xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/recv.c (revision 840ef8b7cc584a23c4f9d05352f4dbaf8e56e5ab)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include <linux/relay.h>
19 #include "ath9k.h"
20 #include "ar9003_mac.h"
21 
22 #define SKB_CB_ATHBUF(__skb)	(*((struct ath_buf **)__skb->cb))
23 
24 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
25 {
26 	return sc->ps_enabled &&
27 	       (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
28 }
29 
30 /*
31  * Setup and link descriptors.
32  *
33  * 11N: we can no longer afford to self link the last descriptor.
34  * MAC acknowledges BA status as long as it copies frames to host
35  * buffer (or rx fifo). This can incorrectly acknowledge packets
36  * to a sender if last desc is self-linked.
37  */
38 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
39 {
40 	struct ath_hw *ah = sc->sc_ah;
41 	struct ath_common *common = ath9k_hw_common(ah);
42 	struct ath_desc *ds;
43 	struct sk_buff *skb;
44 
45 	ATH_RXBUF_RESET(bf);
46 
47 	ds = bf->bf_desc;
48 	ds->ds_link = 0; /* link to null */
49 	ds->ds_data = bf->bf_buf_addr;
50 
51 	/* virtual addr of the beginning of the buffer. */
52 	skb = bf->bf_mpdu;
53 	BUG_ON(skb == NULL);
54 	ds->ds_vdata = skb->data;
55 
56 	/*
57 	 * setup rx descriptors. The rx_bufsize here tells the hardware
58 	 * how much data it can DMA to us and that we are prepared
59 	 * to process
60 	 */
61 	ath9k_hw_setuprxdesc(ah, ds,
62 			     common->rx_bufsize,
63 			     0);
64 
65 	if (sc->rx.rxlink == NULL)
66 		ath9k_hw_putrxbuf(ah, bf->bf_daddr);
67 	else
68 		*sc->rx.rxlink = bf->bf_daddr;
69 
70 	sc->rx.rxlink = &ds->ds_link;
71 }
72 
73 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
74 {
75 	/* XXX block beacon interrupts */
76 	ath9k_hw_setantenna(sc->sc_ah, antenna);
77 	sc->rx.defant = antenna;
78 	sc->rx.rxotherant = 0;
79 }
80 
81 static void ath_opmode_init(struct ath_softc *sc)
82 {
83 	struct ath_hw *ah = sc->sc_ah;
84 	struct ath_common *common = ath9k_hw_common(ah);
85 
86 	u32 rfilt, mfilt[2];
87 
88 	/* configure rx filter */
89 	rfilt = ath_calcrxfilter(sc);
90 	ath9k_hw_setrxfilter(ah, rfilt);
91 
92 	/* configure bssid mask */
93 	ath_hw_setbssidmask(common);
94 
95 	/* configure operational mode */
96 	ath9k_hw_setopmode(ah);
97 
98 	/* calculate and install multicast filter */
99 	mfilt[0] = mfilt[1] = ~0;
100 	ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
101 }
102 
103 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
104 				 enum ath9k_rx_qtype qtype)
105 {
106 	struct ath_hw *ah = sc->sc_ah;
107 	struct ath_rx_edma *rx_edma;
108 	struct sk_buff *skb;
109 	struct ath_buf *bf;
110 
111 	rx_edma = &sc->rx.rx_edma[qtype];
112 	if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
113 		return false;
114 
115 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
116 	list_del_init(&bf->list);
117 
118 	skb = bf->bf_mpdu;
119 
120 	ATH_RXBUF_RESET(bf);
121 	memset(skb->data, 0, ah->caps.rx_status_len);
122 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
123 				ah->caps.rx_status_len, DMA_TO_DEVICE);
124 
125 	SKB_CB_ATHBUF(skb) = bf;
126 	ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
127 	skb_queue_tail(&rx_edma->rx_fifo, skb);
128 
129 	return true;
130 }
131 
132 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
133 				  enum ath9k_rx_qtype qtype, int size)
134 {
135 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
136 	struct ath_buf *bf, *tbf;
137 
138 	if (list_empty(&sc->rx.rxbuf)) {
139 		ath_dbg(common, QUEUE, "No free rx buf available\n");
140 		return;
141 	}
142 
143 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
144 		if (!ath_rx_edma_buf_link(sc, qtype))
145 			break;
146 
147 }
148 
149 static void ath_rx_remove_buffer(struct ath_softc *sc,
150 				 enum ath9k_rx_qtype qtype)
151 {
152 	struct ath_buf *bf;
153 	struct ath_rx_edma *rx_edma;
154 	struct sk_buff *skb;
155 
156 	rx_edma = &sc->rx.rx_edma[qtype];
157 
158 	while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
159 		bf = SKB_CB_ATHBUF(skb);
160 		BUG_ON(!bf);
161 		list_add_tail(&bf->list, &sc->rx.rxbuf);
162 	}
163 }
164 
165 static void ath_rx_edma_cleanup(struct ath_softc *sc)
166 {
167 	struct ath_hw *ah = sc->sc_ah;
168 	struct ath_common *common = ath9k_hw_common(ah);
169 	struct ath_buf *bf;
170 
171 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
172 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
173 
174 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
175 		if (bf->bf_mpdu) {
176 			dma_unmap_single(sc->dev, bf->bf_buf_addr,
177 					common->rx_bufsize,
178 					DMA_BIDIRECTIONAL);
179 			dev_kfree_skb_any(bf->bf_mpdu);
180 			bf->bf_buf_addr = 0;
181 			bf->bf_mpdu = NULL;
182 		}
183 	}
184 }
185 
186 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
187 {
188 	skb_queue_head_init(&rx_edma->rx_fifo);
189 	rx_edma->rx_fifo_hwsize = size;
190 }
191 
192 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
193 {
194 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
195 	struct ath_hw *ah = sc->sc_ah;
196 	struct sk_buff *skb;
197 	struct ath_buf *bf;
198 	int error = 0, i;
199 	u32 size;
200 
201 	ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
202 				    ah->caps.rx_status_len);
203 
204 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
205 			       ah->caps.rx_lp_qdepth);
206 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
207 			       ah->caps.rx_hp_qdepth);
208 
209 	size = sizeof(struct ath_buf) * nbufs;
210 	bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
211 	if (!bf)
212 		return -ENOMEM;
213 
214 	INIT_LIST_HEAD(&sc->rx.rxbuf);
215 
216 	for (i = 0; i < nbufs; i++, bf++) {
217 		skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
218 		if (!skb) {
219 			error = -ENOMEM;
220 			goto rx_init_fail;
221 		}
222 
223 		memset(skb->data, 0, common->rx_bufsize);
224 		bf->bf_mpdu = skb;
225 
226 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
227 						 common->rx_bufsize,
228 						 DMA_BIDIRECTIONAL);
229 		if (unlikely(dma_mapping_error(sc->dev,
230 						bf->bf_buf_addr))) {
231 				dev_kfree_skb_any(skb);
232 				bf->bf_mpdu = NULL;
233 				bf->bf_buf_addr = 0;
234 				ath_err(common,
235 					"dma_mapping_error() on RX init\n");
236 				error = -ENOMEM;
237 				goto rx_init_fail;
238 		}
239 
240 		list_add_tail(&bf->list, &sc->rx.rxbuf);
241 	}
242 
243 	return 0;
244 
245 rx_init_fail:
246 	ath_rx_edma_cleanup(sc);
247 	return error;
248 }
249 
250 static void ath_edma_start_recv(struct ath_softc *sc)
251 {
252 	ath9k_hw_rxena(sc->sc_ah);
253 
254 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
255 			      sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize);
256 
257 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP,
258 			      sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize);
259 
260 	ath_opmode_init(sc);
261 
262 	ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
263 }
264 
265 static void ath_edma_stop_recv(struct ath_softc *sc)
266 {
267 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
268 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
269 }
270 
271 int ath_rx_init(struct ath_softc *sc, int nbufs)
272 {
273 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
274 	struct sk_buff *skb;
275 	struct ath_buf *bf;
276 	int error = 0;
277 
278 	spin_lock_init(&sc->sc_pcu_lock);
279 
280 	common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
281 			     sc->sc_ah->caps.rx_status_len;
282 
283 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
284 		return ath_rx_edma_init(sc, nbufs);
285 	} else {
286 		ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
287 			common->cachelsz, common->rx_bufsize);
288 
289 		/* Initialize rx descriptors */
290 
291 		error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
292 				"rx", nbufs, 1, 0);
293 		if (error != 0) {
294 			ath_err(common,
295 				"failed to allocate rx descriptors: %d\n",
296 				error);
297 			goto err;
298 		}
299 
300 		list_for_each_entry(bf, &sc->rx.rxbuf, list) {
301 			skb = ath_rxbuf_alloc(common, common->rx_bufsize,
302 					      GFP_KERNEL);
303 			if (skb == NULL) {
304 				error = -ENOMEM;
305 				goto err;
306 			}
307 
308 			bf->bf_mpdu = skb;
309 			bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
310 					common->rx_bufsize,
311 					DMA_FROM_DEVICE);
312 			if (unlikely(dma_mapping_error(sc->dev,
313 							bf->bf_buf_addr))) {
314 				dev_kfree_skb_any(skb);
315 				bf->bf_mpdu = NULL;
316 				bf->bf_buf_addr = 0;
317 				ath_err(common,
318 					"dma_mapping_error() on RX init\n");
319 				error = -ENOMEM;
320 				goto err;
321 			}
322 		}
323 		sc->rx.rxlink = NULL;
324 	}
325 
326 err:
327 	if (error)
328 		ath_rx_cleanup(sc);
329 
330 	return error;
331 }
332 
333 void ath_rx_cleanup(struct ath_softc *sc)
334 {
335 	struct ath_hw *ah = sc->sc_ah;
336 	struct ath_common *common = ath9k_hw_common(ah);
337 	struct sk_buff *skb;
338 	struct ath_buf *bf;
339 
340 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
341 		ath_rx_edma_cleanup(sc);
342 		return;
343 	} else {
344 		list_for_each_entry(bf, &sc->rx.rxbuf, list) {
345 			skb = bf->bf_mpdu;
346 			if (skb) {
347 				dma_unmap_single(sc->dev, bf->bf_buf_addr,
348 						common->rx_bufsize,
349 						DMA_FROM_DEVICE);
350 				dev_kfree_skb(skb);
351 				bf->bf_buf_addr = 0;
352 				bf->bf_mpdu = NULL;
353 			}
354 		}
355 	}
356 }
357 
358 /*
359  * Calculate the receive filter according to the
360  * operating mode and state:
361  *
362  * o always accept unicast, broadcast, and multicast traffic
363  * o maintain current state of phy error reception (the hal
364  *   may enable phy error frames for noise immunity work)
365  * o probe request frames are accepted only when operating in
366  *   hostap, adhoc, or monitor modes
367  * o enable promiscuous mode according to the interface state
368  * o accept beacons:
369  *   - when operating in adhoc mode so the 802.11 layer creates
370  *     node table entries for peers,
371  *   - when operating in station mode for collecting rssi data when
372  *     the station is otherwise quiet, or
373  *   - when operating as a repeater so we see repeater-sta beacons
374  *   - when scanning
375  */
376 
377 u32 ath_calcrxfilter(struct ath_softc *sc)
378 {
379 	u32 rfilt;
380 
381 	rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
382 		| ATH9K_RX_FILTER_MCAST;
383 
384 	if (sc->rx.rxfilter & FIF_PROBE_REQ)
385 		rfilt |= ATH9K_RX_FILTER_PROBEREQ;
386 
387 	/*
388 	 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
389 	 * mode interface or when in monitor mode. AP mode does not need this
390 	 * since it receives all in-BSS frames anyway.
391 	 */
392 	if (sc->sc_ah->is_monitoring)
393 		rfilt |= ATH9K_RX_FILTER_PROM;
394 
395 	if (sc->rx.rxfilter & FIF_CONTROL)
396 		rfilt |= ATH9K_RX_FILTER_CONTROL;
397 
398 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
399 	    (sc->nvifs <= 1) &&
400 	    !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
401 		rfilt |= ATH9K_RX_FILTER_MYBEACON;
402 	else
403 		rfilt |= ATH9K_RX_FILTER_BEACON;
404 
405 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
406 	    (sc->rx.rxfilter & FIF_PSPOLL))
407 		rfilt |= ATH9K_RX_FILTER_PSPOLL;
408 
409 	if (conf_is_ht(&sc->hw->conf))
410 		rfilt |= ATH9K_RX_FILTER_COMP_BAR;
411 
412 	if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
413 		/* This is needed for older chips */
414 		if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
415 			rfilt |= ATH9K_RX_FILTER_PROM;
416 		rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
417 	}
418 
419 	if (AR_SREV_9550(sc->sc_ah))
420 		rfilt |= ATH9K_RX_FILTER_4ADDRESS;
421 
422 	return rfilt;
423 
424 }
425 
426 int ath_startrecv(struct ath_softc *sc)
427 {
428 	struct ath_hw *ah = sc->sc_ah;
429 	struct ath_buf *bf, *tbf;
430 
431 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
432 		ath_edma_start_recv(sc);
433 		return 0;
434 	}
435 
436 	if (list_empty(&sc->rx.rxbuf))
437 		goto start_recv;
438 
439 	sc->rx.rxlink = NULL;
440 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
441 		ath_rx_buf_link(sc, bf);
442 	}
443 
444 	/* We could have deleted elements so the list may be empty now */
445 	if (list_empty(&sc->rx.rxbuf))
446 		goto start_recv;
447 
448 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
449 	ath9k_hw_putrxbuf(ah, bf->bf_daddr);
450 	ath9k_hw_rxena(ah);
451 
452 start_recv:
453 	ath_opmode_init(sc);
454 	ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
455 
456 	return 0;
457 }
458 
459 static void ath_flushrecv(struct ath_softc *sc)
460 {
461 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
462 		ath_rx_tasklet(sc, 1, true);
463 	ath_rx_tasklet(sc, 1, false);
464 }
465 
466 bool ath_stoprecv(struct ath_softc *sc)
467 {
468 	struct ath_hw *ah = sc->sc_ah;
469 	bool stopped, reset = false;
470 
471 	ath9k_hw_abortpcurecv(ah);
472 	ath9k_hw_setrxfilter(ah, 0);
473 	stopped = ath9k_hw_stopdmarecv(ah, &reset);
474 
475 	ath_flushrecv(sc);
476 
477 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
478 		ath_edma_stop_recv(sc);
479 	else
480 		sc->rx.rxlink = NULL;
481 
482 	if (!(ah->ah_flags & AH_UNPLUGGED) &&
483 	    unlikely(!stopped)) {
484 		ath_err(ath9k_hw_common(sc->sc_ah),
485 			"Could not stop RX, we could be "
486 			"confusing the DMA engine when we start RX up\n");
487 		ATH_DBG_WARN_ON_ONCE(!stopped);
488 	}
489 	return stopped && !reset;
490 }
491 
492 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
493 {
494 	/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
495 	struct ieee80211_mgmt *mgmt;
496 	u8 *pos, *end, id, elen;
497 	struct ieee80211_tim_ie *tim;
498 
499 	mgmt = (struct ieee80211_mgmt *)skb->data;
500 	pos = mgmt->u.beacon.variable;
501 	end = skb->data + skb->len;
502 
503 	while (pos + 2 < end) {
504 		id = *pos++;
505 		elen = *pos++;
506 		if (pos + elen > end)
507 			break;
508 
509 		if (id == WLAN_EID_TIM) {
510 			if (elen < sizeof(*tim))
511 				break;
512 			tim = (struct ieee80211_tim_ie *) pos;
513 			if (tim->dtim_count != 0)
514 				break;
515 			return tim->bitmap_ctrl & 0x01;
516 		}
517 
518 		pos += elen;
519 	}
520 
521 	return false;
522 }
523 
524 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
525 {
526 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
527 
528 	if (skb->len < 24 + 8 + 2 + 2)
529 		return;
530 
531 	sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
532 
533 	if (sc->ps_flags & PS_BEACON_SYNC) {
534 		sc->ps_flags &= ~PS_BEACON_SYNC;
535 		ath_dbg(common, PS,
536 			"Reconfigure beacon timers based on synchronized timestamp\n");
537 		ath9k_set_beacon(sc);
538 	}
539 
540 	if (ath_beacon_dtim_pending_cab(skb)) {
541 		/*
542 		 * Remain awake waiting for buffered broadcast/multicast
543 		 * frames. If the last broadcast/multicast frame is not
544 		 * received properly, the next beacon frame will work as
545 		 * a backup trigger for returning into NETWORK SLEEP state,
546 		 * so we are waiting for it as well.
547 		 */
548 		ath_dbg(common, PS,
549 			"Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
550 		sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
551 		return;
552 	}
553 
554 	if (sc->ps_flags & PS_WAIT_FOR_CAB) {
555 		/*
556 		 * This can happen if a broadcast frame is dropped or the AP
557 		 * fails to send a frame indicating that all CAB frames have
558 		 * been delivered.
559 		 */
560 		sc->ps_flags &= ~PS_WAIT_FOR_CAB;
561 		ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
562 	}
563 }
564 
565 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
566 {
567 	struct ieee80211_hdr *hdr;
568 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
569 
570 	hdr = (struct ieee80211_hdr *)skb->data;
571 
572 	/* Process Beacon and CAB receive in PS state */
573 	if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
574 	    && mybeacon) {
575 		ath_rx_ps_beacon(sc, skb);
576 	} else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
577 		   (ieee80211_is_data(hdr->frame_control) ||
578 		    ieee80211_is_action(hdr->frame_control)) &&
579 		   is_multicast_ether_addr(hdr->addr1) &&
580 		   !ieee80211_has_moredata(hdr->frame_control)) {
581 		/*
582 		 * No more broadcast/multicast frames to be received at this
583 		 * point.
584 		 */
585 		sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
586 		ath_dbg(common, PS,
587 			"All PS CAB frames received, back to sleep\n");
588 	} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
589 		   !is_multicast_ether_addr(hdr->addr1) &&
590 		   !ieee80211_has_morefrags(hdr->frame_control)) {
591 		sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
592 		ath_dbg(common, PS,
593 			"Going back to sleep after having received PS-Poll data (0x%lx)\n",
594 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
595 					PS_WAIT_FOR_CAB |
596 					PS_WAIT_FOR_PSPOLL_DATA |
597 					PS_WAIT_FOR_TX_ACK));
598 	}
599 }
600 
601 static bool ath_edma_get_buffers(struct ath_softc *sc,
602 				 enum ath9k_rx_qtype qtype,
603 				 struct ath_rx_status *rs,
604 				 struct ath_buf **dest)
605 {
606 	struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
607 	struct ath_hw *ah = sc->sc_ah;
608 	struct ath_common *common = ath9k_hw_common(ah);
609 	struct sk_buff *skb;
610 	struct ath_buf *bf;
611 	int ret;
612 
613 	skb = skb_peek(&rx_edma->rx_fifo);
614 	if (!skb)
615 		return false;
616 
617 	bf = SKB_CB_ATHBUF(skb);
618 	BUG_ON(!bf);
619 
620 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
621 				common->rx_bufsize, DMA_FROM_DEVICE);
622 
623 	ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
624 	if (ret == -EINPROGRESS) {
625 		/*let device gain the buffer again*/
626 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
627 				common->rx_bufsize, DMA_FROM_DEVICE);
628 		return false;
629 	}
630 
631 	__skb_unlink(skb, &rx_edma->rx_fifo);
632 	if (ret == -EINVAL) {
633 		/* corrupt descriptor, skip this one and the following one */
634 		list_add_tail(&bf->list, &sc->rx.rxbuf);
635 		ath_rx_edma_buf_link(sc, qtype);
636 
637 		skb = skb_peek(&rx_edma->rx_fifo);
638 		if (skb) {
639 			bf = SKB_CB_ATHBUF(skb);
640 			BUG_ON(!bf);
641 
642 			__skb_unlink(skb, &rx_edma->rx_fifo);
643 			list_add_tail(&bf->list, &sc->rx.rxbuf);
644 			ath_rx_edma_buf_link(sc, qtype);
645 		}
646 
647 		bf = NULL;
648 	}
649 
650 	*dest = bf;
651 	return true;
652 }
653 
654 static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
655 						struct ath_rx_status *rs,
656 						enum ath9k_rx_qtype qtype)
657 {
658 	struct ath_buf *bf = NULL;
659 
660 	while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
661 		if (!bf)
662 			continue;
663 
664 		return bf;
665 	}
666 	return NULL;
667 }
668 
669 static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
670 					   struct ath_rx_status *rs)
671 {
672 	struct ath_hw *ah = sc->sc_ah;
673 	struct ath_common *common = ath9k_hw_common(ah);
674 	struct ath_desc *ds;
675 	struct ath_buf *bf;
676 	int ret;
677 
678 	if (list_empty(&sc->rx.rxbuf)) {
679 		sc->rx.rxlink = NULL;
680 		return NULL;
681 	}
682 
683 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
684 	ds = bf->bf_desc;
685 
686 	/*
687 	 * Must provide the virtual address of the current
688 	 * descriptor, the physical address, and the virtual
689 	 * address of the next descriptor in the h/w chain.
690 	 * This allows the HAL to look ahead to see if the
691 	 * hardware is done with a descriptor by checking the
692 	 * done bit in the following descriptor and the address
693 	 * of the current descriptor the DMA engine is working
694 	 * on.  All this is necessary because of our use of
695 	 * a self-linked list to avoid rx overruns.
696 	 */
697 	ret = ath9k_hw_rxprocdesc(ah, ds, rs);
698 	if (ret == -EINPROGRESS) {
699 		struct ath_rx_status trs;
700 		struct ath_buf *tbf;
701 		struct ath_desc *tds;
702 
703 		memset(&trs, 0, sizeof(trs));
704 		if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
705 			sc->rx.rxlink = NULL;
706 			return NULL;
707 		}
708 
709 		tbf = list_entry(bf->list.next, struct ath_buf, list);
710 
711 		/*
712 		 * On some hardware the descriptor status words could
713 		 * get corrupted, including the done bit. Because of
714 		 * this, check if the next descriptor's done bit is
715 		 * set or not.
716 		 *
717 		 * If the next descriptor's done bit is set, the current
718 		 * descriptor has been corrupted. Force s/w to discard
719 		 * this descriptor and continue...
720 		 */
721 
722 		tds = tbf->bf_desc;
723 		ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
724 		if (ret == -EINPROGRESS)
725 			return NULL;
726 	}
727 
728 	list_del(&bf->list);
729 	if (!bf->bf_mpdu)
730 		return bf;
731 
732 	/*
733 	 * Synchronize the DMA transfer with CPU before
734 	 * 1. accessing the frame
735 	 * 2. requeueing the same buffer to h/w
736 	 */
737 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
738 			common->rx_bufsize,
739 			DMA_FROM_DEVICE);
740 
741 	return bf;
742 }
743 
744 /* Assumes you've already done the endian to CPU conversion */
745 static bool ath9k_rx_accept(struct ath_common *common,
746 			    struct ieee80211_hdr *hdr,
747 			    struct ieee80211_rx_status *rxs,
748 			    struct ath_rx_status *rx_stats,
749 			    bool *decrypt_error)
750 {
751 	struct ath_softc *sc = (struct ath_softc *) common->priv;
752 	bool is_mc, is_valid_tkip, strip_mic, mic_error;
753 	struct ath_hw *ah = common->ah;
754 	__le16 fc;
755 	u8 rx_status_len = ah->caps.rx_status_len;
756 
757 	fc = hdr->frame_control;
758 
759 	is_mc = !!is_multicast_ether_addr(hdr->addr1);
760 	is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID &&
761 		test_bit(rx_stats->rs_keyix, common->tkip_keymap);
762 	strip_mic = is_valid_tkip && ieee80211_is_data(fc) &&
763 		ieee80211_has_protected(fc) &&
764 		!(rx_stats->rs_status &
765 		(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC |
766 		 ATH9K_RXERR_KEYMISS));
767 
768 	/*
769 	 * Key miss events are only relevant for pairwise keys where the
770 	 * descriptor does contain a valid key index. This has been observed
771 	 * mostly with CCMP encryption.
772 	 */
773 	if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID ||
774 	    !test_bit(rx_stats->rs_keyix, common->ccmp_keymap))
775 		rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS;
776 
777 	if (!rx_stats->rs_datalen) {
778 		RX_STAT_INC(rx_len_err);
779 		return false;
780 	}
781 
782         /*
783          * rs_status follows rs_datalen so if rs_datalen is too large
784          * we can take a hint that hardware corrupted it, so ignore
785          * those frames.
786          */
787 	if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len)) {
788 		RX_STAT_INC(rx_len_err);
789 		return false;
790 	}
791 
792 	/* Only use error bits from the last fragment */
793 	if (rx_stats->rs_more)
794 		return true;
795 
796 	mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) &&
797 		!ieee80211_has_morefrags(fc) &&
798 		!(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) &&
799 		(rx_stats->rs_status & ATH9K_RXERR_MIC);
800 
801 	/*
802 	 * The rx_stats->rs_status will not be set until the end of the
803 	 * chained descriptors so it can be ignored if rs_more is set. The
804 	 * rs_more will be false at the last element of the chained
805 	 * descriptors.
806 	 */
807 	if (rx_stats->rs_status != 0) {
808 		u8 status_mask;
809 
810 		if (rx_stats->rs_status & ATH9K_RXERR_CRC) {
811 			rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
812 			mic_error = false;
813 		}
814 		if (rx_stats->rs_status & ATH9K_RXERR_PHY)
815 			return false;
816 
817 		if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) ||
818 		    (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) {
819 			*decrypt_error = true;
820 			mic_error = false;
821 		}
822 
823 		/*
824 		 * Reject error frames with the exception of
825 		 * decryption and MIC failures. For monitor mode,
826 		 * we also ignore the CRC error.
827 		 */
828 		status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
829 			      ATH9K_RXERR_KEYMISS;
830 
831 		if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL))
832 			status_mask |= ATH9K_RXERR_CRC;
833 
834 		if (rx_stats->rs_status & ~status_mask)
835 			return false;
836 	}
837 
838 	/*
839 	 * For unicast frames the MIC error bit can have false positives,
840 	 * so all MIC error reports need to be validated in software.
841 	 * False negatives are not common, so skip software verification
842 	 * if the hardware considers the MIC valid.
843 	 */
844 	if (strip_mic)
845 		rxs->flag |= RX_FLAG_MMIC_STRIPPED;
846 	else if (is_mc && mic_error)
847 		rxs->flag |= RX_FLAG_MMIC_ERROR;
848 
849 	return true;
850 }
851 
852 static int ath9k_process_rate(struct ath_common *common,
853 			      struct ieee80211_hw *hw,
854 			      struct ath_rx_status *rx_stats,
855 			      struct ieee80211_rx_status *rxs)
856 {
857 	struct ieee80211_supported_band *sband;
858 	enum ieee80211_band band;
859 	unsigned int i = 0;
860 	struct ath_softc __maybe_unused *sc = common->priv;
861 
862 	band = hw->conf.channel->band;
863 	sband = hw->wiphy->bands[band];
864 
865 	if (rx_stats->rs_rate & 0x80) {
866 		/* HT rate */
867 		rxs->flag |= RX_FLAG_HT;
868 		if (rx_stats->rs_flags & ATH9K_RX_2040)
869 			rxs->flag |= RX_FLAG_40MHZ;
870 		if (rx_stats->rs_flags & ATH9K_RX_GI)
871 			rxs->flag |= RX_FLAG_SHORT_GI;
872 		rxs->rate_idx = rx_stats->rs_rate & 0x7f;
873 		return 0;
874 	}
875 
876 	for (i = 0; i < sband->n_bitrates; i++) {
877 		if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
878 			rxs->rate_idx = i;
879 			return 0;
880 		}
881 		if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
882 			rxs->flag |= RX_FLAG_SHORTPRE;
883 			rxs->rate_idx = i;
884 			return 0;
885 		}
886 	}
887 
888 	/*
889 	 * No valid hardware bitrate found -- we should not get here
890 	 * because hardware has already validated this frame as OK.
891 	 */
892 	ath_dbg(common, ANY,
893 		"unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
894 		rx_stats->rs_rate);
895 	RX_STAT_INC(rx_rate_err);
896 	return -EINVAL;
897 }
898 
899 static void ath9k_process_rssi(struct ath_common *common,
900 			       struct ieee80211_hw *hw,
901 			       struct ieee80211_hdr *hdr,
902 			       struct ath_rx_status *rx_stats)
903 {
904 	struct ath_softc *sc = hw->priv;
905 	struct ath_hw *ah = common->ah;
906 	int last_rssi;
907 	int rssi = rx_stats->rs_rssi;
908 
909 	if (!rx_stats->is_mybeacon ||
910 	    ((ah->opmode != NL80211_IFTYPE_STATION) &&
911 	     (ah->opmode != NL80211_IFTYPE_ADHOC)))
912 		return;
913 
914 	if (rx_stats->rs_rssi != ATH9K_RSSI_BAD && !rx_stats->rs_moreaggr)
915 		ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi);
916 
917 	last_rssi = sc->last_rssi;
918 	if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
919 		rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER);
920 	if (rssi < 0)
921 		rssi = 0;
922 
923 	/* Update Beacon RSSI, this is used by ANI. */
924 	ah->stats.avgbrssi = rssi;
925 }
926 
927 /*
928  * For Decrypt or Demic errors, we only mark packet status here and always push
929  * up the frame up to let mac80211 handle the actual error case, be it no
930  * decryption key or real decryption error. This let us keep statistics there.
931  */
932 static int ath9k_rx_skb_preprocess(struct ath_common *common,
933 				   struct ieee80211_hw *hw,
934 				   struct ieee80211_hdr *hdr,
935 				   struct ath_rx_status *rx_stats,
936 				   struct ieee80211_rx_status *rx_status,
937 				   bool *decrypt_error)
938 {
939 	struct ath_hw *ah = common->ah;
940 
941 	/*
942 	 * everything but the rate is checked here, the rate check is done
943 	 * separately to avoid doing two lookups for a rate for each frame.
944 	 */
945 	if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error))
946 		return -EINVAL;
947 
948 	/* Only use status info from the last fragment */
949 	if (rx_stats->rs_more)
950 		return 0;
951 
952 	ath9k_process_rssi(common, hw, hdr, rx_stats);
953 
954 	if (ath9k_process_rate(common, hw, rx_stats, rx_status))
955 		return -EINVAL;
956 
957 	rx_status->band = hw->conf.channel->band;
958 	rx_status->freq = hw->conf.channel->center_freq;
959 	rx_status->signal = ah->noise + rx_stats->rs_rssi;
960 	rx_status->antenna = rx_stats->rs_antenna;
961 	rx_status->flag |= RX_FLAG_MACTIME_END;
962 	if (rx_stats->rs_moreaggr)
963 		rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
964 
965 	return 0;
966 }
967 
968 static void ath9k_rx_skb_postprocess(struct ath_common *common,
969 				     struct sk_buff *skb,
970 				     struct ath_rx_status *rx_stats,
971 				     struct ieee80211_rx_status *rxs,
972 				     bool decrypt_error)
973 {
974 	struct ath_hw *ah = common->ah;
975 	struct ieee80211_hdr *hdr;
976 	int hdrlen, padpos, padsize;
977 	u8 keyix;
978 	__le16 fc;
979 
980 	/* see if any padding is done by the hw and remove it */
981 	hdr = (struct ieee80211_hdr *) skb->data;
982 	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
983 	fc = hdr->frame_control;
984 	padpos = ath9k_cmn_padpos(hdr->frame_control);
985 
986 	/* The MAC header is padded to have 32-bit boundary if the
987 	 * packet payload is non-zero. The general calculation for
988 	 * padsize would take into account odd header lengths:
989 	 * padsize = (4 - padpos % 4) % 4; However, since only
990 	 * even-length headers are used, padding can only be 0 or 2
991 	 * bytes and we can optimize this a bit. In addition, we must
992 	 * not try to remove padding from short control frames that do
993 	 * not have payload. */
994 	padsize = padpos & 3;
995 	if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
996 		memmove(skb->data + padsize, skb->data, padpos);
997 		skb_pull(skb, padsize);
998 	}
999 
1000 	keyix = rx_stats->rs_keyix;
1001 
1002 	if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
1003 	    ieee80211_has_protected(fc)) {
1004 		rxs->flag |= RX_FLAG_DECRYPTED;
1005 	} else if (ieee80211_has_protected(fc)
1006 		   && !decrypt_error && skb->len >= hdrlen + 4) {
1007 		keyix = skb->data[hdrlen + 3] >> 6;
1008 
1009 		if (test_bit(keyix, common->keymap))
1010 			rxs->flag |= RX_FLAG_DECRYPTED;
1011 	}
1012 	if (ah->sw_mgmt_crypto &&
1013 	    (rxs->flag & RX_FLAG_DECRYPTED) &&
1014 	    ieee80211_is_mgmt(fc))
1015 		/* Use software decrypt for management frames. */
1016 		rxs->flag &= ~RX_FLAG_DECRYPTED;
1017 }
1018 
1019 #ifdef CONFIG_ATH9K_DEBUGFS
1020 static s8 fix_rssi_inv_only(u8 rssi_val)
1021 {
1022 	if (rssi_val == 128)
1023 		rssi_val = 0;
1024 	return (s8) rssi_val;
1025 }
1026 #endif
1027 
1028 /* returns 1 if this was a spectral frame, even if not handled. */
1029 static int ath_process_fft(struct ath_softc *sc, struct ieee80211_hdr *hdr,
1030 			   struct ath_rx_status *rs, u64 tsf)
1031 {
1032 #ifdef CONFIG_ATH9K_DEBUGFS
1033 	struct ath_hw *ah = sc->sc_ah;
1034 	u8 bins[SPECTRAL_HT20_NUM_BINS];
1035 	u8 *vdata = (u8 *)hdr;
1036 	struct fft_sample_ht20 fft_sample;
1037 	struct ath_radar_info *radar_info;
1038 	struct ath_ht20_mag_info *mag_info;
1039 	int len = rs->rs_datalen;
1040 	int dc_pos;
1041 	u16 length, max_magnitude;
1042 
1043 	/* AR9280 and before report via ATH9K_PHYERR_RADAR, AR93xx and newer
1044 	 * via ATH9K_PHYERR_SPECTRAL. Haven't seen ATH9K_PHYERR_FALSE_RADAR_EXT
1045 	 * yet, but this is supposed to be possible as well.
1046 	 */
1047 	if (rs->rs_phyerr != ATH9K_PHYERR_RADAR &&
1048 	    rs->rs_phyerr != ATH9K_PHYERR_FALSE_RADAR_EXT &&
1049 	    rs->rs_phyerr != ATH9K_PHYERR_SPECTRAL)
1050 		return 0;
1051 
1052 	/* check if spectral scan bit is set. This does not have to be checked
1053 	 * if received through a SPECTRAL phy error, but shouldn't hurt.
1054 	 */
1055 	radar_info = ((struct ath_radar_info *)&vdata[len]) - 1;
1056 	if (!(radar_info->pulse_bw_info & SPECTRAL_SCAN_BITMASK))
1057 		return 0;
1058 
1059 	/* Variation in the data length is possible and will be fixed later.
1060 	 * Note that we only support HT20 for now.
1061 	 *
1062 	 * TODO: add HT20_40 support as well.
1063 	 */
1064 	if ((len > SPECTRAL_HT20_TOTAL_DATA_LEN + 2) ||
1065 	    (len < SPECTRAL_HT20_TOTAL_DATA_LEN - 1))
1066 		return 1;
1067 
1068 	fft_sample.tlv.type = ATH_FFT_SAMPLE_HT20;
1069 	length = sizeof(fft_sample) - sizeof(fft_sample.tlv);
1070 	fft_sample.tlv.length = __cpu_to_be16(length);
1071 
1072 	fft_sample.freq = __cpu_to_be16(ah->curchan->chan->center_freq);
1073 	fft_sample.rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0);
1074 	fft_sample.noise = ah->noise;
1075 
1076 	switch (len - SPECTRAL_HT20_TOTAL_DATA_LEN) {
1077 	case 0:
1078 		/* length correct, nothing to do. */
1079 		memcpy(bins, vdata, SPECTRAL_HT20_NUM_BINS);
1080 		break;
1081 	case -1:
1082 		/* first byte missing, duplicate it. */
1083 		memcpy(&bins[1], vdata, SPECTRAL_HT20_NUM_BINS - 1);
1084 		bins[0] = vdata[0];
1085 		break;
1086 	case 2:
1087 		/* MAC added 2 extra bytes at bin 30 and 32, remove them. */
1088 		memcpy(bins, vdata, 30);
1089 		bins[30] = vdata[31];
1090 		memcpy(&bins[31], &vdata[33], SPECTRAL_HT20_NUM_BINS - 31);
1091 		break;
1092 	case 1:
1093 		/* MAC added 2 extra bytes AND first byte is missing. */
1094 		bins[0] = vdata[0];
1095 		memcpy(&bins[0], vdata, 30);
1096 		bins[31] = vdata[31];
1097 		memcpy(&bins[32], &vdata[33], SPECTRAL_HT20_NUM_BINS - 32);
1098 		break;
1099 	default:
1100 		return 1;
1101 	}
1102 
1103 	/* DC value (value in the middle) is the blind spot of the spectral
1104 	 * sample and invalid, interpolate it.
1105 	 */
1106 	dc_pos = SPECTRAL_HT20_NUM_BINS / 2;
1107 	bins[dc_pos] = (bins[dc_pos + 1] + bins[dc_pos - 1]) / 2;
1108 
1109 	/* mag data is at the end of the frame, in front of radar_info */
1110 	mag_info = ((struct ath_ht20_mag_info *)radar_info) - 1;
1111 
1112 	/* copy raw bins without scaling them */
1113 	memcpy(fft_sample.data, bins, SPECTRAL_HT20_NUM_BINS);
1114 	fft_sample.max_exp = mag_info->max_exp & 0xf;
1115 
1116 	max_magnitude = spectral_max_magnitude(mag_info->all_bins);
1117 	fft_sample.max_magnitude = __cpu_to_be16(max_magnitude);
1118 	fft_sample.max_index = spectral_max_index(mag_info->all_bins);
1119 	fft_sample.bitmap_weight = spectral_bitmap_weight(mag_info->all_bins);
1120 	fft_sample.tsf = __cpu_to_be64(tsf);
1121 
1122 	ath_debug_send_fft_sample(sc, &fft_sample.tlv);
1123 	return 1;
1124 #else
1125 	return 0;
1126 #endif
1127 }
1128 
1129 static void ath9k_apply_ampdu_details(struct ath_softc *sc,
1130 	struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
1131 {
1132 	if (rs->rs_isaggr) {
1133 		rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1134 
1135 		rxs->ampdu_reference = sc->rx.ampdu_ref;
1136 
1137 		if (!rs->rs_moreaggr) {
1138 			rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
1139 			sc->rx.ampdu_ref++;
1140 		}
1141 
1142 		if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
1143 			rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
1144 	}
1145 }
1146 
1147 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1148 {
1149 	struct ath_buf *bf;
1150 	struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1151 	struct ieee80211_rx_status *rxs;
1152 	struct ath_hw *ah = sc->sc_ah;
1153 	struct ath_common *common = ath9k_hw_common(ah);
1154 	struct ieee80211_hw *hw = sc->hw;
1155 	struct ieee80211_hdr *hdr;
1156 	int retval;
1157 	struct ath_rx_status rs;
1158 	enum ath9k_rx_qtype qtype;
1159 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1160 	int dma_type;
1161 	u8 rx_status_len = ah->caps.rx_status_len;
1162 	u64 tsf = 0;
1163 	u32 tsf_lower = 0;
1164 	unsigned long flags;
1165 
1166 	if (edma)
1167 		dma_type = DMA_BIDIRECTIONAL;
1168 	else
1169 		dma_type = DMA_FROM_DEVICE;
1170 
1171 	qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1172 
1173 	tsf = ath9k_hw_gettsf64(ah);
1174 	tsf_lower = tsf & 0xffffffff;
1175 
1176 	do {
1177 		bool decrypt_error = false;
1178 
1179 		memset(&rs, 0, sizeof(rs));
1180 		if (edma)
1181 			bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1182 		else
1183 			bf = ath_get_next_rx_buf(sc, &rs);
1184 
1185 		if (!bf)
1186 			break;
1187 
1188 		skb = bf->bf_mpdu;
1189 		if (!skb)
1190 			continue;
1191 
1192 		/*
1193 		 * Take frame header from the first fragment and RX status from
1194 		 * the last one.
1195 		 */
1196 		if (sc->rx.frag)
1197 			hdr_skb = sc->rx.frag;
1198 		else
1199 			hdr_skb = skb;
1200 
1201 		hdr = (struct ieee80211_hdr *) (hdr_skb->data + rx_status_len);
1202 		rxs = IEEE80211_SKB_RXCB(hdr_skb);
1203 		if (ieee80211_is_beacon(hdr->frame_control)) {
1204 			RX_STAT_INC(rx_beacons);
1205 			if (!is_zero_ether_addr(common->curbssid) &&
1206 			    ether_addr_equal(hdr->addr3, common->curbssid))
1207 				rs.is_mybeacon = true;
1208 			else
1209 				rs.is_mybeacon = false;
1210 		}
1211 		else
1212 			rs.is_mybeacon = false;
1213 
1214 		if (ieee80211_is_data_present(hdr->frame_control) &&
1215 		    !ieee80211_is_qos_nullfunc(hdr->frame_control))
1216 			sc->rx.num_pkts++;
1217 
1218 		ath_debug_stat_rx(sc, &rs);
1219 
1220 		memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1221 
1222 		rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp;
1223 		if (rs.rs_tstamp > tsf_lower &&
1224 		    unlikely(rs.rs_tstamp - tsf_lower > 0x10000000))
1225 			rxs->mactime -= 0x100000000ULL;
1226 
1227 		if (rs.rs_tstamp < tsf_lower &&
1228 		    unlikely(tsf_lower - rs.rs_tstamp > 0x10000000))
1229 			rxs->mactime += 0x100000000ULL;
1230 
1231 		if (rs.rs_status & ATH9K_RXERR_PHY) {
1232 			if (ath_process_fft(sc, hdr, &rs, rxs->mactime)) {
1233 				RX_STAT_INC(rx_spectral);
1234 				goto requeue_drop_frag;
1235 			}
1236 		}
1237 
1238 		retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs,
1239 						 rxs, &decrypt_error);
1240 		if (retval)
1241 			goto requeue_drop_frag;
1242 
1243 		if (rs.is_mybeacon) {
1244 			sc->hw_busy_count = 0;
1245 			ath_start_rx_poll(sc, 3);
1246 		}
1247 		/* Ensure we always have an skb to requeue once we are done
1248 		 * processing the current buffer's skb */
1249 		requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1250 
1251 		/* If there is no memory we ignore the current RX'd frame,
1252 		 * tell hardware it can give us a new frame using the old
1253 		 * skb and put it at the tail of the sc->rx.rxbuf list for
1254 		 * processing. */
1255 		if (!requeue_skb) {
1256 			RX_STAT_INC(rx_oom_err);
1257 			goto requeue_drop_frag;
1258 		}
1259 
1260 		/* Unmap the frame */
1261 		dma_unmap_single(sc->dev, bf->bf_buf_addr,
1262 				 common->rx_bufsize,
1263 				 dma_type);
1264 
1265 		skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1266 		if (ah->caps.rx_status_len)
1267 			skb_pull(skb, ah->caps.rx_status_len);
1268 
1269 		if (!rs.rs_more)
1270 			ath9k_rx_skb_postprocess(common, hdr_skb, &rs,
1271 						 rxs, decrypt_error);
1272 
1273 		/* We will now give hardware our shiny new allocated skb */
1274 		bf->bf_mpdu = requeue_skb;
1275 		bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1276 						 common->rx_bufsize,
1277 						 dma_type);
1278 		if (unlikely(dma_mapping_error(sc->dev,
1279 			  bf->bf_buf_addr))) {
1280 			dev_kfree_skb_any(requeue_skb);
1281 			bf->bf_mpdu = NULL;
1282 			bf->bf_buf_addr = 0;
1283 			ath_err(common, "dma_mapping_error() on RX\n");
1284 			ieee80211_rx(hw, skb);
1285 			break;
1286 		}
1287 
1288 		if (rs.rs_more) {
1289 			RX_STAT_INC(rx_frags);
1290 			/*
1291 			 * rs_more indicates chained descriptors which can be
1292 			 * used to link buffers together for a sort of
1293 			 * scatter-gather operation.
1294 			 */
1295 			if (sc->rx.frag) {
1296 				/* too many fragments - cannot handle frame */
1297 				dev_kfree_skb_any(sc->rx.frag);
1298 				dev_kfree_skb_any(skb);
1299 				RX_STAT_INC(rx_too_many_frags_err);
1300 				skb = NULL;
1301 			}
1302 			sc->rx.frag = skb;
1303 			goto requeue;
1304 		}
1305 
1306 		if (sc->rx.frag) {
1307 			int space = skb->len - skb_tailroom(hdr_skb);
1308 
1309 			if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1310 				dev_kfree_skb(skb);
1311 				RX_STAT_INC(rx_oom_err);
1312 				goto requeue_drop_frag;
1313 			}
1314 
1315 			sc->rx.frag = NULL;
1316 
1317 			skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1318 						  skb->len);
1319 			dev_kfree_skb_any(skb);
1320 			skb = hdr_skb;
1321 		}
1322 
1323 
1324 		if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
1325 
1326 			/*
1327 			 * change the default rx antenna if rx diversity
1328 			 * chooses the other antenna 3 times in a row.
1329 			 */
1330 			if (sc->rx.defant != rs.rs_antenna) {
1331 				if (++sc->rx.rxotherant >= 3)
1332 					ath_setdefantenna(sc, rs.rs_antenna);
1333 			} else {
1334 				sc->rx.rxotherant = 0;
1335 			}
1336 
1337 		}
1338 
1339 		if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1340 			skb_trim(skb, skb->len - 8);
1341 
1342 		spin_lock_irqsave(&sc->sc_pm_lock, flags);
1343 		if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1344 				     PS_WAIT_FOR_CAB |
1345 				     PS_WAIT_FOR_PSPOLL_DATA)) ||
1346 		    ath9k_check_auto_sleep(sc))
1347 			ath_rx_ps(sc, skb, rs.is_mybeacon);
1348 		spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1349 
1350 		if ((ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) && sc->ant_rx == 3)
1351 			ath_ant_comb_scan(sc, &rs);
1352 
1353 		ath9k_apply_ampdu_details(sc, &rs, rxs);
1354 
1355 		ieee80211_rx(hw, skb);
1356 
1357 requeue_drop_frag:
1358 		if (sc->rx.frag) {
1359 			dev_kfree_skb_any(sc->rx.frag);
1360 			sc->rx.frag = NULL;
1361 		}
1362 requeue:
1363 		list_add_tail(&bf->list, &sc->rx.rxbuf);
1364 		if (flush)
1365 			continue;
1366 
1367 		if (edma) {
1368 			ath_rx_edma_buf_link(sc, qtype);
1369 		} else {
1370 			ath_rx_buf_link(sc, bf);
1371 			ath9k_hw_rxena(ah);
1372 		}
1373 	} while (1);
1374 
1375 	if (!(ah->imask & ATH9K_INT_RXEOL)) {
1376 		ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1377 		ath9k_hw_set_interrupts(ah);
1378 	}
1379 
1380 	return 0;
1381 }
1382