1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define BITS_PER_BYTE 8 22 #define OFDM_PLCP_BITS 22 23 #define HT_RC_2_STREAMS(_rc) ((((_rc) & 0x78) >> 3) + 1) 24 #define L_STF 8 25 #define L_LTF 8 26 #define L_SIG 4 27 #define HT_SIG 8 28 #define HT_STF 4 29 #define HT_LTF(_ns) (4 * (_ns)) 30 #define SYMBOL_TIME(_ns) ((_ns) << 2) /* ns * 4 us */ 31 #define SYMBOL_TIME_HALFGI(_ns) (((_ns) * 18 + 4) / 5) /* ns * 3.6 us */ 32 #define TIME_SYMBOLS(t) ((t) >> 2) 33 #define TIME_SYMBOLS_HALFGI(t) (((t) * 5 - 4) / 18) 34 #define NUM_SYMBOLS_PER_USEC(_usec) (_usec >> 2) 35 #define NUM_SYMBOLS_PER_USEC_HALFGI(_usec) (((_usec*5)-4)/18) 36 37 38 static u16 bits_per_symbol[][2] = { 39 /* 20MHz 40MHz */ 40 { 26, 54 }, /* 0: BPSK */ 41 { 52, 108 }, /* 1: QPSK 1/2 */ 42 { 78, 162 }, /* 2: QPSK 3/4 */ 43 { 104, 216 }, /* 3: 16-QAM 1/2 */ 44 { 156, 324 }, /* 4: 16-QAM 3/4 */ 45 { 208, 432 }, /* 5: 64-QAM 2/3 */ 46 { 234, 486 }, /* 6: 64-QAM 3/4 */ 47 { 260, 540 }, /* 7: 64-QAM 5/6 */ 48 }; 49 50 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 51 struct ath_atx_tid *tid, struct sk_buff *skb); 52 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 53 int tx_flags, struct ath_txq *txq, 54 struct ieee80211_sta *sta); 55 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 56 struct ath_txq *txq, struct list_head *bf_q, 57 struct ieee80211_sta *sta, 58 struct ath_tx_status *ts, int txok); 59 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 60 struct list_head *head, bool internal); 61 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 62 struct ath_tx_status *ts, int nframes, int nbad, 63 int txok); 64 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 65 struct ath_buf *bf); 66 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 67 struct ath_txq *txq, 68 struct ath_atx_tid *tid, 69 struct sk_buff *skb); 70 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 71 struct ath_tx_control *txctl); 72 73 enum { 74 MCS_HT20, 75 MCS_HT20_SGI, 76 MCS_HT40, 77 MCS_HT40_SGI, 78 }; 79 80 /*********************/ 81 /* Aggregation logic */ 82 /*********************/ 83 84 static void ath_tx_status(struct ieee80211_hw *hw, struct sk_buff *skb) 85 { 86 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 87 struct ieee80211_sta *sta = info->status.status_driver_data[0]; 88 89 if (info->flags & (IEEE80211_TX_CTL_REQ_TX_STATUS | 90 IEEE80211_TX_STATUS_EOSP)) { 91 ieee80211_tx_status(hw, skb); 92 return; 93 } 94 95 if (sta) 96 ieee80211_tx_status_noskb(hw, sta, info); 97 98 dev_kfree_skb(skb); 99 } 100 101 void ath_txq_unlock_complete(struct ath_softc *sc, struct ath_txq *txq) 102 __releases(&txq->axq_lock) 103 { 104 struct ieee80211_hw *hw = sc->hw; 105 struct sk_buff_head q; 106 struct sk_buff *skb; 107 108 __skb_queue_head_init(&q); 109 skb_queue_splice_init(&txq->complete_q, &q); 110 spin_unlock_bh(&txq->axq_lock); 111 112 while ((skb = __skb_dequeue(&q))) 113 ath_tx_status(hw, skb); 114 } 115 116 void ath_tx_queue_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 117 { 118 struct ieee80211_txq *queue = 119 container_of((void *)tid, struct ieee80211_txq, drv_priv); 120 121 ieee80211_schedule_txq(sc->hw, queue); 122 } 123 124 void ath9k_wake_tx_queue(struct ieee80211_hw *hw, struct ieee80211_txq *queue) 125 { 126 struct ath_softc *sc = hw->priv; 127 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 128 struct ath_atx_tid *tid = (struct ath_atx_tid *) queue->drv_priv; 129 struct ath_txq *txq = tid->txq; 130 131 ath_dbg(common, QUEUE, "Waking TX queue: %pM (%d)\n", 132 queue->sta ? queue->sta->addr : queue->vif->addr, 133 tid->tidno); 134 135 ath_txq_lock(sc, txq); 136 ath_txq_schedule(sc, txq); 137 ath_txq_unlock(sc, txq); 138 } 139 140 static struct ath_frame_info *get_frame_info(struct sk_buff *skb) 141 { 142 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 143 BUILD_BUG_ON(sizeof(struct ath_frame_info) > 144 sizeof(tx_info->rate_driver_data)); 145 return (struct ath_frame_info *) &tx_info->rate_driver_data[0]; 146 } 147 148 static void ath_send_bar(struct ath_atx_tid *tid, u16 seqno) 149 { 150 if (!tid->an->sta) 151 return; 152 153 ieee80211_send_bar(tid->an->vif, tid->an->sta->addr, tid->tidno, 154 seqno << IEEE80211_SEQ_SEQ_SHIFT); 155 } 156 157 static void ath_set_rates(struct ieee80211_vif *vif, struct ieee80211_sta *sta, 158 struct ath_buf *bf) 159 { 160 ieee80211_get_tx_rates(vif, sta, bf->bf_mpdu, bf->rates, 161 ARRAY_SIZE(bf->rates)); 162 } 163 164 static void ath_txq_skb_done(struct ath_softc *sc, struct ath_txq *txq, 165 struct sk_buff *skb) 166 { 167 struct ath_frame_info *fi = get_frame_info(skb); 168 int q = fi->txq; 169 170 if (q < 0) 171 return; 172 173 txq = sc->tx.txq_map[q]; 174 if (WARN_ON(--txq->pending_frames < 0)) 175 txq->pending_frames = 0; 176 177 } 178 179 static struct ath_atx_tid * 180 ath_get_skb_tid(struct ath_softc *sc, struct ath_node *an, struct sk_buff *skb) 181 { 182 u8 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK; 183 return ATH_AN_2_TID(an, tidno); 184 } 185 186 static int 187 ath_tid_pull(struct ath_atx_tid *tid, struct sk_buff **skbuf) 188 { 189 struct ieee80211_txq *txq = container_of((void*)tid, struct ieee80211_txq, drv_priv); 190 struct ath_softc *sc = tid->an->sc; 191 struct ieee80211_hw *hw = sc->hw; 192 struct ath_tx_control txctl = { 193 .txq = tid->txq, 194 .sta = tid->an->sta, 195 }; 196 struct sk_buff *skb; 197 struct ath_frame_info *fi; 198 int q, ret; 199 200 skb = ieee80211_tx_dequeue(hw, txq); 201 if (!skb) 202 return -ENOENT; 203 204 ret = ath_tx_prepare(hw, skb, &txctl); 205 if (ret) { 206 ieee80211_free_txskb(hw, skb); 207 return ret; 208 } 209 210 q = skb_get_queue_mapping(skb); 211 if (tid->txq == sc->tx.txq_map[q]) { 212 fi = get_frame_info(skb); 213 fi->txq = q; 214 ++tid->txq->pending_frames; 215 } 216 217 *skbuf = skb; 218 return 0; 219 } 220 221 static int ath_tid_dequeue(struct ath_atx_tid *tid, 222 struct sk_buff **skb) 223 { 224 int ret = 0; 225 *skb = __skb_dequeue(&tid->retry_q); 226 if (!*skb) 227 ret = ath_tid_pull(tid, skb); 228 229 return ret; 230 } 231 232 static void ath_tx_flush_tid(struct ath_softc *sc, struct ath_atx_tid *tid) 233 { 234 struct ath_txq *txq = tid->txq; 235 struct sk_buff *skb; 236 struct ath_buf *bf; 237 struct list_head bf_head; 238 struct ath_tx_status ts; 239 struct ath_frame_info *fi; 240 bool sendbar = false; 241 242 INIT_LIST_HEAD(&bf_head); 243 244 memset(&ts, 0, sizeof(ts)); 245 246 while ((skb = __skb_dequeue(&tid->retry_q))) { 247 fi = get_frame_info(skb); 248 bf = fi->bf; 249 if (!bf) { 250 ath_txq_skb_done(sc, txq, skb); 251 ieee80211_free_txskb(sc->hw, skb); 252 continue; 253 } 254 255 if (fi->baw_tracked) { 256 ath_tx_update_baw(sc, tid, bf); 257 sendbar = true; 258 } 259 260 list_add_tail(&bf->list, &bf_head); 261 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 262 } 263 264 if (sendbar) { 265 ath_txq_unlock(sc, txq); 266 ath_send_bar(tid, tid->seq_start); 267 ath_txq_lock(sc, txq); 268 } 269 } 270 271 static void ath_tx_update_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 272 struct ath_buf *bf) 273 { 274 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 275 u16 seqno = bf->bf_state.seqno; 276 int index, cindex; 277 278 if (!fi->baw_tracked) 279 return; 280 281 index = ATH_BA_INDEX(tid->seq_start, seqno); 282 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 283 284 __clear_bit(cindex, tid->tx_buf); 285 286 while (tid->baw_head != tid->baw_tail && !test_bit(tid->baw_head, tid->tx_buf)) { 287 INCR(tid->seq_start, IEEE80211_SEQ_MAX); 288 INCR(tid->baw_head, ATH_TID_MAX_BUFS); 289 if (tid->bar_index >= 0) 290 tid->bar_index--; 291 } 292 } 293 294 static void ath_tx_addto_baw(struct ath_softc *sc, struct ath_atx_tid *tid, 295 struct ath_buf *bf) 296 { 297 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 298 u16 seqno = bf->bf_state.seqno; 299 int index, cindex; 300 301 if (fi->baw_tracked) 302 return; 303 304 index = ATH_BA_INDEX(tid->seq_start, seqno); 305 cindex = (tid->baw_head + index) & (ATH_TID_MAX_BUFS - 1); 306 __set_bit(cindex, tid->tx_buf); 307 fi->baw_tracked = 1; 308 309 if (index >= ((tid->baw_tail - tid->baw_head) & 310 (ATH_TID_MAX_BUFS - 1))) { 311 tid->baw_tail = cindex; 312 INCR(tid->baw_tail, ATH_TID_MAX_BUFS); 313 } 314 } 315 316 static void ath_tid_drain(struct ath_softc *sc, struct ath_txq *txq, 317 struct ath_atx_tid *tid) 318 319 { 320 struct sk_buff *skb; 321 struct ath_buf *bf; 322 struct list_head bf_head; 323 struct ath_tx_status ts; 324 struct ath_frame_info *fi; 325 int ret; 326 327 memset(&ts, 0, sizeof(ts)); 328 INIT_LIST_HEAD(&bf_head); 329 330 while ((ret = ath_tid_dequeue(tid, &skb)) == 0) { 331 fi = get_frame_info(skb); 332 bf = fi->bf; 333 334 if (!bf) { 335 ath_tx_complete(sc, skb, ATH_TX_ERROR, txq, NULL); 336 continue; 337 } 338 339 list_add_tail(&bf->list, &bf_head); 340 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 341 } 342 } 343 344 static void ath_tx_set_retry(struct ath_softc *sc, struct ath_txq *txq, 345 struct sk_buff *skb, int count) 346 { 347 struct ath_frame_info *fi = get_frame_info(skb); 348 struct ath_buf *bf = fi->bf; 349 struct ieee80211_hdr *hdr; 350 int prev = fi->retries; 351 352 TX_STAT_INC(sc, txq->axq_qnum, a_retries); 353 fi->retries += count; 354 355 if (prev > 0) 356 return; 357 358 hdr = (struct ieee80211_hdr *)skb->data; 359 hdr->frame_control |= cpu_to_le16(IEEE80211_FCTL_RETRY); 360 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 361 sizeof(*hdr), DMA_TO_DEVICE); 362 } 363 364 static struct ath_buf *ath_tx_get_buffer(struct ath_softc *sc) 365 { 366 struct ath_buf *bf = NULL; 367 368 spin_lock_bh(&sc->tx.txbuflock); 369 370 if (unlikely(list_empty(&sc->tx.txbuf))) { 371 spin_unlock_bh(&sc->tx.txbuflock); 372 return NULL; 373 } 374 375 bf = list_first_entry(&sc->tx.txbuf, struct ath_buf, list); 376 list_del(&bf->list); 377 378 spin_unlock_bh(&sc->tx.txbuflock); 379 380 return bf; 381 } 382 383 static void ath_tx_return_buffer(struct ath_softc *sc, struct ath_buf *bf) 384 { 385 spin_lock_bh(&sc->tx.txbuflock); 386 list_add_tail(&bf->list, &sc->tx.txbuf); 387 spin_unlock_bh(&sc->tx.txbuflock); 388 } 389 390 static struct ath_buf* ath_clone_txbuf(struct ath_softc *sc, struct ath_buf *bf) 391 { 392 struct ath_buf *tbf; 393 394 tbf = ath_tx_get_buffer(sc); 395 if (WARN_ON(!tbf)) 396 return NULL; 397 398 ATH_TXBUF_RESET(tbf); 399 400 tbf->bf_mpdu = bf->bf_mpdu; 401 tbf->bf_buf_addr = bf->bf_buf_addr; 402 memcpy(tbf->bf_desc, bf->bf_desc, sc->sc_ah->caps.tx_desc_len); 403 tbf->bf_state = bf->bf_state; 404 tbf->bf_state.stale = false; 405 406 return tbf; 407 } 408 409 static void ath_tx_count_frames(struct ath_softc *sc, struct ath_buf *bf, 410 struct ath_tx_status *ts, int txok, 411 int *nframes, int *nbad) 412 { 413 struct ath_frame_info *fi; 414 u16 seq_st = 0; 415 u32 ba[WME_BA_BMP_SIZE >> 5]; 416 int ba_index; 417 int isaggr = 0; 418 419 *nbad = 0; 420 *nframes = 0; 421 422 isaggr = bf_isaggr(bf); 423 if (isaggr) { 424 seq_st = ts->ts_seqnum; 425 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 426 } 427 428 while (bf) { 429 fi = get_frame_info(bf->bf_mpdu); 430 ba_index = ATH_BA_INDEX(seq_st, bf->bf_state.seqno); 431 432 (*nframes)++; 433 if (!txok || (isaggr && !ATH_BA_ISSET(ba, ba_index))) 434 (*nbad)++; 435 436 bf = bf->bf_next; 437 } 438 } 439 440 441 static void ath_tx_complete_aggr(struct ath_softc *sc, struct ath_txq *txq, 442 struct ath_buf *bf, struct list_head *bf_q, 443 struct ieee80211_sta *sta, 444 struct ath_atx_tid *tid, 445 struct ath_tx_status *ts, int txok) 446 { 447 struct ath_node *an = NULL; 448 struct sk_buff *skb; 449 struct ieee80211_hdr *hdr; 450 struct ieee80211_tx_info *tx_info; 451 struct ath_buf *bf_next, *bf_last = bf->bf_lastbf; 452 struct list_head bf_head; 453 struct sk_buff_head bf_pending; 454 u16 seq_st = 0, acked_cnt = 0, txfail_cnt = 0, seq_first; 455 u32 ba[WME_BA_BMP_SIZE >> 5]; 456 int isaggr, txfail, txpending, sendbar = 0, needreset = 0, nbad = 0; 457 bool rc_update = true, isba; 458 struct ieee80211_tx_rate rates[4]; 459 struct ath_frame_info *fi; 460 int nframes; 461 bool flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 462 int i, retries; 463 int bar_index = -1; 464 465 skb = bf->bf_mpdu; 466 hdr = (struct ieee80211_hdr *)skb->data; 467 468 tx_info = IEEE80211_SKB_CB(skb); 469 470 memcpy(rates, bf->rates, sizeof(rates)); 471 472 retries = ts->ts_longretry + 1; 473 for (i = 0; i < ts->ts_rateindex; i++) 474 retries += rates[i].count; 475 476 if (!sta) { 477 INIT_LIST_HEAD(&bf_head); 478 while (bf) { 479 bf_next = bf->bf_next; 480 481 if (!bf->bf_state.stale || bf_next != NULL) 482 list_move_tail(&bf->list, &bf_head); 483 484 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, ts, 0); 485 486 bf = bf_next; 487 } 488 return; 489 } 490 491 an = (struct ath_node *)sta->drv_priv; 492 seq_first = tid->seq_start; 493 isba = ts->ts_flags & ATH9K_TX_BA; 494 495 /* 496 * The hardware occasionally sends a tx status for the wrong TID. 497 * In this case, the BA status cannot be considered valid and all 498 * subframes need to be retransmitted 499 * 500 * Only BlockAcks have a TID and therefore normal Acks cannot be 501 * checked 502 */ 503 if (isba && tid->tidno != ts->tid) 504 txok = false; 505 506 isaggr = bf_isaggr(bf); 507 memset(ba, 0, WME_BA_BMP_SIZE >> 3); 508 509 if (isaggr && txok) { 510 if (ts->ts_flags & ATH9K_TX_BA) { 511 seq_st = ts->ts_seqnum; 512 memcpy(ba, &ts->ba_low, WME_BA_BMP_SIZE >> 3); 513 } else { 514 /* 515 * AR5416 can become deaf/mute when BA 516 * issue happens. Chip needs to be reset. 517 * But AP code may have sychronization issues 518 * when perform internal reset in this routine. 519 * Only enable reset in STA mode for now. 520 */ 521 if (sc->sc_ah->opmode == NL80211_IFTYPE_STATION) 522 needreset = 1; 523 } 524 } 525 526 __skb_queue_head_init(&bf_pending); 527 528 ath_tx_count_frames(sc, bf, ts, txok, &nframes, &nbad); 529 while (bf) { 530 u16 seqno = bf->bf_state.seqno; 531 532 txfail = txpending = sendbar = 0; 533 bf_next = bf->bf_next; 534 535 skb = bf->bf_mpdu; 536 tx_info = IEEE80211_SKB_CB(skb); 537 fi = get_frame_info(skb); 538 539 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno) || 540 !tid->active) { 541 /* 542 * Outside of the current BlockAck window, 543 * maybe part of a previous session 544 */ 545 txfail = 1; 546 } else if (ATH_BA_ISSET(ba, ATH_BA_INDEX(seq_st, seqno))) { 547 /* transmit completion, subframe is 548 * acked by block ack */ 549 acked_cnt++; 550 } else if (!isaggr && txok) { 551 /* transmit completion */ 552 acked_cnt++; 553 } else if (flush) { 554 txpending = 1; 555 } else if (fi->retries < ATH_MAX_SW_RETRIES) { 556 if (txok || !an->sleeping) 557 ath_tx_set_retry(sc, txq, bf->bf_mpdu, 558 retries); 559 560 txpending = 1; 561 } else { 562 txfail = 1; 563 txfail_cnt++; 564 bar_index = max_t(int, bar_index, 565 ATH_BA_INDEX(seq_first, seqno)); 566 } 567 568 /* 569 * Make sure the last desc is reclaimed if it 570 * not a holding desc. 571 */ 572 INIT_LIST_HEAD(&bf_head); 573 if (bf_next != NULL || !bf_last->bf_state.stale) 574 list_move_tail(&bf->list, &bf_head); 575 576 if (!txpending) { 577 /* 578 * complete the acked-ones/xretried ones; update 579 * block-ack window 580 */ 581 ath_tx_update_baw(sc, tid, bf); 582 583 if (rc_update && (acked_cnt == 1 || txfail_cnt == 1)) { 584 memcpy(tx_info->control.rates, rates, sizeof(rates)); 585 ath_tx_rc_status(sc, bf, ts, nframes, nbad, txok); 586 rc_update = false; 587 if (bf == bf->bf_lastbf) 588 ath_dynack_sample_tx_ts(sc->sc_ah, 589 bf->bf_mpdu, 590 ts, sta); 591 } 592 593 ath_tx_complete_buf(sc, bf, txq, &bf_head, sta, ts, 594 !txfail); 595 } else { 596 if (tx_info->flags & IEEE80211_TX_STATUS_EOSP) { 597 tx_info->flags &= ~IEEE80211_TX_STATUS_EOSP; 598 ieee80211_sta_eosp(sta); 599 } 600 /* retry the un-acked ones */ 601 if (bf->bf_next == NULL && bf_last->bf_state.stale) { 602 struct ath_buf *tbf; 603 604 tbf = ath_clone_txbuf(sc, bf_last); 605 /* 606 * Update tx baw and complete the 607 * frame with failed status if we 608 * run out of tx buf. 609 */ 610 if (!tbf) { 611 ath_tx_update_baw(sc, tid, bf); 612 613 ath_tx_complete_buf(sc, bf, txq, 614 &bf_head, NULL, ts, 615 0); 616 bar_index = max_t(int, bar_index, 617 ATH_BA_INDEX(seq_first, seqno)); 618 break; 619 } 620 621 fi->bf = tbf; 622 } 623 624 /* 625 * Put this buffer to the temporary pending 626 * queue to retain ordering 627 */ 628 __skb_queue_tail(&bf_pending, skb); 629 } 630 631 bf = bf_next; 632 } 633 634 /* prepend un-acked frames to the beginning of the pending frame queue */ 635 if (!skb_queue_empty(&bf_pending)) { 636 if (an->sleeping) 637 ieee80211_sta_set_buffered(sta, tid->tidno, true); 638 639 skb_queue_splice_tail(&bf_pending, &tid->retry_q); 640 if (!an->sleeping) { 641 ath_tx_queue_tid(sc, tid); 642 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 643 tid->clear_ps_filter = true; 644 } 645 } 646 647 if (bar_index >= 0) { 648 u16 bar_seq = ATH_BA_INDEX2SEQ(seq_first, bar_index); 649 650 if (BAW_WITHIN(tid->seq_start, tid->baw_size, bar_seq)) 651 tid->bar_index = ATH_BA_INDEX(tid->seq_start, bar_seq); 652 653 ath_txq_unlock(sc, txq); 654 ath_send_bar(tid, ATH_BA_INDEX2SEQ(seq_first, bar_index + 1)); 655 ath_txq_lock(sc, txq); 656 } 657 658 if (needreset) 659 ath9k_queue_reset(sc, RESET_TYPE_TX_ERROR); 660 } 661 662 static bool bf_is_ampdu_not_probing(struct ath_buf *bf) 663 { 664 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(bf->bf_mpdu); 665 return bf_isampdu(bf) && !(info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE); 666 } 667 668 static void ath_tx_count_airtime(struct ath_softc *sc, 669 struct ieee80211_sta *sta, 670 struct ath_buf *bf, 671 struct ath_tx_status *ts) 672 { 673 u32 airtime = 0; 674 int i; 675 676 airtime += ts->duration * (ts->ts_longretry + 1); 677 for(i = 0; i < ts->ts_rateindex; i++) { 678 int rate_dur = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, i); 679 airtime += rate_dur * bf->rates[i].count; 680 } 681 682 ieee80211_sta_register_airtime(sta, ts->tid, airtime, 0); 683 } 684 685 static void ath_tx_process_buffer(struct ath_softc *sc, struct ath_txq *txq, 686 struct ath_tx_status *ts, struct ath_buf *bf, 687 struct list_head *bf_head) 688 { 689 struct ieee80211_hw *hw = sc->hw; 690 struct ieee80211_tx_info *info; 691 struct ieee80211_sta *sta; 692 struct ieee80211_hdr *hdr; 693 struct ath_atx_tid *tid = NULL; 694 bool txok, flush; 695 696 txok = !(ts->ts_status & ATH9K_TXERR_MASK); 697 flush = !!(ts->ts_status & ATH9K_TX_FLUSH); 698 txq->axq_tx_inprogress = false; 699 700 txq->axq_depth--; 701 if (bf_is_ampdu_not_probing(bf)) 702 txq->axq_ampdu_depth--; 703 704 ts->duration = ath9k_hw_get_duration(sc->sc_ah, bf->bf_desc, 705 ts->ts_rateindex); 706 707 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 708 sta = ieee80211_find_sta_by_ifaddr(hw, hdr->addr1, hdr->addr2); 709 if (sta) { 710 struct ath_node *an = (struct ath_node *)sta->drv_priv; 711 tid = ath_get_skb_tid(sc, an, bf->bf_mpdu); 712 ath_tx_count_airtime(sc, sta, bf, ts); 713 if (ts->ts_status & (ATH9K_TXERR_FILT | ATH9K_TXERR_XRETRY)) 714 tid->clear_ps_filter = true; 715 } 716 717 if (!bf_isampdu(bf)) { 718 if (!flush) { 719 info = IEEE80211_SKB_CB(bf->bf_mpdu); 720 memcpy(info->control.rates, bf->rates, 721 sizeof(info->control.rates)); 722 ath_tx_rc_status(sc, bf, ts, 1, txok ? 0 : 1, txok); 723 ath_dynack_sample_tx_ts(sc->sc_ah, bf->bf_mpdu, ts, 724 sta); 725 } 726 ath_tx_complete_buf(sc, bf, txq, bf_head, sta, ts, txok); 727 } else 728 ath_tx_complete_aggr(sc, txq, bf, bf_head, sta, tid, ts, txok); 729 730 if (!flush) 731 ath_txq_schedule(sc, txq); 732 } 733 734 static bool ath_lookup_legacy(struct ath_buf *bf) 735 { 736 struct sk_buff *skb; 737 struct ieee80211_tx_info *tx_info; 738 struct ieee80211_tx_rate *rates; 739 int i; 740 741 skb = bf->bf_mpdu; 742 tx_info = IEEE80211_SKB_CB(skb); 743 rates = tx_info->control.rates; 744 745 for (i = 0; i < 4; i++) { 746 if (!rates[i].count || rates[i].idx < 0) 747 break; 748 749 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) 750 return true; 751 } 752 753 return false; 754 } 755 756 static u32 ath_lookup_rate(struct ath_softc *sc, struct ath_buf *bf, 757 struct ath_atx_tid *tid) 758 { 759 struct sk_buff *skb; 760 struct ieee80211_tx_info *tx_info; 761 struct ieee80211_tx_rate *rates; 762 u32 max_4ms_framelen, frmlen; 763 u16 aggr_limit, bt_aggr_limit, legacy = 0; 764 int q = tid->txq->mac80211_qnum; 765 int i; 766 767 skb = bf->bf_mpdu; 768 tx_info = IEEE80211_SKB_CB(skb); 769 rates = bf->rates; 770 771 /* 772 * Find the lowest frame length among the rate series that will have a 773 * 4ms (or TXOP limited) transmit duration. 774 */ 775 max_4ms_framelen = ATH_AMPDU_LIMIT_MAX; 776 777 for (i = 0; i < 4; i++) { 778 int modeidx; 779 780 if (!rates[i].count) 781 continue; 782 783 if (!(rates[i].flags & IEEE80211_TX_RC_MCS)) { 784 legacy = 1; 785 break; 786 } 787 788 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 789 modeidx = MCS_HT40; 790 else 791 modeidx = MCS_HT20; 792 793 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 794 modeidx++; 795 796 frmlen = sc->tx.max_aggr_framelen[q][modeidx][rates[i].idx]; 797 max_4ms_framelen = min(max_4ms_framelen, frmlen); 798 } 799 800 /* 801 * limit aggregate size by the minimum rate if rate selected is 802 * not a probe rate, if rate selected is a probe rate then 803 * avoid aggregation of this packet. 804 */ 805 if (tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE || legacy) 806 return 0; 807 808 aggr_limit = min(max_4ms_framelen, (u32)ATH_AMPDU_LIMIT_MAX); 809 810 /* 811 * Override the default aggregation limit for BTCOEX. 812 */ 813 bt_aggr_limit = ath9k_btcoex_aggr_limit(sc, max_4ms_framelen); 814 if (bt_aggr_limit) 815 aggr_limit = bt_aggr_limit; 816 817 if (tid->an->maxampdu) 818 aggr_limit = min(aggr_limit, tid->an->maxampdu); 819 820 return aggr_limit; 821 } 822 823 /* 824 * Returns the number of delimiters to be added to 825 * meet the minimum required mpdudensity. 826 */ 827 static int ath_compute_num_delims(struct ath_softc *sc, struct ath_atx_tid *tid, 828 struct ath_buf *bf, u16 frmlen, 829 bool first_subfrm) 830 { 831 #define FIRST_DESC_NDELIMS 60 832 u32 nsymbits, nsymbols; 833 u16 minlen; 834 u8 flags, rix; 835 int width, streams, half_gi, ndelim, mindelim; 836 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 837 838 /* Select standard number of delimiters based on frame length alone */ 839 ndelim = ATH_AGGR_GET_NDELIM(frmlen); 840 841 /* 842 * If encryption enabled, hardware requires some more padding between 843 * subframes. 844 * TODO - this could be improved to be dependent on the rate. 845 * The hardware can keep up at lower rates, but not higher rates 846 */ 847 if ((fi->keyix != ATH9K_TXKEYIX_INVALID) && 848 !(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)) 849 ndelim += ATH_AGGR_ENCRYPTDELIM; 850 851 /* 852 * Add delimiter when using RTS/CTS with aggregation 853 * and non enterprise AR9003 card 854 */ 855 if (first_subfrm && !AR_SREV_9580_10_OR_LATER(sc->sc_ah) && 856 (sc->sc_ah->ent_mode & AR_ENT_OTP_MIN_PKT_SIZE_DISABLE)) 857 ndelim = max(ndelim, FIRST_DESC_NDELIMS); 858 859 /* 860 * Convert desired mpdu density from microeconds to bytes based 861 * on highest rate in rate series (i.e. first rate) to determine 862 * required minimum length for subframe. Take into account 863 * whether high rate is 20 or 40Mhz and half or full GI. 864 * 865 * If there is no mpdu density restriction, no further calculation 866 * is needed. 867 */ 868 869 if (tid->an->mpdudensity == 0) 870 return ndelim; 871 872 rix = bf->rates[0].idx; 873 flags = bf->rates[0].flags; 874 width = (flags & IEEE80211_TX_RC_40_MHZ_WIDTH) ? 1 : 0; 875 half_gi = (flags & IEEE80211_TX_RC_SHORT_GI) ? 1 : 0; 876 877 if (half_gi) 878 nsymbols = NUM_SYMBOLS_PER_USEC_HALFGI(tid->an->mpdudensity); 879 else 880 nsymbols = NUM_SYMBOLS_PER_USEC(tid->an->mpdudensity); 881 882 if (nsymbols == 0) 883 nsymbols = 1; 884 885 streams = HT_RC_2_STREAMS(rix); 886 nsymbits = bits_per_symbol[rix % 8][width] * streams; 887 minlen = (nsymbols * nsymbits) / BITS_PER_BYTE; 888 889 if (frmlen < minlen) { 890 mindelim = (minlen - frmlen) / ATH_AGGR_DELIM_SZ; 891 ndelim = max(mindelim, ndelim); 892 } 893 894 return ndelim; 895 } 896 897 static int 898 ath_tx_get_tid_subframe(struct ath_softc *sc, struct ath_txq *txq, 899 struct ath_atx_tid *tid, struct ath_buf **buf) 900 { 901 struct ieee80211_tx_info *tx_info; 902 struct ath_frame_info *fi; 903 struct ath_buf *bf; 904 struct sk_buff *skb, *first_skb = NULL; 905 u16 seqno; 906 int ret; 907 908 while (1) { 909 ret = ath_tid_dequeue(tid, &skb); 910 if (ret < 0) 911 return ret; 912 913 fi = get_frame_info(skb); 914 bf = fi->bf; 915 if (!fi->bf) 916 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 917 else 918 bf->bf_state.stale = false; 919 920 if (!bf) { 921 ath_txq_skb_done(sc, txq, skb); 922 ieee80211_free_txskb(sc->hw, skb); 923 continue; 924 } 925 926 bf->bf_next = NULL; 927 bf->bf_lastbf = bf; 928 929 tx_info = IEEE80211_SKB_CB(skb); 930 tx_info->flags &= ~(IEEE80211_TX_CTL_CLEAR_PS_FILT | 931 IEEE80211_TX_STATUS_EOSP); 932 933 /* 934 * No aggregation session is running, but there may be frames 935 * from a previous session or a failed attempt in the queue. 936 * Send them out as normal data frames 937 */ 938 if (!tid->active) 939 tx_info->flags &= ~IEEE80211_TX_CTL_AMPDU; 940 941 if (!(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 942 bf->bf_state.bf_type = 0; 943 break; 944 } 945 946 bf->bf_state.bf_type = BUF_AMPDU | BUF_AGGR; 947 seqno = bf->bf_state.seqno; 948 949 /* do not step over block-ack window */ 950 if (!BAW_WITHIN(tid->seq_start, tid->baw_size, seqno)) { 951 __skb_queue_tail(&tid->retry_q, skb); 952 953 /* If there are other skbs in the retry q, they are 954 * probably within the BAW, so loop immediately to get 955 * one of them. Otherwise the queue can get stuck. */ 956 if (!skb_queue_is_first(&tid->retry_q, skb) && 957 !WARN_ON(skb == first_skb)) { 958 if(!first_skb) /* infinite loop prevention */ 959 first_skb = skb; 960 continue; 961 } 962 return -EINPROGRESS; 963 } 964 965 if (tid->bar_index > ATH_BA_INDEX(tid->seq_start, seqno)) { 966 struct ath_tx_status ts = {}; 967 struct list_head bf_head; 968 969 INIT_LIST_HEAD(&bf_head); 970 list_add(&bf->list, &bf_head); 971 ath_tx_update_baw(sc, tid, bf); 972 ath_tx_complete_buf(sc, bf, txq, &bf_head, NULL, &ts, 0); 973 continue; 974 } 975 976 if (bf_isampdu(bf)) 977 ath_tx_addto_baw(sc, tid, bf); 978 979 break; 980 } 981 982 *buf = bf; 983 return 0; 984 } 985 986 static int 987 ath_tx_form_aggr(struct ath_softc *sc, struct ath_txq *txq, 988 struct ath_atx_tid *tid, struct list_head *bf_q, 989 struct ath_buf *bf_first) 990 { 991 #define PADBYTES(_len) ((4 - ((_len) % 4)) % 4) 992 struct ath_buf *bf = bf_first, *bf_prev = NULL; 993 int nframes = 0, ndelim, ret; 994 u16 aggr_limit = 0, al = 0, bpad = 0, 995 al_delta, h_baw = tid->baw_size / 2; 996 struct ieee80211_tx_info *tx_info; 997 struct ath_frame_info *fi; 998 struct sk_buff *skb; 999 1000 1001 bf = bf_first; 1002 aggr_limit = ath_lookup_rate(sc, bf, tid); 1003 1004 while (bf) 1005 { 1006 skb = bf->bf_mpdu; 1007 fi = get_frame_info(skb); 1008 1009 /* do not exceed aggregation limit */ 1010 al_delta = ATH_AGGR_DELIM_SZ + fi->framelen; 1011 if (nframes) { 1012 if (aggr_limit < al + bpad + al_delta || 1013 ath_lookup_legacy(bf) || nframes >= h_baw) 1014 goto stop; 1015 1016 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1017 if ((tx_info->flags & IEEE80211_TX_CTL_RATE_CTRL_PROBE) || 1018 !(tx_info->flags & IEEE80211_TX_CTL_AMPDU)) 1019 goto stop; 1020 } 1021 1022 /* add padding for previous frame to aggregation length */ 1023 al += bpad + al_delta; 1024 1025 /* 1026 * Get the delimiters needed to meet the MPDU 1027 * density for this node. 1028 */ 1029 ndelim = ath_compute_num_delims(sc, tid, bf_first, fi->framelen, 1030 !nframes); 1031 bpad = PADBYTES(al_delta) + (ndelim << 2); 1032 1033 nframes++; 1034 bf->bf_next = NULL; 1035 1036 /* link buffers of this frame to the aggregate */ 1037 bf->bf_state.ndelim = ndelim; 1038 1039 list_add_tail(&bf->list, bf_q); 1040 if (bf_prev) 1041 bf_prev->bf_next = bf; 1042 1043 bf_prev = bf; 1044 1045 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); 1046 if (ret < 0) 1047 break; 1048 } 1049 goto finish; 1050 stop: 1051 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1052 finish: 1053 bf = bf_first; 1054 bf->bf_lastbf = bf_prev; 1055 1056 if (bf == bf_prev) { 1057 al = get_frame_info(bf->bf_mpdu)->framelen; 1058 bf->bf_state.bf_type = BUF_AMPDU; 1059 } else { 1060 TX_STAT_INC(sc, txq->axq_qnum, a_aggr); 1061 } 1062 1063 return al; 1064 #undef PADBYTES 1065 } 1066 1067 /* 1068 * rix - rate index 1069 * pktlen - total bytes (delims + data + fcs + pads + pad delims) 1070 * width - 0 for 20 MHz, 1 for 40 MHz 1071 * half_gi - to use 4us v/s 3.6 us for symbol time 1072 */ 1073 u32 ath_pkt_duration(struct ath_softc *sc, u8 rix, int pktlen, 1074 int width, int half_gi, bool shortPreamble) 1075 { 1076 u32 nbits, nsymbits, duration, nsymbols; 1077 int streams; 1078 1079 /* find number of symbols: PLCP + data */ 1080 streams = HT_RC_2_STREAMS(rix); 1081 nbits = (pktlen << 3) + OFDM_PLCP_BITS; 1082 nsymbits = bits_per_symbol[rix % 8][width] * streams; 1083 nsymbols = (nbits + nsymbits - 1) / nsymbits; 1084 1085 if (!half_gi) 1086 duration = SYMBOL_TIME(nsymbols); 1087 else 1088 duration = SYMBOL_TIME_HALFGI(nsymbols); 1089 1090 /* addup duration for legacy/ht training and signal fields */ 1091 duration += L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1092 1093 return duration; 1094 } 1095 1096 static int ath_max_framelen(int usec, int mcs, bool ht40, bool sgi) 1097 { 1098 int streams = HT_RC_2_STREAMS(mcs); 1099 int symbols, bits; 1100 int bytes = 0; 1101 1102 usec -= L_STF + L_LTF + L_SIG + HT_SIG + HT_STF + HT_LTF(streams); 1103 symbols = sgi ? TIME_SYMBOLS_HALFGI(usec) : TIME_SYMBOLS(usec); 1104 bits = symbols * bits_per_symbol[mcs % 8][ht40] * streams; 1105 bits -= OFDM_PLCP_BITS; 1106 bytes = bits / 8; 1107 if (bytes > 65532) 1108 bytes = 65532; 1109 1110 return bytes; 1111 } 1112 1113 void ath_update_max_aggr_framelen(struct ath_softc *sc, int queue, int txop) 1114 { 1115 u16 *cur_ht20, *cur_ht20_sgi, *cur_ht40, *cur_ht40_sgi; 1116 int mcs; 1117 1118 /* 4ms is the default (and maximum) duration */ 1119 if (!txop || txop > 4096) 1120 txop = 4096; 1121 1122 cur_ht20 = sc->tx.max_aggr_framelen[queue][MCS_HT20]; 1123 cur_ht20_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT20_SGI]; 1124 cur_ht40 = sc->tx.max_aggr_framelen[queue][MCS_HT40]; 1125 cur_ht40_sgi = sc->tx.max_aggr_framelen[queue][MCS_HT40_SGI]; 1126 for (mcs = 0; mcs < 32; mcs++) { 1127 cur_ht20[mcs] = ath_max_framelen(txop, mcs, false, false); 1128 cur_ht20_sgi[mcs] = ath_max_framelen(txop, mcs, false, true); 1129 cur_ht40[mcs] = ath_max_framelen(txop, mcs, true, false); 1130 cur_ht40_sgi[mcs] = ath_max_framelen(txop, mcs, true, true); 1131 } 1132 } 1133 1134 static u8 ath_get_rate_txpower(struct ath_softc *sc, struct ath_buf *bf, 1135 u8 rateidx, bool is_40, bool is_cck) 1136 { 1137 u8 max_power; 1138 struct sk_buff *skb; 1139 struct ath_frame_info *fi; 1140 struct ieee80211_tx_info *info; 1141 struct ath_hw *ah = sc->sc_ah; 1142 1143 if (sc->tx99_state || !ah->tpc_enabled) 1144 return MAX_RATE_POWER; 1145 1146 skb = bf->bf_mpdu; 1147 fi = get_frame_info(skb); 1148 info = IEEE80211_SKB_CB(skb); 1149 1150 if (!AR_SREV_9300_20_OR_LATER(ah)) { 1151 int txpower = fi->tx_power; 1152 1153 if (is_40) { 1154 u8 power_ht40delta; 1155 struct ar5416_eeprom_def *eep = &ah->eeprom.def; 1156 u16 eeprom_rev = ah->eep_ops->get_eeprom_rev(ah); 1157 1158 if (eeprom_rev >= AR5416_EEP_MINOR_VER_2) { 1159 bool is_2ghz; 1160 struct modal_eep_header *pmodal; 1161 1162 is_2ghz = info->band == NL80211_BAND_2GHZ; 1163 pmodal = &eep->modalHeader[is_2ghz]; 1164 power_ht40delta = pmodal->ht40PowerIncForPdadc; 1165 } else { 1166 power_ht40delta = 2; 1167 } 1168 txpower += power_ht40delta; 1169 } 1170 1171 if (AR_SREV_9287(ah) || AR_SREV_9285(ah) || 1172 AR_SREV_9271(ah)) { 1173 txpower -= 2 * AR9287_PWR_TABLE_OFFSET_DB; 1174 } else if (AR_SREV_9280_20_OR_LATER(ah)) { 1175 s8 power_offset; 1176 1177 power_offset = ah->eep_ops->get_eeprom(ah, 1178 EEP_PWR_TABLE_OFFSET); 1179 txpower -= 2 * power_offset; 1180 } 1181 1182 if (OLC_FOR_AR9280_20_LATER && is_cck) 1183 txpower -= 2; 1184 1185 txpower = max(txpower, 0); 1186 max_power = min_t(u8, ah->tx_power[rateidx], txpower); 1187 1188 /* XXX: clamp minimum TX power at 1 for AR9160 since if 1189 * max_power is set to 0, frames are transmitted at max 1190 * TX power 1191 */ 1192 if (!max_power && !AR_SREV_9280_20_OR_LATER(ah)) 1193 max_power = 1; 1194 } else if (!bf->bf_state.bfs_paprd) { 1195 if (rateidx < 8 && (info->flags & IEEE80211_TX_CTL_STBC)) 1196 max_power = min_t(u8, ah->tx_power_stbc[rateidx], 1197 fi->tx_power); 1198 else 1199 max_power = min_t(u8, ah->tx_power[rateidx], 1200 fi->tx_power); 1201 } else { 1202 max_power = ah->paprd_training_power; 1203 } 1204 1205 return max_power; 1206 } 1207 1208 static void ath_buf_set_rate(struct ath_softc *sc, struct ath_buf *bf, 1209 struct ath_tx_info *info, int len, bool rts) 1210 { 1211 struct ath_hw *ah = sc->sc_ah; 1212 struct ath_common *common = ath9k_hw_common(ah); 1213 struct sk_buff *skb; 1214 struct ieee80211_tx_info *tx_info; 1215 struct ieee80211_tx_rate *rates; 1216 const struct ieee80211_rate *rate; 1217 struct ieee80211_hdr *hdr; 1218 struct ath_frame_info *fi = get_frame_info(bf->bf_mpdu); 1219 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1220 int i; 1221 u8 rix = 0; 1222 1223 skb = bf->bf_mpdu; 1224 tx_info = IEEE80211_SKB_CB(skb); 1225 rates = bf->rates; 1226 hdr = (struct ieee80211_hdr *)skb->data; 1227 1228 /* set dur_update_en for l-sig computation except for PS-Poll frames */ 1229 info->dur_update = !ieee80211_is_pspoll(hdr->frame_control); 1230 info->rtscts_rate = fi->rtscts_rate; 1231 1232 for (i = 0; i < ARRAY_SIZE(bf->rates); i++) { 1233 bool is_40, is_sgi, is_sp, is_cck; 1234 int phy; 1235 1236 if (!rates[i].count || (rates[i].idx < 0)) 1237 continue; 1238 1239 rix = rates[i].idx; 1240 info->rates[i].Tries = rates[i].count; 1241 1242 /* 1243 * Handle RTS threshold for unaggregated HT frames. 1244 */ 1245 if (bf_isampdu(bf) && !bf_isaggr(bf) && 1246 (rates[i].flags & IEEE80211_TX_RC_MCS) && 1247 unlikely(rts_thresh != (u32) -1)) { 1248 if (!rts_thresh || (len > rts_thresh)) 1249 rts = true; 1250 } 1251 1252 if (rts || rates[i].flags & IEEE80211_TX_RC_USE_RTS_CTS) { 1253 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1254 info->flags |= ATH9K_TXDESC_RTSENA; 1255 } else if (rates[i].flags & IEEE80211_TX_RC_USE_CTS_PROTECT) { 1256 info->rates[i].RateFlags |= ATH9K_RATESERIES_RTS_CTS; 1257 info->flags |= ATH9K_TXDESC_CTSENA; 1258 } 1259 1260 if (rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH) 1261 info->rates[i].RateFlags |= ATH9K_RATESERIES_2040; 1262 if (rates[i].flags & IEEE80211_TX_RC_SHORT_GI) 1263 info->rates[i].RateFlags |= ATH9K_RATESERIES_HALFGI; 1264 1265 is_sgi = !!(rates[i].flags & IEEE80211_TX_RC_SHORT_GI); 1266 is_40 = !!(rates[i].flags & IEEE80211_TX_RC_40_MHZ_WIDTH); 1267 is_sp = !!(rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE); 1268 1269 if (rates[i].flags & IEEE80211_TX_RC_MCS) { 1270 /* MCS rates */ 1271 info->rates[i].Rate = rix | 0x80; 1272 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1273 ah->txchainmask, info->rates[i].Rate); 1274 info->rates[i].PktDuration = ath_pkt_duration(sc, rix, len, 1275 is_40, is_sgi, is_sp); 1276 if (rix < 8 && (tx_info->flags & IEEE80211_TX_CTL_STBC)) 1277 info->rates[i].RateFlags |= ATH9K_RATESERIES_STBC; 1278 1279 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, 1280 is_40, false); 1281 continue; 1282 } 1283 1284 /* legacy rates */ 1285 rate = &common->sbands[tx_info->band].bitrates[rates[i].idx]; 1286 if ((tx_info->band == NL80211_BAND_2GHZ) && 1287 !(rate->flags & IEEE80211_RATE_ERP_G)) 1288 phy = WLAN_RC_PHY_CCK; 1289 else 1290 phy = WLAN_RC_PHY_OFDM; 1291 1292 info->rates[i].Rate = rate->hw_value; 1293 if (rate->hw_value_short) { 1294 if (rates[i].flags & IEEE80211_TX_RC_USE_SHORT_PREAMBLE) 1295 info->rates[i].Rate |= rate->hw_value_short; 1296 } else { 1297 is_sp = false; 1298 } 1299 1300 if (bf->bf_state.bfs_paprd) 1301 info->rates[i].ChSel = ah->txchainmask; 1302 else 1303 info->rates[i].ChSel = ath_txchainmask_reduction(sc, 1304 ah->txchainmask, info->rates[i].Rate); 1305 1306 info->rates[i].PktDuration = ath9k_hw_computetxtime(sc->sc_ah, 1307 phy, rate->bitrate * 100, len, rix, is_sp); 1308 1309 is_cck = IS_CCK_RATE(info->rates[i].Rate); 1310 info->txpower[i] = ath_get_rate_txpower(sc, bf, rix, false, 1311 is_cck); 1312 } 1313 1314 /* For AR5416 - RTS cannot be followed by a frame larger than 8K */ 1315 if (bf_isaggr(bf) && (len > sc->sc_ah->caps.rts_aggr_limit)) 1316 info->flags &= ~ATH9K_TXDESC_RTSENA; 1317 1318 /* ATH9K_TXDESC_RTSENA and ATH9K_TXDESC_CTSENA are mutually exclusive. */ 1319 if (info->flags & ATH9K_TXDESC_RTSENA) 1320 info->flags &= ~ATH9K_TXDESC_CTSENA; 1321 } 1322 1323 static enum ath9k_pkt_type get_hw_packet_type(struct sk_buff *skb) 1324 { 1325 struct ieee80211_hdr *hdr; 1326 enum ath9k_pkt_type htype; 1327 __le16 fc; 1328 1329 hdr = (struct ieee80211_hdr *)skb->data; 1330 fc = hdr->frame_control; 1331 1332 if (ieee80211_is_beacon(fc)) 1333 htype = ATH9K_PKT_TYPE_BEACON; 1334 else if (ieee80211_is_probe_resp(fc)) 1335 htype = ATH9K_PKT_TYPE_PROBE_RESP; 1336 else if (ieee80211_is_atim(fc)) 1337 htype = ATH9K_PKT_TYPE_ATIM; 1338 else if (ieee80211_is_pspoll(fc)) 1339 htype = ATH9K_PKT_TYPE_PSPOLL; 1340 else 1341 htype = ATH9K_PKT_TYPE_NORMAL; 1342 1343 return htype; 1344 } 1345 1346 static void ath_tx_fill_desc(struct ath_softc *sc, struct ath_buf *bf, 1347 struct ath_txq *txq, int len) 1348 { 1349 struct ath_hw *ah = sc->sc_ah; 1350 struct ath_buf *bf_first = NULL; 1351 struct ath_tx_info info; 1352 u32 rts_thresh = sc->hw->wiphy->rts_threshold; 1353 bool rts = false; 1354 1355 memset(&info, 0, sizeof(info)); 1356 info.is_first = true; 1357 info.is_last = true; 1358 info.qcu = txq->axq_qnum; 1359 1360 while (bf) { 1361 struct sk_buff *skb = bf->bf_mpdu; 1362 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 1363 struct ath_frame_info *fi = get_frame_info(skb); 1364 bool aggr = !!(bf->bf_state.bf_type & BUF_AGGR); 1365 1366 info.type = get_hw_packet_type(skb); 1367 if (bf->bf_next) 1368 info.link = bf->bf_next->bf_daddr; 1369 else 1370 info.link = (sc->tx99_state) ? bf->bf_daddr : 0; 1371 1372 if (!bf_first) { 1373 bf_first = bf; 1374 1375 if (!sc->tx99_state) 1376 info.flags = ATH9K_TXDESC_INTREQ; 1377 if ((tx_info->flags & IEEE80211_TX_CTL_CLEAR_PS_FILT) || 1378 txq == sc->tx.uapsdq) 1379 info.flags |= ATH9K_TXDESC_CLRDMASK; 1380 1381 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 1382 info.flags |= ATH9K_TXDESC_NOACK; 1383 if (tx_info->flags & IEEE80211_TX_CTL_LDPC) 1384 info.flags |= ATH9K_TXDESC_LDPC; 1385 1386 if (bf->bf_state.bfs_paprd) 1387 info.flags |= (u32) bf->bf_state.bfs_paprd << 1388 ATH9K_TXDESC_PAPRD_S; 1389 1390 /* 1391 * mac80211 doesn't handle RTS threshold for HT because 1392 * the decision has to be taken based on AMPDU length 1393 * and aggregation is done entirely inside ath9k. 1394 * Set the RTS/CTS flag for the first subframe based 1395 * on the threshold. 1396 */ 1397 if (aggr && (bf == bf_first) && 1398 unlikely(rts_thresh != (u32) -1)) { 1399 /* 1400 * "len" is the size of the entire AMPDU. 1401 */ 1402 if (!rts_thresh || (len > rts_thresh)) 1403 rts = true; 1404 } 1405 1406 if (!aggr) 1407 len = fi->framelen; 1408 1409 ath_buf_set_rate(sc, bf, &info, len, rts); 1410 } 1411 1412 info.buf_addr[0] = bf->bf_buf_addr; 1413 info.buf_len[0] = skb->len; 1414 info.pkt_len = fi->framelen; 1415 info.keyix = fi->keyix; 1416 info.keytype = fi->keytype; 1417 1418 if (aggr) { 1419 if (bf == bf_first) 1420 info.aggr = AGGR_BUF_FIRST; 1421 else if (bf == bf_first->bf_lastbf) 1422 info.aggr = AGGR_BUF_LAST; 1423 else 1424 info.aggr = AGGR_BUF_MIDDLE; 1425 1426 info.ndelim = bf->bf_state.ndelim; 1427 info.aggr_len = len; 1428 } 1429 1430 if (bf == bf_first->bf_lastbf) 1431 bf_first = NULL; 1432 1433 ath9k_hw_set_txdesc(ah, bf->bf_desc, &info); 1434 bf = bf->bf_next; 1435 } 1436 } 1437 1438 static void 1439 ath_tx_form_burst(struct ath_softc *sc, struct ath_txq *txq, 1440 struct ath_atx_tid *tid, struct list_head *bf_q, 1441 struct ath_buf *bf_first) 1442 { 1443 struct ath_buf *bf = bf_first, *bf_prev = NULL; 1444 int nframes = 0, ret; 1445 1446 do { 1447 struct ieee80211_tx_info *tx_info; 1448 1449 nframes++; 1450 list_add_tail(&bf->list, bf_q); 1451 if (bf_prev) 1452 bf_prev->bf_next = bf; 1453 bf_prev = bf; 1454 1455 if (nframes >= 2) 1456 break; 1457 1458 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); 1459 if (ret < 0) 1460 break; 1461 1462 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1463 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 1464 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1465 break; 1466 } 1467 1468 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1469 } while (1); 1470 } 1471 1472 static int ath_tx_sched_aggr(struct ath_softc *sc, struct ath_txq *txq, 1473 struct ath_atx_tid *tid) 1474 { 1475 struct ath_buf *bf = NULL; 1476 struct ieee80211_tx_info *tx_info; 1477 struct list_head bf_q; 1478 int aggr_len = 0, ret; 1479 bool aggr; 1480 1481 INIT_LIST_HEAD(&bf_q); 1482 1483 ret = ath_tx_get_tid_subframe(sc, txq, tid, &bf); 1484 if (ret < 0) 1485 return ret; 1486 1487 tx_info = IEEE80211_SKB_CB(bf->bf_mpdu); 1488 aggr = !!(tx_info->flags & IEEE80211_TX_CTL_AMPDU); 1489 if ((aggr && txq->axq_ampdu_depth >= ATH_AGGR_MIN_QDEPTH) || 1490 (!aggr && txq->axq_depth >= ATH_NON_AGGR_MIN_QDEPTH)) { 1491 __skb_queue_tail(&tid->retry_q, bf->bf_mpdu); 1492 return -EBUSY; 1493 } 1494 1495 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1496 if (aggr) 1497 aggr_len = ath_tx_form_aggr(sc, txq, tid, &bf_q, bf); 1498 else 1499 ath_tx_form_burst(sc, txq, tid, &bf_q, bf); 1500 1501 if (list_empty(&bf_q)) 1502 return -EAGAIN; 1503 1504 if (tid->clear_ps_filter || tid->an->no_ps_filter) { 1505 tid->clear_ps_filter = false; 1506 tx_info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 1507 } 1508 1509 ath_tx_fill_desc(sc, bf, txq, aggr_len); 1510 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1511 return 0; 1512 } 1513 1514 int ath_tx_aggr_start(struct ath_softc *sc, struct ieee80211_sta *sta, 1515 u16 tid, u16 *ssn) 1516 { 1517 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1518 struct ath_atx_tid *txtid; 1519 struct ath_txq *txq; 1520 struct ath_node *an; 1521 u8 density; 1522 1523 ath_dbg(common, XMIT, "%s called\n", __func__); 1524 1525 an = (struct ath_node *)sta->drv_priv; 1526 txtid = ATH_AN_2_TID(an, tid); 1527 txq = txtid->txq; 1528 1529 ath_txq_lock(sc, txq); 1530 1531 /* update ampdu factor/density, they may have changed. This may happen 1532 * in HT IBSS when a beacon with HT-info is received after the station 1533 * has already been added. 1534 */ 1535 if (sta->ht_cap.ht_supported) { 1536 an->maxampdu = (1 << (IEEE80211_HT_MAX_AMPDU_FACTOR + 1537 sta->ht_cap.ampdu_factor)) - 1; 1538 density = ath9k_parse_mpdudensity(sta->ht_cap.ampdu_density); 1539 an->mpdudensity = density; 1540 } 1541 1542 txtid->active = true; 1543 *ssn = txtid->seq_start = txtid->seq_next; 1544 txtid->bar_index = -1; 1545 1546 memset(txtid->tx_buf, 0, sizeof(txtid->tx_buf)); 1547 txtid->baw_head = txtid->baw_tail = 0; 1548 1549 ath_txq_unlock_complete(sc, txq); 1550 1551 return 0; 1552 } 1553 1554 void ath_tx_aggr_stop(struct ath_softc *sc, struct ieee80211_sta *sta, u16 tid) 1555 { 1556 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1557 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1558 struct ath_atx_tid *txtid = ATH_AN_2_TID(an, tid); 1559 struct ath_txq *txq = txtid->txq; 1560 1561 ath_dbg(common, XMIT, "%s called\n", __func__); 1562 1563 ath_txq_lock(sc, txq); 1564 txtid->active = false; 1565 ath_tx_flush_tid(sc, txtid); 1566 ath_txq_unlock_complete(sc, txq); 1567 } 1568 1569 void ath_tx_aggr_sleep(struct ieee80211_sta *sta, struct ath_softc *sc, 1570 struct ath_node *an) 1571 { 1572 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1573 struct ath_atx_tid *tid; 1574 int tidno; 1575 1576 ath_dbg(common, XMIT, "%s called\n", __func__); 1577 1578 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 1579 tid = ath_node_to_tid(an, tidno); 1580 1581 if (!skb_queue_empty(&tid->retry_q)) 1582 ieee80211_sta_set_buffered(sta, tid->tidno, true); 1583 1584 } 1585 } 1586 1587 void ath_tx_aggr_wakeup(struct ath_softc *sc, struct ath_node *an) 1588 { 1589 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1590 struct ath_atx_tid *tid; 1591 struct ath_txq *txq; 1592 int tidno; 1593 1594 ath_dbg(common, XMIT, "%s called\n", __func__); 1595 1596 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 1597 tid = ath_node_to_tid(an, tidno); 1598 txq = tid->txq; 1599 1600 ath_txq_lock(sc, txq); 1601 tid->clear_ps_filter = true; 1602 if (!skb_queue_empty(&tid->retry_q)) { 1603 ath_tx_queue_tid(sc, tid); 1604 ath_txq_schedule(sc, txq); 1605 } 1606 ath_txq_unlock_complete(sc, txq); 1607 1608 } 1609 } 1610 1611 1612 static void 1613 ath9k_set_moredata(struct ath_softc *sc, struct ath_buf *bf, bool val) 1614 { 1615 struct ieee80211_hdr *hdr; 1616 u16 mask = cpu_to_le16(IEEE80211_FCTL_MOREDATA); 1617 u16 mask_val = mask * val; 1618 1619 hdr = (struct ieee80211_hdr *) bf->bf_mpdu->data; 1620 if ((hdr->frame_control & mask) != mask_val) { 1621 hdr->frame_control = (hdr->frame_control & ~mask) | mask_val; 1622 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 1623 sizeof(*hdr), DMA_TO_DEVICE); 1624 } 1625 } 1626 1627 void ath9k_release_buffered_frames(struct ieee80211_hw *hw, 1628 struct ieee80211_sta *sta, 1629 u16 tids, int nframes, 1630 enum ieee80211_frame_release_type reason, 1631 bool more_data) 1632 { 1633 struct ath_softc *sc = hw->priv; 1634 struct ath_node *an = (struct ath_node *)sta->drv_priv; 1635 struct ath_txq *txq = sc->tx.uapsdq; 1636 struct ieee80211_tx_info *info; 1637 struct list_head bf_q; 1638 struct ath_buf *bf_tail = NULL, *bf = NULL; 1639 int sent = 0; 1640 int i, ret; 1641 1642 INIT_LIST_HEAD(&bf_q); 1643 for (i = 0; tids && nframes; i++, tids >>= 1) { 1644 struct ath_atx_tid *tid; 1645 1646 if (!(tids & 1)) 1647 continue; 1648 1649 tid = ATH_AN_2_TID(an, i); 1650 1651 ath_txq_lock(sc, tid->txq); 1652 while (nframes > 0) { 1653 ret = ath_tx_get_tid_subframe(sc, sc->tx.uapsdq, 1654 tid, &bf); 1655 if (ret < 0) 1656 break; 1657 1658 ath9k_set_moredata(sc, bf, true); 1659 list_add_tail(&bf->list, &bf_q); 1660 ath_set_rates(tid->an->vif, tid->an->sta, bf); 1661 if (bf_isampdu(bf)) 1662 bf->bf_state.bf_type &= ~BUF_AGGR; 1663 if (bf_tail) 1664 bf_tail->bf_next = bf; 1665 1666 bf_tail = bf; 1667 nframes--; 1668 sent++; 1669 TX_STAT_INC(sc, txq->axq_qnum, a_queued_hw); 1670 1671 if (an->sta && skb_queue_empty(&tid->retry_q)) 1672 ieee80211_sta_set_buffered(an->sta, i, false); 1673 } 1674 ath_txq_unlock_complete(sc, tid->txq); 1675 } 1676 1677 if (list_empty(&bf_q)) 1678 return; 1679 1680 if (!more_data) 1681 ath9k_set_moredata(sc, bf_tail, false); 1682 1683 info = IEEE80211_SKB_CB(bf_tail->bf_mpdu); 1684 info->flags |= IEEE80211_TX_STATUS_EOSP; 1685 1686 bf = list_first_entry(&bf_q, struct ath_buf, list); 1687 ath_txq_lock(sc, txq); 1688 ath_tx_fill_desc(sc, bf, txq, 0); 1689 ath_tx_txqaddbuf(sc, txq, &bf_q, false); 1690 ath_txq_unlock(sc, txq); 1691 } 1692 1693 /********************/ 1694 /* Queue Management */ 1695 /********************/ 1696 1697 struct ath_txq *ath_txq_setup(struct ath_softc *sc, int qtype, int subtype) 1698 { 1699 struct ath_hw *ah = sc->sc_ah; 1700 struct ath9k_tx_queue_info qi; 1701 static const int subtype_txq_to_hwq[] = { 1702 [IEEE80211_AC_BE] = ATH_TXQ_AC_BE, 1703 [IEEE80211_AC_BK] = ATH_TXQ_AC_BK, 1704 [IEEE80211_AC_VI] = ATH_TXQ_AC_VI, 1705 [IEEE80211_AC_VO] = ATH_TXQ_AC_VO, 1706 }; 1707 int axq_qnum, i; 1708 1709 memset(&qi, 0, sizeof(qi)); 1710 qi.tqi_subtype = subtype_txq_to_hwq[subtype]; 1711 qi.tqi_aifs = ATH9K_TXQ_USEDEFAULT; 1712 qi.tqi_cwmin = ATH9K_TXQ_USEDEFAULT; 1713 qi.tqi_cwmax = ATH9K_TXQ_USEDEFAULT; 1714 qi.tqi_physCompBuf = 0; 1715 1716 /* 1717 * Enable interrupts only for EOL and DESC conditions. 1718 * We mark tx descriptors to receive a DESC interrupt 1719 * when a tx queue gets deep; otherwise waiting for the 1720 * EOL to reap descriptors. Note that this is done to 1721 * reduce interrupt load and this only defers reaping 1722 * descriptors, never transmitting frames. Aside from 1723 * reducing interrupts this also permits more concurrency. 1724 * The only potential downside is if the tx queue backs 1725 * up in which case the top half of the kernel may backup 1726 * due to a lack of tx descriptors. 1727 * 1728 * The UAPSD queue is an exception, since we take a desc- 1729 * based intr on the EOSP frames. 1730 */ 1731 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1732 qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE; 1733 } else { 1734 if (qtype == ATH9K_TX_QUEUE_UAPSD) 1735 qi.tqi_qflags = TXQ_FLAG_TXDESCINT_ENABLE; 1736 else 1737 qi.tqi_qflags = TXQ_FLAG_TXEOLINT_ENABLE | 1738 TXQ_FLAG_TXDESCINT_ENABLE; 1739 } 1740 axq_qnum = ath9k_hw_setuptxqueue(ah, qtype, &qi); 1741 if (axq_qnum == -1) { 1742 /* 1743 * NB: don't print a message, this happens 1744 * normally on parts with too few tx queues 1745 */ 1746 return NULL; 1747 } 1748 if (!ATH_TXQ_SETUP(sc, axq_qnum)) { 1749 struct ath_txq *txq = &sc->tx.txq[axq_qnum]; 1750 1751 txq->axq_qnum = axq_qnum; 1752 txq->mac80211_qnum = -1; 1753 txq->axq_link = NULL; 1754 __skb_queue_head_init(&txq->complete_q); 1755 INIT_LIST_HEAD(&txq->axq_q); 1756 spin_lock_init(&txq->axq_lock); 1757 txq->axq_depth = 0; 1758 txq->axq_ampdu_depth = 0; 1759 txq->axq_tx_inprogress = false; 1760 sc->tx.txqsetup |= 1<<axq_qnum; 1761 1762 txq->txq_headidx = txq->txq_tailidx = 0; 1763 for (i = 0; i < ATH_TXFIFO_DEPTH; i++) 1764 INIT_LIST_HEAD(&txq->txq_fifo[i]); 1765 } 1766 return &sc->tx.txq[axq_qnum]; 1767 } 1768 1769 int ath_txq_update(struct ath_softc *sc, int qnum, 1770 struct ath9k_tx_queue_info *qinfo) 1771 { 1772 struct ath_hw *ah = sc->sc_ah; 1773 int error = 0; 1774 struct ath9k_tx_queue_info qi; 1775 1776 BUG_ON(sc->tx.txq[qnum].axq_qnum != qnum); 1777 1778 ath9k_hw_get_txq_props(ah, qnum, &qi); 1779 qi.tqi_aifs = qinfo->tqi_aifs; 1780 qi.tqi_cwmin = qinfo->tqi_cwmin; 1781 qi.tqi_cwmax = qinfo->tqi_cwmax; 1782 qi.tqi_burstTime = qinfo->tqi_burstTime; 1783 qi.tqi_readyTime = qinfo->tqi_readyTime; 1784 1785 if (!ath9k_hw_set_txq_props(ah, qnum, &qi)) { 1786 ath_err(ath9k_hw_common(sc->sc_ah), 1787 "Unable to update hardware queue %u!\n", qnum); 1788 error = -EIO; 1789 } else { 1790 ath9k_hw_resettxqueue(ah, qnum); 1791 } 1792 1793 return error; 1794 } 1795 1796 int ath_cabq_update(struct ath_softc *sc) 1797 { 1798 struct ath9k_tx_queue_info qi; 1799 struct ath_beacon_config *cur_conf = &sc->cur_chan->beacon; 1800 int qnum = sc->beacon.cabq->axq_qnum; 1801 1802 ath9k_hw_get_txq_props(sc->sc_ah, qnum, &qi); 1803 1804 qi.tqi_readyTime = (TU_TO_USEC(cur_conf->beacon_interval) * 1805 ATH_CABQ_READY_TIME) / 100; 1806 ath_txq_update(sc, qnum, &qi); 1807 1808 return 0; 1809 } 1810 1811 static void ath_drain_txq_list(struct ath_softc *sc, struct ath_txq *txq, 1812 struct list_head *list) 1813 { 1814 struct ath_buf *bf, *lastbf; 1815 struct list_head bf_head; 1816 struct ath_tx_status ts; 1817 1818 memset(&ts, 0, sizeof(ts)); 1819 ts.ts_status = ATH9K_TX_FLUSH; 1820 INIT_LIST_HEAD(&bf_head); 1821 1822 while (!list_empty(list)) { 1823 bf = list_first_entry(list, struct ath_buf, list); 1824 1825 if (bf->bf_state.stale) { 1826 list_del(&bf->list); 1827 1828 ath_tx_return_buffer(sc, bf); 1829 continue; 1830 } 1831 1832 lastbf = bf->bf_lastbf; 1833 list_cut_position(&bf_head, list, &lastbf->list); 1834 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 1835 } 1836 } 1837 1838 /* 1839 * Drain a given TX queue (could be Beacon or Data) 1840 * 1841 * This assumes output has been stopped and 1842 * we do not need to block ath_tx_tasklet. 1843 */ 1844 void ath_draintxq(struct ath_softc *sc, struct ath_txq *txq) 1845 { 1846 rcu_read_lock(); 1847 ath_txq_lock(sc, txq); 1848 1849 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 1850 int idx = txq->txq_tailidx; 1851 1852 while (!list_empty(&txq->txq_fifo[idx])) { 1853 ath_drain_txq_list(sc, txq, &txq->txq_fifo[idx]); 1854 1855 INCR(idx, ATH_TXFIFO_DEPTH); 1856 } 1857 txq->txq_tailidx = idx; 1858 } 1859 1860 txq->axq_link = NULL; 1861 txq->axq_tx_inprogress = false; 1862 ath_drain_txq_list(sc, txq, &txq->axq_q); 1863 1864 ath_txq_unlock_complete(sc, txq); 1865 rcu_read_unlock(); 1866 } 1867 1868 bool ath_drain_all_txq(struct ath_softc *sc) 1869 { 1870 struct ath_hw *ah = sc->sc_ah; 1871 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1872 struct ath_txq *txq; 1873 int i; 1874 u32 npend = 0; 1875 1876 if (test_bit(ATH_OP_INVALID, &common->op_flags)) 1877 return true; 1878 1879 ath9k_hw_abort_tx_dma(ah); 1880 1881 /* Check if any queue remains active */ 1882 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1883 if (!ATH_TXQ_SETUP(sc, i)) 1884 continue; 1885 1886 if (!sc->tx.txq[i].axq_depth) 1887 continue; 1888 1889 if (ath9k_hw_numtxpending(ah, sc->tx.txq[i].axq_qnum)) 1890 npend |= BIT(i); 1891 } 1892 1893 if (npend) { 1894 RESET_STAT_INC(sc, RESET_TX_DMA_ERROR); 1895 ath_dbg(common, RESET, 1896 "Failed to stop TX DMA, queues=0x%03x!\n", npend); 1897 } 1898 1899 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 1900 if (!ATH_TXQ_SETUP(sc, i)) 1901 continue; 1902 1903 txq = &sc->tx.txq[i]; 1904 ath_draintxq(sc, txq); 1905 } 1906 1907 return !npend; 1908 } 1909 1910 void ath_tx_cleanupq(struct ath_softc *sc, struct ath_txq *txq) 1911 { 1912 ath9k_hw_releasetxqueue(sc->sc_ah, txq->axq_qnum); 1913 sc->tx.txqsetup &= ~(1<<txq->axq_qnum); 1914 } 1915 1916 /* For each acq entry, for each tid, try to schedule packets 1917 * for transmit until ampdu_depth has reached min Q depth. 1918 */ 1919 void ath_txq_schedule(struct ath_softc *sc, struct ath_txq *txq) 1920 { 1921 struct ieee80211_hw *hw = sc->hw; 1922 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 1923 struct ieee80211_txq *queue; 1924 struct ath_atx_tid *tid; 1925 int ret; 1926 1927 if (txq->mac80211_qnum < 0) 1928 return; 1929 1930 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 1931 return; 1932 1933 ieee80211_txq_schedule_start(hw, txq->mac80211_qnum); 1934 spin_lock_bh(&sc->chan_lock); 1935 rcu_read_lock(); 1936 1937 if (sc->cur_chan->stopped) 1938 goto out; 1939 1940 while ((queue = ieee80211_next_txq(hw, txq->mac80211_qnum))) { 1941 tid = (struct ath_atx_tid *)queue->drv_priv; 1942 1943 ret = ath_tx_sched_aggr(sc, txq, tid); 1944 ath_dbg(common, QUEUE, "ath_tx_sched_aggr returned %d\n", ret); 1945 1946 ieee80211_return_txq(hw, queue); 1947 } 1948 1949 out: 1950 rcu_read_unlock(); 1951 spin_unlock_bh(&sc->chan_lock); 1952 ieee80211_txq_schedule_end(hw, txq->mac80211_qnum); 1953 } 1954 1955 void ath_txq_schedule_all(struct ath_softc *sc) 1956 { 1957 struct ath_txq *txq; 1958 int i; 1959 1960 for (i = 0; i < IEEE80211_NUM_ACS; i++) { 1961 txq = sc->tx.txq_map[i]; 1962 1963 spin_lock_bh(&txq->axq_lock); 1964 ath_txq_schedule(sc, txq); 1965 spin_unlock_bh(&txq->axq_lock); 1966 } 1967 } 1968 1969 /***********/ 1970 /* TX, DMA */ 1971 /***********/ 1972 1973 /* 1974 * Insert a chain of ath_buf (descriptors) on a txq and 1975 * assume the descriptors are already chained together by caller. 1976 */ 1977 static void ath_tx_txqaddbuf(struct ath_softc *sc, struct ath_txq *txq, 1978 struct list_head *head, bool internal) 1979 { 1980 struct ath_hw *ah = sc->sc_ah; 1981 struct ath_common *common = ath9k_hw_common(ah); 1982 struct ath_buf *bf, *bf_last; 1983 bool puttxbuf = false; 1984 bool edma; 1985 1986 /* 1987 * Insert the frame on the outbound list and 1988 * pass it on to the hardware. 1989 */ 1990 1991 if (list_empty(head)) 1992 return; 1993 1994 edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1995 bf = list_first_entry(head, struct ath_buf, list); 1996 bf_last = list_entry(head->prev, struct ath_buf, list); 1997 1998 ath_dbg(common, QUEUE, "qnum: %d, txq depth: %d\n", 1999 txq->axq_qnum, txq->axq_depth); 2000 2001 if (edma && list_empty(&txq->txq_fifo[txq->txq_headidx])) { 2002 list_splice_tail_init(head, &txq->txq_fifo[txq->txq_headidx]); 2003 INCR(txq->txq_headidx, ATH_TXFIFO_DEPTH); 2004 puttxbuf = true; 2005 } else { 2006 list_splice_tail_init(head, &txq->axq_q); 2007 2008 if (txq->axq_link) { 2009 ath9k_hw_set_desc_link(ah, txq->axq_link, bf->bf_daddr); 2010 ath_dbg(common, XMIT, "link[%u] (%p)=%llx (%p)\n", 2011 txq->axq_qnum, txq->axq_link, 2012 ito64(bf->bf_daddr), bf->bf_desc); 2013 } else if (!edma) 2014 puttxbuf = true; 2015 2016 txq->axq_link = bf_last->bf_desc; 2017 } 2018 2019 if (puttxbuf) { 2020 TX_STAT_INC(sc, txq->axq_qnum, puttxbuf); 2021 ath9k_hw_puttxbuf(ah, txq->axq_qnum, bf->bf_daddr); 2022 ath_dbg(common, XMIT, "TXDP[%u] = %llx (%p)\n", 2023 txq->axq_qnum, ito64(bf->bf_daddr), bf->bf_desc); 2024 } 2025 2026 if (!edma || sc->tx99_state) { 2027 TX_STAT_INC(sc, txq->axq_qnum, txstart); 2028 ath9k_hw_txstart(ah, txq->axq_qnum); 2029 } 2030 2031 if (!internal) { 2032 while (bf) { 2033 txq->axq_depth++; 2034 if (bf_is_ampdu_not_probing(bf)) 2035 txq->axq_ampdu_depth++; 2036 2037 bf_last = bf->bf_lastbf; 2038 bf = bf_last->bf_next; 2039 bf_last->bf_next = NULL; 2040 } 2041 } 2042 } 2043 2044 static void ath_tx_send_normal(struct ath_softc *sc, struct ath_txq *txq, 2045 struct ath_atx_tid *tid, struct sk_buff *skb) 2046 { 2047 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2048 struct ath_frame_info *fi = get_frame_info(skb); 2049 struct list_head bf_head; 2050 struct ath_buf *bf = fi->bf; 2051 2052 INIT_LIST_HEAD(&bf_head); 2053 list_add_tail(&bf->list, &bf_head); 2054 bf->bf_state.bf_type = 0; 2055 if (tid && (tx_info->flags & IEEE80211_TX_CTL_AMPDU)) { 2056 bf->bf_state.bf_type = BUF_AMPDU; 2057 ath_tx_addto_baw(sc, tid, bf); 2058 } 2059 2060 bf->bf_next = NULL; 2061 bf->bf_lastbf = bf; 2062 ath_tx_fill_desc(sc, bf, txq, fi->framelen); 2063 ath_tx_txqaddbuf(sc, txq, &bf_head, false); 2064 TX_STAT_INC(sc, txq->axq_qnum, queued); 2065 } 2066 2067 static void setup_frame_info(struct ieee80211_hw *hw, 2068 struct ieee80211_sta *sta, 2069 struct sk_buff *skb, 2070 int framelen) 2071 { 2072 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2073 struct ieee80211_key_conf *hw_key = tx_info->control.hw_key; 2074 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2075 const struct ieee80211_rate *rate; 2076 struct ath_frame_info *fi = get_frame_info(skb); 2077 struct ath_node *an = NULL; 2078 enum ath9k_key_type keytype; 2079 bool short_preamble = false; 2080 u8 txpower; 2081 2082 /* 2083 * We check if Short Preamble is needed for the CTS rate by 2084 * checking the BSS's global flag. 2085 * But for the rate series, IEEE80211_TX_RC_USE_SHORT_PREAMBLE is used. 2086 */ 2087 if (tx_info->control.vif && 2088 tx_info->control.vif->bss_conf.use_short_preamble) 2089 short_preamble = true; 2090 2091 rate = ieee80211_get_rts_cts_rate(hw, tx_info); 2092 keytype = ath9k_cmn_get_hw_crypto_keytype(skb); 2093 2094 if (sta) 2095 an = (struct ath_node *) sta->drv_priv; 2096 2097 if (tx_info->control.vif) { 2098 struct ieee80211_vif *vif = tx_info->control.vif; 2099 2100 txpower = 2 * vif->bss_conf.txpower; 2101 } else { 2102 struct ath_softc *sc = hw->priv; 2103 2104 txpower = sc->cur_chan->cur_txpower; 2105 } 2106 2107 memset(fi, 0, sizeof(*fi)); 2108 fi->txq = -1; 2109 if (hw_key) 2110 fi->keyix = hw_key->hw_key_idx; 2111 else if (an && ieee80211_is_data(hdr->frame_control) && an->ps_key > 0) 2112 fi->keyix = an->ps_key; 2113 else 2114 fi->keyix = ATH9K_TXKEYIX_INVALID; 2115 fi->keytype = keytype; 2116 fi->framelen = framelen; 2117 fi->tx_power = txpower; 2118 2119 if (!rate) 2120 return; 2121 fi->rtscts_rate = rate->hw_value; 2122 if (short_preamble) 2123 fi->rtscts_rate |= rate->hw_value_short; 2124 } 2125 2126 u8 ath_txchainmask_reduction(struct ath_softc *sc, u8 chainmask, u32 rate) 2127 { 2128 struct ath_hw *ah = sc->sc_ah; 2129 struct ath9k_channel *curchan = ah->curchan; 2130 2131 if ((ah->caps.hw_caps & ATH9K_HW_CAP_APM) && IS_CHAN_5GHZ(curchan) && 2132 (chainmask == 0x7) && (rate < 0x90)) 2133 return 0x3; 2134 else if (AR_SREV_9462(ah) && ath9k_hw_btcoex_is_enabled(ah) && 2135 IS_CCK_RATE(rate)) 2136 return 0x2; 2137 else 2138 return chainmask; 2139 } 2140 2141 /* 2142 * Assign a descriptor (and sequence number if necessary, 2143 * and map buffer for DMA. Frees skb on error 2144 */ 2145 static struct ath_buf *ath_tx_setup_buffer(struct ath_softc *sc, 2146 struct ath_txq *txq, 2147 struct ath_atx_tid *tid, 2148 struct sk_buff *skb) 2149 { 2150 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2151 struct ath_frame_info *fi = get_frame_info(skb); 2152 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2153 struct ath_buf *bf; 2154 int fragno; 2155 u16 seqno; 2156 2157 bf = ath_tx_get_buffer(sc); 2158 if (!bf) { 2159 ath_dbg(common, XMIT, "TX buffers are full\n"); 2160 return NULL; 2161 } 2162 2163 ATH_TXBUF_RESET(bf); 2164 2165 if (tid && ieee80211_is_data_present(hdr->frame_control)) { 2166 fragno = le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG; 2167 seqno = tid->seq_next; 2168 hdr->seq_ctrl = cpu_to_le16(tid->seq_next << IEEE80211_SEQ_SEQ_SHIFT); 2169 2170 if (fragno) 2171 hdr->seq_ctrl |= cpu_to_le16(fragno); 2172 2173 if (!ieee80211_has_morefrags(hdr->frame_control)) 2174 INCR(tid->seq_next, IEEE80211_SEQ_MAX); 2175 2176 bf->bf_state.seqno = seqno; 2177 } 2178 2179 bf->bf_mpdu = skb; 2180 2181 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 2182 skb->len, DMA_TO_DEVICE); 2183 if (unlikely(dma_mapping_error(sc->dev, bf->bf_buf_addr))) { 2184 bf->bf_mpdu = NULL; 2185 bf->bf_buf_addr = 0; 2186 ath_err(ath9k_hw_common(sc->sc_ah), 2187 "dma_mapping_error() on TX\n"); 2188 ath_tx_return_buffer(sc, bf); 2189 return NULL; 2190 } 2191 2192 fi->bf = bf; 2193 2194 return bf; 2195 } 2196 2197 void ath_assign_seq(struct ath_common *common, struct sk_buff *skb) 2198 { 2199 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2200 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2201 struct ieee80211_vif *vif = info->control.vif; 2202 struct ath_vif *avp; 2203 2204 if (!(info->flags & IEEE80211_TX_CTL_ASSIGN_SEQ)) 2205 return; 2206 2207 if (!vif) 2208 return; 2209 2210 avp = (struct ath_vif *)vif->drv_priv; 2211 2212 if (info->flags & IEEE80211_TX_CTL_FIRST_FRAGMENT) 2213 avp->seq_no += 0x10; 2214 2215 hdr->seq_ctrl &= cpu_to_le16(IEEE80211_SCTL_FRAG); 2216 hdr->seq_ctrl |= cpu_to_le16(avp->seq_no); 2217 } 2218 2219 static int ath_tx_prepare(struct ieee80211_hw *hw, struct sk_buff *skb, 2220 struct ath_tx_control *txctl) 2221 { 2222 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2223 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2224 struct ieee80211_sta *sta = txctl->sta; 2225 struct ieee80211_vif *vif = info->control.vif; 2226 struct ath_vif *avp; 2227 struct ath_softc *sc = hw->priv; 2228 int frmlen = skb->len + FCS_LEN; 2229 int padpos, padsize; 2230 2231 /* NOTE: sta can be NULL according to net/mac80211.h */ 2232 if (sta) 2233 txctl->an = (struct ath_node *)sta->drv_priv; 2234 else if (vif && ieee80211_is_data(hdr->frame_control)) { 2235 avp = (void *)vif->drv_priv; 2236 txctl->an = &avp->mcast_node; 2237 } 2238 2239 if (info->control.hw_key) 2240 frmlen += info->control.hw_key->icv_len; 2241 2242 ath_assign_seq(ath9k_hw_common(sc->sc_ah), skb); 2243 2244 if ((vif && vif->type != NL80211_IFTYPE_AP && 2245 vif->type != NL80211_IFTYPE_AP_VLAN) || 2246 !ieee80211_is_data(hdr->frame_control)) 2247 info->flags |= IEEE80211_TX_CTL_CLEAR_PS_FILT; 2248 2249 /* Add the padding after the header if this is not already done */ 2250 padpos = ieee80211_hdrlen(hdr->frame_control); 2251 padsize = padpos & 3; 2252 if (padsize && skb->len > padpos) { 2253 if (skb_headroom(skb) < padsize) 2254 return -ENOMEM; 2255 2256 skb_push(skb, padsize); 2257 memmove(skb->data, skb->data + padsize, padpos); 2258 } 2259 2260 setup_frame_info(hw, sta, skb, frmlen); 2261 return 0; 2262 } 2263 2264 2265 /* Upon failure caller should free skb */ 2266 int ath_tx_start(struct ieee80211_hw *hw, struct sk_buff *skb, 2267 struct ath_tx_control *txctl) 2268 { 2269 struct ieee80211_hdr *hdr; 2270 struct ieee80211_tx_info *info = IEEE80211_SKB_CB(skb); 2271 struct ieee80211_sta *sta = txctl->sta; 2272 struct ieee80211_vif *vif = info->control.vif; 2273 struct ath_frame_info *fi = get_frame_info(skb); 2274 struct ath_vif *avp = NULL; 2275 struct ath_softc *sc = hw->priv; 2276 struct ath_txq *txq = txctl->txq; 2277 struct ath_atx_tid *tid = NULL; 2278 struct ath_node *an = NULL; 2279 struct ath_buf *bf; 2280 bool ps_resp; 2281 int q, ret; 2282 2283 if (vif) 2284 avp = (void *)vif->drv_priv; 2285 2286 ps_resp = !!(info->control.flags & IEEE80211_TX_CTRL_PS_RESPONSE); 2287 2288 ret = ath_tx_prepare(hw, skb, txctl); 2289 if (ret) 2290 return ret; 2291 2292 hdr = (struct ieee80211_hdr *) skb->data; 2293 /* 2294 * At this point, the vif, hw_key and sta pointers in the tx control 2295 * info are no longer valid (overwritten by the ath_frame_info data. 2296 */ 2297 2298 q = skb_get_queue_mapping(skb); 2299 2300 if (ps_resp) 2301 txq = sc->tx.uapsdq; 2302 2303 if (txctl->sta) { 2304 an = (struct ath_node *) sta->drv_priv; 2305 tid = ath_get_skb_tid(sc, an, skb); 2306 } 2307 2308 ath_txq_lock(sc, txq); 2309 if (txq == sc->tx.txq_map[q]) { 2310 fi->txq = q; 2311 ++txq->pending_frames; 2312 } 2313 2314 bf = ath_tx_setup_buffer(sc, txq, tid, skb); 2315 if (!bf) { 2316 ath_txq_skb_done(sc, txq, skb); 2317 if (txctl->paprd) 2318 dev_kfree_skb_any(skb); 2319 else 2320 ieee80211_free_txskb(sc->hw, skb); 2321 goto out; 2322 } 2323 2324 bf->bf_state.bfs_paprd = txctl->paprd; 2325 2326 if (txctl->paprd) 2327 bf->bf_state.bfs_paprd_timestamp = jiffies; 2328 2329 ath_set_rates(vif, sta, bf); 2330 ath_tx_send_normal(sc, txq, tid, skb); 2331 2332 out: 2333 ath_txq_unlock(sc, txq); 2334 2335 return 0; 2336 } 2337 2338 void ath_tx_cabq(struct ieee80211_hw *hw, struct ieee80211_vif *vif, 2339 struct sk_buff *skb) 2340 { 2341 struct ath_softc *sc = hw->priv; 2342 struct ath_tx_control txctl = { 2343 .txq = sc->beacon.cabq 2344 }; 2345 struct ath_tx_info info = {}; 2346 struct ath_buf *bf_tail = NULL; 2347 struct ath_buf *bf; 2348 LIST_HEAD(bf_q); 2349 int duration = 0; 2350 int max_duration; 2351 2352 max_duration = 2353 sc->cur_chan->beacon.beacon_interval * 1000 * 2354 sc->cur_chan->beacon.dtim_period / ATH_BCBUF; 2355 2356 do { 2357 struct ath_frame_info *fi = get_frame_info(skb); 2358 2359 if (ath_tx_prepare(hw, skb, &txctl)) 2360 break; 2361 2362 bf = ath_tx_setup_buffer(sc, txctl.txq, NULL, skb); 2363 if (!bf) 2364 break; 2365 2366 bf->bf_lastbf = bf; 2367 ath_set_rates(vif, NULL, bf); 2368 ath_buf_set_rate(sc, bf, &info, fi->framelen, false); 2369 duration += info.rates[0].PktDuration; 2370 if (bf_tail) 2371 bf_tail->bf_next = bf; 2372 2373 list_add_tail(&bf->list, &bf_q); 2374 bf_tail = bf; 2375 skb = NULL; 2376 2377 if (duration > max_duration) 2378 break; 2379 2380 skb = ieee80211_get_buffered_bc(hw, vif); 2381 } while(skb); 2382 2383 if (skb) 2384 ieee80211_free_txskb(hw, skb); 2385 2386 if (list_empty(&bf_q)) 2387 return; 2388 2389 bf = list_last_entry(&bf_q, struct ath_buf, list); 2390 ath9k_set_moredata(sc, bf, false); 2391 2392 bf = list_first_entry(&bf_q, struct ath_buf, list); 2393 ath_txq_lock(sc, txctl.txq); 2394 ath_tx_fill_desc(sc, bf, txctl.txq, 0); 2395 ath_tx_txqaddbuf(sc, txctl.txq, &bf_q, false); 2396 TX_STAT_INC(sc, txctl.txq->axq_qnum, queued); 2397 ath_txq_unlock(sc, txctl.txq); 2398 } 2399 2400 /*****************/ 2401 /* TX Completion */ 2402 /*****************/ 2403 2404 static void ath_tx_complete(struct ath_softc *sc, struct sk_buff *skb, 2405 int tx_flags, struct ath_txq *txq, 2406 struct ieee80211_sta *sta) 2407 { 2408 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2409 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2410 struct ieee80211_hdr * hdr = (struct ieee80211_hdr *)skb->data; 2411 int padpos, padsize; 2412 unsigned long flags; 2413 2414 ath_dbg(common, XMIT, "TX complete: skb: %p\n", skb); 2415 2416 if (sc->sc_ah->caldata) 2417 set_bit(PAPRD_PACKET_SENT, &sc->sc_ah->caldata->cal_flags); 2418 2419 if (!(tx_flags & ATH_TX_ERROR)) { 2420 if (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) 2421 tx_info->flags |= IEEE80211_TX_STAT_NOACK_TRANSMITTED; 2422 else 2423 tx_info->flags |= IEEE80211_TX_STAT_ACK; 2424 } 2425 2426 if (tx_info->flags & IEEE80211_TX_CTL_REQ_TX_STATUS) { 2427 padpos = ieee80211_hdrlen(hdr->frame_control); 2428 padsize = padpos & 3; 2429 if (padsize && skb->len>padpos+padsize) { 2430 /* 2431 * Remove MAC header padding before giving the frame back to 2432 * mac80211. 2433 */ 2434 memmove(skb->data + padsize, skb->data, padpos); 2435 skb_pull(skb, padsize); 2436 } 2437 } 2438 2439 spin_lock_irqsave(&sc->sc_pm_lock, flags); 2440 if ((sc->ps_flags & PS_WAIT_FOR_TX_ACK) && !txq->axq_depth) { 2441 sc->ps_flags &= ~PS_WAIT_FOR_TX_ACK; 2442 ath_dbg(common, PS, 2443 "Going back to sleep after having received TX status (0x%lx)\n", 2444 sc->ps_flags & (PS_WAIT_FOR_BEACON | 2445 PS_WAIT_FOR_CAB | 2446 PS_WAIT_FOR_PSPOLL_DATA | 2447 PS_WAIT_FOR_TX_ACK)); 2448 } 2449 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 2450 2451 ath_txq_skb_done(sc, txq, skb); 2452 tx_info->status.status_driver_data[0] = sta; 2453 __skb_queue_tail(&txq->complete_q, skb); 2454 } 2455 2456 static void ath_tx_complete_buf(struct ath_softc *sc, struct ath_buf *bf, 2457 struct ath_txq *txq, struct list_head *bf_q, 2458 struct ieee80211_sta *sta, 2459 struct ath_tx_status *ts, int txok) 2460 { 2461 struct sk_buff *skb = bf->bf_mpdu; 2462 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2463 unsigned long flags; 2464 int tx_flags = 0; 2465 2466 if (!txok) 2467 tx_flags |= ATH_TX_ERROR; 2468 2469 if (ts->ts_status & ATH9K_TXERR_FILT) 2470 tx_info->flags |= IEEE80211_TX_STAT_TX_FILTERED; 2471 2472 dma_unmap_single(sc->dev, bf->bf_buf_addr, skb->len, DMA_TO_DEVICE); 2473 bf->bf_buf_addr = 0; 2474 if (sc->tx99_state) 2475 goto skip_tx_complete; 2476 2477 if (bf->bf_state.bfs_paprd) { 2478 if (time_after(jiffies, 2479 bf->bf_state.bfs_paprd_timestamp + 2480 msecs_to_jiffies(ATH_PAPRD_TIMEOUT))) 2481 dev_kfree_skb_any(skb); 2482 else 2483 complete(&sc->paprd_complete); 2484 } else { 2485 ath_debug_stat_tx(sc, bf, ts, txq, tx_flags); 2486 ath_tx_complete(sc, skb, tx_flags, txq, sta); 2487 } 2488 skip_tx_complete: 2489 /* At this point, skb (bf->bf_mpdu) is consumed...make sure we don't 2490 * accidentally reference it later. 2491 */ 2492 bf->bf_mpdu = NULL; 2493 2494 /* 2495 * Return the list of ath_buf of this mpdu to free queue 2496 */ 2497 spin_lock_irqsave(&sc->tx.txbuflock, flags); 2498 list_splice_tail_init(bf_q, &sc->tx.txbuf); 2499 spin_unlock_irqrestore(&sc->tx.txbuflock, flags); 2500 } 2501 2502 static void ath_tx_rc_status(struct ath_softc *sc, struct ath_buf *bf, 2503 struct ath_tx_status *ts, int nframes, int nbad, 2504 int txok) 2505 { 2506 struct sk_buff *skb = bf->bf_mpdu; 2507 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *)skb->data; 2508 struct ieee80211_tx_info *tx_info = IEEE80211_SKB_CB(skb); 2509 struct ieee80211_hw *hw = sc->hw; 2510 struct ath_hw *ah = sc->sc_ah; 2511 u8 i, tx_rateindex; 2512 2513 if (txok) 2514 tx_info->status.ack_signal = ts->ts_rssi; 2515 2516 tx_rateindex = ts->ts_rateindex; 2517 WARN_ON(tx_rateindex >= hw->max_rates); 2518 2519 if (tx_info->flags & IEEE80211_TX_CTL_AMPDU) { 2520 tx_info->flags |= IEEE80211_TX_STAT_AMPDU; 2521 2522 BUG_ON(nbad > nframes); 2523 } 2524 tx_info->status.ampdu_len = nframes; 2525 tx_info->status.ampdu_ack_len = nframes - nbad; 2526 2527 if ((ts->ts_status & ATH9K_TXERR_FILT) == 0 && 2528 (tx_info->flags & IEEE80211_TX_CTL_NO_ACK) == 0) { 2529 /* 2530 * If an underrun error is seen assume it as an excessive 2531 * retry only if max frame trigger level has been reached 2532 * (2 KB for single stream, and 4 KB for dual stream). 2533 * Adjust the long retry as if the frame was tried 2534 * hw->max_rate_tries times to affect how rate control updates 2535 * PER for the failed rate. 2536 * In case of congestion on the bus penalizing this type of 2537 * underruns should help hardware actually transmit new frames 2538 * successfully by eventually preferring slower rates. 2539 * This itself should also alleviate congestion on the bus. 2540 */ 2541 if (unlikely(ts->ts_flags & (ATH9K_TX_DATA_UNDERRUN | 2542 ATH9K_TX_DELIM_UNDERRUN)) && 2543 ieee80211_is_data(hdr->frame_control) && 2544 ah->tx_trig_level >= sc->sc_ah->config.max_txtrig_level) 2545 tx_info->status.rates[tx_rateindex].count = 2546 hw->max_rate_tries; 2547 } 2548 2549 for (i = tx_rateindex + 1; i < hw->max_rates; i++) { 2550 tx_info->status.rates[i].count = 0; 2551 tx_info->status.rates[i].idx = -1; 2552 } 2553 2554 tx_info->status.rates[tx_rateindex].count = ts->ts_longretry + 1; 2555 2556 /* we report airtime in ath_tx_count_airtime(), don't report twice */ 2557 tx_info->status.tx_time = 0; 2558 } 2559 2560 static void ath_tx_processq(struct ath_softc *sc, struct ath_txq *txq) 2561 { 2562 struct ath_hw *ah = sc->sc_ah; 2563 struct ath_common *common = ath9k_hw_common(ah); 2564 struct ath_buf *bf, *lastbf, *bf_held = NULL; 2565 struct list_head bf_head; 2566 struct ath_desc *ds; 2567 struct ath_tx_status ts; 2568 int status; 2569 2570 ath_dbg(common, QUEUE, "tx queue %d (%x), link %p\n", 2571 txq->axq_qnum, ath9k_hw_gettxbuf(sc->sc_ah, txq->axq_qnum), 2572 txq->axq_link); 2573 2574 ath_txq_lock(sc, txq); 2575 for (;;) { 2576 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2577 break; 2578 2579 if (list_empty(&txq->axq_q)) { 2580 txq->axq_link = NULL; 2581 ath_txq_schedule(sc, txq); 2582 break; 2583 } 2584 bf = list_first_entry(&txq->axq_q, struct ath_buf, list); 2585 2586 /* 2587 * There is a race condition that a BH gets scheduled 2588 * after sw writes TxE and before hw re-load the last 2589 * descriptor to get the newly chained one. 2590 * Software must keep the last DONE descriptor as a 2591 * holding descriptor - software does so by marking 2592 * it with the STALE flag. 2593 */ 2594 bf_held = NULL; 2595 if (bf->bf_state.stale) { 2596 bf_held = bf; 2597 if (list_is_last(&bf_held->list, &txq->axq_q)) 2598 break; 2599 2600 bf = list_entry(bf_held->list.next, struct ath_buf, 2601 list); 2602 } 2603 2604 lastbf = bf->bf_lastbf; 2605 ds = lastbf->bf_desc; 2606 2607 memset(&ts, 0, sizeof(ts)); 2608 status = ath9k_hw_txprocdesc(ah, ds, &ts); 2609 if (status == -EINPROGRESS) 2610 break; 2611 2612 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc); 2613 2614 /* 2615 * Remove ath_buf's of the same transmit unit from txq, 2616 * however leave the last descriptor back as the holding 2617 * descriptor for hw. 2618 */ 2619 lastbf->bf_state.stale = true; 2620 INIT_LIST_HEAD(&bf_head); 2621 if (!list_is_singular(&lastbf->list)) 2622 list_cut_position(&bf_head, 2623 &txq->axq_q, lastbf->list.prev); 2624 2625 if (bf_held) { 2626 list_del(&bf_held->list); 2627 ath_tx_return_buffer(sc, bf_held); 2628 } 2629 2630 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2631 } 2632 ath_txq_unlock_complete(sc, txq); 2633 } 2634 2635 void ath_tx_tasklet(struct ath_softc *sc) 2636 { 2637 struct ath_hw *ah = sc->sc_ah; 2638 u32 qcumask = ((1 << ATH9K_NUM_TX_QUEUES) - 1) & ah->intr_txqs; 2639 int i; 2640 2641 rcu_read_lock(); 2642 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) { 2643 if (ATH_TXQ_SETUP(sc, i) && (qcumask & (1 << i))) 2644 ath_tx_processq(sc, &sc->tx.txq[i]); 2645 } 2646 rcu_read_unlock(); 2647 } 2648 2649 void ath_tx_edma_tasklet(struct ath_softc *sc) 2650 { 2651 struct ath_tx_status ts; 2652 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2653 struct ath_hw *ah = sc->sc_ah; 2654 struct ath_txq *txq; 2655 struct ath_buf *bf, *lastbf; 2656 struct list_head bf_head; 2657 struct list_head *fifo_list; 2658 int status; 2659 2660 rcu_read_lock(); 2661 for (;;) { 2662 if (test_bit(ATH_OP_HW_RESET, &common->op_flags)) 2663 break; 2664 2665 status = ath9k_hw_txprocdesc(ah, NULL, (void *)&ts); 2666 if (status == -EINPROGRESS) 2667 break; 2668 if (status == -EIO) { 2669 ath_dbg(common, XMIT, "Error processing tx status\n"); 2670 break; 2671 } 2672 2673 /* Process beacon completions separately */ 2674 if (ts.qid == sc->beacon.beaconq) { 2675 sc->beacon.tx_processed = true; 2676 sc->beacon.tx_last = !(ts.ts_status & ATH9K_TXERR_MASK); 2677 2678 if (ath9k_is_chanctx_enabled()) { 2679 ath_chanctx_event(sc, NULL, 2680 ATH_CHANCTX_EVENT_BEACON_SENT); 2681 } 2682 2683 ath9k_csa_update(sc); 2684 continue; 2685 } 2686 2687 txq = &sc->tx.txq[ts.qid]; 2688 2689 ath_txq_lock(sc, txq); 2690 2691 TX_STAT_INC(sc, txq->axq_qnum, txprocdesc); 2692 2693 fifo_list = &txq->txq_fifo[txq->txq_tailidx]; 2694 if (list_empty(fifo_list)) { 2695 ath_txq_unlock(sc, txq); 2696 break; 2697 } 2698 2699 bf = list_first_entry(fifo_list, struct ath_buf, list); 2700 if (bf->bf_state.stale) { 2701 list_del(&bf->list); 2702 ath_tx_return_buffer(sc, bf); 2703 bf = list_first_entry(fifo_list, struct ath_buf, list); 2704 } 2705 2706 lastbf = bf->bf_lastbf; 2707 2708 INIT_LIST_HEAD(&bf_head); 2709 if (list_is_last(&lastbf->list, fifo_list)) { 2710 list_splice_tail_init(fifo_list, &bf_head); 2711 INCR(txq->txq_tailidx, ATH_TXFIFO_DEPTH); 2712 2713 if (!list_empty(&txq->axq_q)) { 2714 struct list_head bf_q; 2715 2716 INIT_LIST_HEAD(&bf_q); 2717 txq->axq_link = NULL; 2718 list_splice_tail_init(&txq->axq_q, &bf_q); 2719 ath_tx_txqaddbuf(sc, txq, &bf_q, true); 2720 } 2721 } else { 2722 lastbf->bf_state.stale = true; 2723 if (bf != lastbf) 2724 list_cut_position(&bf_head, fifo_list, 2725 lastbf->list.prev); 2726 } 2727 2728 ath_tx_process_buffer(sc, txq, &ts, bf, &bf_head); 2729 ath_txq_unlock_complete(sc, txq); 2730 } 2731 rcu_read_unlock(); 2732 } 2733 2734 /*****************/ 2735 /* Init, Cleanup */ 2736 /*****************/ 2737 2738 static int ath_txstatus_setup(struct ath_softc *sc, int size) 2739 { 2740 struct ath_descdma *dd = &sc->txsdma; 2741 u8 txs_len = sc->sc_ah->caps.txs_len; 2742 2743 dd->dd_desc_len = size * txs_len; 2744 dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len, 2745 &dd->dd_desc_paddr, GFP_KERNEL); 2746 if (!dd->dd_desc) 2747 return -ENOMEM; 2748 2749 return 0; 2750 } 2751 2752 static int ath_tx_edma_init(struct ath_softc *sc) 2753 { 2754 int err; 2755 2756 err = ath_txstatus_setup(sc, ATH_TXSTATUS_RING_SIZE); 2757 if (!err) 2758 ath9k_hw_setup_statusring(sc->sc_ah, sc->txsdma.dd_desc, 2759 sc->txsdma.dd_desc_paddr, 2760 ATH_TXSTATUS_RING_SIZE); 2761 2762 return err; 2763 } 2764 2765 int ath_tx_init(struct ath_softc *sc, int nbufs) 2766 { 2767 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2768 int error = 0; 2769 2770 spin_lock_init(&sc->tx.txbuflock); 2771 2772 error = ath_descdma_setup(sc, &sc->tx.txdma, &sc->tx.txbuf, 2773 "tx", nbufs, 1, 1); 2774 if (error != 0) { 2775 ath_err(common, 2776 "Failed to allocate tx descriptors: %d\n", error); 2777 return error; 2778 } 2779 2780 error = ath_descdma_setup(sc, &sc->beacon.bdma, &sc->beacon.bbuf, 2781 "beacon", ATH_BCBUF, 1, 1); 2782 if (error != 0) { 2783 ath_err(common, 2784 "Failed to allocate beacon descriptors: %d\n", error); 2785 return error; 2786 } 2787 2788 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 2789 error = ath_tx_edma_init(sc); 2790 2791 return error; 2792 } 2793 2794 void ath_tx_node_init(struct ath_softc *sc, struct ath_node *an) 2795 { 2796 struct ath_atx_tid *tid; 2797 int tidno, acno; 2798 2799 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 2800 tid = ath_node_to_tid(an, tidno); 2801 tid->an = an; 2802 tid->tidno = tidno; 2803 tid->seq_start = tid->seq_next = 0; 2804 tid->baw_size = WME_MAX_BA; 2805 tid->baw_head = tid->baw_tail = 0; 2806 tid->active = false; 2807 tid->clear_ps_filter = true; 2808 __skb_queue_head_init(&tid->retry_q); 2809 INIT_LIST_HEAD(&tid->list); 2810 acno = TID_TO_WME_AC(tidno); 2811 tid->txq = sc->tx.txq_map[acno]; 2812 2813 if (!an->sta) 2814 break; /* just one multicast ath_atx_tid */ 2815 } 2816 } 2817 2818 void ath_tx_node_cleanup(struct ath_softc *sc, struct ath_node *an) 2819 { 2820 struct ath_atx_tid *tid; 2821 struct ath_txq *txq; 2822 int tidno; 2823 2824 rcu_read_lock(); 2825 2826 for (tidno = 0; tidno < IEEE80211_NUM_TIDS; tidno++) { 2827 tid = ath_node_to_tid(an, tidno); 2828 txq = tid->txq; 2829 2830 ath_txq_lock(sc, txq); 2831 2832 if (!list_empty(&tid->list)) 2833 list_del_init(&tid->list); 2834 2835 ath_tid_drain(sc, txq, tid); 2836 tid->active = false; 2837 2838 ath_txq_unlock(sc, txq); 2839 2840 if (!an->sta) 2841 break; /* just one multicast ath_atx_tid */ 2842 } 2843 2844 rcu_read_unlock(); 2845 } 2846 2847 #ifdef CONFIG_ATH9K_TX99 2848 2849 int ath9k_tx99_send(struct ath_softc *sc, struct sk_buff *skb, 2850 struct ath_tx_control *txctl) 2851 { 2852 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 2853 struct ath_frame_info *fi = get_frame_info(skb); 2854 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 2855 struct ath_buf *bf; 2856 int padpos, padsize; 2857 2858 padpos = ieee80211_hdrlen(hdr->frame_control); 2859 padsize = padpos & 3; 2860 2861 if (padsize && skb->len > padpos) { 2862 if (skb_headroom(skb) < padsize) { 2863 ath_dbg(common, XMIT, 2864 "tx99 padding failed\n"); 2865 return -EINVAL; 2866 } 2867 2868 skb_push(skb, padsize); 2869 memmove(skb->data, skb->data + padsize, padpos); 2870 } 2871 2872 fi->keyix = ATH9K_TXKEYIX_INVALID; 2873 fi->framelen = skb->len + FCS_LEN; 2874 fi->keytype = ATH9K_KEY_TYPE_CLEAR; 2875 2876 bf = ath_tx_setup_buffer(sc, txctl->txq, NULL, skb); 2877 if (!bf) { 2878 ath_dbg(common, XMIT, "tx99 buffer setup failed\n"); 2879 return -EINVAL; 2880 } 2881 2882 ath_set_rates(sc->tx99_vif, NULL, bf); 2883 2884 ath9k_hw_set_desc_link(sc->sc_ah, bf->bf_desc, bf->bf_daddr); 2885 ath9k_hw_tx99_start(sc->sc_ah, txctl->txq->axq_qnum); 2886 2887 ath_tx_send_normal(sc, txctl->txq, NULL, skb); 2888 2889 return 0; 2890 } 2891 2892 #endif /* CONFIG_ATH9K_TX99 */ 2893