xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/recv.c (revision b6bec26c)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define SKB_CB_ATHBUF(__skb)	(*((struct ath_buf **)__skb->cb))
22 
23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
24 {
25 	return sc->ps_enabled &&
26 	       (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
27 }
28 
29 /*
30  * Setup and link descriptors.
31  *
32  * 11N: we can no longer afford to self link the last descriptor.
33  * MAC acknowledges BA status as long as it copies frames to host
34  * buffer (or rx fifo). This can incorrectly acknowledge packets
35  * to a sender if last desc is self-linked.
36  */
37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
38 {
39 	struct ath_hw *ah = sc->sc_ah;
40 	struct ath_common *common = ath9k_hw_common(ah);
41 	struct ath_desc *ds;
42 	struct sk_buff *skb;
43 
44 	ATH_RXBUF_RESET(bf);
45 
46 	ds = bf->bf_desc;
47 	ds->ds_link = 0; /* link to null */
48 	ds->ds_data = bf->bf_buf_addr;
49 
50 	/* virtual addr of the beginning of the buffer. */
51 	skb = bf->bf_mpdu;
52 	BUG_ON(skb == NULL);
53 	ds->ds_vdata = skb->data;
54 
55 	/*
56 	 * setup rx descriptors. The rx_bufsize here tells the hardware
57 	 * how much data it can DMA to us and that we are prepared
58 	 * to process
59 	 */
60 	ath9k_hw_setuprxdesc(ah, ds,
61 			     common->rx_bufsize,
62 			     0);
63 
64 	if (sc->rx.rxlink == NULL)
65 		ath9k_hw_putrxbuf(ah, bf->bf_daddr);
66 	else
67 		*sc->rx.rxlink = bf->bf_daddr;
68 
69 	sc->rx.rxlink = &ds->ds_link;
70 }
71 
72 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
73 {
74 	/* XXX block beacon interrupts */
75 	ath9k_hw_setantenna(sc->sc_ah, antenna);
76 	sc->rx.defant = antenna;
77 	sc->rx.rxotherant = 0;
78 }
79 
80 static void ath_opmode_init(struct ath_softc *sc)
81 {
82 	struct ath_hw *ah = sc->sc_ah;
83 	struct ath_common *common = ath9k_hw_common(ah);
84 
85 	u32 rfilt, mfilt[2];
86 
87 	/* configure rx filter */
88 	rfilt = ath_calcrxfilter(sc);
89 	ath9k_hw_setrxfilter(ah, rfilt);
90 
91 	/* configure bssid mask */
92 	ath_hw_setbssidmask(common);
93 
94 	/* configure operational mode */
95 	ath9k_hw_setopmode(ah);
96 
97 	/* calculate and install multicast filter */
98 	mfilt[0] = mfilt[1] = ~0;
99 	ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
100 }
101 
102 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
103 				 enum ath9k_rx_qtype qtype)
104 {
105 	struct ath_hw *ah = sc->sc_ah;
106 	struct ath_rx_edma *rx_edma;
107 	struct sk_buff *skb;
108 	struct ath_buf *bf;
109 
110 	rx_edma = &sc->rx.rx_edma[qtype];
111 	if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
112 		return false;
113 
114 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
115 	list_del_init(&bf->list);
116 
117 	skb = bf->bf_mpdu;
118 
119 	ATH_RXBUF_RESET(bf);
120 	memset(skb->data, 0, ah->caps.rx_status_len);
121 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
122 				ah->caps.rx_status_len, DMA_TO_DEVICE);
123 
124 	SKB_CB_ATHBUF(skb) = bf;
125 	ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
126 	skb_queue_tail(&rx_edma->rx_fifo, skb);
127 
128 	return true;
129 }
130 
131 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
132 				  enum ath9k_rx_qtype qtype, int size)
133 {
134 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
135 	struct ath_buf *bf, *tbf;
136 
137 	if (list_empty(&sc->rx.rxbuf)) {
138 		ath_dbg(common, QUEUE, "No free rx buf available\n");
139 		return;
140 	}
141 
142 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
143 		if (!ath_rx_edma_buf_link(sc, qtype))
144 			break;
145 
146 }
147 
148 static void ath_rx_remove_buffer(struct ath_softc *sc,
149 				 enum ath9k_rx_qtype qtype)
150 {
151 	struct ath_buf *bf;
152 	struct ath_rx_edma *rx_edma;
153 	struct sk_buff *skb;
154 
155 	rx_edma = &sc->rx.rx_edma[qtype];
156 
157 	while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
158 		bf = SKB_CB_ATHBUF(skb);
159 		BUG_ON(!bf);
160 		list_add_tail(&bf->list, &sc->rx.rxbuf);
161 	}
162 }
163 
164 static void ath_rx_edma_cleanup(struct ath_softc *sc)
165 {
166 	struct ath_hw *ah = sc->sc_ah;
167 	struct ath_common *common = ath9k_hw_common(ah);
168 	struct ath_buf *bf;
169 
170 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
171 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
172 
173 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
174 		if (bf->bf_mpdu) {
175 			dma_unmap_single(sc->dev, bf->bf_buf_addr,
176 					common->rx_bufsize,
177 					DMA_BIDIRECTIONAL);
178 			dev_kfree_skb_any(bf->bf_mpdu);
179 			bf->bf_buf_addr = 0;
180 			bf->bf_mpdu = NULL;
181 		}
182 	}
183 
184 	INIT_LIST_HEAD(&sc->rx.rxbuf);
185 
186 	kfree(sc->rx.rx_bufptr);
187 	sc->rx.rx_bufptr = NULL;
188 }
189 
190 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
191 {
192 	skb_queue_head_init(&rx_edma->rx_fifo);
193 	rx_edma->rx_fifo_hwsize = size;
194 }
195 
196 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
197 {
198 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
199 	struct ath_hw *ah = sc->sc_ah;
200 	struct sk_buff *skb;
201 	struct ath_buf *bf;
202 	int error = 0, i;
203 	u32 size;
204 
205 	ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
206 				    ah->caps.rx_status_len);
207 
208 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
209 			       ah->caps.rx_lp_qdepth);
210 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
211 			       ah->caps.rx_hp_qdepth);
212 
213 	size = sizeof(struct ath_buf) * nbufs;
214 	bf = kzalloc(size, GFP_KERNEL);
215 	if (!bf)
216 		return -ENOMEM;
217 
218 	INIT_LIST_HEAD(&sc->rx.rxbuf);
219 	sc->rx.rx_bufptr = bf;
220 
221 	for (i = 0; i < nbufs; i++, bf++) {
222 		skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
223 		if (!skb) {
224 			error = -ENOMEM;
225 			goto rx_init_fail;
226 		}
227 
228 		memset(skb->data, 0, common->rx_bufsize);
229 		bf->bf_mpdu = skb;
230 
231 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
232 						 common->rx_bufsize,
233 						 DMA_BIDIRECTIONAL);
234 		if (unlikely(dma_mapping_error(sc->dev,
235 						bf->bf_buf_addr))) {
236 				dev_kfree_skb_any(skb);
237 				bf->bf_mpdu = NULL;
238 				bf->bf_buf_addr = 0;
239 				ath_err(common,
240 					"dma_mapping_error() on RX init\n");
241 				error = -ENOMEM;
242 				goto rx_init_fail;
243 		}
244 
245 		list_add_tail(&bf->list, &sc->rx.rxbuf);
246 	}
247 
248 	return 0;
249 
250 rx_init_fail:
251 	ath_rx_edma_cleanup(sc);
252 	return error;
253 }
254 
255 static void ath_edma_start_recv(struct ath_softc *sc)
256 {
257 	ath9k_hw_rxena(sc->sc_ah);
258 
259 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
260 			      sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize);
261 
262 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP,
263 			      sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize);
264 
265 	ath_opmode_init(sc);
266 
267 	ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
268 }
269 
270 static void ath_edma_stop_recv(struct ath_softc *sc)
271 {
272 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
273 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
274 }
275 
276 int ath_rx_init(struct ath_softc *sc, int nbufs)
277 {
278 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
279 	struct sk_buff *skb;
280 	struct ath_buf *bf;
281 	int error = 0;
282 
283 	spin_lock_init(&sc->sc_pcu_lock);
284 
285 	common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
286 			     sc->sc_ah->caps.rx_status_len;
287 
288 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
289 		return ath_rx_edma_init(sc, nbufs);
290 	} else {
291 		ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
292 			common->cachelsz, common->rx_bufsize);
293 
294 		/* Initialize rx descriptors */
295 
296 		error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
297 				"rx", nbufs, 1, 0);
298 		if (error != 0) {
299 			ath_err(common,
300 				"failed to allocate rx descriptors: %d\n",
301 				error);
302 			goto err;
303 		}
304 
305 		list_for_each_entry(bf, &sc->rx.rxbuf, list) {
306 			skb = ath_rxbuf_alloc(common, common->rx_bufsize,
307 					      GFP_KERNEL);
308 			if (skb == NULL) {
309 				error = -ENOMEM;
310 				goto err;
311 			}
312 
313 			bf->bf_mpdu = skb;
314 			bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
315 					common->rx_bufsize,
316 					DMA_FROM_DEVICE);
317 			if (unlikely(dma_mapping_error(sc->dev,
318 							bf->bf_buf_addr))) {
319 				dev_kfree_skb_any(skb);
320 				bf->bf_mpdu = NULL;
321 				bf->bf_buf_addr = 0;
322 				ath_err(common,
323 					"dma_mapping_error() on RX init\n");
324 				error = -ENOMEM;
325 				goto err;
326 			}
327 		}
328 		sc->rx.rxlink = NULL;
329 	}
330 
331 err:
332 	if (error)
333 		ath_rx_cleanup(sc);
334 
335 	return error;
336 }
337 
338 void ath_rx_cleanup(struct ath_softc *sc)
339 {
340 	struct ath_hw *ah = sc->sc_ah;
341 	struct ath_common *common = ath9k_hw_common(ah);
342 	struct sk_buff *skb;
343 	struct ath_buf *bf;
344 
345 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
346 		ath_rx_edma_cleanup(sc);
347 		return;
348 	} else {
349 		list_for_each_entry(bf, &sc->rx.rxbuf, list) {
350 			skb = bf->bf_mpdu;
351 			if (skb) {
352 				dma_unmap_single(sc->dev, bf->bf_buf_addr,
353 						common->rx_bufsize,
354 						DMA_FROM_DEVICE);
355 				dev_kfree_skb(skb);
356 				bf->bf_buf_addr = 0;
357 				bf->bf_mpdu = NULL;
358 			}
359 		}
360 
361 		if (sc->rx.rxdma.dd_desc_len != 0)
362 			ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
363 	}
364 }
365 
366 /*
367  * Calculate the receive filter according to the
368  * operating mode and state:
369  *
370  * o always accept unicast, broadcast, and multicast traffic
371  * o maintain current state of phy error reception (the hal
372  *   may enable phy error frames for noise immunity work)
373  * o probe request frames are accepted only when operating in
374  *   hostap, adhoc, or monitor modes
375  * o enable promiscuous mode according to the interface state
376  * o accept beacons:
377  *   - when operating in adhoc mode so the 802.11 layer creates
378  *     node table entries for peers,
379  *   - when operating in station mode for collecting rssi data when
380  *     the station is otherwise quiet, or
381  *   - when operating as a repeater so we see repeater-sta beacons
382  *   - when scanning
383  */
384 
385 u32 ath_calcrxfilter(struct ath_softc *sc)
386 {
387 	u32 rfilt;
388 
389 	rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
390 		| ATH9K_RX_FILTER_MCAST;
391 
392 	if (sc->rx.rxfilter & FIF_PROBE_REQ)
393 		rfilt |= ATH9K_RX_FILTER_PROBEREQ;
394 
395 	/*
396 	 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
397 	 * mode interface or when in monitor mode. AP mode does not need this
398 	 * since it receives all in-BSS frames anyway.
399 	 */
400 	if (sc->sc_ah->is_monitoring)
401 		rfilt |= ATH9K_RX_FILTER_PROM;
402 
403 	if (sc->rx.rxfilter & FIF_CONTROL)
404 		rfilt |= ATH9K_RX_FILTER_CONTROL;
405 
406 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
407 	    (sc->nvifs <= 1) &&
408 	    !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
409 		rfilt |= ATH9K_RX_FILTER_MYBEACON;
410 	else
411 		rfilt |= ATH9K_RX_FILTER_BEACON;
412 
413 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
414 	    (sc->rx.rxfilter & FIF_PSPOLL))
415 		rfilt |= ATH9K_RX_FILTER_PSPOLL;
416 
417 	if (conf_is_ht(&sc->hw->conf))
418 		rfilt |= ATH9K_RX_FILTER_COMP_BAR;
419 
420 	if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
421 		/* This is needed for older chips */
422 		if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
423 			rfilt |= ATH9K_RX_FILTER_PROM;
424 		rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
425 	}
426 
427 	if (AR_SREV_9550(sc->sc_ah))
428 		rfilt |= ATH9K_RX_FILTER_4ADDRESS;
429 
430 	return rfilt;
431 
432 }
433 
434 int ath_startrecv(struct ath_softc *sc)
435 {
436 	struct ath_hw *ah = sc->sc_ah;
437 	struct ath_buf *bf, *tbf;
438 
439 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
440 		ath_edma_start_recv(sc);
441 		return 0;
442 	}
443 
444 	if (list_empty(&sc->rx.rxbuf))
445 		goto start_recv;
446 
447 	sc->rx.rxlink = NULL;
448 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
449 		ath_rx_buf_link(sc, bf);
450 	}
451 
452 	/* We could have deleted elements so the list may be empty now */
453 	if (list_empty(&sc->rx.rxbuf))
454 		goto start_recv;
455 
456 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
457 	ath9k_hw_putrxbuf(ah, bf->bf_daddr);
458 	ath9k_hw_rxena(ah);
459 
460 start_recv:
461 	ath_opmode_init(sc);
462 	ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
463 
464 	return 0;
465 }
466 
467 static void ath_flushrecv(struct ath_softc *sc)
468 {
469 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
470 		ath_rx_tasklet(sc, 1, true);
471 	ath_rx_tasklet(sc, 1, false);
472 }
473 
474 bool ath_stoprecv(struct ath_softc *sc)
475 {
476 	struct ath_hw *ah = sc->sc_ah;
477 	bool stopped, reset = false;
478 
479 	ath9k_hw_abortpcurecv(ah);
480 	ath9k_hw_setrxfilter(ah, 0);
481 	stopped = ath9k_hw_stopdmarecv(ah, &reset);
482 
483 	ath_flushrecv(sc);
484 
485 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
486 		ath_edma_stop_recv(sc);
487 	else
488 		sc->rx.rxlink = NULL;
489 
490 	if (!(ah->ah_flags & AH_UNPLUGGED) &&
491 	    unlikely(!stopped)) {
492 		ath_err(ath9k_hw_common(sc->sc_ah),
493 			"Could not stop RX, we could be "
494 			"confusing the DMA engine when we start RX up\n");
495 		ATH_DBG_WARN_ON_ONCE(!stopped);
496 	}
497 	return stopped && !reset;
498 }
499 
500 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
501 {
502 	/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
503 	struct ieee80211_mgmt *mgmt;
504 	u8 *pos, *end, id, elen;
505 	struct ieee80211_tim_ie *tim;
506 
507 	mgmt = (struct ieee80211_mgmt *)skb->data;
508 	pos = mgmt->u.beacon.variable;
509 	end = skb->data + skb->len;
510 
511 	while (pos + 2 < end) {
512 		id = *pos++;
513 		elen = *pos++;
514 		if (pos + elen > end)
515 			break;
516 
517 		if (id == WLAN_EID_TIM) {
518 			if (elen < sizeof(*tim))
519 				break;
520 			tim = (struct ieee80211_tim_ie *) pos;
521 			if (tim->dtim_count != 0)
522 				break;
523 			return tim->bitmap_ctrl & 0x01;
524 		}
525 
526 		pos += elen;
527 	}
528 
529 	return false;
530 }
531 
532 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
533 {
534 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
535 
536 	if (skb->len < 24 + 8 + 2 + 2)
537 		return;
538 
539 	sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
540 
541 	if (sc->ps_flags & PS_BEACON_SYNC) {
542 		sc->ps_flags &= ~PS_BEACON_SYNC;
543 		ath_dbg(common, PS,
544 			"Reconfigure Beacon timers based on timestamp from the AP\n");
545 		ath9k_set_beacon(sc);
546 	}
547 
548 	if (ath_beacon_dtim_pending_cab(skb)) {
549 		/*
550 		 * Remain awake waiting for buffered broadcast/multicast
551 		 * frames. If the last broadcast/multicast frame is not
552 		 * received properly, the next beacon frame will work as
553 		 * a backup trigger for returning into NETWORK SLEEP state,
554 		 * so we are waiting for it as well.
555 		 */
556 		ath_dbg(common, PS,
557 			"Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
558 		sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
559 		return;
560 	}
561 
562 	if (sc->ps_flags & PS_WAIT_FOR_CAB) {
563 		/*
564 		 * This can happen if a broadcast frame is dropped or the AP
565 		 * fails to send a frame indicating that all CAB frames have
566 		 * been delivered.
567 		 */
568 		sc->ps_flags &= ~PS_WAIT_FOR_CAB;
569 		ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
570 	}
571 }
572 
573 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
574 {
575 	struct ieee80211_hdr *hdr;
576 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
577 
578 	hdr = (struct ieee80211_hdr *)skb->data;
579 
580 	/* Process Beacon and CAB receive in PS state */
581 	if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
582 	    && mybeacon) {
583 		ath_rx_ps_beacon(sc, skb);
584 	} else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
585 		   (ieee80211_is_data(hdr->frame_control) ||
586 		    ieee80211_is_action(hdr->frame_control)) &&
587 		   is_multicast_ether_addr(hdr->addr1) &&
588 		   !ieee80211_has_moredata(hdr->frame_control)) {
589 		/*
590 		 * No more broadcast/multicast frames to be received at this
591 		 * point.
592 		 */
593 		sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
594 		ath_dbg(common, PS,
595 			"All PS CAB frames received, back to sleep\n");
596 	} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
597 		   !is_multicast_ether_addr(hdr->addr1) &&
598 		   !ieee80211_has_morefrags(hdr->frame_control)) {
599 		sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
600 		ath_dbg(common, PS,
601 			"Going back to sleep after having received PS-Poll data (0x%lx)\n",
602 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
603 					PS_WAIT_FOR_CAB |
604 					PS_WAIT_FOR_PSPOLL_DATA |
605 					PS_WAIT_FOR_TX_ACK));
606 	}
607 }
608 
609 static bool ath_edma_get_buffers(struct ath_softc *sc,
610 				 enum ath9k_rx_qtype qtype,
611 				 struct ath_rx_status *rs,
612 				 struct ath_buf **dest)
613 {
614 	struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
615 	struct ath_hw *ah = sc->sc_ah;
616 	struct ath_common *common = ath9k_hw_common(ah);
617 	struct sk_buff *skb;
618 	struct ath_buf *bf;
619 	int ret;
620 
621 	skb = skb_peek(&rx_edma->rx_fifo);
622 	if (!skb)
623 		return false;
624 
625 	bf = SKB_CB_ATHBUF(skb);
626 	BUG_ON(!bf);
627 
628 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
629 				common->rx_bufsize, DMA_FROM_DEVICE);
630 
631 	ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
632 	if (ret == -EINPROGRESS) {
633 		/*let device gain the buffer again*/
634 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
635 				common->rx_bufsize, DMA_FROM_DEVICE);
636 		return false;
637 	}
638 
639 	__skb_unlink(skb, &rx_edma->rx_fifo);
640 	if (ret == -EINVAL) {
641 		/* corrupt descriptor, skip this one and the following one */
642 		list_add_tail(&bf->list, &sc->rx.rxbuf);
643 		ath_rx_edma_buf_link(sc, qtype);
644 
645 		skb = skb_peek(&rx_edma->rx_fifo);
646 		if (skb) {
647 			bf = SKB_CB_ATHBUF(skb);
648 			BUG_ON(!bf);
649 
650 			__skb_unlink(skb, &rx_edma->rx_fifo);
651 			list_add_tail(&bf->list, &sc->rx.rxbuf);
652 			ath_rx_edma_buf_link(sc, qtype);
653 		}
654 
655 		bf = NULL;
656 	}
657 
658 	*dest = bf;
659 	return true;
660 }
661 
662 static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
663 						struct ath_rx_status *rs,
664 						enum ath9k_rx_qtype qtype)
665 {
666 	struct ath_buf *bf = NULL;
667 
668 	while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
669 		if (!bf)
670 			continue;
671 
672 		return bf;
673 	}
674 	return NULL;
675 }
676 
677 static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
678 					   struct ath_rx_status *rs)
679 {
680 	struct ath_hw *ah = sc->sc_ah;
681 	struct ath_common *common = ath9k_hw_common(ah);
682 	struct ath_desc *ds;
683 	struct ath_buf *bf;
684 	int ret;
685 
686 	if (list_empty(&sc->rx.rxbuf)) {
687 		sc->rx.rxlink = NULL;
688 		return NULL;
689 	}
690 
691 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
692 	ds = bf->bf_desc;
693 
694 	/*
695 	 * Must provide the virtual address of the current
696 	 * descriptor, the physical address, and the virtual
697 	 * address of the next descriptor in the h/w chain.
698 	 * This allows the HAL to look ahead to see if the
699 	 * hardware is done with a descriptor by checking the
700 	 * done bit in the following descriptor and the address
701 	 * of the current descriptor the DMA engine is working
702 	 * on.  All this is necessary because of our use of
703 	 * a self-linked list to avoid rx overruns.
704 	 */
705 	ret = ath9k_hw_rxprocdesc(ah, ds, rs);
706 	if (ret == -EINPROGRESS) {
707 		struct ath_rx_status trs;
708 		struct ath_buf *tbf;
709 		struct ath_desc *tds;
710 
711 		memset(&trs, 0, sizeof(trs));
712 		if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
713 			sc->rx.rxlink = NULL;
714 			return NULL;
715 		}
716 
717 		tbf = list_entry(bf->list.next, struct ath_buf, list);
718 
719 		/*
720 		 * On some hardware the descriptor status words could
721 		 * get corrupted, including the done bit. Because of
722 		 * this, check if the next descriptor's done bit is
723 		 * set or not.
724 		 *
725 		 * If the next descriptor's done bit is set, the current
726 		 * descriptor has been corrupted. Force s/w to discard
727 		 * this descriptor and continue...
728 		 */
729 
730 		tds = tbf->bf_desc;
731 		ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
732 		if (ret == -EINPROGRESS)
733 			return NULL;
734 	}
735 
736 	list_del(&bf->list);
737 	if (!bf->bf_mpdu)
738 		return bf;
739 
740 	/*
741 	 * Synchronize the DMA transfer with CPU before
742 	 * 1. accessing the frame
743 	 * 2. requeueing the same buffer to h/w
744 	 */
745 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
746 			common->rx_bufsize,
747 			DMA_FROM_DEVICE);
748 
749 	return bf;
750 }
751 
752 /* Assumes you've already done the endian to CPU conversion */
753 static bool ath9k_rx_accept(struct ath_common *common,
754 			    struct ieee80211_hdr *hdr,
755 			    struct ieee80211_rx_status *rxs,
756 			    struct ath_rx_status *rx_stats,
757 			    bool *decrypt_error)
758 {
759 	struct ath_softc *sc = (struct ath_softc *) common->priv;
760 	bool is_mc, is_valid_tkip, strip_mic, mic_error;
761 	struct ath_hw *ah = common->ah;
762 	__le16 fc;
763 	u8 rx_status_len = ah->caps.rx_status_len;
764 
765 	fc = hdr->frame_control;
766 
767 	is_mc = !!is_multicast_ether_addr(hdr->addr1);
768 	is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID &&
769 		test_bit(rx_stats->rs_keyix, common->tkip_keymap);
770 	strip_mic = is_valid_tkip && ieee80211_is_data(fc) &&
771 		ieee80211_has_protected(fc) &&
772 		!(rx_stats->rs_status &
773 		(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC |
774 		 ATH9K_RXERR_KEYMISS));
775 
776 	/*
777 	 * Key miss events are only relevant for pairwise keys where the
778 	 * descriptor does contain a valid key index. This has been observed
779 	 * mostly with CCMP encryption.
780 	 */
781 	if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID ||
782 	    !test_bit(rx_stats->rs_keyix, common->ccmp_keymap))
783 		rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS;
784 
785 	if (!rx_stats->rs_datalen) {
786 		RX_STAT_INC(rx_len_err);
787 		return false;
788 	}
789 
790         /*
791          * rs_status follows rs_datalen so if rs_datalen is too large
792          * we can take a hint that hardware corrupted it, so ignore
793          * those frames.
794          */
795 	if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len)) {
796 		RX_STAT_INC(rx_len_err);
797 		return false;
798 	}
799 
800 	/* Only use error bits from the last fragment */
801 	if (rx_stats->rs_more)
802 		return true;
803 
804 	mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) &&
805 		!ieee80211_has_morefrags(fc) &&
806 		!(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) &&
807 		(rx_stats->rs_status & ATH9K_RXERR_MIC);
808 
809 	/*
810 	 * The rx_stats->rs_status will not be set until the end of the
811 	 * chained descriptors so it can be ignored if rs_more is set. The
812 	 * rs_more will be false at the last element of the chained
813 	 * descriptors.
814 	 */
815 	if (rx_stats->rs_status != 0) {
816 		u8 status_mask;
817 
818 		if (rx_stats->rs_status & ATH9K_RXERR_CRC) {
819 			rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
820 			mic_error = false;
821 		}
822 		if (rx_stats->rs_status & ATH9K_RXERR_PHY)
823 			return false;
824 
825 		if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) ||
826 		    (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) {
827 			*decrypt_error = true;
828 			mic_error = false;
829 		}
830 
831 		/*
832 		 * Reject error frames with the exception of
833 		 * decryption and MIC failures. For monitor mode,
834 		 * we also ignore the CRC error.
835 		 */
836 		status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
837 			      ATH9K_RXERR_KEYMISS;
838 
839 		if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL))
840 			status_mask |= ATH9K_RXERR_CRC;
841 
842 		if (rx_stats->rs_status & ~status_mask)
843 			return false;
844 	}
845 
846 	/*
847 	 * For unicast frames the MIC error bit can have false positives,
848 	 * so all MIC error reports need to be validated in software.
849 	 * False negatives are not common, so skip software verification
850 	 * if the hardware considers the MIC valid.
851 	 */
852 	if (strip_mic)
853 		rxs->flag |= RX_FLAG_MMIC_STRIPPED;
854 	else if (is_mc && mic_error)
855 		rxs->flag |= RX_FLAG_MMIC_ERROR;
856 
857 	return true;
858 }
859 
860 static int ath9k_process_rate(struct ath_common *common,
861 			      struct ieee80211_hw *hw,
862 			      struct ath_rx_status *rx_stats,
863 			      struct ieee80211_rx_status *rxs)
864 {
865 	struct ieee80211_supported_band *sband;
866 	enum ieee80211_band band;
867 	unsigned int i = 0;
868 	struct ath_softc __maybe_unused *sc = common->priv;
869 
870 	band = hw->conf.channel->band;
871 	sband = hw->wiphy->bands[band];
872 
873 	if (rx_stats->rs_rate & 0x80) {
874 		/* HT rate */
875 		rxs->flag |= RX_FLAG_HT;
876 		if (rx_stats->rs_flags & ATH9K_RX_2040)
877 			rxs->flag |= RX_FLAG_40MHZ;
878 		if (rx_stats->rs_flags & ATH9K_RX_GI)
879 			rxs->flag |= RX_FLAG_SHORT_GI;
880 		rxs->rate_idx = rx_stats->rs_rate & 0x7f;
881 		return 0;
882 	}
883 
884 	for (i = 0; i < sband->n_bitrates; i++) {
885 		if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
886 			rxs->rate_idx = i;
887 			return 0;
888 		}
889 		if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
890 			rxs->flag |= RX_FLAG_SHORTPRE;
891 			rxs->rate_idx = i;
892 			return 0;
893 		}
894 	}
895 
896 	/*
897 	 * No valid hardware bitrate found -- we should not get here
898 	 * because hardware has already validated this frame as OK.
899 	 */
900 	ath_dbg(common, ANY,
901 		"unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
902 		rx_stats->rs_rate);
903 	RX_STAT_INC(rx_rate_err);
904 	return -EINVAL;
905 }
906 
907 static void ath9k_process_rssi(struct ath_common *common,
908 			       struct ieee80211_hw *hw,
909 			       struct ieee80211_hdr *hdr,
910 			       struct ath_rx_status *rx_stats)
911 {
912 	struct ath_softc *sc = hw->priv;
913 	struct ath_hw *ah = common->ah;
914 	int last_rssi;
915 	int rssi = rx_stats->rs_rssi;
916 
917 	if (!rx_stats->is_mybeacon ||
918 	    ((ah->opmode != NL80211_IFTYPE_STATION) &&
919 	     (ah->opmode != NL80211_IFTYPE_ADHOC)))
920 		return;
921 
922 	if (rx_stats->rs_rssi != ATH9K_RSSI_BAD && !rx_stats->rs_moreaggr)
923 		ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi);
924 
925 	last_rssi = sc->last_rssi;
926 	if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
927 		rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER);
928 	if (rssi < 0)
929 		rssi = 0;
930 
931 	/* Update Beacon RSSI, this is used by ANI. */
932 	ah->stats.avgbrssi = rssi;
933 }
934 
935 /*
936  * For Decrypt or Demic errors, we only mark packet status here and always push
937  * up the frame up to let mac80211 handle the actual error case, be it no
938  * decryption key or real decryption error. This let us keep statistics there.
939  */
940 static int ath9k_rx_skb_preprocess(struct ath_common *common,
941 				   struct ieee80211_hw *hw,
942 				   struct ieee80211_hdr *hdr,
943 				   struct ath_rx_status *rx_stats,
944 				   struct ieee80211_rx_status *rx_status,
945 				   bool *decrypt_error)
946 {
947 	struct ath_hw *ah = common->ah;
948 
949 	/*
950 	 * everything but the rate is checked here, the rate check is done
951 	 * separately to avoid doing two lookups for a rate for each frame.
952 	 */
953 	if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error))
954 		return -EINVAL;
955 
956 	/* Only use status info from the last fragment */
957 	if (rx_stats->rs_more)
958 		return 0;
959 
960 	ath9k_process_rssi(common, hw, hdr, rx_stats);
961 
962 	if (ath9k_process_rate(common, hw, rx_stats, rx_status))
963 		return -EINVAL;
964 
965 	rx_status->band = hw->conf.channel->band;
966 	rx_status->freq = hw->conf.channel->center_freq;
967 	rx_status->signal = ah->noise + rx_stats->rs_rssi;
968 	rx_status->antenna = rx_stats->rs_antenna;
969 	rx_status->flag |= RX_FLAG_MACTIME_END;
970 	if (rx_stats->rs_moreaggr)
971 		rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
972 
973 	return 0;
974 }
975 
976 static void ath9k_rx_skb_postprocess(struct ath_common *common,
977 				     struct sk_buff *skb,
978 				     struct ath_rx_status *rx_stats,
979 				     struct ieee80211_rx_status *rxs,
980 				     bool decrypt_error)
981 {
982 	struct ath_hw *ah = common->ah;
983 	struct ieee80211_hdr *hdr;
984 	int hdrlen, padpos, padsize;
985 	u8 keyix;
986 	__le16 fc;
987 
988 	/* see if any padding is done by the hw and remove it */
989 	hdr = (struct ieee80211_hdr *) skb->data;
990 	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
991 	fc = hdr->frame_control;
992 	padpos = ath9k_cmn_padpos(hdr->frame_control);
993 
994 	/* The MAC header is padded to have 32-bit boundary if the
995 	 * packet payload is non-zero. The general calculation for
996 	 * padsize would take into account odd header lengths:
997 	 * padsize = (4 - padpos % 4) % 4; However, since only
998 	 * even-length headers are used, padding can only be 0 or 2
999 	 * bytes and we can optimize this a bit. In addition, we must
1000 	 * not try to remove padding from short control frames that do
1001 	 * not have payload. */
1002 	padsize = padpos & 3;
1003 	if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
1004 		memmove(skb->data + padsize, skb->data, padpos);
1005 		skb_pull(skb, padsize);
1006 	}
1007 
1008 	keyix = rx_stats->rs_keyix;
1009 
1010 	if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
1011 	    ieee80211_has_protected(fc)) {
1012 		rxs->flag |= RX_FLAG_DECRYPTED;
1013 	} else if (ieee80211_has_protected(fc)
1014 		   && !decrypt_error && skb->len >= hdrlen + 4) {
1015 		keyix = skb->data[hdrlen + 3] >> 6;
1016 
1017 		if (test_bit(keyix, common->keymap))
1018 			rxs->flag |= RX_FLAG_DECRYPTED;
1019 	}
1020 	if (ah->sw_mgmt_crypto &&
1021 	    (rxs->flag & RX_FLAG_DECRYPTED) &&
1022 	    ieee80211_is_mgmt(fc))
1023 		/* Use software decrypt for management frames. */
1024 		rxs->flag &= ~RX_FLAG_DECRYPTED;
1025 }
1026 
1027 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1028 {
1029 	struct ath_buf *bf;
1030 	struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1031 	struct ieee80211_rx_status *rxs;
1032 	struct ath_hw *ah = sc->sc_ah;
1033 	struct ath_common *common = ath9k_hw_common(ah);
1034 	struct ieee80211_hw *hw = sc->hw;
1035 	struct ieee80211_hdr *hdr;
1036 	int retval;
1037 	struct ath_rx_status rs;
1038 	enum ath9k_rx_qtype qtype;
1039 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1040 	int dma_type;
1041 	u8 rx_status_len = ah->caps.rx_status_len;
1042 	u64 tsf = 0;
1043 	u32 tsf_lower = 0;
1044 	unsigned long flags;
1045 
1046 	if (edma)
1047 		dma_type = DMA_BIDIRECTIONAL;
1048 	else
1049 		dma_type = DMA_FROM_DEVICE;
1050 
1051 	qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1052 
1053 	tsf = ath9k_hw_gettsf64(ah);
1054 	tsf_lower = tsf & 0xffffffff;
1055 
1056 	do {
1057 		bool decrypt_error = false;
1058 
1059 		memset(&rs, 0, sizeof(rs));
1060 		if (edma)
1061 			bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1062 		else
1063 			bf = ath_get_next_rx_buf(sc, &rs);
1064 
1065 		if (!bf)
1066 			break;
1067 
1068 		skb = bf->bf_mpdu;
1069 		if (!skb)
1070 			continue;
1071 
1072 		/*
1073 		 * Take frame header from the first fragment and RX status from
1074 		 * the last one.
1075 		 */
1076 		if (sc->rx.frag)
1077 			hdr_skb = sc->rx.frag;
1078 		else
1079 			hdr_skb = skb;
1080 
1081 		hdr = (struct ieee80211_hdr *) (hdr_skb->data + rx_status_len);
1082 		rxs = IEEE80211_SKB_RXCB(hdr_skb);
1083 		if (ieee80211_is_beacon(hdr->frame_control)) {
1084 			RX_STAT_INC(rx_beacons);
1085 			if (!is_zero_ether_addr(common->curbssid) &&
1086 			    ether_addr_equal(hdr->addr3, common->curbssid))
1087 				rs.is_mybeacon = true;
1088 			else
1089 				rs.is_mybeacon = false;
1090 		}
1091 		else
1092 			rs.is_mybeacon = false;
1093 
1094 		if (ieee80211_is_data_present(hdr->frame_control) &&
1095 		    !ieee80211_is_qos_nullfunc(hdr->frame_control))
1096 			sc->rx.num_pkts++;
1097 
1098 		ath_debug_stat_rx(sc, &rs);
1099 
1100 		memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1101 
1102 		rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp;
1103 		if (rs.rs_tstamp > tsf_lower &&
1104 		    unlikely(rs.rs_tstamp - tsf_lower > 0x10000000))
1105 			rxs->mactime -= 0x100000000ULL;
1106 
1107 		if (rs.rs_tstamp < tsf_lower &&
1108 		    unlikely(tsf_lower - rs.rs_tstamp > 0x10000000))
1109 			rxs->mactime += 0x100000000ULL;
1110 
1111 		retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs,
1112 						 rxs, &decrypt_error);
1113 		if (retval)
1114 			goto requeue_drop_frag;
1115 
1116 		if (rs.is_mybeacon) {
1117 			sc->hw_busy_count = 0;
1118 			ath_start_rx_poll(sc, 3);
1119 		}
1120 		/* Ensure we always have an skb to requeue once we are done
1121 		 * processing the current buffer's skb */
1122 		requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1123 
1124 		/* If there is no memory we ignore the current RX'd frame,
1125 		 * tell hardware it can give us a new frame using the old
1126 		 * skb and put it at the tail of the sc->rx.rxbuf list for
1127 		 * processing. */
1128 		if (!requeue_skb) {
1129 			RX_STAT_INC(rx_oom_err);
1130 			goto requeue_drop_frag;
1131 		}
1132 
1133 		/* Unmap the frame */
1134 		dma_unmap_single(sc->dev, bf->bf_buf_addr,
1135 				 common->rx_bufsize,
1136 				 dma_type);
1137 
1138 		skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1139 		if (ah->caps.rx_status_len)
1140 			skb_pull(skb, ah->caps.rx_status_len);
1141 
1142 		if (!rs.rs_more)
1143 			ath9k_rx_skb_postprocess(common, hdr_skb, &rs,
1144 						 rxs, decrypt_error);
1145 
1146 		/* We will now give hardware our shiny new allocated skb */
1147 		bf->bf_mpdu = requeue_skb;
1148 		bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1149 						 common->rx_bufsize,
1150 						 dma_type);
1151 		if (unlikely(dma_mapping_error(sc->dev,
1152 			  bf->bf_buf_addr))) {
1153 			dev_kfree_skb_any(requeue_skb);
1154 			bf->bf_mpdu = NULL;
1155 			bf->bf_buf_addr = 0;
1156 			ath_err(common, "dma_mapping_error() on RX\n");
1157 			ieee80211_rx(hw, skb);
1158 			break;
1159 		}
1160 
1161 		if (rs.rs_more) {
1162 			RX_STAT_INC(rx_frags);
1163 			/*
1164 			 * rs_more indicates chained descriptors which can be
1165 			 * used to link buffers together for a sort of
1166 			 * scatter-gather operation.
1167 			 */
1168 			if (sc->rx.frag) {
1169 				/* too many fragments - cannot handle frame */
1170 				dev_kfree_skb_any(sc->rx.frag);
1171 				dev_kfree_skb_any(skb);
1172 				RX_STAT_INC(rx_too_many_frags_err);
1173 				skb = NULL;
1174 			}
1175 			sc->rx.frag = skb;
1176 			goto requeue;
1177 		}
1178 
1179 		if (sc->rx.frag) {
1180 			int space = skb->len - skb_tailroom(hdr_skb);
1181 
1182 			if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1183 				dev_kfree_skb(skb);
1184 				RX_STAT_INC(rx_oom_err);
1185 				goto requeue_drop_frag;
1186 			}
1187 
1188 			sc->rx.frag = NULL;
1189 
1190 			skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1191 						  skb->len);
1192 			dev_kfree_skb_any(skb);
1193 			skb = hdr_skb;
1194 		}
1195 
1196 
1197 		if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
1198 
1199 			/*
1200 			 * change the default rx antenna if rx diversity
1201 			 * chooses the other antenna 3 times in a row.
1202 			 */
1203 			if (sc->rx.defant != rs.rs_antenna) {
1204 				if (++sc->rx.rxotherant >= 3)
1205 					ath_setdefantenna(sc, rs.rs_antenna);
1206 			} else {
1207 				sc->rx.rxotherant = 0;
1208 			}
1209 
1210 		}
1211 
1212 		if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1213 			skb_trim(skb, skb->len - 8);
1214 
1215 		spin_lock_irqsave(&sc->sc_pm_lock, flags);
1216 		if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1217 				     PS_WAIT_FOR_CAB |
1218 				     PS_WAIT_FOR_PSPOLL_DATA)) ||
1219 		    ath9k_check_auto_sleep(sc))
1220 			ath_rx_ps(sc, skb, rs.is_mybeacon);
1221 		spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1222 
1223 		if ((ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) && sc->ant_rx == 3)
1224 			ath_ant_comb_scan(sc, &rs);
1225 
1226 		ieee80211_rx(hw, skb);
1227 
1228 requeue_drop_frag:
1229 		if (sc->rx.frag) {
1230 			dev_kfree_skb_any(sc->rx.frag);
1231 			sc->rx.frag = NULL;
1232 		}
1233 requeue:
1234 		list_add_tail(&bf->list, &sc->rx.rxbuf);
1235 		if (flush)
1236 			continue;
1237 
1238 		if (edma) {
1239 			ath_rx_edma_buf_link(sc, qtype);
1240 		} else {
1241 			ath_rx_buf_link(sc, bf);
1242 			ath9k_hw_rxena(ah);
1243 		}
1244 	} while (1);
1245 
1246 	if (!(ah->imask & ATH9K_INT_RXEOL)) {
1247 		ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1248 		ath9k_hw_set_interrupts(ah);
1249 	}
1250 
1251 	return 0;
1252 }
1253