1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include <linux/relay.h> 19 #include "ath9k.h" 20 #include "ar9003_mac.h" 21 22 #define SKB_CB_ATHBUF(__skb) (*((struct ath_buf **)__skb->cb)) 23 24 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc) 25 { 26 return sc->ps_enabled && 27 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP); 28 } 29 30 /* 31 * Setup and link descriptors. 32 * 33 * 11N: we can no longer afford to self link the last descriptor. 34 * MAC acknowledges BA status as long as it copies frames to host 35 * buffer (or rx fifo). This can incorrectly acknowledge packets 36 * to a sender if last desc is self-linked. 37 */ 38 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf) 39 { 40 struct ath_hw *ah = sc->sc_ah; 41 struct ath_common *common = ath9k_hw_common(ah); 42 struct ath_desc *ds; 43 struct sk_buff *skb; 44 45 ATH_RXBUF_RESET(bf); 46 47 ds = bf->bf_desc; 48 ds->ds_link = 0; /* link to null */ 49 ds->ds_data = bf->bf_buf_addr; 50 51 /* virtual addr of the beginning of the buffer. */ 52 skb = bf->bf_mpdu; 53 BUG_ON(skb == NULL); 54 ds->ds_vdata = skb->data; 55 56 /* 57 * setup rx descriptors. The rx_bufsize here tells the hardware 58 * how much data it can DMA to us and that we are prepared 59 * to process 60 */ 61 ath9k_hw_setuprxdesc(ah, ds, 62 common->rx_bufsize, 63 0); 64 65 if (sc->rx.rxlink == NULL) 66 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 67 else 68 *sc->rx.rxlink = bf->bf_daddr; 69 70 sc->rx.rxlink = &ds->ds_link; 71 } 72 73 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna) 74 { 75 /* XXX block beacon interrupts */ 76 ath9k_hw_setantenna(sc->sc_ah, antenna); 77 sc->rx.defant = antenna; 78 sc->rx.rxotherant = 0; 79 } 80 81 static void ath_opmode_init(struct ath_softc *sc) 82 { 83 struct ath_hw *ah = sc->sc_ah; 84 struct ath_common *common = ath9k_hw_common(ah); 85 86 u32 rfilt, mfilt[2]; 87 88 /* configure rx filter */ 89 rfilt = ath_calcrxfilter(sc); 90 ath9k_hw_setrxfilter(ah, rfilt); 91 92 /* configure bssid mask */ 93 ath_hw_setbssidmask(common); 94 95 /* configure operational mode */ 96 ath9k_hw_setopmode(ah); 97 98 /* calculate and install multicast filter */ 99 mfilt[0] = mfilt[1] = ~0; 100 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]); 101 } 102 103 static bool ath_rx_edma_buf_link(struct ath_softc *sc, 104 enum ath9k_rx_qtype qtype) 105 { 106 struct ath_hw *ah = sc->sc_ah; 107 struct ath_rx_edma *rx_edma; 108 struct sk_buff *skb; 109 struct ath_buf *bf; 110 111 rx_edma = &sc->rx.rx_edma[qtype]; 112 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize) 113 return false; 114 115 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); 116 list_del_init(&bf->list); 117 118 skb = bf->bf_mpdu; 119 120 ATH_RXBUF_RESET(bf); 121 memset(skb->data, 0, ah->caps.rx_status_len); 122 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 123 ah->caps.rx_status_len, DMA_TO_DEVICE); 124 125 SKB_CB_ATHBUF(skb) = bf; 126 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype); 127 skb_queue_tail(&rx_edma->rx_fifo, skb); 128 129 return true; 130 } 131 132 static void ath_rx_addbuffer_edma(struct ath_softc *sc, 133 enum ath9k_rx_qtype qtype, int size) 134 { 135 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 136 struct ath_buf *bf, *tbf; 137 138 if (list_empty(&sc->rx.rxbuf)) { 139 ath_dbg(common, QUEUE, "No free rx buf available\n"); 140 return; 141 } 142 143 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) 144 if (!ath_rx_edma_buf_link(sc, qtype)) 145 break; 146 147 } 148 149 static void ath_rx_remove_buffer(struct ath_softc *sc, 150 enum ath9k_rx_qtype qtype) 151 { 152 struct ath_buf *bf; 153 struct ath_rx_edma *rx_edma; 154 struct sk_buff *skb; 155 156 rx_edma = &sc->rx.rx_edma[qtype]; 157 158 while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) { 159 bf = SKB_CB_ATHBUF(skb); 160 BUG_ON(!bf); 161 list_add_tail(&bf->list, &sc->rx.rxbuf); 162 } 163 } 164 165 static void ath_rx_edma_cleanup(struct ath_softc *sc) 166 { 167 struct ath_hw *ah = sc->sc_ah; 168 struct ath_common *common = ath9k_hw_common(ah); 169 struct ath_buf *bf; 170 171 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 172 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 173 174 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 175 if (bf->bf_mpdu) { 176 dma_unmap_single(sc->dev, bf->bf_buf_addr, 177 common->rx_bufsize, 178 DMA_BIDIRECTIONAL); 179 dev_kfree_skb_any(bf->bf_mpdu); 180 bf->bf_buf_addr = 0; 181 bf->bf_mpdu = NULL; 182 } 183 } 184 } 185 186 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size) 187 { 188 skb_queue_head_init(&rx_edma->rx_fifo); 189 rx_edma->rx_fifo_hwsize = size; 190 } 191 192 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs) 193 { 194 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 195 struct ath_hw *ah = sc->sc_ah; 196 struct sk_buff *skb; 197 struct ath_buf *bf; 198 int error = 0, i; 199 u32 size; 200 201 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 202 ah->caps.rx_status_len); 203 204 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP], 205 ah->caps.rx_lp_qdepth); 206 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP], 207 ah->caps.rx_hp_qdepth); 208 209 size = sizeof(struct ath_buf) * nbufs; 210 bf = devm_kzalloc(sc->dev, size, GFP_KERNEL); 211 if (!bf) 212 return -ENOMEM; 213 214 INIT_LIST_HEAD(&sc->rx.rxbuf); 215 216 for (i = 0; i < nbufs; i++, bf++) { 217 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL); 218 if (!skb) { 219 error = -ENOMEM; 220 goto rx_init_fail; 221 } 222 223 memset(skb->data, 0, common->rx_bufsize); 224 bf->bf_mpdu = skb; 225 226 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 227 common->rx_bufsize, 228 DMA_BIDIRECTIONAL); 229 if (unlikely(dma_mapping_error(sc->dev, 230 bf->bf_buf_addr))) { 231 dev_kfree_skb_any(skb); 232 bf->bf_mpdu = NULL; 233 bf->bf_buf_addr = 0; 234 ath_err(common, 235 "dma_mapping_error() on RX init\n"); 236 error = -ENOMEM; 237 goto rx_init_fail; 238 } 239 240 list_add_tail(&bf->list, &sc->rx.rxbuf); 241 } 242 243 return 0; 244 245 rx_init_fail: 246 ath_rx_edma_cleanup(sc); 247 return error; 248 } 249 250 static void ath_edma_start_recv(struct ath_softc *sc) 251 { 252 ath9k_hw_rxena(sc->sc_ah); 253 254 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP, 255 sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize); 256 257 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP, 258 sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize); 259 260 ath_opmode_init(sc); 261 262 ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)); 263 } 264 265 static void ath_edma_stop_recv(struct ath_softc *sc) 266 { 267 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 268 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 269 } 270 271 int ath_rx_init(struct ath_softc *sc, int nbufs) 272 { 273 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 274 struct sk_buff *skb; 275 struct ath_buf *bf; 276 int error = 0; 277 278 spin_lock_init(&sc->sc_pcu_lock); 279 280 common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 + 281 sc->sc_ah->caps.rx_status_len; 282 283 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 284 return ath_rx_edma_init(sc, nbufs); 285 } else { 286 ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n", 287 common->cachelsz, common->rx_bufsize); 288 289 /* Initialize rx descriptors */ 290 291 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf, 292 "rx", nbufs, 1, 0); 293 if (error != 0) { 294 ath_err(common, 295 "failed to allocate rx descriptors: %d\n", 296 error); 297 goto err; 298 } 299 300 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 301 skb = ath_rxbuf_alloc(common, common->rx_bufsize, 302 GFP_KERNEL); 303 if (skb == NULL) { 304 error = -ENOMEM; 305 goto err; 306 } 307 308 bf->bf_mpdu = skb; 309 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 310 common->rx_bufsize, 311 DMA_FROM_DEVICE); 312 if (unlikely(dma_mapping_error(sc->dev, 313 bf->bf_buf_addr))) { 314 dev_kfree_skb_any(skb); 315 bf->bf_mpdu = NULL; 316 bf->bf_buf_addr = 0; 317 ath_err(common, 318 "dma_mapping_error() on RX init\n"); 319 error = -ENOMEM; 320 goto err; 321 } 322 } 323 sc->rx.rxlink = NULL; 324 } 325 326 err: 327 if (error) 328 ath_rx_cleanup(sc); 329 330 return error; 331 } 332 333 void ath_rx_cleanup(struct ath_softc *sc) 334 { 335 struct ath_hw *ah = sc->sc_ah; 336 struct ath_common *common = ath9k_hw_common(ah); 337 struct sk_buff *skb; 338 struct ath_buf *bf; 339 340 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 341 ath_rx_edma_cleanup(sc); 342 return; 343 } else { 344 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 345 skb = bf->bf_mpdu; 346 if (skb) { 347 dma_unmap_single(sc->dev, bf->bf_buf_addr, 348 common->rx_bufsize, 349 DMA_FROM_DEVICE); 350 dev_kfree_skb(skb); 351 bf->bf_buf_addr = 0; 352 bf->bf_mpdu = NULL; 353 } 354 } 355 } 356 } 357 358 /* 359 * Calculate the receive filter according to the 360 * operating mode and state: 361 * 362 * o always accept unicast, broadcast, and multicast traffic 363 * o maintain current state of phy error reception (the hal 364 * may enable phy error frames for noise immunity work) 365 * o probe request frames are accepted only when operating in 366 * hostap, adhoc, or monitor modes 367 * o enable promiscuous mode according to the interface state 368 * o accept beacons: 369 * - when operating in adhoc mode so the 802.11 layer creates 370 * node table entries for peers, 371 * - when operating in station mode for collecting rssi data when 372 * the station is otherwise quiet, or 373 * - when operating as a repeater so we see repeater-sta beacons 374 * - when scanning 375 */ 376 377 u32 ath_calcrxfilter(struct ath_softc *sc) 378 { 379 u32 rfilt; 380 381 rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST 382 | ATH9K_RX_FILTER_MCAST; 383 384 if (sc->rx.rxfilter & FIF_PROBE_REQ) 385 rfilt |= ATH9K_RX_FILTER_PROBEREQ; 386 387 /* 388 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station 389 * mode interface or when in monitor mode. AP mode does not need this 390 * since it receives all in-BSS frames anyway. 391 */ 392 if (sc->sc_ah->is_monitoring) 393 rfilt |= ATH9K_RX_FILTER_PROM; 394 395 if (sc->rx.rxfilter & FIF_CONTROL) 396 rfilt |= ATH9K_RX_FILTER_CONTROL; 397 398 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) && 399 (sc->nvifs <= 1) && 400 !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)) 401 rfilt |= ATH9K_RX_FILTER_MYBEACON; 402 else 403 rfilt |= ATH9K_RX_FILTER_BEACON; 404 405 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) || 406 (sc->rx.rxfilter & FIF_PSPOLL)) 407 rfilt |= ATH9K_RX_FILTER_PSPOLL; 408 409 if (conf_is_ht(&sc->hw->conf)) 410 rfilt |= ATH9K_RX_FILTER_COMP_BAR; 411 412 if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) { 413 /* This is needed for older chips */ 414 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160) 415 rfilt |= ATH9K_RX_FILTER_PROM; 416 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL; 417 } 418 419 if (AR_SREV_9550(sc->sc_ah)) 420 rfilt |= ATH9K_RX_FILTER_4ADDRESS; 421 422 return rfilt; 423 424 } 425 426 int ath_startrecv(struct ath_softc *sc) 427 { 428 struct ath_hw *ah = sc->sc_ah; 429 struct ath_buf *bf, *tbf; 430 431 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 432 ath_edma_start_recv(sc); 433 return 0; 434 } 435 436 if (list_empty(&sc->rx.rxbuf)) 437 goto start_recv; 438 439 sc->rx.rxlink = NULL; 440 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) { 441 ath_rx_buf_link(sc, bf); 442 } 443 444 /* We could have deleted elements so the list may be empty now */ 445 if (list_empty(&sc->rx.rxbuf)) 446 goto start_recv; 447 448 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); 449 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 450 ath9k_hw_rxena(ah); 451 452 start_recv: 453 ath_opmode_init(sc); 454 ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)); 455 456 return 0; 457 } 458 459 static void ath_flushrecv(struct ath_softc *sc) 460 { 461 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 462 ath_rx_tasklet(sc, 1, true); 463 ath_rx_tasklet(sc, 1, false); 464 } 465 466 bool ath_stoprecv(struct ath_softc *sc) 467 { 468 struct ath_hw *ah = sc->sc_ah; 469 bool stopped, reset = false; 470 471 ath9k_hw_abortpcurecv(ah); 472 ath9k_hw_setrxfilter(ah, 0); 473 stopped = ath9k_hw_stopdmarecv(ah, &reset); 474 475 ath_flushrecv(sc); 476 477 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 478 ath_edma_stop_recv(sc); 479 else 480 sc->rx.rxlink = NULL; 481 482 if (!(ah->ah_flags & AH_UNPLUGGED) && 483 unlikely(!stopped)) { 484 ath_err(ath9k_hw_common(sc->sc_ah), 485 "Could not stop RX, we could be " 486 "confusing the DMA engine when we start RX up\n"); 487 ATH_DBG_WARN_ON_ONCE(!stopped); 488 } 489 return stopped && !reset; 490 } 491 492 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb) 493 { 494 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */ 495 struct ieee80211_mgmt *mgmt; 496 u8 *pos, *end, id, elen; 497 struct ieee80211_tim_ie *tim; 498 499 mgmt = (struct ieee80211_mgmt *)skb->data; 500 pos = mgmt->u.beacon.variable; 501 end = skb->data + skb->len; 502 503 while (pos + 2 < end) { 504 id = *pos++; 505 elen = *pos++; 506 if (pos + elen > end) 507 break; 508 509 if (id == WLAN_EID_TIM) { 510 if (elen < sizeof(*tim)) 511 break; 512 tim = (struct ieee80211_tim_ie *) pos; 513 if (tim->dtim_count != 0) 514 break; 515 return tim->bitmap_ctrl & 0x01; 516 } 517 518 pos += elen; 519 } 520 521 return false; 522 } 523 524 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb) 525 { 526 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 527 528 if (skb->len < 24 + 8 + 2 + 2) 529 return; 530 531 sc->ps_flags &= ~PS_WAIT_FOR_BEACON; 532 533 if (sc->ps_flags & PS_BEACON_SYNC) { 534 sc->ps_flags &= ~PS_BEACON_SYNC; 535 ath_dbg(common, PS, 536 "Reconfigure beacon timers based on synchronized timestamp\n"); 537 ath9k_set_beacon(sc); 538 } 539 540 if (ath_beacon_dtim_pending_cab(skb)) { 541 /* 542 * Remain awake waiting for buffered broadcast/multicast 543 * frames. If the last broadcast/multicast frame is not 544 * received properly, the next beacon frame will work as 545 * a backup trigger for returning into NETWORK SLEEP state, 546 * so we are waiting for it as well. 547 */ 548 ath_dbg(common, PS, 549 "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n"); 550 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON; 551 return; 552 } 553 554 if (sc->ps_flags & PS_WAIT_FOR_CAB) { 555 /* 556 * This can happen if a broadcast frame is dropped or the AP 557 * fails to send a frame indicating that all CAB frames have 558 * been delivered. 559 */ 560 sc->ps_flags &= ~PS_WAIT_FOR_CAB; 561 ath_dbg(common, PS, "PS wait for CAB frames timed out\n"); 562 } 563 } 564 565 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon) 566 { 567 struct ieee80211_hdr *hdr; 568 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 569 570 hdr = (struct ieee80211_hdr *)skb->data; 571 572 /* Process Beacon and CAB receive in PS state */ 573 if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc)) 574 && mybeacon) { 575 ath_rx_ps_beacon(sc, skb); 576 } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) && 577 (ieee80211_is_data(hdr->frame_control) || 578 ieee80211_is_action(hdr->frame_control)) && 579 is_multicast_ether_addr(hdr->addr1) && 580 !ieee80211_has_moredata(hdr->frame_control)) { 581 /* 582 * No more broadcast/multicast frames to be received at this 583 * point. 584 */ 585 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON); 586 ath_dbg(common, PS, 587 "All PS CAB frames received, back to sleep\n"); 588 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) && 589 !is_multicast_ether_addr(hdr->addr1) && 590 !ieee80211_has_morefrags(hdr->frame_control)) { 591 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA; 592 ath_dbg(common, PS, 593 "Going back to sleep after having received PS-Poll data (0x%lx)\n", 594 sc->ps_flags & (PS_WAIT_FOR_BEACON | 595 PS_WAIT_FOR_CAB | 596 PS_WAIT_FOR_PSPOLL_DATA | 597 PS_WAIT_FOR_TX_ACK)); 598 } 599 } 600 601 static bool ath_edma_get_buffers(struct ath_softc *sc, 602 enum ath9k_rx_qtype qtype, 603 struct ath_rx_status *rs, 604 struct ath_buf **dest) 605 { 606 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype]; 607 struct ath_hw *ah = sc->sc_ah; 608 struct ath_common *common = ath9k_hw_common(ah); 609 struct sk_buff *skb; 610 struct ath_buf *bf; 611 int ret; 612 613 skb = skb_peek(&rx_edma->rx_fifo); 614 if (!skb) 615 return false; 616 617 bf = SKB_CB_ATHBUF(skb); 618 BUG_ON(!bf); 619 620 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 621 common->rx_bufsize, DMA_FROM_DEVICE); 622 623 ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data); 624 if (ret == -EINPROGRESS) { 625 /*let device gain the buffer again*/ 626 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 627 common->rx_bufsize, DMA_FROM_DEVICE); 628 return false; 629 } 630 631 __skb_unlink(skb, &rx_edma->rx_fifo); 632 if (ret == -EINVAL) { 633 /* corrupt descriptor, skip this one and the following one */ 634 list_add_tail(&bf->list, &sc->rx.rxbuf); 635 ath_rx_edma_buf_link(sc, qtype); 636 637 skb = skb_peek(&rx_edma->rx_fifo); 638 if (skb) { 639 bf = SKB_CB_ATHBUF(skb); 640 BUG_ON(!bf); 641 642 __skb_unlink(skb, &rx_edma->rx_fifo); 643 list_add_tail(&bf->list, &sc->rx.rxbuf); 644 ath_rx_edma_buf_link(sc, qtype); 645 } 646 647 bf = NULL; 648 } 649 650 *dest = bf; 651 return true; 652 } 653 654 static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc, 655 struct ath_rx_status *rs, 656 enum ath9k_rx_qtype qtype) 657 { 658 struct ath_buf *bf = NULL; 659 660 while (ath_edma_get_buffers(sc, qtype, rs, &bf)) { 661 if (!bf) 662 continue; 663 664 return bf; 665 } 666 return NULL; 667 } 668 669 static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc, 670 struct ath_rx_status *rs) 671 { 672 struct ath_hw *ah = sc->sc_ah; 673 struct ath_common *common = ath9k_hw_common(ah); 674 struct ath_desc *ds; 675 struct ath_buf *bf; 676 int ret; 677 678 if (list_empty(&sc->rx.rxbuf)) { 679 sc->rx.rxlink = NULL; 680 return NULL; 681 } 682 683 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); 684 ds = bf->bf_desc; 685 686 /* 687 * Must provide the virtual address of the current 688 * descriptor, the physical address, and the virtual 689 * address of the next descriptor in the h/w chain. 690 * This allows the HAL to look ahead to see if the 691 * hardware is done with a descriptor by checking the 692 * done bit in the following descriptor and the address 693 * of the current descriptor the DMA engine is working 694 * on. All this is necessary because of our use of 695 * a self-linked list to avoid rx overruns. 696 */ 697 ret = ath9k_hw_rxprocdesc(ah, ds, rs); 698 if (ret == -EINPROGRESS) { 699 struct ath_rx_status trs; 700 struct ath_buf *tbf; 701 struct ath_desc *tds; 702 703 memset(&trs, 0, sizeof(trs)); 704 if (list_is_last(&bf->list, &sc->rx.rxbuf)) { 705 sc->rx.rxlink = NULL; 706 return NULL; 707 } 708 709 tbf = list_entry(bf->list.next, struct ath_buf, list); 710 711 /* 712 * On some hardware the descriptor status words could 713 * get corrupted, including the done bit. Because of 714 * this, check if the next descriptor's done bit is 715 * set or not. 716 * 717 * If the next descriptor's done bit is set, the current 718 * descriptor has been corrupted. Force s/w to discard 719 * this descriptor and continue... 720 */ 721 722 tds = tbf->bf_desc; 723 ret = ath9k_hw_rxprocdesc(ah, tds, &trs); 724 if (ret == -EINPROGRESS) 725 return NULL; 726 } 727 728 list_del(&bf->list); 729 if (!bf->bf_mpdu) 730 return bf; 731 732 /* 733 * Synchronize the DMA transfer with CPU before 734 * 1. accessing the frame 735 * 2. requeueing the same buffer to h/w 736 */ 737 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 738 common->rx_bufsize, 739 DMA_FROM_DEVICE); 740 741 return bf; 742 } 743 744 /* Assumes you've already done the endian to CPU conversion */ 745 static bool ath9k_rx_accept(struct ath_common *common, 746 struct ieee80211_hdr *hdr, 747 struct ieee80211_rx_status *rxs, 748 struct ath_rx_status *rx_stats, 749 bool *decrypt_error) 750 { 751 struct ath_softc *sc = (struct ath_softc *) common->priv; 752 bool is_mc, is_valid_tkip, strip_mic, mic_error; 753 struct ath_hw *ah = common->ah; 754 __le16 fc; 755 u8 rx_status_len = ah->caps.rx_status_len; 756 757 fc = hdr->frame_control; 758 759 is_mc = !!is_multicast_ether_addr(hdr->addr1); 760 is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID && 761 test_bit(rx_stats->rs_keyix, common->tkip_keymap); 762 strip_mic = is_valid_tkip && ieee80211_is_data(fc) && 763 ieee80211_has_protected(fc) && 764 !(rx_stats->rs_status & 765 (ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC | 766 ATH9K_RXERR_KEYMISS)); 767 768 /* 769 * Key miss events are only relevant for pairwise keys where the 770 * descriptor does contain a valid key index. This has been observed 771 * mostly with CCMP encryption. 772 */ 773 if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID || 774 !test_bit(rx_stats->rs_keyix, common->ccmp_keymap)) 775 rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS; 776 777 if (!rx_stats->rs_datalen) { 778 RX_STAT_INC(rx_len_err); 779 return false; 780 } 781 782 /* 783 * rs_status follows rs_datalen so if rs_datalen is too large 784 * we can take a hint that hardware corrupted it, so ignore 785 * those frames. 786 */ 787 if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len)) { 788 RX_STAT_INC(rx_len_err); 789 return false; 790 } 791 792 /* Only use error bits from the last fragment */ 793 if (rx_stats->rs_more) 794 return true; 795 796 mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) && 797 !ieee80211_has_morefrags(fc) && 798 !(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) && 799 (rx_stats->rs_status & ATH9K_RXERR_MIC); 800 801 /* 802 * The rx_stats->rs_status will not be set until the end of the 803 * chained descriptors so it can be ignored if rs_more is set. The 804 * rs_more will be false at the last element of the chained 805 * descriptors. 806 */ 807 if (rx_stats->rs_status != 0) { 808 u8 status_mask; 809 810 if (rx_stats->rs_status & ATH9K_RXERR_CRC) { 811 rxs->flag |= RX_FLAG_FAILED_FCS_CRC; 812 mic_error = false; 813 } 814 if (rx_stats->rs_status & ATH9K_RXERR_PHY) 815 return false; 816 817 if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) || 818 (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) { 819 *decrypt_error = true; 820 mic_error = false; 821 } 822 823 /* 824 * Reject error frames with the exception of 825 * decryption and MIC failures. For monitor mode, 826 * we also ignore the CRC error. 827 */ 828 status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC | 829 ATH9K_RXERR_KEYMISS; 830 831 if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL)) 832 status_mask |= ATH9K_RXERR_CRC; 833 834 if (rx_stats->rs_status & ~status_mask) 835 return false; 836 } 837 838 /* 839 * For unicast frames the MIC error bit can have false positives, 840 * so all MIC error reports need to be validated in software. 841 * False negatives are not common, so skip software verification 842 * if the hardware considers the MIC valid. 843 */ 844 if (strip_mic) 845 rxs->flag |= RX_FLAG_MMIC_STRIPPED; 846 else if (is_mc && mic_error) 847 rxs->flag |= RX_FLAG_MMIC_ERROR; 848 849 return true; 850 } 851 852 static int ath9k_process_rate(struct ath_common *common, 853 struct ieee80211_hw *hw, 854 struct ath_rx_status *rx_stats, 855 struct ieee80211_rx_status *rxs) 856 { 857 struct ieee80211_supported_band *sband; 858 enum ieee80211_band band; 859 unsigned int i = 0; 860 struct ath_softc __maybe_unused *sc = common->priv; 861 862 band = hw->conf.channel->band; 863 sband = hw->wiphy->bands[band]; 864 865 if (rx_stats->rs_rate & 0x80) { 866 /* HT rate */ 867 rxs->flag |= RX_FLAG_HT; 868 if (rx_stats->rs_flags & ATH9K_RX_2040) 869 rxs->flag |= RX_FLAG_40MHZ; 870 if (rx_stats->rs_flags & ATH9K_RX_GI) 871 rxs->flag |= RX_FLAG_SHORT_GI; 872 rxs->rate_idx = rx_stats->rs_rate & 0x7f; 873 return 0; 874 } 875 876 for (i = 0; i < sband->n_bitrates; i++) { 877 if (sband->bitrates[i].hw_value == rx_stats->rs_rate) { 878 rxs->rate_idx = i; 879 return 0; 880 } 881 if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) { 882 rxs->flag |= RX_FLAG_SHORTPRE; 883 rxs->rate_idx = i; 884 return 0; 885 } 886 } 887 888 /* 889 * No valid hardware bitrate found -- we should not get here 890 * because hardware has already validated this frame as OK. 891 */ 892 ath_dbg(common, ANY, 893 "unsupported hw bitrate detected 0x%02x using 1 Mbit\n", 894 rx_stats->rs_rate); 895 RX_STAT_INC(rx_rate_err); 896 return -EINVAL; 897 } 898 899 static void ath9k_process_rssi(struct ath_common *common, 900 struct ieee80211_hw *hw, 901 struct ieee80211_hdr *hdr, 902 struct ath_rx_status *rx_stats) 903 { 904 struct ath_softc *sc = hw->priv; 905 struct ath_hw *ah = common->ah; 906 int last_rssi; 907 int rssi = rx_stats->rs_rssi; 908 909 if (!rx_stats->is_mybeacon || 910 ((ah->opmode != NL80211_IFTYPE_STATION) && 911 (ah->opmode != NL80211_IFTYPE_ADHOC))) 912 return; 913 914 if (rx_stats->rs_rssi != ATH9K_RSSI_BAD && !rx_stats->rs_moreaggr) 915 ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi); 916 917 last_rssi = sc->last_rssi; 918 if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER)) 919 rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER); 920 if (rssi < 0) 921 rssi = 0; 922 923 /* Update Beacon RSSI, this is used by ANI. */ 924 ah->stats.avgbrssi = rssi; 925 } 926 927 /* 928 * For Decrypt or Demic errors, we only mark packet status here and always push 929 * up the frame up to let mac80211 handle the actual error case, be it no 930 * decryption key or real decryption error. This let us keep statistics there. 931 */ 932 static int ath9k_rx_skb_preprocess(struct ath_common *common, 933 struct ieee80211_hw *hw, 934 struct ieee80211_hdr *hdr, 935 struct ath_rx_status *rx_stats, 936 struct ieee80211_rx_status *rx_status, 937 bool *decrypt_error) 938 { 939 struct ath_hw *ah = common->ah; 940 941 /* 942 * everything but the rate is checked here, the rate check is done 943 * separately to avoid doing two lookups for a rate for each frame. 944 */ 945 if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error)) 946 return -EINVAL; 947 948 /* Only use status info from the last fragment */ 949 if (rx_stats->rs_more) 950 return 0; 951 952 ath9k_process_rssi(common, hw, hdr, rx_stats); 953 954 if (ath9k_process_rate(common, hw, rx_stats, rx_status)) 955 return -EINVAL; 956 957 rx_status->band = hw->conf.channel->band; 958 rx_status->freq = hw->conf.channel->center_freq; 959 rx_status->signal = ah->noise + rx_stats->rs_rssi; 960 rx_status->antenna = rx_stats->rs_antenna; 961 rx_status->flag |= RX_FLAG_MACTIME_END; 962 if (rx_stats->rs_moreaggr) 963 rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL; 964 965 return 0; 966 } 967 968 static void ath9k_rx_skb_postprocess(struct ath_common *common, 969 struct sk_buff *skb, 970 struct ath_rx_status *rx_stats, 971 struct ieee80211_rx_status *rxs, 972 bool decrypt_error) 973 { 974 struct ath_hw *ah = common->ah; 975 struct ieee80211_hdr *hdr; 976 int hdrlen, padpos, padsize; 977 u8 keyix; 978 __le16 fc; 979 980 /* see if any padding is done by the hw and remove it */ 981 hdr = (struct ieee80211_hdr *) skb->data; 982 hdrlen = ieee80211_get_hdrlen_from_skb(skb); 983 fc = hdr->frame_control; 984 padpos = ath9k_cmn_padpos(hdr->frame_control); 985 986 /* The MAC header is padded to have 32-bit boundary if the 987 * packet payload is non-zero. The general calculation for 988 * padsize would take into account odd header lengths: 989 * padsize = (4 - padpos % 4) % 4; However, since only 990 * even-length headers are used, padding can only be 0 or 2 991 * bytes and we can optimize this a bit. In addition, we must 992 * not try to remove padding from short control frames that do 993 * not have payload. */ 994 padsize = padpos & 3; 995 if (padsize && skb->len>=padpos+padsize+FCS_LEN) { 996 memmove(skb->data + padsize, skb->data, padpos); 997 skb_pull(skb, padsize); 998 } 999 1000 keyix = rx_stats->rs_keyix; 1001 1002 if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error && 1003 ieee80211_has_protected(fc)) { 1004 rxs->flag |= RX_FLAG_DECRYPTED; 1005 } else if (ieee80211_has_protected(fc) 1006 && !decrypt_error && skb->len >= hdrlen + 4) { 1007 keyix = skb->data[hdrlen + 3] >> 6; 1008 1009 if (test_bit(keyix, common->keymap)) 1010 rxs->flag |= RX_FLAG_DECRYPTED; 1011 } 1012 if (ah->sw_mgmt_crypto && 1013 (rxs->flag & RX_FLAG_DECRYPTED) && 1014 ieee80211_is_mgmt(fc)) 1015 /* Use software decrypt for management frames. */ 1016 rxs->flag &= ~RX_FLAG_DECRYPTED; 1017 } 1018 1019 #ifdef CONFIG_ATH9K_DEBUGFS 1020 static s8 fix_rssi_inv_only(u8 rssi_val) 1021 { 1022 if (rssi_val == 128) 1023 rssi_val = 0; 1024 return (s8) rssi_val; 1025 } 1026 #endif 1027 1028 /* returns 1 if this was a spectral frame, even if not handled. */ 1029 static int ath_process_fft(struct ath_softc *sc, struct ieee80211_hdr *hdr, 1030 struct ath_rx_status *rs, u64 tsf) 1031 { 1032 #ifdef CONFIG_ATH9K_DEBUGFS 1033 struct ath_hw *ah = sc->sc_ah; 1034 u8 bins[SPECTRAL_HT20_NUM_BINS]; 1035 u8 *vdata = (u8 *)hdr; 1036 struct fft_sample_ht20 fft_sample; 1037 struct ath_radar_info *radar_info; 1038 struct ath_ht20_mag_info *mag_info; 1039 int len = rs->rs_datalen; 1040 int dc_pos; 1041 u16 length, max_magnitude; 1042 1043 /* AR9280 and before report via ATH9K_PHYERR_RADAR, AR93xx and newer 1044 * via ATH9K_PHYERR_SPECTRAL. Haven't seen ATH9K_PHYERR_FALSE_RADAR_EXT 1045 * yet, but this is supposed to be possible as well. 1046 */ 1047 if (rs->rs_phyerr != ATH9K_PHYERR_RADAR && 1048 rs->rs_phyerr != ATH9K_PHYERR_FALSE_RADAR_EXT && 1049 rs->rs_phyerr != ATH9K_PHYERR_SPECTRAL) 1050 return 0; 1051 1052 /* check if spectral scan bit is set. This does not have to be checked 1053 * if received through a SPECTRAL phy error, but shouldn't hurt. 1054 */ 1055 radar_info = ((struct ath_radar_info *)&vdata[len]) - 1; 1056 if (!(radar_info->pulse_bw_info & SPECTRAL_SCAN_BITMASK)) 1057 return 0; 1058 1059 /* Variation in the data length is possible and will be fixed later. 1060 * Note that we only support HT20 for now. 1061 * 1062 * TODO: add HT20_40 support as well. 1063 */ 1064 if ((len > SPECTRAL_HT20_TOTAL_DATA_LEN + 2) || 1065 (len < SPECTRAL_HT20_TOTAL_DATA_LEN - 1)) 1066 return 1; 1067 1068 fft_sample.tlv.type = ATH_FFT_SAMPLE_HT20; 1069 length = sizeof(fft_sample) - sizeof(fft_sample.tlv); 1070 fft_sample.tlv.length = __cpu_to_be16(length); 1071 1072 fft_sample.freq = __cpu_to_be16(ah->curchan->chan->center_freq); 1073 fft_sample.rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0); 1074 fft_sample.noise = ah->noise; 1075 1076 switch (len - SPECTRAL_HT20_TOTAL_DATA_LEN) { 1077 case 0: 1078 /* length correct, nothing to do. */ 1079 memcpy(bins, vdata, SPECTRAL_HT20_NUM_BINS); 1080 break; 1081 case -1: 1082 /* first byte missing, duplicate it. */ 1083 memcpy(&bins[1], vdata, SPECTRAL_HT20_NUM_BINS - 1); 1084 bins[0] = vdata[0]; 1085 break; 1086 case 2: 1087 /* MAC added 2 extra bytes at bin 30 and 32, remove them. */ 1088 memcpy(bins, vdata, 30); 1089 bins[30] = vdata[31]; 1090 memcpy(&bins[31], &vdata[33], SPECTRAL_HT20_NUM_BINS - 31); 1091 break; 1092 case 1: 1093 /* MAC added 2 extra bytes AND first byte is missing. */ 1094 bins[0] = vdata[0]; 1095 memcpy(&bins[0], vdata, 30); 1096 bins[31] = vdata[31]; 1097 memcpy(&bins[32], &vdata[33], SPECTRAL_HT20_NUM_BINS - 32); 1098 break; 1099 default: 1100 return 1; 1101 } 1102 1103 /* DC value (value in the middle) is the blind spot of the spectral 1104 * sample and invalid, interpolate it. 1105 */ 1106 dc_pos = SPECTRAL_HT20_NUM_BINS / 2; 1107 bins[dc_pos] = (bins[dc_pos + 1] + bins[dc_pos - 1]) / 2; 1108 1109 /* mag data is at the end of the frame, in front of radar_info */ 1110 mag_info = ((struct ath_ht20_mag_info *)radar_info) - 1; 1111 1112 /* copy raw bins without scaling them */ 1113 memcpy(fft_sample.data, bins, SPECTRAL_HT20_NUM_BINS); 1114 fft_sample.max_exp = mag_info->max_exp & 0xf; 1115 1116 max_magnitude = spectral_max_magnitude(mag_info->all_bins); 1117 fft_sample.max_magnitude = __cpu_to_be16(max_magnitude); 1118 fft_sample.max_index = spectral_max_index(mag_info->all_bins); 1119 fft_sample.bitmap_weight = spectral_bitmap_weight(mag_info->all_bins); 1120 fft_sample.tsf = __cpu_to_be64(tsf); 1121 1122 ath_debug_send_fft_sample(sc, &fft_sample.tlv); 1123 return 1; 1124 #else 1125 return 0; 1126 #endif 1127 } 1128 1129 static void ath9k_apply_ampdu_details(struct ath_softc *sc, 1130 struct ath_rx_status *rs, struct ieee80211_rx_status *rxs) 1131 { 1132 if (rs->rs_isaggr) { 1133 rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 1134 1135 rxs->ampdu_reference = sc->rx.ampdu_ref; 1136 1137 if (!rs->rs_moreaggr) { 1138 rxs->flag |= RX_FLAG_AMPDU_IS_LAST; 1139 sc->rx.ampdu_ref++; 1140 } 1141 1142 if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE) 1143 rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR; 1144 } 1145 } 1146 1147 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp) 1148 { 1149 struct ath_buf *bf; 1150 struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb; 1151 struct ieee80211_rx_status *rxs; 1152 struct ath_hw *ah = sc->sc_ah; 1153 struct ath_common *common = ath9k_hw_common(ah); 1154 struct ieee80211_hw *hw = sc->hw; 1155 struct ieee80211_hdr *hdr; 1156 int retval; 1157 struct ath_rx_status rs; 1158 enum ath9k_rx_qtype qtype; 1159 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1160 int dma_type; 1161 u8 rx_status_len = ah->caps.rx_status_len; 1162 u64 tsf = 0; 1163 u32 tsf_lower = 0; 1164 unsigned long flags; 1165 1166 if (edma) 1167 dma_type = DMA_BIDIRECTIONAL; 1168 else 1169 dma_type = DMA_FROM_DEVICE; 1170 1171 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP; 1172 1173 tsf = ath9k_hw_gettsf64(ah); 1174 tsf_lower = tsf & 0xffffffff; 1175 1176 do { 1177 bool decrypt_error = false; 1178 1179 memset(&rs, 0, sizeof(rs)); 1180 if (edma) 1181 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype); 1182 else 1183 bf = ath_get_next_rx_buf(sc, &rs); 1184 1185 if (!bf) 1186 break; 1187 1188 skb = bf->bf_mpdu; 1189 if (!skb) 1190 continue; 1191 1192 /* 1193 * Take frame header from the first fragment and RX status from 1194 * the last one. 1195 */ 1196 if (sc->rx.frag) 1197 hdr_skb = sc->rx.frag; 1198 else 1199 hdr_skb = skb; 1200 1201 hdr = (struct ieee80211_hdr *) (hdr_skb->data + rx_status_len); 1202 rxs = IEEE80211_SKB_RXCB(hdr_skb); 1203 if (ieee80211_is_beacon(hdr->frame_control)) { 1204 RX_STAT_INC(rx_beacons); 1205 if (!is_zero_ether_addr(common->curbssid) && 1206 ether_addr_equal(hdr->addr3, common->curbssid)) 1207 rs.is_mybeacon = true; 1208 else 1209 rs.is_mybeacon = false; 1210 } 1211 else 1212 rs.is_mybeacon = false; 1213 1214 if (ieee80211_is_data_present(hdr->frame_control) && 1215 !ieee80211_is_qos_nullfunc(hdr->frame_control)) 1216 sc->rx.num_pkts++; 1217 1218 ath_debug_stat_rx(sc, &rs); 1219 1220 memset(rxs, 0, sizeof(struct ieee80211_rx_status)); 1221 1222 rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp; 1223 if (rs.rs_tstamp > tsf_lower && 1224 unlikely(rs.rs_tstamp - tsf_lower > 0x10000000)) 1225 rxs->mactime -= 0x100000000ULL; 1226 1227 if (rs.rs_tstamp < tsf_lower && 1228 unlikely(tsf_lower - rs.rs_tstamp > 0x10000000)) 1229 rxs->mactime += 0x100000000ULL; 1230 1231 if (rs.rs_status & ATH9K_RXERR_PHY) { 1232 if (ath_process_fft(sc, hdr, &rs, rxs->mactime)) { 1233 RX_STAT_INC(rx_spectral); 1234 goto requeue_drop_frag; 1235 } 1236 } 1237 1238 retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs, 1239 rxs, &decrypt_error); 1240 if (retval) 1241 goto requeue_drop_frag; 1242 1243 if (rs.is_mybeacon) { 1244 sc->hw_busy_count = 0; 1245 ath_start_rx_poll(sc, 3); 1246 } 1247 /* Ensure we always have an skb to requeue once we are done 1248 * processing the current buffer's skb */ 1249 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC); 1250 1251 /* If there is no memory we ignore the current RX'd frame, 1252 * tell hardware it can give us a new frame using the old 1253 * skb and put it at the tail of the sc->rx.rxbuf list for 1254 * processing. */ 1255 if (!requeue_skb) { 1256 RX_STAT_INC(rx_oom_err); 1257 goto requeue_drop_frag; 1258 } 1259 1260 /* Unmap the frame */ 1261 dma_unmap_single(sc->dev, bf->bf_buf_addr, 1262 common->rx_bufsize, 1263 dma_type); 1264 1265 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len); 1266 if (ah->caps.rx_status_len) 1267 skb_pull(skb, ah->caps.rx_status_len); 1268 1269 if (!rs.rs_more) 1270 ath9k_rx_skb_postprocess(common, hdr_skb, &rs, 1271 rxs, decrypt_error); 1272 1273 /* We will now give hardware our shiny new allocated skb */ 1274 bf->bf_mpdu = requeue_skb; 1275 bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data, 1276 common->rx_bufsize, 1277 dma_type); 1278 if (unlikely(dma_mapping_error(sc->dev, 1279 bf->bf_buf_addr))) { 1280 dev_kfree_skb_any(requeue_skb); 1281 bf->bf_mpdu = NULL; 1282 bf->bf_buf_addr = 0; 1283 ath_err(common, "dma_mapping_error() on RX\n"); 1284 ieee80211_rx(hw, skb); 1285 break; 1286 } 1287 1288 if (rs.rs_more) { 1289 RX_STAT_INC(rx_frags); 1290 /* 1291 * rs_more indicates chained descriptors which can be 1292 * used to link buffers together for a sort of 1293 * scatter-gather operation. 1294 */ 1295 if (sc->rx.frag) { 1296 /* too many fragments - cannot handle frame */ 1297 dev_kfree_skb_any(sc->rx.frag); 1298 dev_kfree_skb_any(skb); 1299 RX_STAT_INC(rx_too_many_frags_err); 1300 skb = NULL; 1301 } 1302 sc->rx.frag = skb; 1303 goto requeue; 1304 } 1305 1306 if (sc->rx.frag) { 1307 int space = skb->len - skb_tailroom(hdr_skb); 1308 1309 if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) { 1310 dev_kfree_skb(skb); 1311 RX_STAT_INC(rx_oom_err); 1312 goto requeue_drop_frag; 1313 } 1314 1315 sc->rx.frag = NULL; 1316 1317 skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len), 1318 skb->len); 1319 dev_kfree_skb_any(skb); 1320 skb = hdr_skb; 1321 } 1322 1323 1324 if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) { 1325 1326 /* 1327 * change the default rx antenna if rx diversity 1328 * chooses the other antenna 3 times in a row. 1329 */ 1330 if (sc->rx.defant != rs.rs_antenna) { 1331 if (++sc->rx.rxotherant >= 3) 1332 ath_setdefantenna(sc, rs.rs_antenna); 1333 } else { 1334 sc->rx.rxotherant = 0; 1335 } 1336 1337 } 1338 1339 if (rxs->flag & RX_FLAG_MMIC_STRIPPED) 1340 skb_trim(skb, skb->len - 8); 1341 1342 spin_lock_irqsave(&sc->sc_pm_lock, flags); 1343 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON | 1344 PS_WAIT_FOR_CAB | 1345 PS_WAIT_FOR_PSPOLL_DATA)) || 1346 ath9k_check_auto_sleep(sc)) 1347 ath_rx_ps(sc, skb, rs.is_mybeacon); 1348 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 1349 1350 if ((ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) && sc->ant_rx == 3) 1351 ath_ant_comb_scan(sc, &rs); 1352 1353 ath9k_apply_ampdu_details(sc, &rs, rxs); 1354 1355 ieee80211_rx(hw, skb); 1356 1357 requeue_drop_frag: 1358 if (sc->rx.frag) { 1359 dev_kfree_skb_any(sc->rx.frag); 1360 sc->rx.frag = NULL; 1361 } 1362 requeue: 1363 list_add_tail(&bf->list, &sc->rx.rxbuf); 1364 if (flush) 1365 continue; 1366 1367 if (edma) { 1368 ath_rx_edma_buf_link(sc, qtype); 1369 } else { 1370 ath_rx_buf_link(sc, bf); 1371 ath9k_hw_rxena(ah); 1372 } 1373 } while (1); 1374 1375 if (!(ah->imask & ATH9K_INT_RXEOL)) { 1376 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN); 1377 ath9k_hw_set_interrupts(ah); 1378 } 1379 1380 return 0; 1381 } 1382