1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include <linux/relay.h> 19 #include "ath9k.h" 20 #include "ar9003_mac.h" 21 22 #define SKB_CB_ATHBUF(__skb) (*((struct ath_rxbuf **)__skb->cb)) 23 24 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc) 25 { 26 return sc->ps_enabled && 27 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP); 28 } 29 30 /* 31 * Setup and link descriptors. 32 * 33 * 11N: we can no longer afford to self link the last descriptor. 34 * MAC acknowledges BA status as long as it copies frames to host 35 * buffer (or rx fifo). This can incorrectly acknowledge packets 36 * to a sender if last desc is self-linked. 37 */ 38 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf) 39 { 40 struct ath_hw *ah = sc->sc_ah; 41 struct ath_common *common = ath9k_hw_common(ah); 42 struct ath_desc *ds; 43 struct sk_buff *skb; 44 45 ds = bf->bf_desc; 46 ds->ds_link = 0; /* link to null */ 47 ds->ds_data = bf->bf_buf_addr; 48 49 /* virtual addr of the beginning of the buffer. */ 50 skb = bf->bf_mpdu; 51 BUG_ON(skb == NULL); 52 ds->ds_vdata = skb->data; 53 54 /* 55 * setup rx descriptors. The rx_bufsize here tells the hardware 56 * how much data it can DMA to us and that we are prepared 57 * to process 58 */ 59 ath9k_hw_setuprxdesc(ah, ds, 60 common->rx_bufsize, 61 0); 62 63 if (sc->rx.rxlink == NULL) 64 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 65 else 66 *sc->rx.rxlink = bf->bf_daddr; 67 68 sc->rx.rxlink = &ds->ds_link; 69 } 70 71 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf) 72 { 73 if (sc->rx.buf_hold) 74 ath_rx_buf_link(sc, sc->rx.buf_hold); 75 76 sc->rx.buf_hold = bf; 77 } 78 79 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna) 80 { 81 /* XXX block beacon interrupts */ 82 ath9k_hw_setantenna(sc->sc_ah, antenna); 83 sc->rx.defant = antenna; 84 sc->rx.rxotherant = 0; 85 } 86 87 static void ath_opmode_init(struct ath_softc *sc) 88 { 89 struct ath_hw *ah = sc->sc_ah; 90 struct ath_common *common = ath9k_hw_common(ah); 91 92 u32 rfilt, mfilt[2]; 93 94 /* configure rx filter */ 95 rfilt = ath_calcrxfilter(sc); 96 ath9k_hw_setrxfilter(ah, rfilt); 97 98 /* configure bssid mask */ 99 ath_hw_setbssidmask(common); 100 101 /* configure operational mode */ 102 ath9k_hw_setopmode(ah); 103 104 /* calculate and install multicast filter */ 105 mfilt[0] = mfilt[1] = ~0; 106 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]); 107 } 108 109 static bool ath_rx_edma_buf_link(struct ath_softc *sc, 110 enum ath9k_rx_qtype qtype) 111 { 112 struct ath_hw *ah = sc->sc_ah; 113 struct ath_rx_edma *rx_edma; 114 struct sk_buff *skb; 115 struct ath_rxbuf *bf; 116 117 rx_edma = &sc->rx.rx_edma[qtype]; 118 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize) 119 return false; 120 121 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list); 122 list_del_init(&bf->list); 123 124 skb = bf->bf_mpdu; 125 126 memset(skb->data, 0, ah->caps.rx_status_len); 127 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 128 ah->caps.rx_status_len, DMA_TO_DEVICE); 129 130 SKB_CB_ATHBUF(skb) = bf; 131 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype); 132 __skb_queue_tail(&rx_edma->rx_fifo, skb); 133 134 return true; 135 } 136 137 static void ath_rx_addbuffer_edma(struct ath_softc *sc, 138 enum ath9k_rx_qtype qtype) 139 { 140 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 141 struct ath_rxbuf *bf, *tbf; 142 143 if (list_empty(&sc->rx.rxbuf)) { 144 ath_dbg(common, QUEUE, "No free rx buf available\n"); 145 return; 146 } 147 148 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) 149 if (!ath_rx_edma_buf_link(sc, qtype)) 150 break; 151 152 } 153 154 static void ath_rx_remove_buffer(struct ath_softc *sc, 155 enum ath9k_rx_qtype qtype) 156 { 157 struct ath_rxbuf *bf; 158 struct ath_rx_edma *rx_edma; 159 struct sk_buff *skb; 160 161 rx_edma = &sc->rx.rx_edma[qtype]; 162 163 while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) { 164 bf = SKB_CB_ATHBUF(skb); 165 BUG_ON(!bf); 166 list_add_tail(&bf->list, &sc->rx.rxbuf); 167 } 168 } 169 170 static void ath_rx_edma_cleanup(struct ath_softc *sc) 171 { 172 struct ath_hw *ah = sc->sc_ah; 173 struct ath_common *common = ath9k_hw_common(ah); 174 struct ath_rxbuf *bf; 175 176 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 177 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 178 179 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 180 if (bf->bf_mpdu) { 181 dma_unmap_single(sc->dev, bf->bf_buf_addr, 182 common->rx_bufsize, 183 DMA_BIDIRECTIONAL); 184 dev_kfree_skb_any(bf->bf_mpdu); 185 bf->bf_buf_addr = 0; 186 bf->bf_mpdu = NULL; 187 } 188 } 189 } 190 191 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size) 192 { 193 __skb_queue_head_init(&rx_edma->rx_fifo); 194 rx_edma->rx_fifo_hwsize = size; 195 } 196 197 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs) 198 { 199 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 200 struct ath_hw *ah = sc->sc_ah; 201 struct sk_buff *skb; 202 struct ath_rxbuf *bf; 203 int error = 0, i; 204 u32 size; 205 206 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 207 ah->caps.rx_status_len); 208 209 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP], 210 ah->caps.rx_lp_qdepth); 211 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP], 212 ah->caps.rx_hp_qdepth); 213 214 size = sizeof(struct ath_rxbuf) * nbufs; 215 bf = devm_kzalloc(sc->dev, size, GFP_KERNEL); 216 if (!bf) 217 return -ENOMEM; 218 219 INIT_LIST_HEAD(&sc->rx.rxbuf); 220 221 for (i = 0; i < nbufs; i++, bf++) { 222 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL); 223 if (!skb) { 224 error = -ENOMEM; 225 goto rx_init_fail; 226 } 227 228 memset(skb->data, 0, common->rx_bufsize); 229 bf->bf_mpdu = skb; 230 231 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 232 common->rx_bufsize, 233 DMA_BIDIRECTIONAL); 234 if (unlikely(dma_mapping_error(sc->dev, 235 bf->bf_buf_addr))) { 236 dev_kfree_skb_any(skb); 237 bf->bf_mpdu = NULL; 238 bf->bf_buf_addr = 0; 239 ath_err(common, 240 "dma_mapping_error() on RX init\n"); 241 error = -ENOMEM; 242 goto rx_init_fail; 243 } 244 245 list_add_tail(&bf->list, &sc->rx.rxbuf); 246 } 247 248 return 0; 249 250 rx_init_fail: 251 ath_rx_edma_cleanup(sc); 252 return error; 253 } 254 255 static void ath_edma_start_recv(struct ath_softc *sc) 256 { 257 ath9k_hw_rxena(sc->sc_ah); 258 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP); 259 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP); 260 ath_opmode_init(sc); 261 ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)); 262 } 263 264 static void ath_edma_stop_recv(struct ath_softc *sc) 265 { 266 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 267 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 268 } 269 270 int ath_rx_init(struct ath_softc *sc, int nbufs) 271 { 272 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 273 struct sk_buff *skb; 274 struct ath_rxbuf *bf; 275 int error = 0; 276 277 spin_lock_init(&sc->sc_pcu_lock); 278 279 common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 + 280 sc->sc_ah->caps.rx_status_len; 281 282 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 283 return ath_rx_edma_init(sc, nbufs); 284 285 ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n", 286 common->cachelsz, common->rx_bufsize); 287 288 /* Initialize rx descriptors */ 289 290 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf, 291 "rx", nbufs, 1, 0); 292 if (error != 0) { 293 ath_err(common, 294 "failed to allocate rx descriptors: %d\n", 295 error); 296 goto err; 297 } 298 299 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 300 skb = ath_rxbuf_alloc(common, common->rx_bufsize, 301 GFP_KERNEL); 302 if (skb == NULL) { 303 error = -ENOMEM; 304 goto err; 305 } 306 307 bf->bf_mpdu = skb; 308 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 309 common->rx_bufsize, 310 DMA_FROM_DEVICE); 311 if (unlikely(dma_mapping_error(sc->dev, 312 bf->bf_buf_addr))) { 313 dev_kfree_skb_any(skb); 314 bf->bf_mpdu = NULL; 315 bf->bf_buf_addr = 0; 316 ath_err(common, 317 "dma_mapping_error() on RX init\n"); 318 error = -ENOMEM; 319 goto err; 320 } 321 } 322 sc->rx.rxlink = NULL; 323 err: 324 if (error) 325 ath_rx_cleanup(sc); 326 327 return error; 328 } 329 330 void ath_rx_cleanup(struct ath_softc *sc) 331 { 332 struct ath_hw *ah = sc->sc_ah; 333 struct ath_common *common = ath9k_hw_common(ah); 334 struct sk_buff *skb; 335 struct ath_rxbuf *bf; 336 337 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 338 ath_rx_edma_cleanup(sc); 339 return; 340 } 341 342 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 343 skb = bf->bf_mpdu; 344 if (skb) { 345 dma_unmap_single(sc->dev, bf->bf_buf_addr, 346 common->rx_bufsize, 347 DMA_FROM_DEVICE); 348 dev_kfree_skb(skb); 349 bf->bf_buf_addr = 0; 350 bf->bf_mpdu = NULL; 351 } 352 } 353 } 354 355 /* 356 * Calculate the receive filter according to the 357 * operating mode and state: 358 * 359 * o always accept unicast, broadcast, and multicast traffic 360 * o maintain current state of phy error reception (the hal 361 * may enable phy error frames for noise immunity work) 362 * o probe request frames are accepted only when operating in 363 * hostap, adhoc, or monitor modes 364 * o enable promiscuous mode according to the interface state 365 * o accept beacons: 366 * - when operating in adhoc mode so the 802.11 layer creates 367 * node table entries for peers, 368 * - when operating in station mode for collecting rssi data when 369 * the station is otherwise quiet, or 370 * - when operating as a repeater so we see repeater-sta beacons 371 * - when scanning 372 */ 373 374 u32 ath_calcrxfilter(struct ath_softc *sc) 375 { 376 u32 rfilt; 377 378 if (config_enabled(CONFIG_ATH9K_TX99)) 379 return 0; 380 381 rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST 382 | ATH9K_RX_FILTER_MCAST; 383 384 /* if operating on a DFS channel, enable radar pulse detection */ 385 if (sc->hw->conf.radar_enabled) 386 rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR; 387 388 if (sc->rx.rxfilter & FIF_PROBE_REQ) 389 rfilt |= ATH9K_RX_FILTER_PROBEREQ; 390 391 /* 392 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station 393 * mode interface or when in monitor mode. AP mode does not need this 394 * since it receives all in-BSS frames anyway. 395 */ 396 if (sc->sc_ah->is_monitoring) 397 rfilt |= ATH9K_RX_FILTER_PROM; 398 399 if (sc->rx.rxfilter & FIF_CONTROL) 400 rfilt |= ATH9K_RX_FILTER_CONTROL; 401 402 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) && 403 (sc->nvifs <= 1) && 404 !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)) 405 rfilt |= ATH9K_RX_FILTER_MYBEACON; 406 else 407 rfilt |= ATH9K_RX_FILTER_BEACON; 408 409 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) || 410 (sc->rx.rxfilter & FIF_PSPOLL)) 411 rfilt |= ATH9K_RX_FILTER_PSPOLL; 412 413 if (conf_is_ht(&sc->hw->conf)) 414 rfilt |= ATH9K_RX_FILTER_COMP_BAR; 415 416 if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) { 417 /* This is needed for older chips */ 418 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160) 419 rfilt |= ATH9K_RX_FILTER_PROM; 420 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL; 421 } 422 423 if (AR_SREV_9550(sc->sc_ah)) 424 rfilt |= ATH9K_RX_FILTER_4ADDRESS; 425 426 return rfilt; 427 428 } 429 430 int ath_startrecv(struct ath_softc *sc) 431 { 432 struct ath_hw *ah = sc->sc_ah; 433 struct ath_rxbuf *bf, *tbf; 434 435 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 436 ath_edma_start_recv(sc); 437 return 0; 438 } 439 440 if (list_empty(&sc->rx.rxbuf)) 441 goto start_recv; 442 443 sc->rx.buf_hold = NULL; 444 sc->rx.rxlink = NULL; 445 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) { 446 ath_rx_buf_link(sc, bf); 447 } 448 449 /* We could have deleted elements so the list may be empty now */ 450 if (list_empty(&sc->rx.rxbuf)) 451 goto start_recv; 452 453 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list); 454 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 455 ath9k_hw_rxena(ah); 456 457 start_recv: 458 ath_opmode_init(sc); 459 ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)); 460 461 return 0; 462 } 463 464 static void ath_flushrecv(struct ath_softc *sc) 465 { 466 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 467 ath_rx_tasklet(sc, 1, true); 468 ath_rx_tasklet(sc, 1, false); 469 } 470 471 bool ath_stoprecv(struct ath_softc *sc) 472 { 473 struct ath_hw *ah = sc->sc_ah; 474 bool stopped, reset = false; 475 476 ath9k_hw_abortpcurecv(ah); 477 ath9k_hw_setrxfilter(ah, 0); 478 stopped = ath9k_hw_stopdmarecv(ah, &reset); 479 480 ath_flushrecv(sc); 481 482 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 483 ath_edma_stop_recv(sc); 484 else 485 sc->rx.rxlink = NULL; 486 487 if (!(ah->ah_flags & AH_UNPLUGGED) && 488 unlikely(!stopped)) { 489 ath_err(ath9k_hw_common(sc->sc_ah), 490 "Could not stop RX, we could be " 491 "confusing the DMA engine when we start RX up\n"); 492 ATH_DBG_WARN_ON_ONCE(!stopped); 493 } 494 return stopped && !reset; 495 } 496 497 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb) 498 { 499 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */ 500 struct ieee80211_mgmt *mgmt; 501 u8 *pos, *end, id, elen; 502 struct ieee80211_tim_ie *tim; 503 504 mgmt = (struct ieee80211_mgmt *)skb->data; 505 pos = mgmt->u.beacon.variable; 506 end = skb->data + skb->len; 507 508 while (pos + 2 < end) { 509 id = *pos++; 510 elen = *pos++; 511 if (pos + elen > end) 512 break; 513 514 if (id == WLAN_EID_TIM) { 515 if (elen < sizeof(*tim)) 516 break; 517 tim = (struct ieee80211_tim_ie *) pos; 518 if (tim->dtim_count != 0) 519 break; 520 return tim->bitmap_ctrl & 0x01; 521 } 522 523 pos += elen; 524 } 525 526 return false; 527 } 528 529 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb) 530 { 531 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 532 533 if (skb->len < 24 + 8 + 2 + 2) 534 return; 535 536 sc->ps_flags &= ~PS_WAIT_FOR_BEACON; 537 538 if (sc->ps_flags & PS_BEACON_SYNC) { 539 sc->ps_flags &= ~PS_BEACON_SYNC; 540 ath_dbg(common, PS, 541 "Reconfigure beacon timers based on synchronized timestamp\n"); 542 ath9k_set_beacon(sc); 543 } 544 545 if (ath_beacon_dtim_pending_cab(skb)) { 546 /* 547 * Remain awake waiting for buffered broadcast/multicast 548 * frames. If the last broadcast/multicast frame is not 549 * received properly, the next beacon frame will work as 550 * a backup trigger for returning into NETWORK SLEEP state, 551 * so we are waiting for it as well. 552 */ 553 ath_dbg(common, PS, 554 "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n"); 555 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON; 556 return; 557 } 558 559 if (sc->ps_flags & PS_WAIT_FOR_CAB) { 560 /* 561 * This can happen if a broadcast frame is dropped or the AP 562 * fails to send a frame indicating that all CAB frames have 563 * been delivered. 564 */ 565 sc->ps_flags &= ~PS_WAIT_FOR_CAB; 566 ath_dbg(common, PS, "PS wait for CAB frames timed out\n"); 567 } 568 } 569 570 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon) 571 { 572 struct ieee80211_hdr *hdr; 573 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 574 575 hdr = (struct ieee80211_hdr *)skb->data; 576 577 /* Process Beacon and CAB receive in PS state */ 578 if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc)) 579 && mybeacon) { 580 ath_rx_ps_beacon(sc, skb); 581 } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) && 582 (ieee80211_is_data(hdr->frame_control) || 583 ieee80211_is_action(hdr->frame_control)) && 584 is_multicast_ether_addr(hdr->addr1) && 585 !ieee80211_has_moredata(hdr->frame_control)) { 586 /* 587 * No more broadcast/multicast frames to be received at this 588 * point. 589 */ 590 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON); 591 ath_dbg(common, PS, 592 "All PS CAB frames received, back to sleep\n"); 593 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) && 594 !is_multicast_ether_addr(hdr->addr1) && 595 !ieee80211_has_morefrags(hdr->frame_control)) { 596 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA; 597 ath_dbg(common, PS, 598 "Going back to sleep after having received PS-Poll data (0x%lx)\n", 599 sc->ps_flags & (PS_WAIT_FOR_BEACON | 600 PS_WAIT_FOR_CAB | 601 PS_WAIT_FOR_PSPOLL_DATA | 602 PS_WAIT_FOR_TX_ACK)); 603 } 604 } 605 606 static bool ath_edma_get_buffers(struct ath_softc *sc, 607 enum ath9k_rx_qtype qtype, 608 struct ath_rx_status *rs, 609 struct ath_rxbuf **dest) 610 { 611 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype]; 612 struct ath_hw *ah = sc->sc_ah; 613 struct ath_common *common = ath9k_hw_common(ah); 614 struct sk_buff *skb; 615 struct ath_rxbuf *bf; 616 int ret; 617 618 skb = skb_peek(&rx_edma->rx_fifo); 619 if (!skb) 620 return false; 621 622 bf = SKB_CB_ATHBUF(skb); 623 BUG_ON(!bf); 624 625 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 626 common->rx_bufsize, DMA_FROM_DEVICE); 627 628 ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data); 629 if (ret == -EINPROGRESS) { 630 /*let device gain the buffer again*/ 631 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 632 common->rx_bufsize, DMA_FROM_DEVICE); 633 return false; 634 } 635 636 __skb_unlink(skb, &rx_edma->rx_fifo); 637 if (ret == -EINVAL) { 638 /* corrupt descriptor, skip this one and the following one */ 639 list_add_tail(&bf->list, &sc->rx.rxbuf); 640 ath_rx_edma_buf_link(sc, qtype); 641 642 skb = skb_peek(&rx_edma->rx_fifo); 643 if (skb) { 644 bf = SKB_CB_ATHBUF(skb); 645 BUG_ON(!bf); 646 647 __skb_unlink(skb, &rx_edma->rx_fifo); 648 list_add_tail(&bf->list, &sc->rx.rxbuf); 649 ath_rx_edma_buf_link(sc, qtype); 650 } 651 652 bf = NULL; 653 } 654 655 *dest = bf; 656 return true; 657 } 658 659 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc, 660 struct ath_rx_status *rs, 661 enum ath9k_rx_qtype qtype) 662 { 663 struct ath_rxbuf *bf = NULL; 664 665 while (ath_edma_get_buffers(sc, qtype, rs, &bf)) { 666 if (!bf) 667 continue; 668 669 return bf; 670 } 671 return NULL; 672 } 673 674 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc, 675 struct ath_rx_status *rs) 676 { 677 struct ath_hw *ah = sc->sc_ah; 678 struct ath_common *common = ath9k_hw_common(ah); 679 struct ath_desc *ds; 680 struct ath_rxbuf *bf; 681 int ret; 682 683 if (list_empty(&sc->rx.rxbuf)) { 684 sc->rx.rxlink = NULL; 685 return NULL; 686 } 687 688 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list); 689 if (bf == sc->rx.buf_hold) 690 return NULL; 691 692 ds = bf->bf_desc; 693 694 /* 695 * Must provide the virtual address of the current 696 * descriptor, the physical address, and the virtual 697 * address of the next descriptor in the h/w chain. 698 * This allows the HAL to look ahead to see if the 699 * hardware is done with a descriptor by checking the 700 * done bit in the following descriptor and the address 701 * of the current descriptor the DMA engine is working 702 * on. All this is necessary because of our use of 703 * a self-linked list to avoid rx overruns. 704 */ 705 ret = ath9k_hw_rxprocdesc(ah, ds, rs); 706 if (ret == -EINPROGRESS) { 707 struct ath_rx_status trs; 708 struct ath_rxbuf *tbf; 709 struct ath_desc *tds; 710 711 memset(&trs, 0, sizeof(trs)); 712 if (list_is_last(&bf->list, &sc->rx.rxbuf)) { 713 sc->rx.rxlink = NULL; 714 return NULL; 715 } 716 717 tbf = list_entry(bf->list.next, struct ath_rxbuf, list); 718 719 /* 720 * On some hardware the descriptor status words could 721 * get corrupted, including the done bit. Because of 722 * this, check if the next descriptor's done bit is 723 * set or not. 724 * 725 * If the next descriptor's done bit is set, the current 726 * descriptor has been corrupted. Force s/w to discard 727 * this descriptor and continue... 728 */ 729 730 tds = tbf->bf_desc; 731 ret = ath9k_hw_rxprocdesc(ah, tds, &trs); 732 if (ret == -EINPROGRESS) 733 return NULL; 734 735 /* 736 * mark descriptor as zero-length and set the 'more' 737 * flag to ensure that both buffers get discarded 738 */ 739 rs->rs_datalen = 0; 740 rs->rs_more = true; 741 } 742 743 list_del(&bf->list); 744 if (!bf->bf_mpdu) 745 return bf; 746 747 /* 748 * Synchronize the DMA transfer with CPU before 749 * 1. accessing the frame 750 * 2. requeueing the same buffer to h/w 751 */ 752 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 753 common->rx_bufsize, 754 DMA_FROM_DEVICE); 755 756 return bf; 757 } 758 759 /* Assumes you've already done the endian to CPU conversion */ 760 static bool ath9k_rx_accept(struct ath_common *common, 761 struct ieee80211_hdr *hdr, 762 struct ieee80211_rx_status *rxs, 763 struct ath_rx_status *rx_stats, 764 bool *decrypt_error) 765 { 766 struct ath_softc *sc = (struct ath_softc *) common->priv; 767 bool is_mc, is_valid_tkip, strip_mic, mic_error; 768 struct ath_hw *ah = common->ah; 769 __le16 fc; 770 771 fc = hdr->frame_control; 772 773 is_mc = !!is_multicast_ether_addr(hdr->addr1); 774 is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID && 775 test_bit(rx_stats->rs_keyix, common->tkip_keymap); 776 strip_mic = is_valid_tkip && ieee80211_is_data(fc) && 777 ieee80211_has_protected(fc) && 778 !(rx_stats->rs_status & 779 (ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC | 780 ATH9K_RXERR_KEYMISS)); 781 782 /* 783 * Key miss events are only relevant for pairwise keys where the 784 * descriptor does contain a valid key index. This has been observed 785 * mostly with CCMP encryption. 786 */ 787 if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID || 788 !test_bit(rx_stats->rs_keyix, common->ccmp_keymap)) 789 rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS; 790 791 mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) && 792 !ieee80211_has_morefrags(fc) && 793 !(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) && 794 (rx_stats->rs_status & ATH9K_RXERR_MIC); 795 796 /* 797 * The rx_stats->rs_status will not be set until the end of the 798 * chained descriptors so it can be ignored if rs_more is set. The 799 * rs_more will be false at the last element of the chained 800 * descriptors. 801 */ 802 if (rx_stats->rs_status != 0) { 803 u8 status_mask; 804 805 if (rx_stats->rs_status & ATH9K_RXERR_CRC) { 806 rxs->flag |= RX_FLAG_FAILED_FCS_CRC; 807 mic_error = false; 808 } 809 810 if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) || 811 (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) { 812 *decrypt_error = true; 813 mic_error = false; 814 } 815 816 /* 817 * Reject error frames with the exception of 818 * decryption and MIC failures. For monitor mode, 819 * we also ignore the CRC error. 820 */ 821 status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC | 822 ATH9K_RXERR_KEYMISS; 823 824 if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL)) 825 status_mask |= ATH9K_RXERR_CRC; 826 827 if (rx_stats->rs_status & ~status_mask) 828 return false; 829 } 830 831 /* 832 * For unicast frames the MIC error bit can have false positives, 833 * so all MIC error reports need to be validated in software. 834 * False negatives are not common, so skip software verification 835 * if the hardware considers the MIC valid. 836 */ 837 if (strip_mic) 838 rxs->flag |= RX_FLAG_MMIC_STRIPPED; 839 else if (is_mc && mic_error) 840 rxs->flag |= RX_FLAG_MMIC_ERROR; 841 842 return true; 843 } 844 845 static int ath9k_process_rate(struct ath_common *common, 846 struct ieee80211_hw *hw, 847 struct ath_rx_status *rx_stats, 848 struct ieee80211_rx_status *rxs) 849 { 850 struct ieee80211_supported_band *sband; 851 enum ieee80211_band band; 852 unsigned int i = 0; 853 struct ath_softc __maybe_unused *sc = common->priv; 854 855 band = hw->conf.chandef.chan->band; 856 sband = hw->wiphy->bands[band]; 857 858 switch (hw->conf.chandef.width) { 859 case NL80211_CHAN_WIDTH_5: 860 rxs->flag |= RX_FLAG_5MHZ; 861 break; 862 case NL80211_CHAN_WIDTH_10: 863 rxs->flag |= RX_FLAG_10MHZ; 864 break; 865 default: 866 break; 867 } 868 869 if (rx_stats->rs_rate & 0x80) { 870 /* HT rate */ 871 rxs->flag |= RX_FLAG_HT; 872 rxs->flag |= rx_stats->flag; 873 rxs->rate_idx = rx_stats->rs_rate & 0x7f; 874 return 0; 875 } 876 877 for (i = 0; i < sband->n_bitrates; i++) { 878 if (sband->bitrates[i].hw_value == rx_stats->rs_rate) { 879 rxs->rate_idx = i; 880 return 0; 881 } 882 if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) { 883 rxs->flag |= RX_FLAG_SHORTPRE; 884 rxs->rate_idx = i; 885 return 0; 886 } 887 } 888 889 /* 890 * No valid hardware bitrate found -- we should not get here 891 * because hardware has already validated this frame as OK. 892 */ 893 ath_dbg(common, ANY, 894 "unsupported hw bitrate detected 0x%02x using 1 Mbit\n", 895 rx_stats->rs_rate); 896 RX_STAT_INC(rx_rate_err); 897 return -EINVAL; 898 } 899 900 static void ath9k_process_rssi(struct ath_common *common, 901 struct ieee80211_hw *hw, 902 struct ath_rx_status *rx_stats, 903 struct ieee80211_rx_status *rxs) 904 { 905 struct ath_softc *sc = hw->priv; 906 struct ath_hw *ah = common->ah; 907 int last_rssi; 908 int rssi = rx_stats->rs_rssi; 909 910 /* 911 * RSSI is not available for subframes in an A-MPDU. 912 */ 913 if (rx_stats->rs_moreaggr) { 914 rxs->flag |= RX_FLAG_NO_SIGNAL_VAL; 915 return; 916 } 917 918 /* 919 * Check if the RSSI for the last subframe in an A-MPDU 920 * or an unaggregated frame is valid. 921 */ 922 if (rx_stats->rs_rssi == ATH9K_RSSI_BAD) { 923 rxs->flag |= RX_FLAG_NO_SIGNAL_VAL; 924 return; 925 } 926 927 /* 928 * Update Beacon RSSI, this is used by ANI. 929 */ 930 if (rx_stats->is_mybeacon && 931 ((ah->opmode == NL80211_IFTYPE_STATION) || 932 (ah->opmode == NL80211_IFTYPE_ADHOC))) { 933 ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi); 934 last_rssi = sc->last_rssi; 935 936 if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER)) 937 rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER); 938 if (rssi < 0) 939 rssi = 0; 940 941 ah->stats.avgbrssi = rssi; 942 } 943 944 rxs->signal = ah->noise + rx_stats->rs_rssi; 945 } 946 947 static void ath9k_process_tsf(struct ath_rx_status *rs, 948 struct ieee80211_rx_status *rxs, 949 u64 tsf) 950 { 951 u32 tsf_lower = tsf & 0xffffffff; 952 953 rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp; 954 if (rs->rs_tstamp > tsf_lower && 955 unlikely(rs->rs_tstamp - tsf_lower > 0x10000000)) 956 rxs->mactime -= 0x100000000ULL; 957 958 if (rs->rs_tstamp < tsf_lower && 959 unlikely(tsf_lower - rs->rs_tstamp > 0x10000000)) 960 rxs->mactime += 0x100000000ULL; 961 } 962 963 #ifdef CONFIG_ATH9K_DEBUGFS 964 static s8 fix_rssi_inv_only(u8 rssi_val) 965 { 966 if (rssi_val == 128) 967 rssi_val = 0; 968 return (s8) rssi_val; 969 } 970 #endif 971 972 /* returns 1 if this was a spectral frame, even if not handled. */ 973 static int ath_process_fft(struct ath_softc *sc, struct ieee80211_hdr *hdr, 974 struct ath_rx_status *rs, u64 tsf) 975 { 976 #ifdef CONFIG_ATH9K_DEBUGFS 977 struct ath_hw *ah = sc->sc_ah; 978 u8 num_bins, *bins, *vdata = (u8 *)hdr; 979 struct fft_sample_ht20 fft_sample_20; 980 struct fft_sample_ht20_40 fft_sample_40; 981 struct fft_sample_tlv *tlv; 982 struct ath_radar_info *radar_info; 983 int len = rs->rs_datalen; 984 int dc_pos; 985 u16 fft_len, length, freq = ah->curchan->chan->center_freq; 986 enum nl80211_channel_type chan_type; 987 988 /* AR9280 and before report via ATH9K_PHYERR_RADAR, AR93xx and newer 989 * via ATH9K_PHYERR_SPECTRAL. Haven't seen ATH9K_PHYERR_FALSE_RADAR_EXT 990 * yet, but this is supposed to be possible as well. 991 */ 992 if (rs->rs_phyerr != ATH9K_PHYERR_RADAR && 993 rs->rs_phyerr != ATH9K_PHYERR_FALSE_RADAR_EXT && 994 rs->rs_phyerr != ATH9K_PHYERR_SPECTRAL) 995 return 0; 996 997 /* check if spectral scan bit is set. This does not have to be checked 998 * if received through a SPECTRAL phy error, but shouldn't hurt. 999 */ 1000 radar_info = ((struct ath_radar_info *)&vdata[len]) - 1; 1001 if (!(radar_info->pulse_bw_info & SPECTRAL_SCAN_BITMASK)) 1002 return 0; 1003 1004 chan_type = cfg80211_get_chandef_type(&sc->hw->conf.chandef); 1005 if ((chan_type == NL80211_CHAN_HT40MINUS) || 1006 (chan_type == NL80211_CHAN_HT40PLUS)) { 1007 fft_len = SPECTRAL_HT20_40_TOTAL_DATA_LEN; 1008 num_bins = SPECTRAL_HT20_40_NUM_BINS; 1009 bins = (u8 *)fft_sample_40.data; 1010 } else { 1011 fft_len = SPECTRAL_HT20_TOTAL_DATA_LEN; 1012 num_bins = SPECTRAL_HT20_NUM_BINS; 1013 bins = (u8 *)fft_sample_20.data; 1014 } 1015 1016 /* Variation in the data length is possible and will be fixed later */ 1017 if ((len > fft_len + 2) || (len < fft_len - 1)) 1018 return 1; 1019 1020 switch (len - fft_len) { 1021 case 0: 1022 /* length correct, nothing to do. */ 1023 memcpy(bins, vdata, num_bins); 1024 break; 1025 case -1: 1026 /* first byte missing, duplicate it. */ 1027 memcpy(&bins[1], vdata, num_bins - 1); 1028 bins[0] = vdata[0]; 1029 break; 1030 case 2: 1031 /* MAC added 2 extra bytes at bin 30 and 32, remove them. */ 1032 memcpy(bins, vdata, 30); 1033 bins[30] = vdata[31]; 1034 memcpy(&bins[31], &vdata[33], num_bins - 31); 1035 break; 1036 case 1: 1037 /* MAC added 2 extra bytes AND first byte is missing. */ 1038 bins[0] = vdata[0]; 1039 memcpy(&bins[1], vdata, 30); 1040 bins[31] = vdata[31]; 1041 memcpy(&bins[32], &vdata[33], num_bins - 32); 1042 break; 1043 default: 1044 return 1; 1045 } 1046 1047 /* DC value (value in the middle) is the blind spot of the spectral 1048 * sample and invalid, interpolate it. 1049 */ 1050 dc_pos = num_bins / 2; 1051 bins[dc_pos] = (bins[dc_pos + 1] + bins[dc_pos - 1]) / 2; 1052 1053 if ((chan_type == NL80211_CHAN_HT40MINUS) || 1054 (chan_type == NL80211_CHAN_HT40PLUS)) { 1055 s8 lower_rssi, upper_rssi; 1056 s16 ext_nf; 1057 u8 lower_max_index, upper_max_index; 1058 u8 lower_bitmap_w, upper_bitmap_w; 1059 u16 lower_mag, upper_mag; 1060 struct ath9k_hw_cal_data *caldata = ah->caldata; 1061 struct ath_ht20_40_mag_info *mag_info; 1062 1063 if (caldata) 1064 ext_nf = ath9k_hw_getchan_noise(ah, ah->curchan, 1065 caldata->nfCalHist[3].privNF); 1066 else 1067 ext_nf = ATH_DEFAULT_NOISE_FLOOR; 1068 1069 length = sizeof(fft_sample_40) - sizeof(struct fft_sample_tlv); 1070 fft_sample_40.tlv.type = ATH_FFT_SAMPLE_HT20_40; 1071 fft_sample_40.tlv.length = __cpu_to_be16(length); 1072 fft_sample_40.freq = __cpu_to_be16(freq); 1073 fft_sample_40.channel_type = chan_type; 1074 1075 if (chan_type == NL80211_CHAN_HT40PLUS) { 1076 lower_rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0); 1077 upper_rssi = fix_rssi_inv_only(rs->rs_rssi_ext0); 1078 1079 fft_sample_40.lower_noise = ah->noise; 1080 fft_sample_40.upper_noise = ext_nf; 1081 } else { 1082 lower_rssi = fix_rssi_inv_only(rs->rs_rssi_ext0); 1083 upper_rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0); 1084 1085 fft_sample_40.lower_noise = ext_nf; 1086 fft_sample_40.upper_noise = ah->noise; 1087 } 1088 fft_sample_40.lower_rssi = lower_rssi; 1089 fft_sample_40.upper_rssi = upper_rssi; 1090 1091 mag_info = ((struct ath_ht20_40_mag_info *)radar_info) - 1; 1092 lower_mag = spectral_max_magnitude(mag_info->lower_bins); 1093 upper_mag = spectral_max_magnitude(mag_info->upper_bins); 1094 fft_sample_40.lower_max_magnitude = __cpu_to_be16(lower_mag); 1095 fft_sample_40.upper_max_magnitude = __cpu_to_be16(upper_mag); 1096 lower_max_index = spectral_max_index(mag_info->lower_bins); 1097 upper_max_index = spectral_max_index(mag_info->upper_bins); 1098 fft_sample_40.lower_max_index = lower_max_index; 1099 fft_sample_40.upper_max_index = upper_max_index; 1100 lower_bitmap_w = spectral_bitmap_weight(mag_info->lower_bins); 1101 upper_bitmap_w = spectral_bitmap_weight(mag_info->upper_bins); 1102 fft_sample_40.lower_bitmap_weight = lower_bitmap_w; 1103 fft_sample_40.upper_bitmap_weight = upper_bitmap_w; 1104 fft_sample_40.max_exp = mag_info->max_exp & 0xf; 1105 1106 fft_sample_40.tsf = __cpu_to_be64(tsf); 1107 1108 tlv = (struct fft_sample_tlv *)&fft_sample_40; 1109 } else { 1110 u8 max_index, bitmap_w; 1111 u16 magnitude; 1112 struct ath_ht20_mag_info *mag_info; 1113 1114 length = sizeof(fft_sample_20) - sizeof(struct fft_sample_tlv); 1115 fft_sample_20.tlv.type = ATH_FFT_SAMPLE_HT20; 1116 fft_sample_20.tlv.length = __cpu_to_be16(length); 1117 fft_sample_20.freq = __cpu_to_be16(freq); 1118 1119 fft_sample_20.rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0); 1120 fft_sample_20.noise = ah->noise; 1121 1122 mag_info = ((struct ath_ht20_mag_info *)radar_info) - 1; 1123 magnitude = spectral_max_magnitude(mag_info->all_bins); 1124 fft_sample_20.max_magnitude = __cpu_to_be16(magnitude); 1125 max_index = spectral_max_index(mag_info->all_bins); 1126 fft_sample_20.max_index = max_index; 1127 bitmap_w = spectral_bitmap_weight(mag_info->all_bins); 1128 fft_sample_20.bitmap_weight = bitmap_w; 1129 fft_sample_20.max_exp = mag_info->max_exp & 0xf; 1130 1131 fft_sample_20.tsf = __cpu_to_be64(tsf); 1132 1133 tlv = (struct fft_sample_tlv *)&fft_sample_20; 1134 } 1135 1136 ath_debug_send_fft_sample(sc, tlv); 1137 return 1; 1138 #else 1139 return 0; 1140 #endif 1141 } 1142 1143 static bool ath9k_is_mybeacon(struct ath_softc *sc, struct ieee80211_hdr *hdr) 1144 { 1145 struct ath_hw *ah = sc->sc_ah; 1146 struct ath_common *common = ath9k_hw_common(ah); 1147 1148 if (ieee80211_is_beacon(hdr->frame_control)) { 1149 RX_STAT_INC(rx_beacons); 1150 if (!is_zero_ether_addr(common->curbssid) && 1151 ether_addr_equal(hdr->addr3, common->curbssid)) 1152 return true; 1153 } 1154 1155 return false; 1156 } 1157 1158 /* 1159 * For Decrypt or Demic errors, we only mark packet status here and always push 1160 * up the frame up to let mac80211 handle the actual error case, be it no 1161 * decryption key or real decryption error. This let us keep statistics there. 1162 */ 1163 static int ath9k_rx_skb_preprocess(struct ath_softc *sc, 1164 struct sk_buff *skb, 1165 struct ath_rx_status *rx_stats, 1166 struct ieee80211_rx_status *rx_status, 1167 bool *decrypt_error, u64 tsf) 1168 { 1169 struct ieee80211_hw *hw = sc->hw; 1170 struct ath_hw *ah = sc->sc_ah; 1171 struct ath_common *common = ath9k_hw_common(ah); 1172 struct ieee80211_hdr *hdr; 1173 bool discard_current = sc->rx.discard_next; 1174 int ret = 0; 1175 1176 /* 1177 * Discard corrupt descriptors which are marked in 1178 * ath_get_next_rx_buf(). 1179 */ 1180 sc->rx.discard_next = rx_stats->rs_more; 1181 if (discard_current) 1182 return -EINVAL; 1183 1184 /* 1185 * Discard zero-length packets. 1186 */ 1187 if (!rx_stats->rs_datalen) { 1188 RX_STAT_INC(rx_len_err); 1189 return -EINVAL; 1190 } 1191 1192 /* 1193 * rs_status follows rs_datalen so if rs_datalen is too large 1194 * we can take a hint that hardware corrupted it, so ignore 1195 * those frames. 1196 */ 1197 if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) { 1198 RX_STAT_INC(rx_len_err); 1199 return -EINVAL; 1200 } 1201 1202 /* Only use status info from the last fragment */ 1203 if (rx_stats->rs_more) 1204 return 0; 1205 1206 /* 1207 * Return immediately if the RX descriptor has been marked 1208 * as corrupt based on the various error bits. 1209 * 1210 * This is different from the other corrupt descriptor 1211 * condition handled above. 1212 */ 1213 if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC) { 1214 ret = -EINVAL; 1215 goto exit; 1216 } 1217 1218 hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len); 1219 1220 ath9k_process_tsf(rx_stats, rx_status, tsf); 1221 ath_debug_stat_rx(sc, rx_stats); 1222 1223 /* 1224 * Process PHY errors and return so that the packet 1225 * can be dropped. 1226 */ 1227 if (rx_stats->rs_status & ATH9K_RXERR_PHY) { 1228 ath9k_dfs_process_phyerr(sc, hdr, rx_stats, rx_status->mactime); 1229 if (ath_process_fft(sc, hdr, rx_stats, rx_status->mactime)) 1230 RX_STAT_INC(rx_spectral); 1231 1232 ret = -EINVAL; 1233 goto exit; 1234 } 1235 1236 /* 1237 * everything but the rate is checked here, the rate check is done 1238 * separately to avoid doing two lookups for a rate for each frame. 1239 */ 1240 if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error)) { 1241 ret = -EINVAL; 1242 goto exit; 1243 } 1244 1245 rx_stats->is_mybeacon = ath9k_is_mybeacon(sc, hdr); 1246 if (rx_stats->is_mybeacon) { 1247 sc->hw_busy_count = 0; 1248 ath_start_rx_poll(sc, 3); 1249 } 1250 1251 if (ath9k_process_rate(common, hw, rx_stats, rx_status)) { 1252 ret =-EINVAL; 1253 goto exit; 1254 } 1255 1256 ath9k_process_rssi(common, hw, rx_stats, rx_status); 1257 1258 rx_status->band = hw->conf.chandef.chan->band; 1259 rx_status->freq = hw->conf.chandef.chan->center_freq; 1260 rx_status->antenna = rx_stats->rs_antenna; 1261 rx_status->flag |= RX_FLAG_MACTIME_END; 1262 1263 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT 1264 if (ieee80211_is_data_present(hdr->frame_control) && 1265 !ieee80211_is_qos_nullfunc(hdr->frame_control)) 1266 sc->rx.num_pkts++; 1267 #endif 1268 1269 exit: 1270 sc->rx.discard_next = false; 1271 return ret; 1272 } 1273 1274 static void ath9k_rx_skb_postprocess(struct ath_common *common, 1275 struct sk_buff *skb, 1276 struct ath_rx_status *rx_stats, 1277 struct ieee80211_rx_status *rxs, 1278 bool decrypt_error) 1279 { 1280 struct ath_hw *ah = common->ah; 1281 struct ieee80211_hdr *hdr; 1282 int hdrlen, padpos, padsize; 1283 u8 keyix; 1284 __le16 fc; 1285 1286 /* see if any padding is done by the hw and remove it */ 1287 hdr = (struct ieee80211_hdr *) skb->data; 1288 hdrlen = ieee80211_get_hdrlen_from_skb(skb); 1289 fc = hdr->frame_control; 1290 padpos = ieee80211_hdrlen(fc); 1291 1292 /* The MAC header is padded to have 32-bit boundary if the 1293 * packet payload is non-zero. The general calculation for 1294 * padsize would take into account odd header lengths: 1295 * padsize = (4 - padpos % 4) % 4; However, since only 1296 * even-length headers are used, padding can only be 0 or 2 1297 * bytes and we can optimize this a bit. In addition, we must 1298 * not try to remove padding from short control frames that do 1299 * not have payload. */ 1300 padsize = padpos & 3; 1301 if (padsize && skb->len>=padpos+padsize+FCS_LEN) { 1302 memmove(skb->data + padsize, skb->data, padpos); 1303 skb_pull(skb, padsize); 1304 } 1305 1306 keyix = rx_stats->rs_keyix; 1307 1308 if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error && 1309 ieee80211_has_protected(fc)) { 1310 rxs->flag |= RX_FLAG_DECRYPTED; 1311 } else if (ieee80211_has_protected(fc) 1312 && !decrypt_error && skb->len >= hdrlen + 4) { 1313 keyix = skb->data[hdrlen + 3] >> 6; 1314 1315 if (test_bit(keyix, common->keymap)) 1316 rxs->flag |= RX_FLAG_DECRYPTED; 1317 } 1318 if (ah->sw_mgmt_crypto && 1319 (rxs->flag & RX_FLAG_DECRYPTED) && 1320 ieee80211_is_mgmt(fc)) 1321 /* Use software decrypt for management frames. */ 1322 rxs->flag &= ~RX_FLAG_DECRYPTED; 1323 } 1324 1325 /* 1326 * Run the LNA combining algorithm only in these cases: 1327 * 1328 * Standalone WLAN cards with both LNA/Antenna diversity 1329 * enabled in the EEPROM. 1330 * 1331 * WLAN+BT cards which are in the supported card list 1332 * in ath_pci_id_table and the user has loaded the 1333 * driver with "bt_ant_diversity" set to true. 1334 */ 1335 static void ath9k_antenna_check(struct ath_softc *sc, 1336 struct ath_rx_status *rs) 1337 { 1338 struct ath_hw *ah = sc->sc_ah; 1339 struct ath9k_hw_capabilities *pCap = &ah->caps; 1340 struct ath_common *common = ath9k_hw_common(ah); 1341 1342 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)) 1343 return; 1344 1345 /* 1346 * Change the default rx antenna if rx diversity 1347 * chooses the other antenna 3 times in a row. 1348 */ 1349 if (sc->rx.defant != rs->rs_antenna) { 1350 if (++sc->rx.rxotherant >= 3) 1351 ath_setdefantenna(sc, rs->rs_antenna); 1352 } else { 1353 sc->rx.rxotherant = 0; 1354 } 1355 1356 if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) { 1357 if (common->bt_ant_diversity) 1358 ath_ant_comb_scan(sc, rs); 1359 } else { 1360 ath_ant_comb_scan(sc, rs); 1361 } 1362 } 1363 1364 static void ath9k_apply_ampdu_details(struct ath_softc *sc, 1365 struct ath_rx_status *rs, struct ieee80211_rx_status *rxs) 1366 { 1367 if (rs->rs_isaggr) { 1368 rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 1369 1370 rxs->ampdu_reference = sc->rx.ampdu_ref; 1371 1372 if (!rs->rs_moreaggr) { 1373 rxs->flag |= RX_FLAG_AMPDU_IS_LAST; 1374 sc->rx.ampdu_ref++; 1375 } 1376 1377 if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE) 1378 rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR; 1379 } 1380 } 1381 1382 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp) 1383 { 1384 struct ath_rxbuf *bf; 1385 struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb; 1386 struct ieee80211_rx_status *rxs; 1387 struct ath_hw *ah = sc->sc_ah; 1388 struct ath_common *common = ath9k_hw_common(ah); 1389 struct ieee80211_hw *hw = sc->hw; 1390 int retval; 1391 struct ath_rx_status rs; 1392 enum ath9k_rx_qtype qtype; 1393 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1394 int dma_type; 1395 u64 tsf = 0; 1396 unsigned long flags; 1397 dma_addr_t new_buf_addr; 1398 1399 if (edma) 1400 dma_type = DMA_BIDIRECTIONAL; 1401 else 1402 dma_type = DMA_FROM_DEVICE; 1403 1404 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP; 1405 1406 tsf = ath9k_hw_gettsf64(ah); 1407 1408 do { 1409 bool decrypt_error = false; 1410 1411 memset(&rs, 0, sizeof(rs)); 1412 if (edma) 1413 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype); 1414 else 1415 bf = ath_get_next_rx_buf(sc, &rs); 1416 1417 if (!bf) 1418 break; 1419 1420 skb = bf->bf_mpdu; 1421 if (!skb) 1422 continue; 1423 1424 /* 1425 * Take frame header from the first fragment and RX status from 1426 * the last one. 1427 */ 1428 if (sc->rx.frag) 1429 hdr_skb = sc->rx.frag; 1430 else 1431 hdr_skb = skb; 1432 1433 rxs = IEEE80211_SKB_RXCB(hdr_skb); 1434 memset(rxs, 0, sizeof(struct ieee80211_rx_status)); 1435 1436 retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs, 1437 &decrypt_error, tsf); 1438 if (retval) 1439 goto requeue_drop_frag; 1440 1441 /* Ensure we always have an skb to requeue once we are done 1442 * processing the current buffer's skb */ 1443 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC); 1444 1445 /* If there is no memory we ignore the current RX'd frame, 1446 * tell hardware it can give us a new frame using the old 1447 * skb and put it at the tail of the sc->rx.rxbuf list for 1448 * processing. */ 1449 if (!requeue_skb) { 1450 RX_STAT_INC(rx_oom_err); 1451 goto requeue_drop_frag; 1452 } 1453 1454 /* We will now give hardware our shiny new allocated skb */ 1455 new_buf_addr = dma_map_single(sc->dev, requeue_skb->data, 1456 common->rx_bufsize, dma_type); 1457 if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) { 1458 dev_kfree_skb_any(requeue_skb); 1459 goto requeue_drop_frag; 1460 } 1461 1462 /* Unmap the frame */ 1463 dma_unmap_single(sc->dev, bf->bf_buf_addr, 1464 common->rx_bufsize, dma_type); 1465 1466 bf->bf_mpdu = requeue_skb; 1467 bf->bf_buf_addr = new_buf_addr; 1468 1469 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len); 1470 if (ah->caps.rx_status_len) 1471 skb_pull(skb, ah->caps.rx_status_len); 1472 1473 if (!rs.rs_more) 1474 ath9k_rx_skb_postprocess(common, hdr_skb, &rs, 1475 rxs, decrypt_error); 1476 1477 if (rs.rs_more) { 1478 RX_STAT_INC(rx_frags); 1479 /* 1480 * rs_more indicates chained descriptors which can be 1481 * used to link buffers together for a sort of 1482 * scatter-gather operation. 1483 */ 1484 if (sc->rx.frag) { 1485 /* too many fragments - cannot handle frame */ 1486 dev_kfree_skb_any(sc->rx.frag); 1487 dev_kfree_skb_any(skb); 1488 RX_STAT_INC(rx_too_many_frags_err); 1489 skb = NULL; 1490 } 1491 sc->rx.frag = skb; 1492 goto requeue; 1493 } 1494 1495 if (sc->rx.frag) { 1496 int space = skb->len - skb_tailroom(hdr_skb); 1497 1498 if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) { 1499 dev_kfree_skb(skb); 1500 RX_STAT_INC(rx_oom_err); 1501 goto requeue_drop_frag; 1502 } 1503 1504 sc->rx.frag = NULL; 1505 1506 skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len), 1507 skb->len); 1508 dev_kfree_skb_any(skb); 1509 skb = hdr_skb; 1510 } 1511 1512 if (rxs->flag & RX_FLAG_MMIC_STRIPPED) 1513 skb_trim(skb, skb->len - 8); 1514 1515 spin_lock_irqsave(&sc->sc_pm_lock, flags); 1516 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON | 1517 PS_WAIT_FOR_CAB | 1518 PS_WAIT_FOR_PSPOLL_DATA)) || 1519 ath9k_check_auto_sleep(sc)) 1520 ath_rx_ps(sc, skb, rs.is_mybeacon); 1521 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 1522 1523 ath9k_antenna_check(sc, &rs); 1524 1525 ath9k_apply_ampdu_details(sc, &rs, rxs); 1526 1527 ieee80211_rx(hw, skb); 1528 1529 requeue_drop_frag: 1530 if (sc->rx.frag) { 1531 dev_kfree_skb_any(sc->rx.frag); 1532 sc->rx.frag = NULL; 1533 } 1534 requeue: 1535 list_add_tail(&bf->list, &sc->rx.rxbuf); 1536 if (flush) 1537 continue; 1538 1539 if (edma) { 1540 ath_rx_edma_buf_link(sc, qtype); 1541 } else { 1542 ath_rx_buf_relink(sc, bf); 1543 ath9k_hw_rxena(ah); 1544 } 1545 } while (1); 1546 1547 if (!(ah->imask & ATH9K_INT_RXEOL)) { 1548 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN); 1549 ath9k_hw_set_interrupts(ah); 1550 } 1551 1552 return 0; 1553 } 1554