1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define SKB_CB_ATHBUF(__skb) (*((struct ath_rxbuf **)__skb->cb)) 22 23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc) 24 { 25 return sc->ps_enabled && 26 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP); 27 } 28 29 /* 30 * Setup and link descriptors. 31 * 32 * 11N: we can no longer afford to self link the last descriptor. 33 * MAC acknowledges BA status as long as it copies frames to host 34 * buffer (or rx fifo). This can incorrectly acknowledge packets 35 * to a sender if last desc is self-linked. 36 */ 37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf, 38 bool flush) 39 { 40 struct ath_hw *ah = sc->sc_ah; 41 struct ath_common *common = ath9k_hw_common(ah); 42 struct ath_desc *ds; 43 struct sk_buff *skb; 44 45 ds = bf->bf_desc; 46 ds->ds_link = 0; /* link to null */ 47 ds->ds_data = bf->bf_buf_addr; 48 49 /* virtual addr of the beginning of the buffer. */ 50 skb = bf->bf_mpdu; 51 BUG_ON(skb == NULL); 52 ds->ds_vdata = skb->data; 53 54 /* 55 * setup rx descriptors. The rx_bufsize here tells the hardware 56 * how much data it can DMA to us and that we are prepared 57 * to process 58 */ 59 ath9k_hw_setuprxdesc(ah, ds, 60 common->rx_bufsize, 61 0); 62 63 if (sc->rx.rxlink) 64 *sc->rx.rxlink = bf->bf_daddr; 65 else if (!flush) 66 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 67 68 sc->rx.rxlink = &ds->ds_link; 69 } 70 71 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf, 72 bool flush) 73 { 74 if (sc->rx.buf_hold) 75 ath_rx_buf_link(sc, sc->rx.buf_hold, flush); 76 77 sc->rx.buf_hold = bf; 78 } 79 80 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna) 81 { 82 /* XXX block beacon interrupts */ 83 ath9k_hw_setantenna(sc->sc_ah, antenna); 84 sc->rx.defant = antenna; 85 sc->rx.rxotherant = 0; 86 } 87 88 static void ath_opmode_init(struct ath_softc *sc) 89 { 90 struct ath_hw *ah = sc->sc_ah; 91 struct ath_common *common = ath9k_hw_common(ah); 92 93 u32 rfilt, mfilt[2]; 94 95 /* configure rx filter */ 96 rfilt = ath_calcrxfilter(sc); 97 ath9k_hw_setrxfilter(ah, rfilt); 98 99 /* configure bssid mask */ 100 ath_hw_setbssidmask(common); 101 102 /* configure operational mode */ 103 ath9k_hw_setopmode(ah); 104 105 /* calculate and install multicast filter */ 106 mfilt[0] = mfilt[1] = ~0; 107 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]); 108 } 109 110 static bool ath_rx_edma_buf_link(struct ath_softc *sc, 111 enum ath9k_rx_qtype qtype) 112 { 113 struct ath_hw *ah = sc->sc_ah; 114 struct ath_rx_edma *rx_edma; 115 struct sk_buff *skb; 116 struct ath_rxbuf *bf; 117 118 rx_edma = &sc->rx.rx_edma[qtype]; 119 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize) 120 return false; 121 122 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list); 123 list_del_init(&bf->list); 124 125 skb = bf->bf_mpdu; 126 127 memset(skb->data, 0, ah->caps.rx_status_len); 128 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 129 ah->caps.rx_status_len, DMA_TO_DEVICE); 130 131 SKB_CB_ATHBUF(skb) = bf; 132 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype); 133 __skb_queue_tail(&rx_edma->rx_fifo, skb); 134 135 return true; 136 } 137 138 static void ath_rx_addbuffer_edma(struct ath_softc *sc, 139 enum ath9k_rx_qtype qtype) 140 { 141 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 142 struct ath_rxbuf *bf, *tbf; 143 144 if (list_empty(&sc->rx.rxbuf)) { 145 ath_dbg(common, QUEUE, "No free rx buf available\n"); 146 return; 147 } 148 149 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) 150 if (!ath_rx_edma_buf_link(sc, qtype)) 151 break; 152 153 } 154 155 static void ath_rx_remove_buffer(struct ath_softc *sc, 156 enum ath9k_rx_qtype qtype) 157 { 158 struct ath_rxbuf *bf; 159 struct ath_rx_edma *rx_edma; 160 struct sk_buff *skb; 161 162 rx_edma = &sc->rx.rx_edma[qtype]; 163 164 while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) { 165 bf = SKB_CB_ATHBUF(skb); 166 BUG_ON(!bf); 167 list_add_tail(&bf->list, &sc->rx.rxbuf); 168 } 169 } 170 171 static void ath_rx_edma_cleanup(struct ath_softc *sc) 172 { 173 struct ath_hw *ah = sc->sc_ah; 174 struct ath_common *common = ath9k_hw_common(ah); 175 struct ath_rxbuf *bf; 176 177 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 178 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 179 180 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 181 if (bf->bf_mpdu) { 182 dma_unmap_single(sc->dev, bf->bf_buf_addr, 183 common->rx_bufsize, 184 DMA_BIDIRECTIONAL); 185 dev_kfree_skb_any(bf->bf_mpdu); 186 bf->bf_buf_addr = 0; 187 bf->bf_mpdu = NULL; 188 } 189 } 190 } 191 192 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size) 193 { 194 __skb_queue_head_init(&rx_edma->rx_fifo); 195 rx_edma->rx_fifo_hwsize = size; 196 } 197 198 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs) 199 { 200 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 201 struct ath_hw *ah = sc->sc_ah; 202 struct sk_buff *skb; 203 struct ath_rxbuf *bf; 204 int error = 0, i; 205 u32 size; 206 207 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 208 ah->caps.rx_status_len); 209 210 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP], 211 ah->caps.rx_lp_qdepth); 212 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP], 213 ah->caps.rx_hp_qdepth); 214 215 size = sizeof(struct ath_rxbuf) * nbufs; 216 bf = devm_kzalloc(sc->dev, size, GFP_KERNEL); 217 if (!bf) 218 return -ENOMEM; 219 220 INIT_LIST_HEAD(&sc->rx.rxbuf); 221 222 for (i = 0; i < nbufs; i++, bf++) { 223 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL); 224 if (!skb) { 225 error = -ENOMEM; 226 goto rx_init_fail; 227 } 228 229 memset(skb->data, 0, common->rx_bufsize); 230 bf->bf_mpdu = skb; 231 232 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 233 common->rx_bufsize, 234 DMA_BIDIRECTIONAL); 235 if (unlikely(dma_mapping_error(sc->dev, 236 bf->bf_buf_addr))) { 237 dev_kfree_skb_any(skb); 238 bf->bf_mpdu = NULL; 239 bf->bf_buf_addr = 0; 240 ath_err(common, 241 "dma_mapping_error() on RX init\n"); 242 error = -ENOMEM; 243 goto rx_init_fail; 244 } 245 246 list_add_tail(&bf->list, &sc->rx.rxbuf); 247 } 248 249 return 0; 250 251 rx_init_fail: 252 ath_rx_edma_cleanup(sc); 253 return error; 254 } 255 256 static void ath_edma_start_recv(struct ath_softc *sc) 257 { 258 ath9k_hw_rxena(sc->sc_ah); 259 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP); 260 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP); 261 ath_opmode_init(sc); 262 ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)); 263 } 264 265 static void ath_edma_stop_recv(struct ath_softc *sc) 266 { 267 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 268 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 269 } 270 271 int ath_rx_init(struct ath_softc *sc, int nbufs) 272 { 273 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 274 struct sk_buff *skb; 275 struct ath_rxbuf *bf; 276 int error = 0; 277 278 spin_lock_init(&sc->sc_pcu_lock); 279 280 common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 + 281 sc->sc_ah->caps.rx_status_len; 282 283 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 284 return ath_rx_edma_init(sc, nbufs); 285 286 ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n", 287 common->cachelsz, common->rx_bufsize); 288 289 /* Initialize rx descriptors */ 290 291 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf, 292 "rx", nbufs, 1, 0); 293 if (error != 0) { 294 ath_err(common, 295 "failed to allocate rx descriptors: %d\n", 296 error); 297 goto err; 298 } 299 300 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 301 skb = ath_rxbuf_alloc(common, common->rx_bufsize, 302 GFP_KERNEL); 303 if (skb == NULL) { 304 error = -ENOMEM; 305 goto err; 306 } 307 308 bf->bf_mpdu = skb; 309 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 310 common->rx_bufsize, 311 DMA_FROM_DEVICE); 312 if (unlikely(dma_mapping_error(sc->dev, 313 bf->bf_buf_addr))) { 314 dev_kfree_skb_any(skb); 315 bf->bf_mpdu = NULL; 316 bf->bf_buf_addr = 0; 317 ath_err(common, 318 "dma_mapping_error() on RX init\n"); 319 error = -ENOMEM; 320 goto err; 321 } 322 } 323 sc->rx.rxlink = NULL; 324 err: 325 if (error) 326 ath_rx_cleanup(sc); 327 328 return error; 329 } 330 331 void ath_rx_cleanup(struct ath_softc *sc) 332 { 333 struct ath_hw *ah = sc->sc_ah; 334 struct ath_common *common = ath9k_hw_common(ah); 335 struct sk_buff *skb; 336 struct ath_rxbuf *bf; 337 338 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 339 ath_rx_edma_cleanup(sc); 340 return; 341 } 342 343 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 344 skb = bf->bf_mpdu; 345 if (skb) { 346 dma_unmap_single(sc->dev, bf->bf_buf_addr, 347 common->rx_bufsize, 348 DMA_FROM_DEVICE); 349 dev_kfree_skb(skb); 350 bf->bf_buf_addr = 0; 351 bf->bf_mpdu = NULL; 352 } 353 } 354 } 355 356 /* 357 * Calculate the receive filter according to the 358 * operating mode and state: 359 * 360 * o always accept unicast, broadcast, and multicast traffic 361 * o maintain current state of phy error reception (the hal 362 * may enable phy error frames for noise immunity work) 363 * o probe request frames are accepted only when operating in 364 * hostap, adhoc, or monitor modes 365 * o enable promiscuous mode according to the interface state 366 * o accept beacons: 367 * - when operating in adhoc mode so the 802.11 layer creates 368 * node table entries for peers, 369 * - when operating in station mode for collecting rssi data when 370 * the station is otherwise quiet, or 371 * - when operating as a repeater so we see repeater-sta beacons 372 * - when scanning 373 */ 374 375 u32 ath_calcrxfilter(struct ath_softc *sc) 376 { 377 u32 rfilt; 378 379 if (config_enabled(CONFIG_ATH9K_TX99)) 380 return 0; 381 382 rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST 383 | ATH9K_RX_FILTER_MCAST; 384 385 /* if operating on a DFS channel, enable radar pulse detection */ 386 if (sc->hw->conf.radar_enabled) 387 rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR; 388 389 if (sc->rx.rxfilter & FIF_PROBE_REQ) 390 rfilt |= ATH9K_RX_FILTER_PROBEREQ; 391 392 /* 393 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station 394 * mode interface or when in monitor mode. AP mode does not need this 395 * since it receives all in-BSS frames anyway. 396 */ 397 if (sc->sc_ah->is_monitoring) 398 rfilt |= ATH9K_RX_FILTER_PROM; 399 400 if (sc->rx.rxfilter & FIF_CONTROL) 401 rfilt |= ATH9K_RX_FILTER_CONTROL; 402 403 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) && 404 (sc->nvifs <= 1) && 405 !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)) 406 rfilt |= ATH9K_RX_FILTER_MYBEACON; 407 else 408 rfilt |= ATH9K_RX_FILTER_BEACON; 409 410 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) || 411 (sc->rx.rxfilter & FIF_PSPOLL)) 412 rfilt |= ATH9K_RX_FILTER_PSPOLL; 413 414 if (conf_is_ht(&sc->hw->conf)) 415 rfilt |= ATH9K_RX_FILTER_COMP_BAR; 416 417 if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) { 418 /* This is needed for older chips */ 419 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160) 420 rfilt |= ATH9K_RX_FILTER_PROM; 421 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL; 422 } 423 424 if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah)) 425 rfilt |= ATH9K_RX_FILTER_4ADDRESS; 426 427 return rfilt; 428 429 } 430 431 int ath_startrecv(struct ath_softc *sc) 432 { 433 struct ath_hw *ah = sc->sc_ah; 434 struct ath_rxbuf *bf, *tbf; 435 436 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 437 ath_edma_start_recv(sc); 438 return 0; 439 } 440 441 if (list_empty(&sc->rx.rxbuf)) 442 goto start_recv; 443 444 sc->rx.buf_hold = NULL; 445 sc->rx.rxlink = NULL; 446 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) { 447 ath_rx_buf_link(sc, bf, false); 448 } 449 450 /* We could have deleted elements so the list may be empty now */ 451 if (list_empty(&sc->rx.rxbuf)) 452 goto start_recv; 453 454 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list); 455 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 456 ath9k_hw_rxena(ah); 457 458 start_recv: 459 ath_opmode_init(sc); 460 ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)); 461 462 return 0; 463 } 464 465 static void ath_flushrecv(struct ath_softc *sc) 466 { 467 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 468 ath_rx_tasklet(sc, 1, true); 469 ath_rx_tasklet(sc, 1, false); 470 } 471 472 bool ath_stoprecv(struct ath_softc *sc) 473 { 474 struct ath_hw *ah = sc->sc_ah; 475 bool stopped, reset = false; 476 477 ath9k_hw_abortpcurecv(ah); 478 ath9k_hw_setrxfilter(ah, 0); 479 stopped = ath9k_hw_stopdmarecv(ah, &reset); 480 481 ath_flushrecv(sc); 482 483 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 484 ath_edma_stop_recv(sc); 485 else 486 sc->rx.rxlink = NULL; 487 488 if (!(ah->ah_flags & AH_UNPLUGGED) && 489 unlikely(!stopped)) { 490 ath_err(ath9k_hw_common(sc->sc_ah), 491 "Could not stop RX, we could be " 492 "confusing the DMA engine when we start RX up\n"); 493 ATH_DBG_WARN_ON_ONCE(!stopped); 494 } 495 return stopped && !reset; 496 } 497 498 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb) 499 { 500 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */ 501 struct ieee80211_mgmt *mgmt; 502 u8 *pos, *end, id, elen; 503 struct ieee80211_tim_ie *tim; 504 505 mgmt = (struct ieee80211_mgmt *)skb->data; 506 pos = mgmt->u.beacon.variable; 507 end = skb->data + skb->len; 508 509 while (pos + 2 < end) { 510 id = *pos++; 511 elen = *pos++; 512 if (pos + elen > end) 513 break; 514 515 if (id == WLAN_EID_TIM) { 516 if (elen < sizeof(*tim)) 517 break; 518 tim = (struct ieee80211_tim_ie *) pos; 519 if (tim->dtim_count != 0) 520 break; 521 return tim->bitmap_ctrl & 0x01; 522 } 523 524 pos += elen; 525 } 526 527 return false; 528 } 529 530 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb) 531 { 532 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 533 534 if (skb->len < 24 + 8 + 2 + 2) 535 return; 536 537 sc->ps_flags &= ~PS_WAIT_FOR_BEACON; 538 539 if (sc->ps_flags & PS_BEACON_SYNC) { 540 sc->ps_flags &= ~PS_BEACON_SYNC; 541 ath_dbg(common, PS, 542 "Reconfigure beacon timers based on synchronized timestamp\n"); 543 if (!(WARN_ON_ONCE(sc->cur_beacon_conf.beacon_interval == 0))) 544 ath9k_set_beacon(sc); 545 if (sc->p2p_ps_vif) 546 ath9k_update_p2p_ps(sc, sc->p2p_ps_vif->vif); 547 } 548 549 if (ath_beacon_dtim_pending_cab(skb)) { 550 /* 551 * Remain awake waiting for buffered broadcast/multicast 552 * frames. If the last broadcast/multicast frame is not 553 * received properly, the next beacon frame will work as 554 * a backup trigger for returning into NETWORK SLEEP state, 555 * so we are waiting for it as well. 556 */ 557 ath_dbg(common, PS, 558 "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n"); 559 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON; 560 return; 561 } 562 563 if (sc->ps_flags & PS_WAIT_FOR_CAB) { 564 /* 565 * This can happen if a broadcast frame is dropped or the AP 566 * fails to send a frame indicating that all CAB frames have 567 * been delivered. 568 */ 569 sc->ps_flags &= ~PS_WAIT_FOR_CAB; 570 ath_dbg(common, PS, "PS wait for CAB frames timed out\n"); 571 } 572 } 573 574 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon) 575 { 576 struct ieee80211_hdr *hdr; 577 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 578 579 hdr = (struct ieee80211_hdr *)skb->data; 580 581 /* Process Beacon and CAB receive in PS state */ 582 if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc)) 583 && mybeacon) { 584 ath_rx_ps_beacon(sc, skb); 585 } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) && 586 (ieee80211_is_data(hdr->frame_control) || 587 ieee80211_is_action(hdr->frame_control)) && 588 is_multicast_ether_addr(hdr->addr1) && 589 !ieee80211_has_moredata(hdr->frame_control)) { 590 /* 591 * No more broadcast/multicast frames to be received at this 592 * point. 593 */ 594 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON); 595 ath_dbg(common, PS, 596 "All PS CAB frames received, back to sleep\n"); 597 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) && 598 !is_multicast_ether_addr(hdr->addr1) && 599 !ieee80211_has_morefrags(hdr->frame_control)) { 600 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA; 601 ath_dbg(common, PS, 602 "Going back to sleep after having received PS-Poll data (0x%lx)\n", 603 sc->ps_flags & (PS_WAIT_FOR_BEACON | 604 PS_WAIT_FOR_CAB | 605 PS_WAIT_FOR_PSPOLL_DATA | 606 PS_WAIT_FOR_TX_ACK)); 607 } 608 } 609 610 static bool ath_edma_get_buffers(struct ath_softc *sc, 611 enum ath9k_rx_qtype qtype, 612 struct ath_rx_status *rs, 613 struct ath_rxbuf **dest) 614 { 615 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype]; 616 struct ath_hw *ah = sc->sc_ah; 617 struct ath_common *common = ath9k_hw_common(ah); 618 struct sk_buff *skb; 619 struct ath_rxbuf *bf; 620 int ret; 621 622 skb = skb_peek(&rx_edma->rx_fifo); 623 if (!skb) 624 return false; 625 626 bf = SKB_CB_ATHBUF(skb); 627 BUG_ON(!bf); 628 629 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 630 common->rx_bufsize, DMA_FROM_DEVICE); 631 632 ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data); 633 if (ret == -EINPROGRESS) { 634 /*let device gain the buffer again*/ 635 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 636 common->rx_bufsize, DMA_FROM_DEVICE); 637 return false; 638 } 639 640 __skb_unlink(skb, &rx_edma->rx_fifo); 641 if (ret == -EINVAL) { 642 /* corrupt descriptor, skip this one and the following one */ 643 list_add_tail(&bf->list, &sc->rx.rxbuf); 644 ath_rx_edma_buf_link(sc, qtype); 645 646 skb = skb_peek(&rx_edma->rx_fifo); 647 if (skb) { 648 bf = SKB_CB_ATHBUF(skb); 649 BUG_ON(!bf); 650 651 __skb_unlink(skb, &rx_edma->rx_fifo); 652 list_add_tail(&bf->list, &sc->rx.rxbuf); 653 ath_rx_edma_buf_link(sc, qtype); 654 } 655 656 bf = NULL; 657 } 658 659 *dest = bf; 660 return true; 661 } 662 663 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc, 664 struct ath_rx_status *rs, 665 enum ath9k_rx_qtype qtype) 666 { 667 struct ath_rxbuf *bf = NULL; 668 669 while (ath_edma_get_buffers(sc, qtype, rs, &bf)) { 670 if (!bf) 671 continue; 672 673 return bf; 674 } 675 return NULL; 676 } 677 678 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc, 679 struct ath_rx_status *rs) 680 { 681 struct ath_hw *ah = sc->sc_ah; 682 struct ath_common *common = ath9k_hw_common(ah); 683 struct ath_desc *ds; 684 struct ath_rxbuf *bf; 685 int ret; 686 687 if (list_empty(&sc->rx.rxbuf)) { 688 sc->rx.rxlink = NULL; 689 return NULL; 690 } 691 692 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list); 693 if (bf == sc->rx.buf_hold) 694 return NULL; 695 696 ds = bf->bf_desc; 697 698 /* 699 * Must provide the virtual address of the current 700 * descriptor, the physical address, and the virtual 701 * address of the next descriptor in the h/w chain. 702 * This allows the HAL to look ahead to see if the 703 * hardware is done with a descriptor by checking the 704 * done bit in the following descriptor and the address 705 * of the current descriptor the DMA engine is working 706 * on. All this is necessary because of our use of 707 * a self-linked list to avoid rx overruns. 708 */ 709 ret = ath9k_hw_rxprocdesc(ah, ds, rs); 710 if (ret == -EINPROGRESS) { 711 struct ath_rx_status trs; 712 struct ath_rxbuf *tbf; 713 struct ath_desc *tds; 714 715 memset(&trs, 0, sizeof(trs)); 716 if (list_is_last(&bf->list, &sc->rx.rxbuf)) { 717 sc->rx.rxlink = NULL; 718 return NULL; 719 } 720 721 tbf = list_entry(bf->list.next, struct ath_rxbuf, list); 722 723 /* 724 * On some hardware the descriptor status words could 725 * get corrupted, including the done bit. Because of 726 * this, check if the next descriptor's done bit is 727 * set or not. 728 * 729 * If the next descriptor's done bit is set, the current 730 * descriptor has been corrupted. Force s/w to discard 731 * this descriptor and continue... 732 */ 733 734 tds = tbf->bf_desc; 735 ret = ath9k_hw_rxprocdesc(ah, tds, &trs); 736 if (ret == -EINPROGRESS) 737 return NULL; 738 739 /* 740 * Re-check previous descriptor, in case it has been filled 741 * in the mean time. 742 */ 743 ret = ath9k_hw_rxprocdesc(ah, ds, rs); 744 if (ret == -EINPROGRESS) { 745 /* 746 * mark descriptor as zero-length and set the 'more' 747 * flag to ensure that both buffers get discarded 748 */ 749 rs->rs_datalen = 0; 750 rs->rs_more = true; 751 } 752 } 753 754 list_del(&bf->list); 755 if (!bf->bf_mpdu) 756 return bf; 757 758 /* 759 * Synchronize the DMA transfer with CPU before 760 * 1. accessing the frame 761 * 2. requeueing the same buffer to h/w 762 */ 763 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 764 common->rx_bufsize, 765 DMA_FROM_DEVICE); 766 767 return bf; 768 } 769 770 static void ath9k_process_tsf(struct ath_rx_status *rs, 771 struct ieee80211_rx_status *rxs, 772 u64 tsf) 773 { 774 u32 tsf_lower = tsf & 0xffffffff; 775 776 rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp; 777 if (rs->rs_tstamp > tsf_lower && 778 unlikely(rs->rs_tstamp - tsf_lower > 0x10000000)) 779 rxs->mactime -= 0x100000000ULL; 780 781 if (rs->rs_tstamp < tsf_lower && 782 unlikely(tsf_lower - rs->rs_tstamp > 0x10000000)) 783 rxs->mactime += 0x100000000ULL; 784 } 785 786 /* 787 * For Decrypt or Demic errors, we only mark packet status here and always push 788 * up the frame up to let mac80211 handle the actual error case, be it no 789 * decryption key or real decryption error. This let us keep statistics there. 790 */ 791 static int ath9k_rx_skb_preprocess(struct ath_softc *sc, 792 struct sk_buff *skb, 793 struct ath_rx_status *rx_stats, 794 struct ieee80211_rx_status *rx_status, 795 bool *decrypt_error, u64 tsf) 796 { 797 struct ieee80211_hw *hw = sc->hw; 798 struct ath_hw *ah = sc->sc_ah; 799 struct ath_common *common = ath9k_hw_common(ah); 800 struct ieee80211_hdr *hdr; 801 bool discard_current = sc->rx.discard_next; 802 803 /* 804 * Discard corrupt descriptors which are marked in 805 * ath_get_next_rx_buf(). 806 */ 807 if (discard_current) 808 goto corrupt; 809 810 sc->rx.discard_next = false; 811 812 /* 813 * Discard zero-length packets. 814 */ 815 if (!rx_stats->rs_datalen) { 816 RX_STAT_INC(rx_len_err); 817 goto corrupt; 818 } 819 820 /* 821 * rs_status follows rs_datalen so if rs_datalen is too large 822 * we can take a hint that hardware corrupted it, so ignore 823 * those frames. 824 */ 825 if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) { 826 RX_STAT_INC(rx_len_err); 827 goto corrupt; 828 } 829 830 /* Only use status info from the last fragment */ 831 if (rx_stats->rs_more) 832 return 0; 833 834 /* 835 * Return immediately if the RX descriptor has been marked 836 * as corrupt based on the various error bits. 837 * 838 * This is different from the other corrupt descriptor 839 * condition handled above. 840 */ 841 if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC) 842 goto corrupt; 843 844 hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len); 845 846 ath9k_process_tsf(rx_stats, rx_status, tsf); 847 ath_debug_stat_rx(sc, rx_stats); 848 849 /* 850 * Process PHY errors and return so that the packet 851 * can be dropped. 852 */ 853 if (rx_stats->rs_status & ATH9K_RXERR_PHY) { 854 ath9k_dfs_process_phyerr(sc, hdr, rx_stats, rx_status->mactime); 855 if (ath_process_fft(sc, hdr, rx_stats, rx_status->mactime)) 856 RX_STAT_INC(rx_spectral); 857 858 return -EINVAL; 859 } 860 861 /* 862 * everything but the rate is checked here, the rate check is done 863 * separately to avoid doing two lookups for a rate for each frame. 864 */ 865 if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error, sc->rx.rxfilter)) 866 return -EINVAL; 867 868 if (ath_is_mybeacon(common, hdr)) { 869 RX_STAT_INC(rx_beacons); 870 rx_stats->is_mybeacon = true; 871 } 872 873 /* 874 * This shouldn't happen, but have a safety check anyway. 875 */ 876 if (WARN_ON(!ah->curchan)) 877 return -EINVAL; 878 879 if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) { 880 /* 881 * No valid hardware bitrate found -- we should not get here 882 * because hardware has already validated this frame as OK. 883 */ 884 ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n", 885 rx_stats->rs_rate); 886 RX_STAT_INC(rx_rate_err); 887 return -EINVAL; 888 } 889 890 ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status); 891 892 rx_status->band = ah->curchan->chan->band; 893 rx_status->freq = ah->curchan->chan->center_freq; 894 rx_status->antenna = rx_stats->rs_antenna; 895 rx_status->flag |= RX_FLAG_MACTIME_END; 896 897 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT 898 if (ieee80211_is_data_present(hdr->frame_control) && 899 !ieee80211_is_qos_nullfunc(hdr->frame_control)) 900 sc->rx.num_pkts++; 901 #endif 902 903 return 0; 904 905 corrupt: 906 sc->rx.discard_next = rx_stats->rs_more; 907 return -EINVAL; 908 } 909 910 /* 911 * Run the LNA combining algorithm only in these cases: 912 * 913 * Standalone WLAN cards with both LNA/Antenna diversity 914 * enabled in the EEPROM. 915 * 916 * WLAN+BT cards which are in the supported card list 917 * in ath_pci_id_table and the user has loaded the 918 * driver with "bt_ant_diversity" set to true. 919 */ 920 static void ath9k_antenna_check(struct ath_softc *sc, 921 struct ath_rx_status *rs) 922 { 923 struct ath_hw *ah = sc->sc_ah; 924 struct ath9k_hw_capabilities *pCap = &ah->caps; 925 struct ath_common *common = ath9k_hw_common(ah); 926 927 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)) 928 return; 929 930 /* 931 * Change the default rx antenna if rx diversity 932 * chooses the other antenna 3 times in a row. 933 */ 934 if (sc->rx.defant != rs->rs_antenna) { 935 if (++sc->rx.rxotherant >= 3) 936 ath_setdefantenna(sc, rs->rs_antenna); 937 } else { 938 sc->rx.rxotherant = 0; 939 } 940 941 if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) { 942 if (common->bt_ant_diversity) 943 ath_ant_comb_scan(sc, rs); 944 } else { 945 ath_ant_comb_scan(sc, rs); 946 } 947 } 948 949 static void ath9k_apply_ampdu_details(struct ath_softc *sc, 950 struct ath_rx_status *rs, struct ieee80211_rx_status *rxs) 951 { 952 if (rs->rs_isaggr) { 953 rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 954 955 rxs->ampdu_reference = sc->rx.ampdu_ref; 956 957 if (!rs->rs_moreaggr) { 958 rxs->flag |= RX_FLAG_AMPDU_IS_LAST; 959 sc->rx.ampdu_ref++; 960 } 961 962 if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE) 963 rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR; 964 } 965 } 966 967 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp) 968 { 969 struct ath_rxbuf *bf; 970 struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb; 971 struct ieee80211_rx_status *rxs; 972 struct ath_hw *ah = sc->sc_ah; 973 struct ath_common *common = ath9k_hw_common(ah); 974 struct ieee80211_hw *hw = sc->hw; 975 int retval; 976 struct ath_rx_status rs; 977 enum ath9k_rx_qtype qtype; 978 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 979 int dma_type; 980 u64 tsf = 0; 981 unsigned long flags; 982 dma_addr_t new_buf_addr; 983 unsigned int budget = 512; 984 985 if (edma) 986 dma_type = DMA_BIDIRECTIONAL; 987 else 988 dma_type = DMA_FROM_DEVICE; 989 990 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP; 991 992 tsf = ath9k_hw_gettsf64(ah); 993 994 do { 995 bool decrypt_error = false; 996 997 memset(&rs, 0, sizeof(rs)); 998 if (edma) 999 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype); 1000 else 1001 bf = ath_get_next_rx_buf(sc, &rs); 1002 1003 if (!bf) 1004 break; 1005 1006 skb = bf->bf_mpdu; 1007 if (!skb) 1008 continue; 1009 1010 /* 1011 * Take frame header from the first fragment and RX status from 1012 * the last one. 1013 */ 1014 if (sc->rx.frag) 1015 hdr_skb = sc->rx.frag; 1016 else 1017 hdr_skb = skb; 1018 1019 rxs = IEEE80211_SKB_RXCB(hdr_skb); 1020 memset(rxs, 0, sizeof(struct ieee80211_rx_status)); 1021 1022 retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs, 1023 &decrypt_error, tsf); 1024 if (retval) 1025 goto requeue_drop_frag; 1026 1027 /* Ensure we always have an skb to requeue once we are done 1028 * processing the current buffer's skb */ 1029 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC); 1030 1031 /* If there is no memory we ignore the current RX'd frame, 1032 * tell hardware it can give us a new frame using the old 1033 * skb and put it at the tail of the sc->rx.rxbuf list for 1034 * processing. */ 1035 if (!requeue_skb) { 1036 RX_STAT_INC(rx_oom_err); 1037 goto requeue_drop_frag; 1038 } 1039 1040 /* We will now give hardware our shiny new allocated skb */ 1041 new_buf_addr = dma_map_single(sc->dev, requeue_skb->data, 1042 common->rx_bufsize, dma_type); 1043 if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) { 1044 dev_kfree_skb_any(requeue_skb); 1045 goto requeue_drop_frag; 1046 } 1047 1048 /* Unmap the frame */ 1049 dma_unmap_single(sc->dev, bf->bf_buf_addr, 1050 common->rx_bufsize, dma_type); 1051 1052 bf->bf_mpdu = requeue_skb; 1053 bf->bf_buf_addr = new_buf_addr; 1054 1055 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len); 1056 if (ah->caps.rx_status_len) 1057 skb_pull(skb, ah->caps.rx_status_len); 1058 1059 if (!rs.rs_more) 1060 ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs, 1061 rxs, decrypt_error); 1062 1063 if (rs.rs_more) { 1064 RX_STAT_INC(rx_frags); 1065 /* 1066 * rs_more indicates chained descriptors which can be 1067 * used to link buffers together for a sort of 1068 * scatter-gather operation. 1069 */ 1070 if (sc->rx.frag) { 1071 /* too many fragments - cannot handle frame */ 1072 dev_kfree_skb_any(sc->rx.frag); 1073 dev_kfree_skb_any(skb); 1074 RX_STAT_INC(rx_too_many_frags_err); 1075 skb = NULL; 1076 } 1077 sc->rx.frag = skb; 1078 goto requeue; 1079 } 1080 1081 if (sc->rx.frag) { 1082 int space = skb->len - skb_tailroom(hdr_skb); 1083 1084 if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) { 1085 dev_kfree_skb(skb); 1086 RX_STAT_INC(rx_oom_err); 1087 goto requeue_drop_frag; 1088 } 1089 1090 sc->rx.frag = NULL; 1091 1092 skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len), 1093 skb->len); 1094 dev_kfree_skb_any(skb); 1095 skb = hdr_skb; 1096 } 1097 1098 if (rxs->flag & RX_FLAG_MMIC_STRIPPED) 1099 skb_trim(skb, skb->len - 8); 1100 1101 spin_lock_irqsave(&sc->sc_pm_lock, flags); 1102 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON | 1103 PS_WAIT_FOR_CAB | 1104 PS_WAIT_FOR_PSPOLL_DATA)) || 1105 ath9k_check_auto_sleep(sc)) 1106 ath_rx_ps(sc, skb, rs.is_mybeacon); 1107 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 1108 1109 ath9k_antenna_check(sc, &rs); 1110 ath9k_apply_ampdu_details(sc, &rs, rxs); 1111 ath_debug_rate_stats(sc, &rs, skb); 1112 1113 ieee80211_rx(hw, skb); 1114 1115 requeue_drop_frag: 1116 if (sc->rx.frag) { 1117 dev_kfree_skb_any(sc->rx.frag); 1118 sc->rx.frag = NULL; 1119 } 1120 requeue: 1121 list_add_tail(&bf->list, &sc->rx.rxbuf); 1122 1123 if (!edma) { 1124 ath_rx_buf_relink(sc, bf, flush); 1125 if (!flush) 1126 ath9k_hw_rxena(ah); 1127 } else if (!flush) { 1128 ath_rx_edma_buf_link(sc, qtype); 1129 } 1130 1131 if (!budget--) 1132 break; 1133 } while (1); 1134 1135 if (!(ah->imask & ATH9K_INT_RXEOL)) { 1136 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN); 1137 ath9k_hw_set_interrupts(ah); 1138 } 1139 1140 return 0; 1141 } 1142