xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/recv.c (revision 77d84ff8)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include <linux/relay.h>
19 #include "ath9k.h"
20 #include "ar9003_mac.h"
21 
22 #define SKB_CB_ATHBUF(__skb)	(*((struct ath_rxbuf **)__skb->cb))
23 
24 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
25 {
26 	return sc->ps_enabled &&
27 	       (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
28 }
29 
30 /*
31  * Setup and link descriptors.
32  *
33  * 11N: we can no longer afford to self link the last descriptor.
34  * MAC acknowledges BA status as long as it copies frames to host
35  * buffer (or rx fifo). This can incorrectly acknowledge packets
36  * to a sender if last desc is self-linked.
37  */
38 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf)
39 {
40 	struct ath_hw *ah = sc->sc_ah;
41 	struct ath_common *common = ath9k_hw_common(ah);
42 	struct ath_desc *ds;
43 	struct sk_buff *skb;
44 
45 	ds = bf->bf_desc;
46 	ds->ds_link = 0; /* link to null */
47 	ds->ds_data = bf->bf_buf_addr;
48 
49 	/* virtual addr of the beginning of the buffer. */
50 	skb = bf->bf_mpdu;
51 	BUG_ON(skb == NULL);
52 	ds->ds_vdata = skb->data;
53 
54 	/*
55 	 * setup rx descriptors. The rx_bufsize here tells the hardware
56 	 * how much data it can DMA to us and that we are prepared
57 	 * to process
58 	 */
59 	ath9k_hw_setuprxdesc(ah, ds,
60 			     common->rx_bufsize,
61 			     0);
62 
63 	if (sc->rx.rxlink == NULL)
64 		ath9k_hw_putrxbuf(ah, bf->bf_daddr);
65 	else
66 		*sc->rx.rxlink = bf->bf_daddr;
67 
68 	sc->rx.rxlink = &ds->ds_link;
69 }
70 
71 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf)
72 {
73 	if (sc->rx.buf_hold)
74 		ath_rx_buf_link(sc, sc->rx.buf_hold);
75 
76 	sc->rx.buf_hold = bf;
77 }
78 
79 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
80 {
81 	/* XXX block beacon interrupts */
82 	ath9k_hw_setantenna(sc->sc_ah, antenna);
83 	sc->rx.defant = antenna;
84 	sc->rx.rxotherant = 0;
85 }
86 
87 static void ath_opmode_init(struct ath_softc *sc)
88 {
89 	struct ath_hw *ah = sc->sc_ah;
90 	struct ath_common *common = ath9k_hw_common(ah);
91 
92 	u32 rfilt, mfilt[2];
93 
94 	/* configure rx filter */
95 	rfilt = ath_calcrxfilter(sc);
96 	ath9k_hw_setrxfilter(ah, rfilt);
97 
98 	/* configure bssid mask */
99 	ath_hw_setbssidmask(common);
100 
101 	/* configure operational mode */
102 	ath9k_hw_setopmode(ah);
103 
104 	/* calculate and install multicast filter */
105 	mfilt[0] = mfilt[1] = ~0;
106 	ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
107 }
108 
109 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
110 				 enum ath9k_rx_qtype qtype)
111 {
112 	struct ath_hw *ah = sc->sc_ah;
113 	struct ath_rx_edma *rx_edma;
114 	struct sk_buff *skb;
115 	struct ath_rxbuf *bf;
116 
117 	rx_edma = &sc->rx.rx_edma[qtype];
118 	if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
119 		return false;
120 
121 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
122 	list_del_init(&bf->list);
123 
124 	skb = bf->bf_mpdu;
125 
126 	memset(skb->data, 0, ah->caps.rx_status_len);
127 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
128 				ah->caps.rx_status_len, DMA_TO_DEVICE);
129 
130 	SKB_CB_ATHBUF(skb) = bf;
131 	ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
132 	__skb_queue_tail(&rx_edma->rx_fifo, skb);
133 
134 	return true;
135 }
136 
137 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
138 				  enum ath9k_rx_qtype qtype)
139 {
140 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
141 	struct ath_rxbuf *bf, *tbf;
142 
143 	if (list_empty(&sc->rx.rxbuf)) {
144 		ath_dbg(common, QUEUE, "No free rx buf available\n");
145 		return;
146 	}
147 
148 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
149 		if (!ath_rx_edma_buf_link(sc, qtype))
150 			break;
151 
152 }
153 
154 static void ath_rx_remove_buffer(struct ath_softc *sc,
155 				 enum ath9k_rx_qtype qtype)
156 {
157 	struct ath_rxbuf *bf;
158 	struct ath_rx_edma *rx_edma;
159 	struct sk_buff *skb;
160 
161 	rx_edma = &sc->rx.rx_edma[qtype];
162 
163 	while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
164 		bf = SKB_CB_ATHBUF(skb);
165 		BUG_ON(!bf);
166 		list_add_tail(&bf->list, &sc->rx.rxbuf);
167 	}
168 }
169 
170 static void ath_rx_edma_cleanup(struct ath_softc *sc)
171 {
172 	struct ath_hw *ah = sc->sc_ah;
173 	struct ath_common *common = ath9k_hw_common(ah);
174 	struct ath_rxbuf *bf;
175 
176 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
177 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
178 
179 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
180 		if (bf->bf_mpdu) {
181 			dma_unmap_single(sc->dev, bf->bf_buf_addr,
182 					common->rx_bufsize,
183 					DMA_BIDIRECTIONAL);
184 			dev_kfree_skb_any(bf->bf_mpdu);
185 			bf->bf_buf_addr = 0;
186 			bf->bf_mpdu = NULL;
187 		}
188 	}
189 }
190 
191 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
192 {
193 	__skb_queue_head_init(&rx_edma->rx_fifo);
194 	rx_edma->rx_fifo_hwsize = size;
195 }
196 
197 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
198 {
199 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
200 	struct ath_hw *ah = sc->sc_ah;
201 	struct sk_buff *skb;
202 	struct ath_rxbuf *bf;
203 	int error = 0, i;
204 	u32 size;
205 
206 	ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
207 				    ah->caps.rx_status_len);
208 
209 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
210 			       ah->caps.rx_lp_qdepth);
211 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
212 			       ah->caps.rx_hp_qdepth);
213 
214 	size = sizeof(struct ath_rxbuf) * nbufs;
215 	bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
216 	if (!bf)
217 		return -ENOMEM;
218 
219 	INIT_LIST_HEAD(&sc->rx.rxbuf);
220 
221 	for (i = 0; i < nbufs; i++, bf++) {
222 		skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
223 		if (!skb) {
224 			error = -ENOMEM;
225 			goto rx_init_fail;
226 		}
227 
228 		memset(skb->data, 0, common->rx_bufsize);
229 		bf->bf_mpdu = skb;
230 
231 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
232 						 common->rx_bufsize,
233 						 DMA_BIDIRECTIONAL);
234 		if (unlikely(dma_mapping_error(sc->dev,
235 						bf->bf_buf_addr))) {
236 				dev_kfree_skb_any(skb);
237 				bf->bf_mpdu = NULL;
238 				bf->bf_buf_addr = 0;
239 				ath_err(common,
240 					"dma_mapping_error() on RX init\n");
241 				error = -ENOMEM;
242 				goto rx_init_fail;
243 		}
244 
245 		list_add_tail(&bf->list, &sc->rx.rxbuf);
246 	}
247 
248 	return 0;
249 
250 rx_init_fail:
251 	ath_rx_edma_cleanup(sc);
252 	return error;
253 }
254 
255 static void ath_edma_start_recv(struct ath_softc *sc)
256 {
257 	ath9k_hw_rxena(sc->sc_ah);
258 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
259 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
260 	ath_opmode_init(sc);
261 	ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
262 }
263 
264 static void ath_edma_stop_recv(struct ath_softc *sc)
265 {
266 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
267 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
268 }
269 
270 int ath_rx_init(struct ath_softc *sc, int nbufs)
271 {
272 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
273 	struct sk_buff *skb;
274 	struct ath_rxbuf *bf;
275 	int error = 0;
276 
277 	spin_lock_init(&sc->sc_pcu_lock);
278 
279 	common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
280 			     sc->sc_ah->caps.rx_status_len;
281 
282 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
283 		return ath_rx_edma_init(sc, nbufs);
284 
285 	ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
286 		common->cachelsz, common->rx_bufsize);
287 
288 	/* Initialize rx descriptors */
289 
290 	error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
291 				  "rx", nbufs, 1, 0);
292 	if (error != 0) {
293 		ath_err(common,
294 			"failed to allocate rx descriptors: %d\n",
295 			error);
296 		goto err;
297 	}
298 
299 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
300 		skb = ath_rxbuf_alloc(common, common->rx_bufsize,
301 				      GFP_KERNEL);
302 		if (skb == NULL) {
303 			error = -ENOMEM;
304 			goto err;
305 		}
306 
307 		bf->bf_mpdu = skb;
308 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
309 						 common->rx_bufsize,
310 						 DMA_FROM_DEVICE);
311 		if (unlikely(dma_mapping_error(sc->dev,
312 					       bf->bf_buf_addr))) {
313 			dev_kfree_skb_any(skb);
314 			bf->bf_mpdu = NULL;
315 			bf->bf_buf_addr = 0;
316 			ath_err(common,
317 				"dma_mapping_error() on RX init\n");
318 			error = -ENOMEM;
319 			goto err;
320 		}
321 	}
322 	sc->rx.rxlink = NULL;
323 err:
324 	if (error)
325 		ath_rx_cleanup(sc);
326 
327 	return error;
328 }
329 
330 void ath_rx_cleanup(struct ath_softc *sc)
331 {
332 	struct ath_hw *ah = sc->sc_ah;
333 	struct ath_common *common = ath9k_hw_common(ah);
334 	struct sk_buff *skb;
335 	struct ath_rxbuf *bf;
336 
337 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
338 		ath_rx_edma_cleanup(sc);
339 		return;
340 	}
341 
342 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
343 		skb = bf->bf_mpdu;
344 		if (skb) {
345 			dma_unmap_single(sc->dev, bf->bf_buf_addr,
346 					 common->rx_bufsize,
347 					 DMA_FROM_DEVICE);
348 			dev_kfree_skb(skb);
349 			bf->bf_buf_addr = 0;
350 			bf->bf_mpdu = NULL;
351 		}
352 	}
353 }
354 
355 /*
356  * Calculate the receive filter according to the
357  * operating mode and state:
358  *
359  * o always accept unicast, broadcast, and multicast traffic
360  * o maintain current state of phy error reception (the hal
361  *   may enable phy error frames for noise immunity work)
362  * o probe request frames are accepted only when operating in
363  *   hostap, adhoc, or monitor modes
364  * o enable promiscuous mode according to the interface state
365  * o accept beacons:
366  *   - when operating in adhoc mode so the 802.11 layer creates
367  *     node table entries for peers,
368  *   - when operating in station mode for collecting rssi data when
369  *     the station is otherwise quiet, or
370  *   - when operating as a repeater so we see repeater-sta beacons
371  *   - when scanning
372  */
373 
374 u32 ath_calcrxfilter(struct ath_softc *sc)
375 {
376 	u32 rfilt;
377 
378 	if (config_enabled(CONFIG_ATH9K_TX99))
379 		return 0;
380 
381 	rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
382 		| ATH9K_RX_FILTER_MCAST;
383 
384 	/* if operating on a DFS channel, enable radar pulse detection */
385 	if (sc->hw->conf.radar_enabled)
386 		rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
387 
388 	if (sc->rx.rxfilter & FIF_PROBE_REQ)
389 		rfilt |= ATH9K_RX_FILTER_PROBEREQ;
390 
391 	/*
392 	 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
393 	 * mode interface or when in monitor mode. AP mode does not need this
394 	 * since it receives all in-BSS frames anyway.
395 	 */
396 	if (sc->sc_ah->is_monitoring)
397 		rfilt |= ATH9K_RX_FILTER_PROM;
398 
399 	if (sc->rx.rxfilter & FIF_CONTROL)
400 		rfilt |= ATH9K_RX_FILTER_CONTROL;
401 
402 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
403 	    (sc->nvifs <= 1) &&
404 	    !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
405 		rfilt |= ATH9K_RX_FILTER_MYBEACON;
406 	else
407 		rfilt |= ATH9K_RX_FILTER_BEACON;
408 
409 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
410 	    (sc->rx.rxfilter & FIF_PSPOLL))
411 		rfilt |= ATH9K_RX_FILTER_PSPOLL;
412 
413 	if (conf_is_ht(&sc->hw->conf))
414 		rfilt |= ATH9K_RX_FILTER_COMP_BAR;
415 
416 	if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
417 		/* This is needed for older chips */
418 		if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
419 			rfilt |= ATH9K_RX_FILTER_PROM;
420 		rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
421 	}
422 
423 	if (AR_SREV_9550(sc->sc_ah))
424 		rfilt |= ATH9K_RX_FILTER_4ADDRESS;
425 
426 	return rfilt;
427 
428 }
429 
430 int ath_startrecv(struct ath_softc *sc)
431 {
432 	struct ath_hw *ah = sc->sc_ah;
433 	struct ath_rxbuf *bf, *tbf;
434 
435 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
436 		ath_edma_start_recv(sc);
437 		return 0;
438 	}
439 
440 	if (list_empty(&sc->rx.rxbuf))
441 		goto start_recv;
442 
443 	sc->rx.buf_hold = NULL;
444 	sc->rx.rxlink = NULL;
445 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
446 		ath_rx_buf_link(sc, bf);
447 	}
448 
449 	/* We could have deleted elements so the list may be empty now */
450 	if (list_empty(&sc->rx.rxbuf))
451 		goto start_recv;
452 
453 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
454 	ath9k_hw_putrxbuf(ah, bf->bf_daddr);
455 	ath9k_hw_rxena(ah);
456 
457 start_recv:
458 	ath_opmode_init(sc);
459 	ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
460 
461 	return 0;
462 }
463 
464 static void ath_flushrecv(struct ath_softc *sc)
465 {
466 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
467 		ath_rx_tasklet(sc, 1, true);
468 	ath_rx_tasklet(sc, 1, false);
469 }
470 
471 bool ath_stoprecv(struct ath_softc *sc)
472 {
473 	struct ath_hw *ah = sc->sc_ah;
474 	bool stopped, reset = false;
475 
476 	ath9k_hw_abortpcurecv(ah);
477 	ath9k_hw_setrxfilter(ah, 0);
478 	stopped = ath9k_hw_stopdmarecv(ah, &reset);
479 
480 	ath_flushrecv(sc);
481 
482 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
483 		ath_edma_stop_recv(sc);
484 	else
485 		sc->rx.rxlink = NULL;
486 
487 	if (!(ah->ah_flags & AH_UNPLUGGED) &&
488 	    unlikely(!stopped)) {
489 		ath_err(ath9k_hw_common(sc->sc_ah),
490 			"Could not stop RX, we could be "
491 			"confusing the DMA engine when we start RX up\n");
492 		ATH_DBG_WARN_ON_ONCE(!stopped);
493 	}
494 	return stopped && !reset;
495 }
496 
497 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
498 {
499 	/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
500 	struct ieee80211_mgmt *mgmt;
501 	u8 *pos, *end, id, elen;
502 	struct ieee80211_tim_ie *tim;
503 
504 	mgmt = (struct ieee80211_mgmt *)skb->data;
505 	pos = mgmt->u.beacon.variable;
506 	end = skb->data + skb->len;
507 
508 	while (pos + 2 < end) {
509 		id = *pos++;
510 		elen = *pos++;
511 		if (pos + elen > end)
512 			break;
513 
514 		if (id == WLAN_EID_TIM) {
515 			if (elen < sizeof(*tim))
516 				break;
517 			tim = (struct ieee80211_tim_ie *) pos;
518 			if (tim->dtim_count != 0)
519 				break;
520 			return tim->bitmap_ctrl & 0x01;
521 		}
522 
523 		pos += elen;
524 	}
525 
526 	return false;
527 }
528 
529 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
530 {
531 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
532 
533 	if (skb->len < 24 + 8 + 2 + 2)
534 		return;
535 
536 	sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
537 
538 	if (sc->ps_flags & PS_BEACON_SYNC) {
539 		sc->ps_flags &= ~PS_BEACON_SYNC;
540 		ath_dbg(common, PS,
541 			"Reconfigure beacon timers based on synchronized timestamp\n");
542 		ath9k_set_beacon(sc);
543 	}
544 
545 	if (ath_beacon_dtim_pending_cab(skb)) {
546 		/*
547 		 * Remain awake waiting for buffered broadcast/multicast
548 		 * frames. If the last broadcast/multicast frame is not
549 		 * received properly, the next beacon frame will work as
550 		 * a backup trigger for returning into NETWORK SLEEP state,
551 		 * so we are waiting for it as well.
552 		 */
553 		ath_dbg(common, PS,
554 			"Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
555 		sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
556 		return;
557 	}
558 
559 	if (sc->ps_flags & PS_WAIT_FOR_CAB) {
560 		/*
561 		 * This can happen if a broadcast frame is dropped or the AP
562 		 * fails to send a frame indicating that all CAB frames have
563 		 * been delivered.
564 		 */
565 		sc->ps_flags &= ~PS_WAIT_FOR_CAB;
566 		ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
567 	}
568 }
569 
570 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
571 {
572 	struct ieee80211_hdr *hdr;
573 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
574 
575 	hdr = (struct ieee80211_hdr *)skb->data;
576 
577 	/* Process Beacon and CAB receive in PS state */
578 	if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
579 	    && mybeacon) {
580 		ath_rx_ps_beacon(sc, skb);
581 	} else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
582 		   (ieee80211_is_data(hdr->frame_control) ||
583 		    ieee80211_is_action(hdr->frame_control)) &&
584 		   is_multicast_ether_addr(hdr->addr1) &&
585 		   !ieee80211_has_moredata(hdr->frame_control)) {
586 		/*
587 		 * No more broadcast/multicast frames to be received at this
588 		 * point.
589 		 */
590 		sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
591 		ath_dbg(common, PS,
592 			"All PS CAB frames received, back to sleep\n");
593 	} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
594 		   !is_multicast_ether_addr(hdr->addr1) &&
595 		   !ieee80211_has_morefrags(hdr->frame_control)) {
596 		sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
597 		ath_dbg(common, PS,
598 			"Going back to sleep after having received PS-Poll data (0x%lx)\n",
599 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
600 					PS_WAIT_FOR_CAB |
601 					PS_WAIT_FOR_PSPOLL_DATA |
602 					PS_WAIT_FOR_TX_ACK));
603 	}
604 }
605 
606 static bool ath_edma_get_buffers(struct ath_softc *sc,
607 				 enum ath9k_rx_qtype qtype,
608 				 struct ath_rx_status *rs,
609 				 struct ath_rxbuf **dest)
610 {
611 	struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
612 	struct ath_hw *ah = sc->sc_ah;
613 	struct ath_common *common = ath9k_hw_common(ah);
614 	struct sk_buff *skb;
615 	struct ath_rxbuf *bf;
616 	int ret;
617 
618 	skb = skb_peek(&rx_edma->rx_fifo);
619 	if (!skb)
620 		return false;
621 
622 	bf = SKB_CB_ATHBUF(skb);
623 	BUG_ON(!bf);
624 
625 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
626 				common->rx_bufsize, DMA_FROM_DEVICE);
627 
628 	ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
629 	if (ret == -EINPROGRESS) {
630 		/*let device gain the buffer again*/
631 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
632 				common->rx_bufsize, DMA_FROM_DEVICE);
633 		return false;
634 	}
635 
636 	__skb_unlink(skb, &rx_edma->rx_fifo);
637 	if (ret == -EINVAL) {
638 		/* corrupt descriptor, skip this one and the following one */
639 		list_add_tail(&bf->list, &sc->rx.rxbuf);
640 		ath_rx_edma_buf_link(sc, qtype);
641 
642 		skb = skb_peek(&rx_edma->rx_fifo);
643 		if (skb) {
644 			bf = SKB_CB_ATHBUF(skb);
645 			BUG_ON(!bf);
646 
647 			__skb_unlink(skb, &rx_edma->rx_fifo);
648 			list_add_tail(&bf->list, &sc->rx.rxbuf);
649 			ath_rx_edma_buf_link(sc, qtype);
650 		}
651 
652 		bf = NULL;
653 	}
654 
655 	*dest = bf;
656 	return true;
657 }
658 
659 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
660 						struct ath_rx_status *rs,
661 						enum ath9k_rx_qtype qtype)
662 {
663 	struct ath_rxbuf *bf = NULL;
664 
665 	while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
666 		if (!bf)
667 			continue;
668 
669 		return bf;
670 	}
671 	return NULL;
672 }
673 
674 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc,
675 					   struct ath_rx_status *rs)
676 {
677 	struct ath_hw *ah = sc->sc_ah;
678 	struct ath_common *common = ath9k_hw_common(ah);
679 	struct ath_desc *ds;
680 	struct ath_rxbuf *bf;
681 	int ret;
682 
683 	if (list_empty(&sc->rx.rxbuf)) {
684 		sc->rx.rxlink = NULL;
685 		return NULL;
686 	}
687 
688 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
689 	if (bf == sc->rx.buf_hold)
690 		return NULL;
691 
692 	ds = bf->bf_desc;
693 
694 	/*
695 	 * Must provide the virtual address of the current
696 	 * descriptor, the physical address, and the virtual
697 	 * address of the next descriptor in the h/w chain.
698 	 * This allows the HAL to look ahead to see if the
699 	 * hardware is done with a descriptor by checking the
700 	 * done bit in the following descriptor and the address
701 	 * of the current descriptor the DMA engine is working
702 	 * on.  All this is necessary because of our use of
703 	 * a self-linked list to avoid rx overruns.
704 	 */
705 	ret = ath9k_hw_rxprocdesc(ah, ds, rs);
706 	if (ret == -EINPROGRESS) {
707 		struct ath_rx_status trs;
708 		struct ath_rxbuf *tbf;
709 		struct ath_desc *tds;
710 
711 		memset(&trs, 0, sizeof(trs));
712 		if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
713 			sc->rx.rxlink = NULL;
714 			return NULL;
715 		}
716 
717 		tbf = list_entry(bf->list.next, struct ath_rxbuf, list);
718 
719 		/*
720 		 * On some hardware the descriptor status words could
721 		 * get corrupted, including the done bit. Because of
722 		 * this, check if the next descriptor's done bit is
723 		 * set or not.
724 		 *
725 		 * If the next descriptor's done bit is set, the current
726 		 * descriptor has been corrupted. Force s/w to discard
727 		 * this descriptor and continue...
728 		 */
729 
730 		tds = tbf->bf_desc;
731 		ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
732 		if (ret == -EINPROGRESS)
733 			return NULL;
734 
735 		/*
736 		 * mark descriptor as zero-length and set the 'more'
737 		 * flag to ensure that both buffers get discarded
738 		 */
739 		rs->rs_datalen = 0;
740 		rs->rs_more = true;
741 	}
742 
743 	list_del(&bf->list);
744 	if (!bf->bf_mpdu)
745 		return bf;
746 
747 	/*
748 	 * Synchronize the DMA transfer with CPU before
749 	 * 1. accessing the frame
750 	 * 2. requeueing the same buffer to h/w
751 	 */
752 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
753 			common->rx_bufsize,
754 			DMA_FROM_DEVICE);
755 
756 	return bf;
757 }
758 
759 /* Assumes you've already done the endian to CPU conversion */
760 static bool ath9k_rx_accept(struct ath_common *common,
761 			    struct ieee80211_hdr *hdr,
762 			    struct ieee80211_rx_status *rxs,
763 			    struct ath_rx_status *rx_stats,
764 			    bool *decrypt_error)
765 {
766 	struct ath_softc *sc = (struct ath_softc *) common->priv;
767 	bool is_mc, is_valid_tkip, strip_mic, mic_error;
768 	struct ath_hw *ah = common->ah;
769 	__le16 fc;
770 
771 	fc = hdr->frame_control;
772 
773 	is_mc = !!is_multicast_ether_addr(hdr->addr1);
774 	is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID &&
775 		test_bit(rx_stats->rs_keyix, common->tkip_keymap);
776 	strip_mic = is_valid_tkip && ieee80211_is_data(fc) &&
777 		ieee80211_has_protected(fc) &&
778 		!(rx_stats->rs_status &
779 		(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC |
780 		 ATH9K_RXERR_KEYMISS));
781 
782 	/*
783 	 * Key miss events are only relevant for pairwise keys where the
784 	 * descriptor does contain a valid key index. This has been observed
785 	 * mostly with CCMP encryption.
786 	 */
787 	if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID ||
788 	    !test_bit(rx_stats->rs_keyix, common->ccmp_keymap))
789 		rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS;
790 
791 	mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) &&
792 		!ieee80211_has_morefrags(fc) &&
793 		!(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) &&
794 		(rx_stats->rs_status & ATH9K_RXERR_MIC);
795 
796 	/*
797 	 * The rx_stats->rs_status will not be set until the end of the
798 	 * chained descriptors so it can be ignored if rs_more is set. The
799 	 * rs_more will be false at the last element of the chained
800 	 * descriptors.
801 	 */
802 	if (rx_stats->rs_status != 0) {
803 		u8 status_mask;
804 
805 		if (rx_stats->rs_status & ATH9K_RXERR_CRC) {
806 			rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
807 			mic_error = false;
808 		}
809 
810 		if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) ||
811 		    (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) {
812 			*decrypt_error = true;
813 			mic_error = false;
814 		}
815 
816 		/*
817 		 * Reject error frames with the exception of
818 		 * decryption and MIC failures. For monitor mode,
819 		 * we also ignore the CRC error.
820 		 */
821 		status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
822 			      ATH9K_RXERR_KEYMISS;
823 
824 		if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL))
825 			status_mask |= ATH9K_RXERR_CRC;
826 
827 		if (rx_stats->rs_status & ~status_mask)
828 			return false;
829 	}
830 
831 	/*
832 	 * For unicast frames the MIC error bit can have false positives,
833 	 * so all MIC error reports need to be validated in software.
834 	 * False negatives are not common, so skip software verification
835 	 * if the hardware considers the MIC valid.
836 	 */
837 	if (strip_mic)
838 		rxs->flag |= RX_FLAG_MMIC_STRIPPED;
839 	else if (is_mc && mic_error)
840 		rxs->flag |= RX_FLAG_MMIC_ERROR;
841 
842 	return true;
843 }
844 
845 static int ath9k_process_rate(struct ath_common *common,
846 			      struct ieee80211_hw *hw,
847 			      struct ath_rx_status *rx_stats,
848 			      struct ieee80211_rx_status *rxs)
849 {
850 	struct ieee80211_supported_band *sband;
851 	enum ieee80211_band band;
852 	unsigned int i = 0;
853 	struct ath_softc __maybe_unused *sc = common->priv;
854 
855 	band = hw->conf.chandef.chan->band;
856 	sband = hw->wiphy->bands[band];
857 
858 	switch (hw->conf.chandef.width) {
859 	case NL80211_CHAN_WIDTH_5:
860 		rxs->flag |= RX_FLAG_5MHZ;
861 		break;
862 	case NL80211_CHAN_WIDTH_10:
863 		rxs->flag |= RX_FLAG_10MHZ;
864 		break;
865 	default:
866 		break;
867 	}
868 
869 	if (rx_stats->rs_rate & 0x80) {
870 		/* HT rate */
871 		rxs->flag |= RX_FLAG_HT;
872 		rxs->flag |= rx_stats->flag;
873 		rxs->rate_idx = rx_stats->rs_rate & 0x7f;
874 		return 0;
875 	}
876 
877 	for (i = 0; i < sband->n_bitrates; i++) {
878 		if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
879 			rxs->rate_idx = i;
880 			return 0;
881 		}
882 		if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
883 			rxs->flag |= RX_FLAG_SHORTPRE;
884 			rxs->rate_idx = i;
885 			return 0;
886 		}
887 	}
888 
889 	/*
890 	 * No valid hardware bitrate found -- we should not get here
891 	 * because hardware has already validated this frame as OK.
892 	 */
893 	ath_dbg(common, ANY,
894 		"unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
895 		rx_stats->rs_rate);
896 	RX_STAT_INC(rx_rate_err);
897 	return -EINVAL;
898 }
899 
900 static void ath9k_process_rssi(struct ath_common *common,
901 			       struct ieee80211_hw *hw,
902 			       struct ath_rx_status *rx_stats,
903 			       struct ieee80211_rx_status *rxs)
904 {
905 	struct ath_softc *sc = hw->priv;
906 	struct ath_hw *ah = common->ah;
907 	int last_rssi;
908 	int rssi = rx_stats->rs_rssi;
909 
910 	/*
911 	 * RSSI is not available for subframes in an A-MPDU.
912 	 */
913 	if (rx_stats->rs_moreaggr) {
914 		rxs->flag |= RX_FLAG_NO_SIGNAL_VAL;
915 		return;
916 	}
917 
918 	/*
919 	 * Check if the RSSI for the last subframe in an A-MPDU
920 	 * or an unaggregated frame is valid.
921 	 */
922 	if (rx_stats->rs_rssi == ATH9K_RSSI_BAD) {
923 		rxs->flag |= RX_FLAG_NO_SIGNAL_VAL;
924 		return;
925 	}
926 
927 	/*
928 	 * Update Beacon RSSI, this is used by ANI.
929 	 */
930 	if (rx_stats->is_mybeacon &&
931 	    ((ah->opmode == NL80211_IFTYPE_STATION) ||
932 	     (ah->opmode == NL80211_IFTYPE_ADHOC))) {
933 		ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi);
934 		last_rssi = sc->last_rssi;
935 
936 		if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
937 			rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER);
938 		if (rssi < 0)
939 			rssi = 0;
940 
941 		ah->stats.avgbrssi = rssi;
942 	}
943 
944 	rxs->signal = ah->noise + rx_stats->rs_rssi;
945 }
946 
947 static void ath9k_process_tsf(struct ath_rx_status *rs,
948 			      struct ieee80211_rx_status *rxs,
949 			      u64 tsf)
950 {
951 	u32 tsf_lower = tsf & 0xffffffff;
952 
953 	rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp;
954 	if (rs->rs_tstamp > tsf_lower &&
955 	    unlikely(rs->rs_tstamp - tsf_lower > 0x10000000))
956 		rxs->mactime -= 0x100000000ULL;
957 
958 	if (rs->rs_tstamp < tsf_lower &&
959 	    unlikely(tsf_lower - rs->rs_tstamp > 0x10000000))
960 		rxs->mactime += 0x100000000ULL;
961 }
962 
963 #ifdef CONFIG_ATH9K_DEBUGFS
964 static s8 fix_rssi_inv_only(u8 rssi_val)
965 {
966 	if (rssi_val == 128)
967 		rssi_val = 0;
968 	return (s8) rssi_val;
969 }
970 #endif
971 
972 /* returns 1 if this was a spectral frame, even if not handled. */
973 static int ath_process_fft(struct ath_softc *sc, struct ieee80211_hdr *hdr,
974 			   struct ath_rx_status *rs, u64 tsf)
975 {
976 #ifdef CONFIG_ATH9K_DEBUGFS
977 	struct ath_hw *ah = sc->sc_ah;
978 	u8 num_bins, *bins, *vdata = (u8 *)hdr;
979 	struct fft_sample_ht20 fft_sample_20;
980 	struct fft_sample_ht20_40 fft_sample_40;
981 	struct fft_sample_tlv *tlv;
982 	struct ath_radar_info *radar_info;
983 	int len = rs->rs_datalen;
984 	int dc_pos;
985 	u16 fft_len, length, freq = ah->curchan->chan->center_freq;
986 	enum nl80211_channel_type chan_type;
987 
988 	/* AR9280 and before report via ATH9K_PHYERR_RADAR, AR93xx and newer
989 	 * via ATH9K_PHYERR_SPECTRAL. Haven't seen ATH9K_PHYERR_FALSE_RADAR_EXT
990 	 * yet, but this is supposed to be possible as well.
991 	 */
992 	if (rs->rs_phyerr != ATH9K_PHYERR_RADAR &&
993 	    rs->rs_phyerr != ATH9K_PHYERR_FALSE_RADAR_EXT &&
994 	    rs->rs_phyerr != ATH9K_PHYERR_SPECTRAL)
995 		return 0;
996 
997 	/* check if spectral scan bit is set. This does not have to be checked
998 	 * if received through a SPECTRAL phy error, but shouldn't hurt.
999 	 */
1000 	radar_info = ((struct ath_radar_info *)&vdata[len]) - 1;
1001 	if (!(radar_info->pulse_bw_info & SPECTRAL_SCAN_BITMASK))
1002 		return 0;
1003 
1004 	chan_type = cfg80211_get_chandef_type(&sc->hw->conf.chandef);
1005 	if ((chan_type == NL80211_CHAN_HT40MINUS) ||
1006 	    (chan_type == NL80211_CHAN_HT40PLUS)) {
1007 		fft_len = SPECTRAL_HT20_40_TOTAL_DATA_LEN;
1008 		num_bins = SPECTRAL_HT20_40_NUM_BINS;
1009 		bins = (u8 *)fft_sample_40.data;
1010 	} else {
1011 		fft_len = SPECTRAL_HT20_TOTAL_DATA_LEN;
1012 		num_bins = SPECTRAL_HT20_NUM_BINS;
1013 		bins = (u8 *)fft_sample_20.data;
1014 	}
1015 
1016 	/* Variation in the data length is possible and will be fixed later */
1017 	if ((len > fft_len + 2) || (len < fft_len - 1))
1018 		return 1;
1019 
1020 	switch (len - fft_len) {
1021 	case 0:
1022 		/* length correct, nothing to do. */
1023 		memcpy(bins, vdata, num_bins);
1024 		break;
1025 	case -1:
1026 		/* first byte missing, duplicate it. */
1027 		memcpy(&bins[1], vdata, num_bins - 1);
1028 		bins[0] = vdata[0];
1029 		break;
1030 	case 2:
1031 		/* MAC added 2 extra bytes at bin 30 and 32, remove them. */
1032 		memcpy(bins, vdata, 30);
1033 		bins[30] = vdata[31];
1034 		memcpy(&bins[31], &vdata[33], num_bins - 31);
1035 		break;
1036 	case 1:
1037 		/* MAC added 2 extra bytes AND first byte is missing. */
1038 		bins[0] = vdata[0];
1039 		memcpy(&bins[1], vdata, 30);
1040 		bins[31] = vdata[31];
1041 		memcpy(&bins[32], &vdata[33], num_bins - 32);
1042 		break;
1043 	default:
1044 		return 1;
1045 	}
1046 
1047 	/* DC value (value in the middle) is the blind spot of the spectral
1048 	 * sample and invalid, interpolate it.
1049 	 */
1050 	dc_pos = num_bins / 2;
1051 	bins[dc_pos] = (bins[dc_pos + 1] + bins[dc_pos - 1]) / 2;
1052 
1053 	if ((chan_type == NL80211_CHAN_HT40MINUS) ||
1054 	    (chan_type == NL80211_CHAN_HT40PLUS)) {
1055 		s8 lower_rssi, upper_rssi;
1056 		s16 ext_nf;
1057 		u8 lower_max_index, upper_max_index;
1058 		u8 lower_bitmap_w, upper_bitmap_w;
1059 		u16 lower_mag, upper_mag;
1060 		struct ath9k_hw_cal_data *caldata = ah->caldata;
1061 		struct ath_ht20_40_mag_info *mag_info;
1062 
1063 		if (caldata)
1064 			ext_nf = ath9k_hw_getchan_noise(ah, ah->curchan,
1065 					caldata->nfCalHist[3].privNF);
1066 		else
1067 			ext_nf = ATH_DEFAULT_NOISE_FLOOR;
1068 
1069 		length = sizeof(fft_sample_40) - sizeof(struct fft_sample_tlv);
1070 		fft_sample_40.tlv.type = ATH_FFT_SAMPLE_HT20_40;
1071 		fft_sample_40.tlv.length = __cpu_to_be16(length);
1072 		fft_sample_40.freq = __cpu_to_be16(freq);
1073 		fft_sample_40.channel_type = chan_type;
1074 
1075 		if (chan_type == NL80211_CHAN_HT40PLUS) {
1076 			lower_rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0);
1077 			upper_rssi = fix_rssi_inv_only(rs->rs_rssi_ext0);
1078 
1079 			fft_sample_40.lower_noise = ah->noise;
1080 			fft_sample_40.upper_noise = ext_nf;
1081 		} else {
1082 			lower_rssi = fix_rssi_inv_only(rs->rs_rssi_ext0);
1083 			upper_rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0);
1084 
1085 			fft_sample_40.lower_noise = ext_nf;
1086 			fft_sample_40.upper_noise = ah->noise;
1087 		}
1088 		fft_sample_40.lower_rssi = lower_rssi;
1089 		fft_sample_40.upper_rssi = upper_rssi;
1090 
1091 		mag_info = ((struct ath_ht20_40_mag_info *)radar_info) - 1;
1092 		lower_mag = spectral_max_magnitude(mag_info->lower_bins);
1093 		upper_mag = spectral_max_magnitude(mag_info->upper_bins);
1094 		fft_sample_40.lower_max_magnitude = __cpu_to_be16(lower_mag);
1095 		fft_sample_40.upper_max_magnitude = __cpu_to_be16(upper_mag);
1096 		lower_max_index = spectral_max_index(mag_info->lower_bins);
1097 		upper_max_index = spectral_max_index(mag_info->upper_bins);
1098 		fft_sample_40.lower_max_index = lower_max_index;
1099 		fft_sample_40.upper_max_index = upper_max_index;
1100 		lower_bitmap_w = spectral_bitmap_weight(mag_info->lower_bins);
1101 		upper_bitmap_w = spectral_bitmap_weight(mag_info->upper_bins);
1102 		fft_sample_40.lower_bitmap_weight = lower_bitmap_w;
1103 		fft_sample_40.upper_bitmap_weight = upper_bitmap_w;
1104 		fft_sample_40.max_exp = mag_info->max_exp & 0xf;
1105 
1106 		fft_sample_40.tsf = __cpu_to_be64(tsf);
1107 
1108 		tlv = (struct fft_sample_tlv *)&fft_sample_40;
1109 	} else {
1110 		u8 max_index, bitmap_w;
1111 		u16 magnitude;
1112 		struct ath_ht20_mag_info *mag_info;
1113 
1114 		length = sizeof(fft_sample_20) - sizeof(struct fft_sample_tlv);
1115 		fft_sample_20.tlv.type = ATH_FFT_SAMPLE_HT20;
1116 		fft_sample_20.tlv.length = __cpu_to_be16(length);
1117 		fft_sample_20.freq = __cpu_to_be16(freq);
1118 
1119 		fft_sample_20.rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0);
1120 		fft_sample_20.noise = ah->noise;
1121 
1122 		mag_info = ((struct ath_ht20_mag_info *)radar_info) - 1;
1123 		magnitude = spectral_max_magnitude(mag_info->all_bins);
1124 		fft_sample_20.max_magnitude = __cpu_to_be16(magnitude);
1125 		max_index = spectral_max_index(mag_info->all_bins);
1126 		fft_sample_20.max_index = max_index;
1127 		bitmap_w = spectral_bitmap_weight(mag_info->all_bins);
1128 		fft_sample_20.bitmap_weight = bitmap_w;
1129 		fft_sample_20.max_exp = mag_info->max_exp & 0xf;
1130 
1131 		fft_sample_20.tsf = __cpu_to_be64(tsf);
1132 
1133 		tlv = (struct fft_sample_tlv *)&fft_sample_20;
1134 	}
1135 
1136 	ath_debug_send_fft_sample(sc, tlv);
1137 	return 1;
1138 #else
1139 	return 0;
1140 #endif
1141 }
1142 
1143 static bool ath9k_is_mybeacon(struct ath_softc *sc, struct ieee80211_hdr *hdr)
1144 {
1145 	struct ath_hw *ah = sc->sc_ah;
1146 	struct ath_common *common = ath9k_hw_common(ah);
1147 
1148 	if (ieee80211_is_beacon(hdr->frame_control)) {
1149 		RX_STAT_INC(rx_beacons);
1150 		if (!is_zero_ether_addr(common->curbssid) &&
1151 		    ether_addr_equal(hdr->addr3, common->curbssid))
1152 			return true;
1153 	}
1154 
1155 	return false;
1156 }
1157 
1158 /*
1159  * For Decrypt or Demic errors, we only mark packet status here and always push
1160  * up the frame up to let mac80211 handle the actual error case, be it no
1161  * decryption key or real decryption error. This let us keep statistics there.
1162  */
1163 static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
1164 				   struct sk_buff *skb,
1165 				   struct ath_rx_status *rx_stats,
1166 				   struct ieee80211_rx_status *rx_status,
1167 				   bool *decrypt_error, u64 tsf)
1168 {
1169 	struct ieee80211_hw *hw = sc->hw;
1170 	struct ath_hw *ah = sc->sc_ah;
1171 	struct ath_common *common = ath9k_hw_common(ah);
1172 	struct ieee80211_hdr *hdr;
1173 	bool discard_current = sc->rx.discard_next;
1174 	int ret = 0;
1175 
1176 	/*
1177 	 * Discard corrupt descriptors which are marked in
1178 	 * ath_get_next_rx_buf().
1179 	 */
1180 	sc->rx.discard_next = rx_stats->rs_more;
1181 	if (discard_current)
1182 		return -EINVAL;
1183 
1184 	/*
1185 	 * Discard zero-length packets.
1186 	 */
1187 	if (!rx_stats->rs_datalen) {
1188 		RX_STAT_INC(rx_len_err);
1189 		return -EINVAL;
1190 	}
1191 
1192         /*
1193          * rs_status follows rs_datalen so if rs_datalen is too large
1194          * we can take a hint that hardware corrupted it, so ignore
1195          * those frames.
1196          */
1197 	if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) {
1198 		RX_STAT_INC(rx_len_err);
1199 		return -EINVAL;
1200 	}
1201 
1202 	/* Only use status info from the last fragment */
1203 	if (rx_stats->rs_more)
1204 		return 0;
1205 
1206 	/*
1207 	 * Return immediately if the RX descriptor has been marked
1208 	 * as corrupt based on the various error bits.
1209 	 *
1210 	 * This is different from the other corrupt descriptor
1211 	 * condition handled above.
1212 	 */
1213 	if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC) {
1214 		ret = -EINVAL;
1215 		goto exit;
1216 	}
1217 
1218 	hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len);
1219 
1220 	ath9k_process_tsf(rx_stats, rx_status, tsf);
1221 	ath_debug_stat_rx(sc, rx_stats);
1222 
1223 	/*
1224 	 * Process PHY errors and return so that the packet
1225 	 * can be dropped.
1226 	 */
1227 	if (rx_stats->rs_status & ATH9K_RXERR_PHY) {
1228 		ath9k_dfs_process_phyerr(sc, hdr, rx_stats, rx_status->mactime);
1229 		if (ath_process_fft(sc, hdr, rx_stats, rx_status->mactime))
1230 			RX_STAT_INC(rx_spectral);
1231 
1232 		ret = -EINVAL;
1233 		goto exit;
1234 	}
1235 
1236 	/*
1237 	 * everything but the rate is checked here, the rate check is done
1238 	 * separately to avoid doing two lookups for a rate for each frame.
1239 	 */
1240 	if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error)) {
1241 		ret = -EINVAL;
1242 		goto exit;
1243 	}
1244 
1245 	rx_stats->is_mybeacon = ath9k_is_mybeacon(sc, hdr);
1246 	if (rx_stats->is_mybeacon) {
1247 		sc->hw_busy_count = 0;
1248 		ath_start_rx_poll(sc, 3);
1249 	}
1250 
1251 	if (ath9k_process_rate(common, hw, rx_stats, rx_status)) {
1252 		ret =-EINVAL;
1253 		goto exit;
1254 	}
1255 
1256 	ath9k_process_rssi(common, hw, rx_stats, rx_status);
1257 
1258 	rx_status->band = hw->conf.chandef.chan->band;
1259 	rx_status->freq = hw->conf.chandef.chan->center_freq;
1260 	rx_status->antenna = rx_stats->rs_antenna;
1261 	rx_status->flag |= RX_FLAG_MACTIME_END;
1262 
1263 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
1264 	if (ieee80211_is_data_present(hdr->frame_control) &&
1265 	    !ieee80211_is_qos_nullfunc(hdr->frame_control))
1266 		sc->rx.num_pkts++;
1267 #endif
1268 
1269 exit:
1270 	sc->rx.discard_next = false;
1271 	return ret;
1272 }
1273 
1274 static void ath9k_rx_skb_postprocess(struct ath_common *common,
1275 				     struct sk_buff *skb,
1276 				     struct ath_rx_status *rx_stats,
1277 				     struct ieee80211_rx_status *rxs,
1278 				     bool decrypt_error)
1279 {
1280 	struct ath_hw *ah = common->ah;
1281 	struct ieee80211_hdr *hdr;
1282 	int hdrlen, padpos, padsize;
1283 	u8 keyix;
1284 	__le16 fc;
1285 
1286 	/* see if any padding is done by the hw and remove it */
1287 	hdr = (struct ieee80211_hdr *) skb->data;
1288 	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1289 	fc = hdr->frame_control;
1290 	padpos = ieee80211_hdrlen(fc);
1291 
1292 	/* The MAC header is padded to have 32-bit boundary if the
1293 	 * packet payload is non-zero. The general calculation for
1294 	 * padsize would take into account odd header lengths:
1295 	 * padsize = (4 - padpos % 4) % 4; However, since only
1296 	 * even-length headers are used, padding can only be 0 or 2
1297 	 * bytes and we can optimize this a bit. In addition, we must
1298 	 * not try to remove padding from short control frames that do
1299 	 * not have payload. */
1300 	padsize = padpos & 3;
1301 	if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
1302 		memmove(skb->data + padsize, skb->data, padpos);
1303 		skb_pull(skb, padsize);
1304 	}
1305 
1306 	keyix = rx_stats->rs_keyix;
1307 
1308 	if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
1309 	    ieee80211_has_protected(fc)) {
1310 		rxs->flag |= RX_FLAG_DECRYPTED;
1311 	} else if (ieee80211_has_protected(fc)
1312 		   && !decrypt_error && skb->len >= hdrlen + 4) {
1313 		keyix = skb->data[hdrlen + 3] >> 6;
1314 
1315 		if (test_bit(keyix, common->keymap))
1316 			rxs->flag |= RX_FLAG_DECRYPTED;
1317 	}
1318 	if (ah->sw_mgmt_crypto &&
1319 	    (rxs->flag & RX_FLAG_DECRYPTED) &&
1320 	    ieee80211_is_mgmt(fc))
1321 		/* Use software decrypt for management frames. */
1322 		rxs->flag &= ~RX_FLAG_DECRYPTED;
1323 }
1324 
1325 /*
1326  * Run the LNA combining algorithm only in these cases:
1327  *
1328  * Standalone WLAN cards with both LNA/Antenna diversity
1329  * enabled in the EEPROM.
1330  *
1331  * WLAN+BT cards which are in the supported card list
1332  * in ath_pci_id_table and the user has loaded the
1333  * driver with "bt_ant_diversity" set to true.
1334  */
1335 static void ath9k_antenna_check(struct ath_softc *sc,
1336 				struct ath_rx_status *rs)
1337 {
1338 	struct ath_hw *ah = sc->sc_ah;
1339 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1340 	struct ath_common *common = ath9k_hw_common(ah);
1341 
1342 	if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB))
1343 		return;
1344 
1345 	/*
1346 	 * Change the default rx antenna if rx diversity
1347 	 * chooses the other antenna 3 times in a row.
1348 	 */
1349 	if (sc->rx.defant != rs->rs_antenna) {
1350 		if (++sc->rx.rxotherant >= 3)
1351 			ath_setdefantenna(sc, rs->rs_antenna);
1352 	} else {
1353 		sc->rx.rxotherant = 0;
1354 	}
1355 
1356 	if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
1357 		if (common->bt_ant_diversity)
1358 			ath_ant_comb_scan(sc, rs);
1359 	} else {
1360 		ath_ant_comb_scan(sc, rs);
1361 	}
1362 }
1363 
1364 static void ath9k_apply_ampdu_details(struct ath_softc *sc,
1365 	struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
1366 {
1367 	if (rs->rs_isaggr) {
1368 		rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
1369 
1370 		rxs->ampdu_reference = sc->rx.ampdu_ref;
1371 
1372 		if (!rs->rs_moreaggr) {
1373 			rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
1374 			sc->rx.ampdu_ref++;
1375 		}
1376 
1377 		if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
1378 			rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
1379 	}
1380 }
1381 
1382 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1383 {
1384 	struct ath_rxbuf *bf;
1385 	struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1386 	struct ieee80211_rx_status *rxs;
1387 	struct ath_hw *ah = sc->sc_ah;
1388 	struct ath_common *common = ath9k_hw_common(ah);
1389 	struct ieee80211_hw *hw = sc->hw;
1390 	int retval;
1391 	struct ath_rx_status rs;
1392 	enum ath9k_rx_qtype qtype;
1393 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1394 	int dma_type;
1395 	u64 tsf = 0;
1396 	unsigned long flags;
1397 	dma_addr_t new_buf_addr;
1398 
1399 	if (edma)
1400 		dma_type = DMA_BIDIRECTIONAL;
1401 	else
1402 		dma_type = DMA_FROM_DEVICE;
1403 
1404 	qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1405 
1406 	tsf = ath9k_hw_gettsf64(ah);
1407 
1408 	do {
1409 		bool decrypt_error = false;
1410 
1411 		memset(&rs, 0, sizeof(rs));
1412 		if (edma)
1413 			bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1414 		else
1415 			bf = ath_get_next_rx_buf(sc, &rs);
1416 
1417 		if (!bf)
1418 			break;
1419 
1420 		skb = bf->bf_mpdu;
1421 		if (!skb)
1422 			continue;
1423 
1424 		/*
1425 		 * Take frame header from the first fragment and RX status from
1426 		 * the last one.
1427 		 */
1428 		if (sc->rx.frag)
1429 			hdr_skb = sc->rx.frag;
1430 		else
1431 			hdr_skb = skb;
1432 
1433 		rxs = IEEE80211_SKB_RXCB(hdr_skb);
1434 		memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1435 
1436 		retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs,
1437 						 &decrypt_error, tsf);
1438 		if (retval)
1439 			goto requeue_drop_frag;
1440 
1441 		/* Ensure we always have an skb to requeue once we are done
1442 		 * processing the current buffer's skb */
1443 		requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1444 
1445 		/* If there is no memory we ignore the current RX'd frame,
1446 		 * tell hardware it can give us a new frame using the old
1447 		 * skb and put it at the tail of the sc->rx.rxbuf list for
1448 		 * processing. */
1449 		if (!requeue_skb) {
1450 			RX_STAT_INC(rx_oom_err);
1451 			goto requeue_drop_frag;
1452 		}
1453 
1454 		/* We will now give hardware our shiny new allocated skb */
1455 		new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1456 					      common->rx_bufsize, dma_type);
1457 		if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
1458 			dev_kfree_skb_any(requeue_skb);
1459 			goto requeue_drop_frag;
1460 		}
1461 
1462 		/* Unmap the frame */
1463 		dma_unmap_single(sc->dev, bf->bf_buf_addr,
1464 				 common->rx_bufsize, dma_type);
1465 
1466 		bf->bf_mpdu = requeue_skb;
1467 		bf->bf_buf_addr = new_buf_addr;
1468 
1469 		skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1470 		if (ah->caps.rx_status_len)
1471 			skb_pull(skb, ah->caps.rx_status_len);
1472 
1473 		if (!rs.rs_more)
1474 			ath9k_rx_skb_postprocess(common, hdr_skb, &rs,
1475 						 rxs, decrypt_error);
1476 
1477 		if (rs.rs_more) {
1478 			RX_STAT_INC(rx_frags);
1479 			/*
1480 			 * rs_more indicates chained descriptors which can be
1481 			 * used to link buffers together for a sort of
1482 			 * scatter-gather operation.
1483 			 */
1484 			if (sc->rx.frag) {
1485 				/* too many fragments - cannot handle frame */
1486 				dev_kfree_skb_any(sc->rx.frag);
1487 				dev_kfree_skb_any(skb);
1488 				RX_STAT_INC(rx_too_many_frags_err);
1489 				skb = NULL;
1490 			}
1491 			sc->rx.frag = skb;
1492 			goto requeue;
1493 		}
1494 
1495 		if (sc->rx.frag) {
1496 			int space = skb->len - skb_tailroom(hdr_skb);
1497 
1498 			if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1499 				dev_kfree_skb(skb);
1500 				RX_STAT_INC(rx_oom_err);
1501 				goto requeue_drop_frag;
1502 			}
1503 
1504 			sc->rx.frag = NULL;
1505 
1506 			skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1507 						  skb->len);
1508 			dev_kfree_skb_any(skb);
1509 			skb = hdr_skb;
1510 		}
1511 
1512 		if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1513 			skb_trim(skb, skb->len - 8);
1514 
1515 		spin_lock_irqsave(&sc->sc_pm_lock, flags);
1516 		if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1517 				     PS_WAIT_FOR_CAB |
1518 				     PS_WAIT_FOR_PSPOLL_DATA)) ||
1519 		    ath9k_check_auto_sleep(sc))
1520 			ath_rx_ps(sc, skb, rs.is_mybeacon);
1521 		spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1522 
1523 		ath9k_antenna_check(sc, &rs);
1524 
1525 		ath9k_apply_ampdu_details(sc, &rs, rxs);
1526 
1527 		ieee80211_rx(hw, skb);
1528 
1529 requeue_drop_frag:
1530 		if (sc->rx.frag) {
1531 			dev_kfree_skb_any(sc->rx.frag);
1532 			sc->rx.frag = NULL;
1533 		}
1534 requeue:
1535 		list_add_tail(&bf->list, &sc->rx.rxbuf);
1536 		if (flush)
1537 			continue;
1538 
1539 		if (edma) {
1540 			ath_rx_edma_buf_link(sc, qtype);
1541 		} else {
1542 			ath_rx_buf_relink(sc, bf);
1543 			ath9k_hw_rxena(ah);
1544 		}
1545 	} while (1);
1546 
1547 	if (!(ah->imask & ATH9K_INT_RXEOL)) {
1548 		ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1549 		ath9k_hw_set_interrupts(ah);
1550 	}
1551 
1552 	return 0;
1553 }
1554