xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/recv.c (revision d2168146)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define SKB_CB_ATHBUF(__skb)	(*((struct ath_rxbuf **)__skb->cb))
22 
23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
24 {
25 	return sc->ps_enabled &&
26 	       (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
27 }
28 
29 /*
30  * Setup and link descriptors.
31  *
32  * 11N: we can no longer afford to self link the last descriptor.
33  * MAC acknowledges BA status as long as it copies frames to host
34  * buffer (or rx fifo). This can incorrectly acknowledge packets
35  * to a sender if last desc is self-linked.
36  */
37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf,
38 			    bool flush)
39 {
40 	struct ath_hw *ah = sc->sc_ah;
41 	struct ath_common *common = ath9k_hw_common(ah);
42 	struct ath_desc *ds;
43 	struct sk_buff *skb;
44 
45 	ds = bf->bf_desc;
46 	ds->ds_link = 0; /* link to null */
47 	ds->ds_data = bf->bf_buf_addr;
48 
49 	/* virtual addr of the beginning of the buffer. */
50 	skb = bf->bf_mpdu;
51 	BUG_ON(skb == NULL);
52 	ds->ds_vdata = skb->data;
53 
54 	/*
55 	 * setup rx descriptors. The rx_bufsize here tells the hardware
56 	 * how much data it can DMA to us and that we are prepared
57 	 * to process
58 	 */
59 	ath9k_hw_setuprxdesc(ah, ds,
60 			     common->rx_bufsize,
61 			     0);
62 
63 	if (sc->rx.rxlink)
64 		*sc->rx.rxlink = bf->bf_daddr;
65 	else if (!flush)
66 		ath9k_hw_putrxbuf(ah, bf->bf_daddr);
67 
68 	sc->rx.rxlink = &ds->ds_link;
69 }
70 
71 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf,
72 			      bool flush)
73 {
74 	if (sc->rx.buf_hold)
75 		ath_rx_buf_link(sc, sc->rx.buf_hold, flush);
76 
77 	sc->rx.buf_hold = bf;
78 }
79 
80 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
81 {
82 	/* XXX block beacon interrupts */
83 	ath9k_hw_setantenna(sc->sc_ah, antenna);
84 	sc->rx.defant = antenna;
85 	sc->rx.rxotherant = 0;
86 }
87 
88 static void ath_opmode_init(struct ath_softc *sc)
89 {
90 	struct ath_hw *ah = sc->sc_ah;
91 	struct ath_common *common = ath9k_hw_common(ah);
92 
93 	u32 rfilt, mfilt[2];
94 
95 	/* configure rx filter */
96 	rfilt = ath_calcrxfilter(sc);
97 	ath9k_hw_setrxfilter(ah, rfilt);
98 
99 	/* configure bssid mask */
100 	ath_hw_setbssidmask(common);
101 
102 	/* configure operational mode */
103 	ath9k_hw_setopmode(ah);
104 
105 	/* calculate and install multicast filter */
106 	mfilt[0] = mfilt[1] = ~0;
107 	ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
108 }
109 
110 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
111 				 enum ath9k_rx_qtype qtype)
112 {
113 	struct ath_hw *ah = sc->sc_ah;
114 	struct ath_rx_edma *rx_edma;
115 	struct sk_buff *skb;
116 	struct ath_rxbuf *bf;
117 
118 	rx_edma = &sc->rx.rx_edma[qtype];
119 	if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
120 		return false;
121 
122 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
123 	list_del_init(&bf->list);
124 
125 	skb = bf->bf_mpdu;
126 
127 	memset(skb->data, 0, ah->caps.rx_status_len);
128 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
129 				ah->caps.rx_status_len, DMA_TO_DEVICE);
130 
131 	SKB_CB_ATHBUF(skb) = bf;
132 	ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
133 	__skb_queue_tail(&rx_edma->rx_fifo, skb);
134 
135 	return true;
136 }
137 
138 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
139 				  enum ath9k_rx_qtype qtype)
140 {
141 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
142 	struct ath_rxbuf *bf, *tbf;
143 
144 	if (list_empty(&sc->rx.rxbuf)) {
145 		ath_dbg(common, QUEUE, "No free rx buf available\n");
146 		return;
147 	}
148 
149 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
150 		if (!ath_rx_edma_buf_link(sc, qtype))
151 			break;
152 
153 }
154 
155 static void ath_rx_remove_buffer(struct ath_softc *sc,
156 				 enum ath9k_rx_qtype qtype)
157 {
158 	struct ath_rxbuf *bf;
159 	struct ath_rx_edma *rx_edma;
160 	struct sk_buff *skb;
161 
162 	rx_edma = &sc->rx.rx_edma[qtype];
163 
164 	while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
165 		bf = SKB_CB_ATHBUF(skb);
166 		BUG_ON(!bf);
167 		list_add_tail(&bf->list, &sc->rx.rxbuf);
168 	}
169 }
170 
171 static void ath_rx_edma_cleanup(struct ath_softc *sc)
172 {
173 	struct ath_hw *ah = sc->sc_ah;
174 	struct ath_common *common = ath9k_hw_common(ah);
175 	struct ath_rxbuf *bf;
176 
177 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
178 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
179 
180 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
181 		if (bf->bf_mpdu) {
182 			dma_unmap_single(sc->dev, bf->bf_buf_addr,
183 					common->rx_bufsize,
184 					DMA_BIDIRECTIONAL);
185 			dev_kfree_skb_any(bf->bf_mpdu);
186 			bf->bf_buf_addr = 0;
187 			bf->bf_mpdu = NULL;
188 		}
189 	}
190 }
191 
192 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
193 {
194 	__skb_queue_head_init(&rx_edma->rx_fifo);
195 	rx_edma->rx_fifo_hwsize = size;
196 }
197 
198 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
199 {
200 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
201 	struct ath_hw *ah = sc->sc_ah;
202 	struct sk_buff *skb;
203 	struct ath_rxbuf *bf;
204 	int error = 0, i;
205 	u32 size;
206 
207 	ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
208 				    ah->caps.rx_status_len);
209 
210 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
211 			       ah->caps.rx_lp_qdepth);
212 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
213 			       ah->caps.rx_hp_qdepth);
214 
215 	size = sizeof(struct ath_rxbuf) * nbufs;
216 	bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
217 	if (!bf)
218 		return -ENOMEM;
219 
220 	INIT_LIST_HEAD(&sc->rx.rxbuf);
221 
222 	for (i = 0; i < nbufs; i++, bf++) {
223 		skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
224 		if (!skb) {
225 			error = -ENOMEM;
226 			goto rx_init_fail;
227 		}
228 
229 		memset(skb->data, 0, common->rx_bufsize);
230 		bf->bf_mpdu = skb;
231 
232 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
233 						 common->rx_bufsize,
234 						 DMA_BIDIRECTIONAL);
235 		if (unlikely(dma_mapping_error(sc->dev,
236 						bf->bf_buf_addr))) {
237 				dev_kfree_skb_any(skb);
238 				bf->bf_mpdu = NULL;
239 				bf->bf_buf_addr = 0;
240 				ath_err(common,
241 					"dma_mapping_error() on RX init\n");
242 				error = -ENOMEM;
243 				goto rx_init_fail;
244 		}
245 
246 		list_add_tail(&bf->list, &sc->rx.rxbuf);
247 	}
248 
249 	return 0;
250 
251 rx_init_fail:
252 	ath_rx_edma_cleanup(sc);
253 	return error;
254 }
255 
256 static void ath_edma_start_recv(struct ath_softc *sc)
257 {
258 	ath9k_hw_rxena(sc->sc_ah);
259 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
260 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
261 	ath_opmode_init(sc);
262 	ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
263 }
264 
265 static void ath_edma_stop_recv(struct ath_softc *sc)
266 {
267 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
268 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
269 }
270 
271 int ath_rx_init(struct ath_softc *sc, int nbufs)
272 {
273 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
274 	struct sk_buff *skb;
275 	struct ath_rxbuf *bf;
276 	int error = 0;
277 
278 	spin_lock_init(&sc->sc_pcu_lock);
279 
280 	common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
281 			     sc->sc_ah->caps.rx_status_len;
282 
283 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
284 		return ath_rx_edma_init(sc, nbufs);
285 
286 	ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
287 		common->cachelsz, common->rx_bufsize);
288 
289 	/* Initialize rx descriptors */
290 
291 	error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
292 				  "rx", nbufs, 1, 0);
293 	if (error != 0) {
294 		ath_err(common,
295 			"failed to allocate rx descriptors: %d\n",
296 			error);
297 		goto err;
298 	}
299 
300 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
301 		skb = ath_rxbuf_alloc(common, common->rx_bufsize,
302 				      GFP_KERNEL);
303 		if (skb == NULL) {
304 			error = -ENOMEM;
305 			goto err;
306 		}
307 
308 		bf->bf_mpdu = skb;
309 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
310 						 common->rx_bufsize,
311 						 DMA_FROM_DEVICE);
312 		if (unlikely(dma_mapping_error(sc->dev,
313 					       bf->bf_buf_addr))) {
314 			dev_kfree_skb_any(skb);
315 			bf->bf_mpdu = NULL;
316 			bf->bf_buf_addr = 0;
317 			ath_err(common,
318 				"dma_mapping_error() on RX init\n");
319 			error = -ENOMEM;
320 			goto err;
321 		}
322 	}
323 	sc->rx.rxlink = NULL;
324 err:
325 	if (error)
326 		ath_rx_cleanup(sc);
327 
328 	return error;
329 }
330 
331 void ath_rx_cleanup(struct ath_softc *sc)
332 {
333 	struct ath_hw *ah = sc->sc_ah;
334 	struct ath_common *common = ath9k_hw_common(ah);
335 	struct sk_buff *skb;
336 	struct ath_rxbuf *bf;
337 
338 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
339 		ath_rx_edma_cleanup(sc);
340 		return;
341 	}
342 
343 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
344 		skb = bf->bf_mpdu;
345 		if (skb) {
346 			dma_unmap_single(sc->dev, bf->bf_buf_addr,
347 					 common->rx_bufsize,
348 					 DMA_FROM_DEVICE);
349 			dev_kfree_skb(skb);
350 			bf->bf_buf_addr = 0;
351 			bf->bf_mpdu = NULL;
352 		}
353 	}
354 }
355 
356 /*
357  * Calculate the receive filter according to the
358  * operating mode and state:
359  *
360  * o always accept unicast, broadcast, and multicast traffic
361  * o maintain current state of phy error reception (the hal
362  *   may enable phy error frames for noise immunity work)
363  * o probe request frames are accepted only when operating in
364  *   hostap, adhoc, or monitor modes
365  * o enable promiscuous mode according to the interface state
366  * o accept beacons:
367  *   - when operating in adhoc mode so the 802.11 layer creates
368  *     node table entries for peers,
369  *   - when operating in station mode for collecting rssi data when
370  *     the station is otherwise quiet, or
371  *   - when operating as a repeater so we see repeater-sta beacons
372  *   - when scanning
373  */
374 
375 u32 ath_calcrxfilter(struct ath_softc *sc)
376 {
377 	u32 rfilt;
378 
379 	if (config_enabled(CONFIG_ATH9K_TX99))
380 		return 0;
381 
382 	rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
383 		| ATH9K_RX_FILTER_MCAST;
384 
385 	/* if operating on a DFS channel, enable radar pulse detection */
386 	if (sc->hw->conf.radar_enabled)
387 		rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
388 
389 	if (sc->rx.rxfilter & FIF_PROBE_REQ)
390 		rfilt |= ATH9K_RX_FILTER_PROBEREQ;
391 
392 	/*
393 	 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
394 	 * mode interface or when in monitor mode. AP mode does not need this
395 	 * since it receives all in-BSS frames anyway.
396 	 */
397 	if (sc->sc_ah->is_monitoring)
398 		rfilt |= ATH9K_RX_FILTER_PROM;
399 
400 	if (sc->rx.rxfilter & FIF_CONTROL)
401 		rfilt |= ATH9K_RX_FILTER_CONTROL;
402 
403 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
404 	    (sc->nvifs <= 1) &&
405 	    !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
406 		rfilt |= ATH9K_RX_FILTER_MYBEACON;
407 	else
408 		rfilt |= ATH9K_RX_FILTER_BEACON;
409 
410 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
411 	    (sc->rx.rxfilter & FIF_PSPOLL))
412 		rfilt |= ATH9K_RX_FILTER_PSPOLL;
413 
414 	if (conf_is_ht(&sc->hw->conf))
415 		rfilt |= ATH9K_RX_FILTER_COMP_BAR;
416 
417 	if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
418 		/* This is needed for older chips */
419 		if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
420 			rfilt |= ATH9K_RX_FILTER_PROM;
421 		rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
422 	}
423 
424 	if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah))
425 		rfilt |= ATH9K_RX_FILTER_4ADDRESS;
426 
427 	return rfilt;
428 
429 }
430 
431 int ath_startrecv(struct ath_softc *sc)
432 {
433 	struct ath_hw *ah = sc->sc_ah;
434 	struct ath_rxbuf *bf, *tbf;
435 
436 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
437 		ath_edma_start_recv(sc);
438 		return 0;
439 	}
440 
441 	if (list_empty(&sc->rx.rxbuf))
442 		goto start_recv;
443 
444 	sc->rx.buf_hold = NULL;
445 	sc->rx.rxlink = NULL;
446 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
447 		ath_rx_buf_link(sc, bf, false);
448 	}
449 
450 	/* We could have deleted elements so the list may be empty now */
451 	if (list_empty(&sc->rx.rxbuf))
452 		goto start_recv;
453 
454 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
455 	ath9k_hw_putrxbuf(ah, bf->bf_daddr);
456 	ath9k_hw_rxena(ah);
457 
458 start_recv:
459 	ath_opmode_init(sc);
460 	ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
461 
462 	return 0;
463 }
464 
465 static void ath_flushrecv(struct ath_softc *sc)
466 {
467 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
468 		ath_rx_tasklet(sc, 1, true);
469 	ath_rx_tasklet(sc, 1, false);
470 }
471 
472 bool ath_stoprecv(struct ath_softc *sc)
473 {
474 	struct ath_hw *ah = sc->sc_ah;
475 	bool stopped, reset = false;
476 
477 	ath9k_hw_abortpcurecv(ah);
478 	ath9k_hw_setrxfilter(ah, 0);
479 	stopped = ath9k_hw_stopdmarecv(ah, &reset);
480 
481 	ath_flushrecv(sc);
482 
483 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
484 		ath_edma_stop_recv(sc);
485 	else
486 		sc->rx.rxlink = NULL;
487 
488 	if (!(ah->ah_flags & AH_UNPLUGGED) &&
489 	    unlikely(!stopped)) {
490 		ath_err(ath9k_hw_common(sc->sc_ah),
491 			"Could not stop RX, we could be "
492 			"confusing the DMA engine when we start RX up\n");
493 		ATH_DBG_WARN_ON_ONCE(!stopped);
494 	}
495 	return stopped && !reset;
496 }
497 
498 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
499 {
500 	/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
501 	struct ieee80211_mgmt *mgmt;
502 	u8 *pos, *end, id, elen;
503 	struct ieee80211_tim_ie *tim;
504 
505 	mgmt = (struct ieee80211_mgmt *)skb->data;
506 	pos = mgmt->u.beacon.variable;
507 	end = skb->data + skb->len;
508 
509 	while (pos + 2 < end) {
510 		id = *pos++;
511 		elen = *pos++;
512 		if (pos + elen > end)
513 			break;
514 
515 		if (id == WLAN_EID_TIM) {
516 			if (elen < sizeof(*tim))
517 				break;
518 			tim = (struct ieee80211_tim_ie *) pos;
519 			if (tim->dtim_count != 0)
520 				break;
521 			return tim->bitmap_ctrl & 0x01;
522 		}
523 
524 		pos += elen;
525 	}
526 
527 	return false;
528 }
529 
530 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
531 {
532 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
533 
534 	if (skb->len < 24 + 8 + 2 + 2)
535 		return;
536 
537 	sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
538 
539 	if (sc->ps_flags & PS_BEACON_SYNC) {
540 		sc->ps_flags &= ~PS_BEACON_SYNC;
541 		ath_dbg(common, PS,
542 			"Reconfigure beacon timers based on synchronized timestamp\n");
543 		if (!(WARN_ON_ONCE(sc->cur_beacon_conf.beacon_interval == 0)))
544 			ath9k_set_beacon(sc);
545 		if (sc->p2p_ps_vif)
546 			ath9k_update_p2p_ps(sc, sc->p2p_ps_vif->vif);
547 	}
548 
549 	if (ath_beacon_dtim_pending_cab(skb)) {
550 		/*
551 		 * Remain awake waiting for buffered broadcast/multicast
552 		 * frames. If the last broadcast/multicast frame is not
553 		 * received properly, the next beacon frame will work as
554 		 * a backup trigger for returning into NETWORK SLEEP state,
555 		 * so we are waiting for it as well.
556 		 */
557 		ath_dbg(common, PS,
558 			"Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
559 		sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
560 		return;
561 	}
562 
563 	if (sc->ps_flags & PS_WAIT_FOR_CAB) {
564 		/*
565 		 * This can happen if a broadcast frame is dropped or the AP
566 		 * fails to send a frame indicating that all CAB frames have
567 		 * been delivered.
568 		 */
569 		sc->ps_flags &= ~PS_WAIT_FOR_CAB;
570 		ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
571 	}
572 }
573 
574 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
575 {
576 	struct ieee80211_hdr *hdr;
577 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
578 
579 	hdr = (struct ieee80211_hdr *)skb->data;
580 
581 	/* Process Beacon and CAB receive in PS state */
582 	if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
583 	    && mybeacon) {
584 		ath_rx_ps_beacon(sc, skb);
585 	} else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
586 		   (ieee80211_is_data(hdr->frame_control) ||
587 		    ieee80211_is_action(hdr->frame_control)) &&
588 		   is_multicast_ether_addr(hdr->addr1) &&
589 		   !ieee80211_has_moredata(hdr->frame_control)) {
590 		/*
591 		 * No more broadcast/multicast frames to be received at this
592 		 * point.
593 		 */
594 		sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
595 		ath_dbg(common, PS,
596 			"All PS CAB frames received, back to sleep\n");
597 	} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
598 		   !is_multicast_ether_addr(hdr->addr1) &&
599 		   !ieee80211_has_morefrags(hdr->frame_control)) {
600 		sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
601 		ath_dbg(common, PS,
602 			"Going back to sleep after having received PS-Poll data (0x%lx)\n",
603 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
604 					PS_WAIT_FOR_CAB |
605 					PS_WAIT_FOR_PSPOLL_DATA |
606 					PS_WAIT_FOR_TX_ACK));
607 	}
608 }
609 
610 static bool ath_edma_get_buffers(struct ath_softc *sc,
611 				 enum ath9k_rx_qtype qtype,
612 				 struct ath_rx_status *rs,
613 				 struct ath_rxbuf **dest)
614 {
615 	struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
616 	struct ath_hw *ah = sc->sc_ah;
617 	struct ath_common *common = ath9k_hw_common(ah);
618 	struct sk_buff *skb;
619 	struct ath_rxbuf *bf;
620 	int ret;
621 
622 	skb = skb_peek(&rx_edma->rx_fifo);
623 	if (!skb)
624 		return false;
625 
626 	bf = SKB_CB_ATHBUF(skb);
627 	BUG_ON(!bf);
628 
629 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
630 				common->rx_bufsize, DMA_FROM_DEVICE);
631 
632 	ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
633 	if (ret == -EINPROGRESS) {
634 		/*let device gain the buffer again*/
635 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
636 				common->rx_bufsize, DMA_FROM_DEVICE);
637 		return false;
638 	}
639 
640 	__skb_unlink(skb, &rx_edma->rx_fifo);
641 	if (ret == -EINVAL) {
642 		/* corrupt descriptor, skip this one and the following one */
643 		list_add_tail(&bf->list, &sc->rx.rxbuf);
644 		ath_rx_edma_buf_link(sc, qtype);
645 
646 		skb = skb_peek(&rx_edma->rx_fifo);
647 		if (skb) {
648 			bf = SKB_CB_ATHBUF(skb);
649 			BUG_ON(!bf);
650 
651 			__skb_unlink(skb, &rx_edma->rx_fifo);
652 			list_add_tail(&bf->list, &sc->rx.rxbuf);
653 			ath_rx_edma_buf_link(sc, qtype);
654 		}
655 
656 		bf = NULL;
657 	}
658 
659 	*dest = bf;
660 	return true;
661 }
662 
663 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
664 						struct ath_rx_status *rs,
665 						enum ath9k_rx_qtype qtype)
666 {
667 	struct ath_rxbuf *bf = NULL;
668 
669 	while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
670 		if (!bf)
671 			continue;
672 
673 		return bf;
674 	}
675 	return NULL;
676 }
677 
678 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc,
679 					   struct ath_rx_status *rs)
680 {
681 	struct ath_hw *ah = sc->sc_ah;
682 	struct ath_common *common = ath9k_hw_common(ah);
683 	struct ath_desc *ds;
684 	struct ath_rxbuf *bf;
685 	int ret;
686 
687 	if (list_empty(&sc->rx.rxbuf)) {
688 		sc->rx.rxlink = NULL;
689 		return NULL;
690 	}
691 
692 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
693 	if (bf == sc->rx.buf_hold)
694 		return NULL;
695 
696 	ds = bf->bf_desc;
697 
698 	/*
699 	 * Must provide the virtual address of the current
700 	 * descriptor, the physical address, and the virtual
701 	 * address of the next descriptor in the h/w chain.
702 	 * This allows the HAL to look ahead to see if the
703 	 * hardware is done with a descriptor by checking the
704 	 * done bit in the following descriptor and the address
705 	 * of the current descriptor the DMA engine is working
706 	 * on.  All this is necessary because of our use of
707 	 * a self-linked list to avoid rx overruns.
708 	 */
709 	ret = ath9k_hw_rxprocdesc(ah, ds, rs);
710 	if (ret == -EINPROGRESS) {
711 		struct ath_rx_status trs;
712 		struct ath_rxbuf *tbf;
713 		struct ath_desc *tds;
714 
715 		memset(&trs, 0, sizeof(trs));
716 		if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
717 			sc->rx.rxlink = NULL;
718 			return NULL;
719 		}
720 
721 		tbf = list_entry(bf->list.next, struct ath_rxbuf, list);
722 
723 		/*
724 		 * On some hardware the descriptor status words could
725 		 * get corrupted, including the done bit. Because of
726 		 * this, check if the next descriptor's done bit is
727 		 * set or not.
728 		 *
729 		 * If the next descriptor's done bit is set, the current
730 		 * descriptor has been corrupted. Force s/w to discard
731 		 * this descriptor and continue...
732 		 */
733 
734 		tds = tbf->bf_desc;
735 		ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
736 		if (ret == -EINPROGRESS)
737 			return NULL;
738 
739 		/*
740 		 * Re-check previous descriptor, in case it has been filled
741 		 * in the mean time.
742 		 */
743 		ret = ath9k_hw_rxprocdesc(ah, ds, rs);
744 		if (ret == -EINPROGRESS) {
745 			/*
746 			 * mark descriptor as zero-length and set the 'more'
747 			 * flag to ensure that both buffers get discarded
748 			 */
749 			rs->rs_datalen = 0;
750 			rs->rs_more = true;
751 		}
752 	}
753 
754 	list_del(&bf->list);
755 	if (!bf->bf_mpdu)
756 		return bf;
757 
758 	/*
759 	 * Synchronize the DMA transfer with CPU before
760 	 * 1. accessing the frame
761 	 * 2. requeueing the same buffer to h/w
762 	 */
763 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
764 			common->rx_bufsize,
765 			DMA_FROM_DEVICE);
766 
767 	return bf;
768 }
769 
770 static void ath9k_process_tsf(struct ath_rx_status *rs,
771 			      struct ieee80211_rx_status *rxs,
772 			      u64 tsf)
773 {
774 	u32 tsf_lower = tsf & 0xffffffff;
775 
776 	rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp;
777 	if (rs->rs_tstamp > tsf_lower &&
778 	    unlikely(rs->rs_tstamp - tsf_lower > 0x10000000))
779 		rxs->mactime -= 0x100000000ULL;
780 
781 	if (rs->rs_tstamp < tsf_lower &&
782 	    unlikely(tsf_lower - rs->rs_tstamp > 0x10000000))
783 		rxs->mactime += 0x100000000ULL;
784 }
785 
786 /*
787  * For Decrypt or Demic errors, we only mark packet status here and always push
788  * up the frame up to let mac80211 handle the actual error case, be it no
789  * decryption key or real decryption error. This let us keep statistics there.
790  */
791 static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
792 				   struct sk_buff *skb,
793 				   struct ath_rx_status *rx_stats,
794 				   struct ieee80211_rx_status *rx_status,
795 				   bool *decrypt_error, u64 tsf)
796 {
797 	struct ieee80211_hw *hw = sc->hw;
798 	struct ath_hw *ah = sc->sc_ah;
799 	struct ath_common *common = ath9k_hw_common(ah);
800 	struct ieee80211_hdr *hdr;
801 	bool discard_current = sc->rx.discard_next;
802 
803 	/*
804 	 * Discard corrupt descriptors which are marked in
805 	 * ath_get_next_rx_buf().
806 	 */
807 	if (discard_current)
808 		goto corrupt;
809 
810 	sc->rx.discard_next = false;
811 
812 	/*
813 	 * Discard zero-length packets.
814 	 */
815 	if (!rx_stats->rs_datalen) {
816 		RX_STAT_INC(rx_len_err);
817 		goto corrupt;
818 	}
819 
820 	/*
821 	 * rs_status follows rs_datalen so if rs_datalen is too large
822 	 * we can take a hint that hardware corrupted it, so ignore
823 	 * those frames.
824 	 */
825 	if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) {
826 		RX_STAT_INC(rx_len_err);
827 		goto corrupt;
828 	}
829 
830 	/* Only use status info from the last fragment */
831 	if (rx_stats->rs_more)
832 		return 0;
833 
834 	/*
835 	 * Return immediately if the RX descriptor has been marked
836 	 * as corrupt based on the various error bits.
837 	 *
838 	 * This is different from the other corrupt descriptor
839 	 * condition handled above.
840 	 */
841 	if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC)
842 		goto corrupt;
843 
844 	hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len);
845 
846 	ath9k_process_tsf(rx_stats, rx_status, tsf);
847 	ath_debug_stat_rx(sc, rx_stats);
848 
849 	/*
850 	 * Process PHY errors and return so that the packet
851 	 * can be dropped.
852 	 */
853 	if (rx_stats->rs_status & ATH9K_RXERR_PHY) {
854 		ath9k_dfs_process_phyerr(sc, hdr, rx_stats, rx_status->mactime);
855 		if (ath_process_fft(sc, hdr, rx_stats, rx_status->mactime))
856 			RX_STAT_INC(rx_spectral);
857 
858 		return -EINVAL;
859 	}
860 
861 	/*
862 	 * everything but the rate is checked here, the rate check is done
863 	 * separately to avoid doing two lookups for a rate for each frame.
864 	 */
865 	if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error, sc->rx.rxfilter))
866 		return -EINVAL;
867 
868 	if (ath_is_mybeacon(common, hdr)) {
869 		RX_STAT_INC(rx_beacons);
870 		rx_stats->is_mybeacon = true;
871 	}
872 
873 	/*
874 	 * This shouldn't happen, but have a safety check anyway.
875 	 */
876 	if (WARN_ON(!ah->curchan))
877 		return -EINVAL;
878 
879 	if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) {
880 		/*
881 		 * No valid hardware bitrate found -- we should not get here
882 		 * because hardware has already validated this frame as OK.
883 		 */
884 		ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
885 			rx_stats->rs_rate);
886 		RX_STAT_INC(rx_rate_err);
887 		return -EINVAL;
888 	}
889 
890 	ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status);
891 
892 	rx_status->band = ah->curchan->chan->band;
893 	rx_status->freq = ah->curchan->chan->center_freq;
894 	rx_status->antenna = rx_stats->rs_antenna;
895 	rx_status->flag |= RX_FLAG_MACTIME_END;
896 
897 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
898 	if (ieee80211_is_data_present(hdr->frame_control) &&
899 	    !ieee80211_is_qos_nullfunc(hdr->frame_control))
900 		sc->rx.num_pkts++;
901 #endif
902 
903 	return 0;
904 
905 corrupt:
906 	sc->rx.discard_next = rx_stats->rs_more;
907 	return -EINVAL;
908 }
909 
910 /*
911  * Run the LNA combining algorithm only in these cases:
912  *
913  * Standalone WLAN cards with both LNA/Antenna diversity
914  * enabled in the EEPROM.
915  *
916  * WLAN+BT cards which are in the supported card list
917  * in ath_pci_id_table and the user has loaded the
918  * driver with "bt_ant_diversity" set to true.
919  */
920 static void ath9k_antenna_check(struct ath_softc *sc,
921 				struct ath_rx_status *rs)
922 {
923 	struct ath_hw *ah = sc->sc_ah;
924 	struct ath9k_hw_capabilities *pCap = &ah->caps;
925 	struct ath_common *common = ath9k_hw_common(ah);
926 
927 	if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB))
928 		return;
929 
930 	/*
931 	 * Change the default rx antenna if rx diversity
932 	 * chooses the other antenna 3 times in a row.
933 	 */
934 	if (sc->rx.defant != rs->rs_antenna) {
935 		if (++sc->rx.rxotherant >= 3)
936 			ath_setdefantenna(sc, rs->rs_antenna);
937 	} else {
938 		sc->rx.rxotherant = 0;
939 	}
940 
941 	if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
942 		if (common->bt_ant_diversity)
943 			ath_ant_comb_scan(sc, rs);
944 	} else {
945 		ath_ant_comb_scan(sc, rs);
946 	}
947 }
948 
949 static void ath9k_apply_ampdu_details(struct ath_softc *sc,
950 	struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
951 {
952 	if (rs->rs_isaggr) {
953 		rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
954 
955 		rxs->ampdu_reference = sc->rx.ampdu_ref;
956 
957 		if (!rs->rs_moreaggr) {
958 			rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
959 			sc->rx.ampdu_ref++;
960 		}
961 
962 		if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
963 			rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
964 	}
965 }
966 
967 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
968 {
969 	struct ath_rxbuf *bf;
970 	struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
971 	struct ieee80211_rx_status *rxs;
972 	struct ath_hw *ah = sc->sc_ah;
973 	struct ath_common *common = ath9k_hw_common(ah);
974 	struct ieee80211_hw *hw = sc->hw;
975 	int retval;
976 	struct ath_rx_status rs;
977 	enum ath9k_rx_qtype qtype;
978 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
979 	int dma_type;
980 	u64 tsf = 0;
981 	unsigned long flags;
982 	dma_addr_t new_buf_addr;
983 	unsigned int budget = 512;
984 
985 	if (edma)
986 		dma_type = DMA_BIDIRECTIONAL;
987 	else
988 		dma_type = DMA_FROM_DEVICE;
989 
990 	qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
991 
992 	tsf = ath9k_hw_gettsf64(ah);
993 
994 	do {
995 		bool decrypt_error = false;
996 
997 		memset(&rs, 0, sizeof(rs));
998 		if (edma)
999 			bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1000 		else
1001 			bf = ath_get_next_rx_buf(sc, &rs);
1002 
1003 		if (!bf)
1004 			break;
1005 
1006 		skb = bf->bf_mpdu;
1007 		if (!skb)
1008 			continue;
1009 
1010 		/*
1011 		 * Take frame header from the first fragment and RX status from
1012 		 * the last one.
1013 		 */
1014 		if (sc->rx.frag)
1015 			hdr_skb = sc->rx.frag;
1016 		else
1017 			hdr_skb = skb;
1018 
1019 		rxs = IEEE80211_SKB_RXCB(hdr_skb);
1020 		memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1021 
1022 		retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs,
1023 						 &decrypt_error, tsf);
1024 		if (retval)
1025 			goto requeue_drop_frag;
1026 
1027 		/* Ensure we always have an skb to requeue once we are done
1028 		 * processing the current buffer's skb */
1029 		requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1030 
1031 		/* If there is no memory we ignore the current RX'd frame,
1032 		 * tell hardware it can give us a new frame using the old
1033 		 * skb and put it at the tail of the sc->rx.rxbuf list for
1034 		 * processing. */
1035 		if (!requeue_skb) {
1036 			RX_STAT_INC(rx_oom_err);
1037 			goto requeue_drop_frag;
1038 		}
1039 
1040 		/* We will now give hardware our shiny new allocated skb */
1041 		new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1042 					      common->rx_bufsize, dma_type);
1043 		if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
1044 			dev_kfree_skb_any(requeue_skb);
1045 			goto requeue_drop_frag;
1046 		}
1047 
1048 		/* Unmap the frame */
1049 		dma_unmap_single(sc->dev, bf->bf_buf_addr,
1050 				 common->rx_bufsize, dma_type);
1051 
1052 		bf->bf_mpdu = requeue_skb;
1053 		bf->bf_buf_addr = new_buf_addr;
1054 
1055 		skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1056 		if (ah->caps.rx_status_len)
1057 			skb_pull(skb, ah->caps.rx_status_len);
1058 
1059 		if (!rs.rs_more)
1060 			ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs,
1061 						     rxs, decrypt_error);
1062 
1063 		if (rs.rs_more) {
1064 			RX_STAT_INC(rx_frags);
1065 			/*
1066 			 * rs_more indicates chained descriptors which can be
1067 			 * used to link buffers together for a sort of
1068 			 * scatter-gather operation.
1069 			 */
1070 			if (sc->rx.frag) {
1071 				/* too many fragments - cannot handle frame */
1072 				dev_kfree_skb_any(sc->rx.frag);
1073 				dev_kfree_skb_any(skb);
1074 				RX_STAT_INC(rx_too_many_frags_err);
1075 				skb = NULL;
1076 			}
1077 			sc->rx.frag = skb;
1078 			goto requeue;
1079 		}
1080 
1081 		if (sc->rx.frag) {
1082 			int space = skb->len - skb_tailroom(hdr_skb);
1083 
1084 			if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1085 				dev_kfree_skb(skb);
1086 				RX_STAT_INC(rx_oom_err);
1087 				goto requeue_drop_frag;
1088 			}
1089 
1090 			sc->rx.frag = NULL;
1091 
1092 			skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1093 						  skb->len);
1094 			dev_kfree_skb_any(skb);
1095 			skb = hdr_skb;
1096 		}
1097 
1098 		if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1099 			skb_trim(skb, skb->len - 8);
1100 
1101 		spin_lock_irqsave(&sc->sc_pm_lock, flags);
1102 		if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1103 				     PS_WAIT_FOR_CAB |
1104 				     PS_WAIT_FOR_PSPOLL_DATA)) ||
1105 		    ath9k_check_auto_sleep(sc))
1106 			ath_rx_ps(sc, skb, rs.is_mybeacon);
1107 		spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1108 
1109 		ath9k_antenna_check(sc, &rs);
1110 		ath9k_apply_ampdu_details(sc, &rs, rxs);
1111 		ath_debug_rate_stats(sc, &rs, skb);
1112 
1113 		ieee80211_rx(hw, skb);
1114 
1115 requeue_drop_frag:
1116 		if (sc->rx.frag) {
1117 			dev_kfree_skb_any(sc->rx.frag);
1118 			sc->rx.frag = NULL;
1119 		}
1120 requeue:
1121 		list_add_tail(&bf->list, &sc->rx.rxbuf);
1122 
1123 		if (!edma) {
1124 			ath_rx_buf_relink(sc, bf, flush);
1125 			if (!flush)
1126 				ath9k_hw_rxena(ah);
1127 		} else if (!flush) {
1128 			ath_rx_edma_buf_link(sc, qtype);
1129 		}
1130 
1131 		if (!budget--)
1132 			break;
1133 	} while (1);
1134 
1135 	if (!(ah->imask & ATH9K_INT_RXEOL)) {
1136 		ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1137 		ath9k_hw_set_interrupts(ah);
1138 	}
1139 
1140 	return 0;
1141 }
1142