1814 
1815 	if (sta)
1816 		an = (struct ath_node *) sta->drv_priv;
1817 
1818 	memset(fi, 0, sizeof(*fi));
1819 	if (hw_key)
1820 		fi->keyix = hw_key->hw_key_idx;
1821 	else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0)
1822 		fi->keyix = an->ps_key;
1823 	else
1824 		fi->keyix = ATH9K_TXKEYIX_INVALID;
1825 	fi->keytype = keytype;
1826 	fi->framelen = framelen;
1827 	fi->rtscts_rate = rate->hw_value;
1828 	if (short_preamble)
1829 		fi->rtscts_rate |= rate->hw_value_short;
1830 }
1831 
1832 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate)
1833 {
1834 	struct ath_hw *ah = sc->sc_ah;
1835 	struct ath9k_channel *curchan = ah->curchan;
1836 
1837 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) &&
1838 	    (curchan->channelFlags & CHANNEL_5GHZ) &&
1839 	    (chainmask == 0x7) && (rate < 0x90))
1840 		return 0x3;
1841 	else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) &&
1842 		 IS_CCK_RATE(rate))
1843 		return 0x2;
1844 	else
1845 		return chainmask;
1846 }
1847 
1848 /*
1849  * Assign a descriptor (and sequence number if necessary,
1850  * and map buffer for DMA. Frees skb on error
1851  */
1852 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc,
1853 					   struct ath_txq *txq,
1854 					   struct ath_atx_tid *tid,
1855 					   struct sk_buff *skb)
1856 {
1857 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
1858 	struct ath_frame_info *fi = get_frame_info(skb);
1859 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1860 	struct ath_buf *bf;
1861 	int fragno;
1862 	u16 seqno;
1863 
1864 	bf = ath_tx_get_buffer(sc);
1865 	if (!bf) {
1866 		ath_dbg(common, XMIT, "TX buffers are full\n");
1867 		return NULL;
1868 	}
1869 
1870 	ATH_TXBUF_RESET(bf);
1871 
1872 	if (tid) {
1873 		fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG;
1874 		seqno = tid->seq_next;
1875 		hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT);
1876 
1877 		if (fragno)
1878 			hdr->seq_ctrl |= cpu_to_le16(fragno);
1879 
1880 		if (!ieee80211_has_morefrags(hdr->frame_control))
1881 			INCR(tid->seq_next, IEEE80211_SEQ_MAX);
1882 
1883 		bf->bf_state.seqno = seqno;
1884 	}
1885 
1886 	bf->bf_mpdu = skb;
1887 
1888 	bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
1889 					 skb->len, DMA_TO_DEVICE);
1890 	if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) {
1891 		bf->bf_mpdu = NULL;
1892 		bf->bf_buf_addr = 0;
1893 		ath_err(ath9k_hw_common(sc->sc_ah),
1894 			"dma_mapping_error() on TX\n");
1895 		ath_tx_return_buffer(sc, bf);
1896 		return NULL;
1897 	}
1898 
1899 	fi->bf = bf;
1900 
1901 	return bf;
1902 }
1903 
1904 /* FIXME: tx power */
1905 static void ath_tx_start_dma(struct ath_softc *sc, struct sk_buff *skb,
1906 			     struct ath_tx_control *txctl)
1907 {
1908 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
1909 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
1910 	struct ath_atx_tid *tid = NULL;
1911 	struct ath_buf *bf;
1912 	u8 tidno;
1913 
1914 	if ((sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) && txctl->an &&
1915 		ieee80211_is_data_qos(hdr->frame_control)) {
1916 		tidno = ieee80211_get_qos_ctl(hdr)[0] &
1917 			IEEE80211_QOS_CTL_TID_MASK;
1918 		tid = ATH_AN_2_TID(txctl->an, tidno);
1919 
1920 		WARN_ON(tid->ac->txq != txctl->txq);
1921 	}
1922 
1923 	if ((tx_info->flags & IEEE80211_TX_CTL_AMPDU) && tid) {
1924 		/*
1925 		 * Try aggregation if it's a unicast data frame
1926 		 * and the destination is HT capable.
1927 		 */
1928 		ath_tx_send_ampdu(sc, tid, skb, txctl);
1929 	} else {
1930 		bf = ath_tx_setup_buffer(sc, txctl->txq, tid, skb);
1931 		if (!bf) {
1932 			if (txctl->paprd)
1933 				dev_kfree_skb_any(skb);
1934 			else
1935 				ieee80211_free_txskb(sc->hw, skb);
1936 			return;
1937 		}
1938 
1939 		bf->bf_state.bfs_paprd = txctl->paprd;
1940 
1941 		if (txctl->paprd)
1942 			bf->bf_state.bfs_paprd_timestamp = jiffies;
1943 
1944 		ath_tx_send_normal(sc, txctl->txq, tid, skb);
1945 	}
1946 }
1947 
1948 /* Upon failure caller should free skb */
1949 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb,
1950 		 struct ath_tx_control *txctl)
1951 {
1952 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data;
1953 	struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb);
1954 	struct ieee80211_sta *sta = txctl->sta;
1955 	struct ieee80211_vif *vif = info->control.vif;
1956 	struct ath_softc *sc = hw->priv;
1957 	struct ath_txq *txq = txctl->txq;
1958 	int padpos, padsize;
1959 	int frmlen = skb->len + FCS_LEN;
1960 	int q;
1961 
1962 	/* NOTE:  sta can be NULL according to net/mac80211.h */
1963 	if (sta)
1964 		txctl->an = (struct ath_node *)sta->drv_priv;
1965 
1966 	if (info->control.hw_key)
1967 		frmlen += info->control.hw_key->icv_len;
1968 
1969 	/*
1970 	 * As a temporary workaround, assign seq# here; this will likely need
1971 	 * to be cleaned up to work better with Beacon transmission and virtual
1972 	 * BSSes.
1973 	 */
1974 	if (info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ) {
1975 		if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT)
1976 			sc->tx.seq_no += 0x10;
1977 		hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG);
1978 		hdr->seq_ctrl |= cpu_to_le16(sc->tx.seq_no);
1979 	}
1980 
1981 	/* Add the padding after the header if this is not already done */
1982 	padpos = ath9k_cmn_padpos(hdr->frame_control);
1983 	padsize = padpos & 3;
1984 	if (padsize && skb->len > padpos) {
1985 		if (skb_headroom(skb) < padsize)
1986 			return -ENOMEM;
1987 
1988 		skb_push(skb, padsize);
1989 		memmove(skb->data, skb->data + padsize, padpos);
1990 		hdr = (struct ieee80211_hdr *) skb->data;
1991 	}
1992 
1993 	if ((vif && vif->type != NL80211_IFTYPE_AP &&
1994 	            vif->type != NL80211_IFTYPE_AP_VLAN) ||
1995 	    !ieee80211_is_data(hdr->frame_control))
1996 		info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT;
1997 
1998 	setup_frame_info(hw, sta, skb, frmlen);
1999 
2000 	/*
2001 	 * At this point, the vif, hw_key and sta pointers in the tx control
2002 	 * info are no longer valid (overwritten by the ath_frame_info data.
2003 	 */
2004 
2005 	q = skb_get_queue_mapping(skb);
2006 
2007 	ath_txq_lock(sc, txq);
2008 	if (txq == sc->tx.txq_map[q] &&
2009 	    ++txq->pending_frames > sc->tx.txq_max_pending[q] &&
2010 	    !txq->stopped) {
2011 		ieee80211_stop_queue(sc->hw, q);
2012 		txq->stopped = true;
2013 	}
2014 
2015 	ath_tx_start_dma(sc, skb, txctl);
2016 
2017 	ath_txq_unlock(sc, txq);
2018 
2019 	return 0;
2020 }
2021 
2022 /*****************/
2023 /* TX Completion */
2024 /*****************/
2025 
2026 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb,
2027 			    int tx_flags, struct ath_txq *txq)
2028 {
2029 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2030 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2031 	struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data;
2032 	int q, padpos, padsize;
2033 	unsigned long flags;
2034 
2035 	ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb);
2036 
2037 	if (sc->sc_ah->caldata)
2038 		sc->sc_ah->caldata->paprd_packet_sent = true;
2039 
2040 	if (!(tx_flags & ATH_TX_ERROR))
2041 		/* Frame was ACKed */
2042 		tx_info->flags |= IEEE80211_TX_STAT_ACK;
2043 
2044 	padpos = ath9k_cmn_padpos(hdr->frame_control);
2045 	padsize = padpos & 3;
2046 	if (padsize && skb->len>padpos+padsize) {
2047 		/*
2048 		 * Remove MAC header padding before giving the frame back to
2049 		 * mac80211.
2050 		 */
2051 		memmove(skb->data + padsize, skb->data, padpos);
2052 		skb_pull(skb, padsize);
2053 	}
2054 
2055 	spin_lock_irqsave(&sc->sc_pm_lock, flags);
2056 	if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) {
2057 		sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK;
2058 		ath_dbg(common, PS,
2059 			"Going back to sleep after having received TX status (0x%lx)\n",
2060 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
2061 					PS_WAIT_FOR_CAB |
2062 					PS_WAIT_FOR_PSPOLL_DATA |
2063 					PS_WAIT_FOR_TX_ACK));
2064 	}
2065 	spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
2066 
2067 	q = skb_get_queue_mapping(skb);
2068 	if (txq == sc->tx.txq_map[q]) {
2069 		if (WARN_ON(--txq->pending_frames < 0))
2070 			txq->pending_frames = 0;
2071 
2072 		if (txq->stopped &&
2073 		    txq->pending_frames < sc->tx.txq_max_pending[q]) {
2074 			ieee80211_wake_queue(sc->hw, q);
2075 			txq->stopped = false;
2076 		}
2077 	}
2078 
2079 	__skb_queue_tail(&txq->complete_q, skb);
2080 }
2081 
2082 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf,
2083 				struct ath_txq *txq, struct list_head *bf_q,
2084 				struct ath_tx_status *ts, int txok)
2085 {
2086 	struct sk_buff *skb = bf->bf_mpdu;
2087 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2088 	unsigned long flags;
2089 	int tx_flags = 0;
2090 
2091 	if (!txok)
2092 		tx_flags |= ATH_TX_ERROR;
2093 
2094 	if (ts->ts_status & ATH9K_TXERR_FILT)
2095 		tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED;
2096 
2097 	dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE);
2098 	bf->bf_buf_addr = 0;
2099 
2100 	if (bf->bf_state.bfs_paprd) {
2101 		if (time_after(jiffies,
2102 				bf->bf_state.bfs_paprd_timestamp +
2103 				msecs_to_jiffies(ATH_PAPRD_TIMEOUT)))
2104 			dev_kfree_skb_any(skb);
2105 		else
2106 			complete(&sc->paprd_complete);
2107 	} else {
2108 		ath_debug_stat_tx(sc, bf, ts, txq, tx_flags);
2109 		ath_tx_complete(sc, skb, tx_flags, txq);
2110 	}
2111 	/* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't
2112 	 * accidentally reference it later.
2113 	 */
2114 	bf->bf_mpdu = NULL;
2115 
2116 	/*
2117 	 * Return the list of ath_buf of this mpdu to free queue
2118 	 */
2119 	spin_lock_irqsave(&sc->tx.txbuflock, flags);
2120 	list_splice_tail_init(bf_q, &sc->tx.txbuf);
2121 	spin_unlock_irqrestore(&sc->tx.txbuflock, flags);
2122 }
2123 
2124 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf,
2125 			     struct ath_tx_status *ts, int nframes, int nbad,
2126 			     int txok)
2127 {
2128 	struct sk_buff *skb = bf->bf_mpdu;
2129 	struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data;
2130 	struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb);
2131 	struct ieee80211_hw *hw = sc->hw;
2132 	struct ath_hw *ah = sc->sc_ah;
2133 	u8 i, tx_rateindex;
2134 
2135 	if (txok)
2136 		tx_info->status.ack_signal = ts->ts_rssi;
2137 
2138 	tx_rateindex = ts->ts_rateindex;
2139 	WARN_ON(tx_rateindex >= hw->max_rates);
2140 
2141 	if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) {
2142 		tx_info->flags |= IEEE80211_TX_STAT_AMPDU;
2143 
2144 		BUG_ON(nbad > nframes);
2145 	}
2146 	tx_info->status.ampdu_len = nframes;
2147 	tx_info->status.ampdu_ack_len = nframes - nbad;
2148 
2149 	if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 &&
2150 	    (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) {
2151 		/*
2152 		 * If an underrun error is seen assume it as an excessive
2153 		 * retry only if max frame trigger level has been reached
2154 		 * (2 KB for single stream, and 4 KB for dual stream).
2155 		 * Adjust the long retry as if the frame was tried
2156 		 * hw->max_rate_tries times to affect how rate control updates
2157 		 * PER for the failed rate.
2158 		 * In case of congestion on the bus penalizing this type of
2159 		 * underruns should help hardware actually transmit new frames
2160 		 * successfully by eventually preferring slower rates.
2161 		 * This itself should also alleviate congestion on the bus.
2162 		 */
2163 		if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN |
2164 		                             ATH9K_TX_DELIM_UNDERRUN)) &&
2165 		    ieee80211_is_data(hdr->frame_control) &&
2166 		    ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level)
2167 			tx_info->status.rates[tx_rateindex].count =
2168 				hw->max_rate_tries;
2169 	}
2170 
2171 	for (i = tx_rateindex + 1; i < hw->max_rates; i++) {
2172 		tx_info->status.rates[i].count = 0;
2173 		tx_info->status.rates[i].idx = -1;
2174 	}
2175 
2176 	tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1;
2177 }
2178 
2179 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq,
2180 				  struct ath_tx_status *ts, struct ath_buf *bf,
2181 				  struct list_head *bf_head)
2182 {
2183 	int txok;
2184 
2185 	txq->axq_depth--;
2186 	txok = !(ts->ts_status & ATH9K_TXERR_MASK);
2187 	txq->axq_tx_inprogress = false;
2188 	if (bf_is_ampdu_not_probing(bf))
2189 		txq->axq_ampdu_depth--;
2190 
2191 	if (!bf_isampdu(bf)) {
2192 		ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok);
2193 		ath_tx_complete_buf(sc, bf, txq, bf_head, ts, txok);
2194 	} else
2195 		ath_tx_complete_aggr(sc, txq, bf, bf_head, ts, txok, true);
2196 
2197 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2198 		ath_txq_schedule(sc, txq);
2199 }
2200 
2201 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq)
2202 {
2203 	struct ath_hw *ah = sc->sc_ah;
2204 	struct ath_common *common = ath9k_hw_common(ah);
2205 	struct ath_buf *bf, *lastbf, *bf_held = NULL;
2206 	struct list_head bf_head;
2207 	struct ath_desc *ds;
2208 	struct ath_tx_status ts;
2209 	int status;
2210 
2211 	ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n",
2212 		txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum),
2213 		txq->axq_link);
2214 
2215 	ath_txq_lock(sc, txq);
2216 	for (;;) {
2217 		if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2218 			break;
2219 
2220 		if (list_empty(&txq->axq_q)) {
2221 			txq->axq_link = NULL;
2222 			if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT)
2223 				ath_txq_schedule(sc, txq);
2224 			break;
2225 		}
2226 		bf = list_first_entry(&txq->axq_q, struct ath_buf, list);
2227 
2228 		/*
2229 		 * There is a race condition that a BH gets scheduled
2230 		 * after sw writes TxE and before hw re-load the last
2231 		 * descriptor to get the newly chained one.
2232 		 * Software must keep the last DONE descriptor as a
2233 		 * holding descriptor - software does so by marking
2234 		 * it with the STALE flag.
2235 		 */
2236 		bf_held = NULL;
2237 		if (bf->bf_stale) {
2238 			bf_held = bf;
2239 			if (list_is_last(&bf_held->list, &txq->axq_q))
2240 				break;
2241 
2242 			bf = list_entry(bf_held->list.next, struct ath_buf,
2243 					list);
2244 		}
2245 
2246 		lastbf = bf->bf_lastbf;
2247 		ds = lastbf->bf_desc;
2248 
2249 		memset(&ts, 0, sizeof(ts));
2250 		status = ath9k_hw_txprocdesc(ah, ds, &ts);
2251 		if (status == -EINPROGRESS)
2252 			break;
2253 
2254 		TX_STAT_INC(txq->axq_qnum, txprocdesc);
2255 
2256 		/*
2257 		 * Remove ath_buf's of the same transmit unit from txq,
2258 		 * however leave the last descriptor back as the holding
2259 		 * descriptor for hw.
2260 		 */
2261 		lastbf->bf_stale = true;
2262 		INIT_LIST_HEAD(&bf_head);
2263 		if (!list_is_singular(&lastbf->list))
2264 			list_cut_position(&bf_head,
2265 				&txq->axq_q, lastbf->list.prev);
2266 
2267 		if (bf_held) {
2268 			list_del(&bf_held->list);
2269 			ath_tx_return_buffer(sc, bf_held);
2270 		}
2271 
2272 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2273 	}
2274 	ath_txq_unlock_complete(sc, txq);
2275 }
2276 
2277 void ath_tx_tasklet(struct ath_softc *sc)
2278 {
2279 	struct ath_hw *ah = sc->sc_ah;
2280 	u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs;
2281 	int i;
2282 
2283 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) {
2284 		if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i)))
2285 			ath_tx_processq(sc, &sc->tx.txq[i]);
2286 	}
2287 }
2288 
2289 void ath_tx_edma_tasklet(struct ath_softc *sc)
2290 {
2291 	struct ath_tx_status ts;
2292 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2293 	struct ath_hw *ah = sc->sc_ah;
2294 	struct ath_txq *txq;
2295 	struct ath_buf *bf, *lastbf;
2296 	struct list_head bf_head;
2297 	int status;
2298 
2299 	for (;;) {
2300 		if (test_bit(SC_OP_HW_RESET, &sc->sc_flags))
2301 			break;
2302 
2303 		status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts);
2304 		if (status == -EINPROGRESS)
2305 			break;
2306 		if (status == -EIO) {
2307 			ath_dbg(common, XMIT, "Error processing tx status\n");
2308 			break;
2309 		}
2310 
2311 		/* Process beacon completions separately */
2312 		if (ts.qid == sc->beacon.beaconq) {
2313 			sc->beacon.tx_processed = true;
2314 			sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK);
2315 			continue;
2316 		}
2317 
2318 		txq = &sc->tx.txq[ts.qid];
2319 
2320 		ath_txq_lock(sc, txq);
2321 
2322 		if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2323 			ath_txq_unlock(sc, txq);
2324 			return;
2325 		}
2326 
2327 		bf = list_first_entry(&txq->txq_fifo[txq->txq_tailidx],
2328 				      struct ath_buf, list);
2329 		lastbf = bf->bf_lastbf;
2330 
2331 		INIT_LIST_HEAD(&bf_head);
2332 		list_cut_position(&bf_head, &txq->txq_fifo[txq->txq_tailidx],
2333 				  &lastbf->list);
2334 
2335 		if (list_empty(&txq->txq_fifo[txq->txq_tailidx])) {
2336 			INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH);
2337 
2338 			if (!list_empty(&txq->axq_q)) {
2339 				struct list_head bf_q;
2340 
2341 				INIT_LIST_HEAD(&bf_q);
2342 				txq->axq_link = NULL;
2343 				list_splice_tail_init(&txq->axq_q, &bf_q);
2344 				ath_tx_txqaddbuf(sc, txq, &bf_q, true);
2345 			}
2346 		}
2347 
2348 		ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head);
2349 		ath_txq_unlock_complete(sc, txq);
2350 	}
2351 }
2352 
2353 /*****************/
2354 /* Init, Cleanup */
2355 /*****************/
2356 
2357 static int ath_txstatus_setup(struct ath_softc *sc, int size)
2358 {
2359 	struct ath_descdma *dd = &sc->txsdma;
2360 	u8 txs_len = sc->sc_ah->caps.txs_len;
2361 
2362 	dd->dd_desc_len = size * txs_len;
2363 	dd->dd_desc = dma_alloc_coherent(sc->dev, dd->dd_desc_len,
2364 					 &dd->dd_desc_paddr, GFP_KERNEL);
2365 	if (!dd->dd_desc)
2366 		return -ENOMEM;
2367 
2368 	return 0;
2369 }
2370 
2371 static int ath_tx_edma_init(struct ath_softc *sc)
2372 {
2373 	int err;
2374 
2375 	err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE);
2376 	if (!err)
2377 		ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc,
2378 					  sc->txsdma.dd_desc_paddr,
2379 					  ATH_TXSTATUS_RING_SIZE);
2380 
2381 	return err;
2382 }
2383 
2384 static void ath_tx_edma_cleanup(struct ath_softc *sc)
2385 {
2386 	struct ath_descdma *dd = &sc->txsdma;
2387 
2388 	dma_free_coherent(sc->dev, dd->dd_desc_len, dd->dd_desc,
2389 			  dd->dd_desc_paddr);
2390 }
2391 
2392 int ath_tx_init(struct ath_softc *sc, int nbufs)
2393 {
2394 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
2395 	int error = 0;
2396 
2397 	spin_lock_init(&sc->tx.txbuflock);
2398 
2399 	error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf,
2400 				  "tx", nbufs, 1, 1);
2401 	if (error != 0) {
2402 		ath_err(common,
2403 			"Failed to allocate tx descriptors: %d\n", error);
2404 		goto err;
2405 	}
2406 
2407 	error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf,
2408 				  "beacon", ATH_BCBUF, 1, 1);
2409 	if (error != 0) {
2410 		ath_err(common,
2411 			"Failed to allocate beacon descriptors: %d\n", error);
2412 		goto err;
2413 	}
2414 
2415 	INIT_DELAYED_WORK(&sc->tx_complete_work, ath_tx_complete_poll_work);
2416 
2417 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
2418 		error = ath_tx_edma_init(sc);
2419 		if (error)
2420 			goto err;
2421 	}
2422 
2423 err:
2424 	if (error != 0)
2425 		ath_tx_cleanup(sc);
2426 
2427 	return error;
2428 }
2429 
2430 void ath_tx_cleanup(struct ath_softc *sc)
2431 {
2432 	if (sc->beacon.bdma.dd_desc_len != 0)
2433 		ath_descdma_cleanup(sc, &sc->beacon.bdma, &sc->beacon.bbuf);
2434 
2435 	if (sc->tx.txdma.dd_desc_len != 0)
2436 		ath_descdma_cleanup(sc, &sc->tx.txdma, &sc->tx.txbuf);
2437 
2438 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
2439 		ath_tx_edma_cleanup(sc);
2440 }
2441 
2442 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an)
2443 {
2444 	struct ath_atx_tid *tid;
2445 	struct ath_atx_ac *ac;
2446 	int tidno, acno;
2447 
2448 	for (tidno = 0, tid = &an->tid[tidno];
2449 	     tidno < WME_NUM_TID;
2450 	     tidno++, tid++) {
2451 		tid->an        = an;
2452 		tid->tidno     = tidno;
2453 		tid->seq_start = tid->seq_next = 0;
2454 		tid->baw_size  = WME_MAX_BA;
2455 		tid->baw_head  = tid->baw_tail = 0;
2456 		tid->sched     = false;
2457 		tid->paused    = false;
2458 		tid->state &= ~AGGR_CLEANUP;
2459 		__skb_queue_head_init(&tid->buf_q);
2460 		acno = TID_TO_WME_AC(tidno);
2461 		tid->ac = &an->ac[acno];
2462 		tid->state &= ~AGGR_ADDBA_COMPLETE;
2463 		tid->state &= ~AGGR_ADDBA_PROGRESS;
2464 	}
2465 
2466 	for (acno = 0, ac = &an->ac[acno];
2467 	     acno < WME_NUM_AC; acno++, ac++) {
2468 		ac->sched    = false;
2469 		ac->txq = sc->tx.txq_map[acno];
2470 		INIT_LIST_HEAD(&ac->tid_q);
2471 	}
2472 }
2473 
2474 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an)
2475 {
2476 	struct ath_atx_ac *ac;
2477 	struct ath_atx_tid *tid;
2478 	struct ath_txq *txq;
2479 	int tidno;
2480 
2481 	for (tidno = 0, tid = &an->tid[tidno];
2482 	     tidno < WME_NUM_TID; tidno++, tid++) {
2483 
2484 		ac = tid->ac;
2485 		txq = ac->txq;
2486 
2487 		ath_txq_lock(sc, txq);
2488 
2489 		if (tid->sched) {
2490 			list_del(&tid->list);
2491 			tid->sched = false;
2492 		}
2493 
2494 		if (ac->sched) {
2495 			list_del(&ac->list);
2496 			tid->ac->sched = false;
2497 		}
2498 
2499 		ath_tid_drain(sc, txq, tid);
2500 		tid->state &= ~AGGR_ADDBA_COMPLETE;
2501 		tid->state &= ~AGGR_CLEANUP;
2502 
2503 		ath_txq_unlock(sc, txq);
2504 	}
2505 }
2506