xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/recv.c (revision 63c43812ee99efe7903955bae8cd928e9582477a)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define SKB_CB_ATHBUF(__skb)	(*((struct ath_rxbuf **)__skb->cb))
22 
23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
24 {
25 	return sc->ps_enabled &&
26 	       (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
27 }
28 
29 /*
30  * Setup and link descriptors.
31  *
32  * 11N: we can no longer afford to self link the last descriptor.
33  * MAC acknowledges BA status as long as it copies frames to host
34  * buffer (or rx fifo). This can incorrectly acknowledge packets
35  * to a sender if last desc is self-linked.
36  */
37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf,
38 			    bool flush)
39 {
40 	struct ath_hw *ah = sc->sc_ah;
41 	struct ath_common *common = ath9k_hw_common(ah);
42 	struct ath_desc *ds;
43 	struct sk_buff *skb;
44 
45 	ds = bf->bf_desc;
46 	ds->ds_link = 0; /* link to null */
47 	ds->ds_data = bf->bf_buf_addr;
48 
49 	/* virtual addr of the beginning of the buffer. */
50 	skb = bf->bf_mpdu;
51 	BUG_ON(skb == NULL);
52 	ds->ds_vdata = skb->data;
53 
54 	/*
55 	 * setup rx descriptors. The rx_bufsize here tells the hardware
56 	 * how much data it can DMA to us and that we are prepared
57 	 * to process
58 	 */
59 	ath9k_hw_setuprxdesc(ah, ds,
60 			     common->rx_bufsize,
61 			     0);
62 
63 	if (sc->rx.rxlink)
64 		*sc->rx.rxlink = bf->bf_daddr;
65 	else if (!flush)
66 		ath9k_hw_putrxbuf(ah, bf->bf_daddr);
67 
68 	sc->rx.rxlink = &ds->ds_link;
69 }
70 
71 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf,
72 			      bool flush)
73 {
74 	if (sc->rx.buf_hold)
75 		ath_rx_buf_link(sc, sc->rx.buf_hold, flush);
76 
77 	sc->rx.buf_hold = bf;
78 }
79 
80 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
81 {
82 	/* XXX block beacon interrupts */
83 	ath9k_hw_setantenna(sc->sc_ah, antenna);
84 	sc->rx.defant = antenna;
85 	sc->rx.rxotherant = 0;
86 }
87 
88 static void ath_opmode_init(struct ath_softc *sc)
89 {
90 	struct ath_hw *ah = sc->sc_ah;
91 	struct ath_common *common = ath9k_hw_common(ah);
92 
93 	u32 rfilt, mfilt[2];
94 
95 	/* configure rx filter */
96 	rfilt = ath_calcrxfilter(sc);
97 	ath9k_hw_setrxfilter(ah, rfilt);
98 
99 	/* configure bssid mask */
100 	ath_hw_setbssidmask(common);
101 
102 	/* configure operational mode */
103 	ath9k_hw_setopmode(ah);
104 
105 	/* calculate and install multicast filter */
106 	mfilt[0] = mfilt[1] = ~0;
107 	ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
108 }
109 
110 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
111 				 enum ath9k_rx_qtype qtype)
112 {
113 	struct ath_hw *ah = sc->sc_ah;
114 	struct ath_rx_edma *rx_edma;
115 	struct sk_buff *skb;
116 	struct ath_rxbuf *bf;
117 
118 	rx_edma = &sc->rx.rx_edma[qtype];
119 	if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
120 		return false;
121 
122 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
123 	list_del_init(&bf->list);
124 
125 	skb = bf->bf_mpdu;
126 
127 	memset(skb->data, 0, ah->caps.rx_status_len);
128 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
129 				ah->caps.rx_status_len, DMA_TO_DEVICE);
130 
131 	SKB_CB_ATHBUF(skb) = bf;
132 	ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
133 	__skb_queue_tail(&rx_edma->rx_fifo, skb);
134 
135 	return true;
136 }
137 
138 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
139 				  enum ath9k_rx_qtype qtype)
140 {
141 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
142 	struct ath_rxbuf *bf, *tbf;
143 
144 	if (list_empty(&sc->rx.rxbuf)) {
145 		ath_dbg(common, QUEUE, "No free rx buf available\n");
146 		return;
147 	}
148 
149 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
150 		if (!ath_rx_edma_buf_link(sc, qtype))
151 			break;
152 
153 }
154 
155 static void ath_rx_remove_buffer(struct ath_softc *sc,
156 				 enum ath9k_rx_qtype qtype)
157 {
158 	struct ath_rxbuf *bf;
159 	struct ath_rx_edma *rx_edma;
160 	struct sk_buff *skb;
161 
162 	rx_edma = &sc->rx.rx_edma[qtype];
163 
164 	while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
165 		bf = SKB_CB_ATHBUF(skb);
166 		BUG_ON(!bf);
167 		list_add_tail(&bf->list, &sc->rx.rxbuf);
168 	}
169 }
170 
171 static void ath_rx_edma_cleanup(struct ath_softc *sc)
172 {
173 	struct ath_hw *ah = sc->sc_ah;
174 	struct ath_common *common = ath9k_hw_common(ah);
175 	struct ath_rxbuf *bf;
176 
177 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
178 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
179 
180 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
181 		if (bf->bf_mpdu) {
182 			dma_unmap_single(sc->dev, bf->bf_buf_addr,
183 					common->rx_bufsize,
184 					DMA_BIDIRECTIONAL);
185 			dev_kfree_skb_any(bf->bf_mpdu);
186 			bf->bf_buf_addr = 0;
187 			bf->bf_mpdu = NULL;
188 		}
189 	}
190 }
191 
192 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
193 {
194 	__skb_queue_head_init(&rx_edma->rx_fifo);
195 	rx_edma->rx_fifo_hwsize = size;
196 }
197 
198 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
199 {
200 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
201 	struct ath_hw *ah = sc->sc_ah;
202 	struct sk_buff *skb;
203 	struct ath_rxbuf *bf;
204 	int error = 0, i;
205 	u32 size;
206 
207 	ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
208 				    ah->caps.rx_status_len);
209 
210 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
211 			       ah->caps.rx_lp_qdepth);
212 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
213 			       ah->caps.rx_hp_qdepth);
214 
215 	size = sizeof(struct ath_rxbuf) * nbufs;
216 	bf = devm_kzalloc(sc->dev, size, GFP_KERNEL);
217 	if (!bf)
218 		return -ENOMEM;
219 
220 	INIT_LIST_HEAD(&sc->rx.rxbuf);
221 
222 	for (i = 0; i < nbufs; i++, bf++) {
223 		skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
224 		if (!skb) {
225 			error = -ENOMEM;
226 			goto rx_init_fail;
227 		}
228 
229 		memset(skb->data, 0, common->rx_bufsize);
230 		bf->bf_mpdu = skb;
231 
232 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
233 						 common->rx_bufsize,
234 						 DMA_BIDIRECTIONAL);
235 		if (unlikely(dma_mapping_error(sc->dev,
236 						bf->bf_buf_addr))) {
237 				dev_kfree_skb_any(skb);
238 				bf->bf_mpdu = NULL;
239 				bf->bf_buf_addr = 0;
240 				ath_err(common,
241 					"dma_mapping_error() on RX init\n");
242 				error = -ENOMEM;
243 				goto rx_init_fail;
244 		}
245 
246 		list_add_tail(&bf->list, &sc->rx.rxbuf);
247 	}
248 
249 	return 0;
250 
251 rx_init_fail:
252 	ath_rx_edma_cleanup(sc);
253 	return error;
254 }
255 
256 static void ath_edma_start_recv(struct ath_softc *sc)
257 {
258 	ath9k_hw_rxena(sc->sc_ah);
259 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP);
260 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP);
261 	ath_opmode_init(sc);
262 	ath9k_hw_startpcureceive(sc->sc_ah, sc->cur_chan->offchannel);
263 }
264 
265 static void ath_edma_stop_recv(struct ath_softc *sc)
266 {
267 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
268 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
269 }
270 
271 int ath_rx_init(struct ath_softc *sc, int nbufs)
272 {
273 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
274 	struct sk_buff *skb;
275 	struct ath_rxbuf *bf;
276 	int error = 0;
277 
278 	spin_lock_init(&sc->sc_pcu_lock);
279 
280 	common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
281 			     sc->sc_ah->caps.rx_status_len;
282 
283 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
284 		return ath_rx_edma_init(sc, nbufs);
285 
286 	ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
287 		common->cachelsz, common->rx_bufsize);
288 
289 	/* Initialize rx descriptors */
290 
291 	error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
292 				  "rx", nbufs, 1, 0);
293 	if (error != 0) {
294 		ath_err(common,
295 			"failed to allocate rx descriptors: %d\n",
296 			error);
297 		goto err;
298 	}
299 
300 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
301 		skb = ath_rxbuf_alloc(common, common->rx_bufsize,
302 				      GFP_KERNEL);
303 		if (skb == NULL) {
304 			error = -ENOMEM;
305 			goto err;
306 		}
307 
308 		bf->bf_mpdu = skb;
309 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
310 						 common->rx_bufsize,
311 						 DMA_FROM_DEVICE);
312 		if (unlikely(dma_mapping_error(sc->dev,
313 					       bf->bf_buf_addr))) {
314 			dev_kfree_skb_any(skb);
315 			bf->bf_mpdu = NULL;
316 			bf->bf_buf_addr = 0;
317 			ath_err(common,
318 				"dma_mapping_error() on RX init\n");
319 			error = -ENOMEM;
320 			goto err;
321 		}
322 	}
323 	sc->rx.rxlink = NULL;
324 err:
325 	if (error)
326 		ath_rx_cleanup(sc);
327 
328 	return error;
329 }
330 
331 void ath_rx_cleanup(struct ath_softc *sc)
332 {
333 	struct ath_hw *ah = sc->sc_ah;
334 	struct ath_common *common = ath9k_hw_common(ah);
335 	struct sk_buff *skb;
336 	struct ath_rxbuf *bf;
337 
338 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
339 		ath_rx_edma_cleanup(sc);
340 		return;
341 	}
342 
343 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
344 		skb = bf->bf_mpdu;
345 		if (skb) {
346 			dma_unmap_single(sc->dev, bf->bf_buf_addr,
347 					 common->rx_bufsize,
348 					 DMA_FROM_DEVICE);
349 			dev_kfree_skb(skb);
350 			bf->bf_buf_addr = 0;
351 			bf->bf_mpdu = NULL;
352 		}
353 	}
354 }
355 
356 /*
357  * Calculate the receive filter according to the
358  * operating mode and state:
359  *
360  * o always accept unicast, broadcast, and multicast traffic
361  * o maintain current state of phy error reception (the hal
362  *   may enable phy error frames for noise immunity work)
363  * o probe request frames are accepted only when operating in
364  *   hostap, adhoc, or monitor modes
365  * o enable promiscuous mode according to the interface state
366  * o accept beacons:
367  *   - when operating in adhoc mode so the 802.11 layer creates
368  *     node table entries for peers,
369  *   - when operating in station mode for collecting rssi data when
370  *     the station is otherwise quiet, or
371  *   - when operating as a repeater so we see repeater-sta beacons
372  *   - when scanning
373  */
374 
375 u32 ath_calcrxfilter(struct ath_softc *sc)
376 {
377 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
378 	u32 rfilt;
379 
380 	if (config_enabled(CONFIG_ATH9K_TX99))
381 		return 0;
382 
383 	rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
384 		| ATH9K_RX_FILTER_MCAST;
385 
386 	/* if operating on a DFS channel, enable radar pulse detection */
387 	if (sc->hw->conf.radar_enabled)
388 		rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR;
389 
390 	spin_lock_bh(&sc->chan_lock);
391 
392 	if (sc->cur_chan->rxfilter & FIF_PROBE_REQ)
393 		rfilt |= ATH9K_RX_FILTER_PROBEREQ;
394 
395 	/*
396 	 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
397 	 * mode interface or when in monitor mode. AP mode does not need this
398 	 * since it receives all in-BSS frames anyway.
399 	 */
400 	if (sc->sc_ah->is_monitoring)
401 		rfilt |= ATH9K_RX_FILTER_PROM;
402 
403 	if ((sc->cur_chan->rxfilter & FIF_CONTROL) ||
404 	    sc->sc_ah->dynack.enabled)
405 		rfilt |= ATH9K_RX_FILTER_CONTROL;
406 
407 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
408 	    (sc->cur_chan->nvifs <= 1) &&
409 	    !(sc->cur_chan->rxfilter & FIF_BCN_PRBRESP_PROMISC))
410 		rfilt |= ATH9K_RX_FILTER_MYBEACON;
411 	else
412 		rfilt |= ATH9K_RX_FILTER_BEACON;
413 
414 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
415 	    (sc->cur_chan->rxfilter & FIF_PSPOLL))
416 		rfilt |= ATH9K_RX_FILTER_PSPOLL;
417 
418 	if (sc->cur_chandef.width != NL80211_CHAN_WIDTH_20_NOHT)
419 		rfilt |= ATH9K_RX_FILTER_COMP_BAR;
420 
421 	if (sc->cur_chan->nvifs > 1 || (sc->cur_chan->rxfilter & FIF_OTHER_BSS)) {
422 		/* This is needed for older chips */
423 		if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
424 			rfilt |= ATH9K_RX_FILTER_PROM;
425 		rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
426 	}
427 
428 	if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah) ||
429 	    AR_SREV_9561(sc->sc_ah))
430 		rfilt |= ATH9K_RX_FILTER_4ADDRESS;
431 
432 	if (ath9k_is_chanctx_enabled() &&
433 	    test_bit(ATH_OP_SCANNING, &common->op_flags))
434 		rfilt |= ATH9K_RX_FILTER_BEACON;
435 
436 	spin_unlock_bh(&sc->chan_lock);
437 
438 	return rfilt;
439 
440 }
441 
442 void ath_startrecv(struct ath_softc *sc)
443 {
444 	struct ath_hw *ah = sc->sc_ah;
445 	struct ath_rxbuf *bf, *tbf;
446 
447 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
448 		ath_edma_start_recv(sc);
449 		return;
450 	}
451 
452 	if (list_empty(&sc->rx.rxbuf))
453 		goto start_recv;
454 
455 	sc->rx.buf_hold = NULL;
456 	sc->rx.rxlink = NULL;
457 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
458 		ath_rx_buf_link(sc, bf, false);
459 	}
460 
461 	/* We could have deleted elements so the list may be empty now */
462 	if (list_empty(&sc->rx.rxbuf))
463 		goto start_recv;
464 
465 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
466 	ath9k_hw_putrxbuf(ah, bf->bf_daddr);
467 	ath9k_hw_rxena(ah);
468 
469 start_recv:
470 	ath_opmode_init(sc);
471 	ath9k_hw_startpcureceive(ah, sc->cur_chan->offchannel);
472 }
473 
474 static void ath_flushrecv(struct ath_softc *sc)
475 {
476 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
477 		ath_rx_tasklet(sc, 1, true);
478 	ath_rx_tasklet(sc, 1, false);
479 }
480 
481 bool ath_stoprecv(struct ath_softc *sc)
482 {
483 	struct ath_hw *ah = sc->sc_ah;
484 	bool stopped, reset = false;
485 
486 	ath9k_hw_abortpcurecv(ah);
487 	ath9k_hw_setrxfilter(ah, 0);
488 	stopped = ath9k_hw_stopdmarecv(ah, &reset);
489 
490 	ath_flushrecv(sc);
491 
492 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
493 		ath_edma_stop_recv(sc);
494 	else
495 		sc->rx.rxlink = NULL;
496 
497 	if (!(ah->ah_flags & AH_UNPLUGGED) &&
498 	    unlikely(!stopped)) {
499 		ath_err(ath9k_hw_common(sc->sc_ah),
500 			"Could not stop RX, we could be "
501 			"confusing the DMA engine when we start RX up\n");
502 		ATH_DBG_WARN_ON_ONCE(!stopped);
503 	}
504 	return stopped && !reset;
505 }
506 
507 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
508 {
509 	/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
510 	struct ieee80211_mgmt *mgmt;
511 	u8 *pos, *end, id, elen;
512 	struct ieee80211_tim_ie *tim;
513 
514 	mgmt = (struct ieee80211_mgmt *)skb->data;
515 	pos = mgmt->u.beacon.variable;
516 	end = skb->data + skb->len;
517 
518 	while (pos + 2 < end) {
519 		id = *pos++;
520 		elen = *pos++;
521 		if (pos + elen > end)
522 			break;
523 
524 		if (id == WLAN_EID_TIM) {
525 			if (elen < sizeof(*tim))
526 				break;
527 			tim = (struct ieee80211_tim_ie *) pos;
528 			if (tim->dtim_count != 0)
529 				break;
530 			return tim->bitmap_ctrl & 0x01;
531 		}
532 
533 		pos += elen;
534 	}
535 
536 	return false;
537 }
538 
539 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
540 {
541 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
542 	bool skip_beacon = false;
543 
544 	if (skb->len < 24 + 8 + 2 + 2)
545 		return;
546 
547 	sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
548 
549 	if (sc->ps_flags & PS_BEACON_SYNC) {
550 		sc->ps_flags &= ~PS_BEACON_SYNC;
551 		ath_dbg(common, PS,
552 			"Reconfigure beacon timers based on synchronized timestamp\n");
553 
554 #ifdef CONFIG_ATH9K_CHANNEL_CONTEXT
555 		if (ath9k_is_chanctx_enabled()) {
556 			if (sc->cur_chan == &sc->offchannel.chan)
557 				skip_beacon = true;
558 		}
559 #endif
560 
561 		if (!skip_beacon &&
562 		    !(WARN_ON_ONCE(sc->cur_chan->beacon.beacon_interval == 0)))
563 			ath9k_set_beacon(sc);
564 
565 		ath9k_p2p_beacon_sync(sc);
566 	}
567 
568 	if (ath_beacon_dtim_pending_cab(skb)) {
569 		/*
570 		 * Remain awake waiting for buffered broadcast/multicast
571 		 * frames. If the last broadcast/multicast frame is not
572 		 * received properly, the next beacon frame will work as
573 		 * a backup trigger for returning into NETWORK SLEEP state,
574 		 * so we are waiting for it as well.
575 		 */
576 		ath_dbg(common, PS,
577 			"Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
578 		sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
579 		return;
580 	}
581 
582 	if (sc->ps_flags & PS_WAIT_FOR_CAB) {
583 		/*
584 		 * This can happen if a broadcast frame is dropped or the AP
585 		 * fails to send a frame indicating that all CAB frames have
586 		 * been delivered.
587 		 */
588 		sc->ps_flags &= ~PS_WAIT_FOR_CAB;
589 		ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
590 	}
591 }
592 
593 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
594 {
595 	struct ieee80211_hdr *hdr;
596 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
597 
598 	hdr = (struct ieee80211_hdr *)skb->data;
599 
600 	/* Process Beacon and CAB receive in PS state */
601 	if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
602 	    && mybeacon) {
603 		ath_rx_ps_beacon(sc, skb);
604 	} else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
605 		   (ieee80211_is_data(hdr->frame_control) ||
606 		    ieee80211_is_action(hdr->frame_control)) &&
607 		   is_multicast_ether_addr(hdr->addr1) &&
608 		   !ieee80211_has_moredata(hdr->frame_control)) {
609 		/*
610 		 * No more broadcast/multicast frames to be received at this
611 		 * point.
612 		 */
613 		sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
614 		ath_dbg(common, PS,
615 			"All PS CAB frames received, back to sleep\n");
616 	} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
617 		   !is_multicast_ether_addr(hdr->addr1) &&
618 		   !ieee80211_has_morefrags(hdr->frame_control)) {
619 		sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
620 		ath_dbg(common, PS,
621 			"Going back to sleep after having received PS-Poll data (0x%lx)\n",
622 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
623 					PS_WAIT_FOR_CAB |
624 					PS_WAIT_FOR_PSPOLL_DATA |
625 					PS_WAIT_FOR_TX_ACK));
626 	}
627 }
628 
629 static bool ath_edma_get_buffers(struct ath_softc *sc,
630 				 enum ath9k_rx_qtype qtype,
631 				 struct ath_rx_status *rs,
632 				 struct ath_rxbuf **dest)
633 {
634 	struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
635 	struct ath_hw *ah = sc->sc_ah;
636 	struct ath_common *common = ath9k_hw_common(ah);
637 	struct sk_buff *skb;
638 	struct ath_rxbuf *bf;
639 	int ret;
640 
641 	skb = skb_peek(&rx_edma->rx_fifo);
642 	if (!skb)
643 		return false;
644 
645 	bf = SKB_CB_ATHBUF(skb);
646 	BUG_ON(!bf);
647 
648 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
649 				common->rx_bufsize, DMA_FROM_DEVICE);
650 
651 	ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
652 	if (ret == -EINPROGRESS) {
653 		/*let device gain the buffer again*/
654 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
655 				common->rx_bufsize, DMA_FROM_DEVICE);
656 		return false;
657 	}
658 
659 	__skb_unlink(skb, &rx_edma->rx_fifo);
660 	if (ret == -EINVAL) {
661 		/* corrupt descriptor, skip this one and the following one */
662 		list_add_tail(&bf->list, &sc->rx.rxbuf);
663 		ath_rx_edma_buf_link(sc, qtype);
664 
665 		skb = skb_peek(&rx_edma->rx_fifo);
666 		if (skb) {
667 			bf = SKB_CB_ATHBUF(skb);
668 			BUG_ON(!bf);
669 
670 			__skb_unlink(skb, &rx_edma->rx_fifo);
671 			list_add_tail(&bf->list, &sc->rx.rxbuf);
672 			ath_rx_edma_buf_link(sc, qtype);
673 		}
674 
675 		bf = NULL;
676 	}
677 
678 	*dest = bf;
679 	return true;
680 }
681 
682 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
683 						struct ath_rx_status *rs,
684 						enum ath9k_rx_qtype qtype)
685 {
686 	struct ath_rxbuf *bf = NULL;
687 
688 	while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
689 		if (!bf)
690 			continue;
691 
692 		return bf;
693 	}
694 	return NULL;
695 }
696 
697 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc,
698 					   struct ath_rx_status *rs)
699 {
700 	struct ath_hw *ah = sc->sc_ah;
701 	struct ath_common *common = ath9k_hw_common(ah);
702 	struct ath_desc *ds;
703 	struct ath_rxbuf *bf;
704 	int ret;
705 
706 	if (list_empty(&sc->rx.rxbuf)) {
707 		sc->rx.rxlink = NULL;
708 		return NULL;
709 	}
710 
711 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list);
712 	if (bf == sc->rx.buf_hold)
713 		return NULL;
714 
715 	ds = bf->bf_desc;
716 
717 	/*
718 	 * Must provide the virtual address of the current
719 	 * descriptor, the physical address, and the virtual
720 	 * address of the next descriptor in the h/w chain.
721 	 * This allows the HAL to look ahead to see if the
722 	 * hardware is done with a descriptor by checking the
723 	 * done bit in the following descriptor and the address
724 	 * of the current descriptor the DMA engine is working
725 	 * on.  All this is necessary because of our use of
726 	 * a self-linked list to avoid rx overruns.
727 	 */
728 	ret = ath9k_hw_rxprocdesc(ah, ds, rs);
729 	if (ret == -EINPROGRESS) {
730 		struct ath_rx_status trs;
731 		struct ath_rxbuf *tbf;
732 		struct ath_desc *tds;
733 
734 		memset(&trs, 0, sizeof(trs));
735 		if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
736 			sc->rx.rxlink = NULL;
737 			return NULL;
738 		}
739 
740 		tbf = list_entry(bf->list.next, struct ath_rxbuf, list);
741 
742 		/*
743 		 * On some hardware the descriptor status words could
744 		 * get corrupted, including the done bit. Because of
745 		 * this, check if the next descriptor's done bit is
746 		 * set or not.
747 		 *
748 		 * If the next descriptor's done bit is set, the current
749 		 * descriptor has been corrupted. Force s/w to discard
750 		 * this descriptor and continue...
751 		 */
752 
753 		tds = tbf->bf_desc;
754 		ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
755 		if (ret == -EINPROGRESS)
756 			return NULL;
757 
758 		/*
759 		 * Re-check previous descriptor, in case it has been filled
760 		 * in the mean time.
761 		 */
762 		ret = ath9k_hw_rxprocdesc(ah, ds, rs);
763 		if (ret == -EINPROGRESS) {
764 			/*
765 			 * mark descriptor as zero-length and set the 'more'
766 			 * flag to ensure that both buffers get discarded
767 			 */
768 			rs->rs_datalen = 0;
769 			rs->rs_more = true;
770 		}
771 	}
772 
773 	list_del(&bf->list);
774 	if (!bf->bf_mpdu)
775 		return bf;
776 
777 	/*
778 	 * Synchronize the DMA transfer with CPU before
779 	 * 1. accessing the frame
780 	 * 2. requeueing the same buffer to h/w
781 	 */
782 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
783 			common->rx_bufsize,
784 			DMA_FROM_DEVICE);
785 
786 	return bf;
787 }
788 
789 static void ath9k_process_tsf(struct ath_rx_status *rs,
790 			      struct ieee80211_rx_status *rxs,
791 			      u64 tsf)
792 {
793 	u32 tsf_lower = tsf & 0xffffffff;
794 
795 	rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp;
796 	if (rs->rs_tstamp > tsf_lower &&
797 	    unlikely(rs->rs_tstamp - tsf_lower > 0x10000000))
798 		rxs->mactime -= 0x100000000ULL;
799 
800 	if (rs->rs_tstamp < tsf_lower &&
801 	    unlikely(tsf_lower - rs->rs_tstamp > 0x10000000))
802 		rxs->mactime += 0x100000000ULL;
803 }
804 
805 /*
806  * For Decrypt or Demic errors, we only mark packet status here and always push
807  * up the frame up to let mac80211 handle the actual error case, be it no
808  * decryption key or real decryption error. This let us keep statistics there.
809  */
810 static int ath9k_rx_skb_preprocess(struct ath_softc *sc,
811 				   struct sk_buff *skb,
812 				   struct ath_rx_status *rx_stats,
813 				   struct ieee80211_rx_status *rx_status,
814 				   bool *decrypt_error, u64 tsf)
815 {
816 	struct ieee80211_hw *hw = sc->hw;
817 	struct ath_hw *ah = sc->sc_ah;
818 	struct ath_common *common = ath9k_hw_common(ah);
819 	struct ieee80211_hdr *hdr;
820 	bool discard_current = sc->rx.discard_next;
821 
822 	/*
823 	 * Discard corrupt descriptors which are marked in
824 	 * ath_get_next_rx_buf().
825 	 */
826 	if (discard_current)
827 		goto corrupt;
828 
829 	sc->rx.discard_next = false;
830 
831 	/*
832 	 * Discard zero-length packets.
833 	 */
834 	if (!rx_stats->rs_datalen) {
835 		RX_STAT_INC(rx_len_err);
836 		goto corrupt;
837 	}
838 
839 	/*
840 	 * rs_status follows rs_datalen so if rs_datalen is too large
841 	 * we can take a hint that hardware corrupted it, so ignore
842 	 * those frames.
843 	 */
844 	if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) {
845 		RX_STAT_INC(rx_len_err);
846 		goto corrupt;
847 	}
848 
849 	/* Only use status info from the last fragment */
850 	if (rx_stats->rs_more)
851 		return 0;
852 
853 	/*
854 	 * Return immediately if the RX descriptor has been marked
855 	 * as corrupt based on the various error bits.
856 	 *
857 	 * This is different from the other corrupt descriptor
858 	 * condition handled above.
859 	 */
860 	if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC)
861 		goto corrupt;
862 
863 	hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len);
864 
865 	ath9k_process_tsf(rx_stats, rx_status, tsf);
866 	ath_debug_stat_rx(sc, rx_stats);
867 
868 	/*
869 	 * Process PHY errors and return so that the packet
870 	 * can be dropped.
871 	 */
872 	if (rx_stats->rs_status & ATH9K_RXERR_PHY) {
873 		ath9k_dfs_process_phyerr(sc, hdr, rx_stats, rx_status->mactime);
874 		if (ath_cmn_process_fft(&sc->spec_priv, hdr, rx_stats, rx_status->mactime))
875 			RX_STAT_INC(rx_spectral);
876 
877 		return -EINVAL;
878 	}
879 
880 	/*
881 	 * everything but the rate is checked here, the rate check is done
882 	 * separately to avoid doing two lookups for a rate for each frame.
883 	 */
884 	spin_lock_bh(&sc->chan_lock);
885 	if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error,
886 				 sc->cur_chan->rxfilter)) {
887 		spin_unlock_bh(&sc->chan_lock);
888 		return -EINVAL;
889 	}
890 	spin_unlock_bh(&sc->chan_lock);
891 
892 	if (ath_is_mybeacon(common, hdr)) {
893 		RX_STAT_INC(rx_beacons);
894 		rx_stats->is_mybeacon = true;
895 	}
896 
897 	/*
898 	 * This shouldn't happen, but have a safety check anyway.
899 	 */
900 	if (WARN_ON(!ah->curchan))
901 		return -EINVAL;
902 
903 	if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) {
904 		/*
905 		 * No valid hardware bitrate found -- we should not get here
906 		 * because hardware has already validated this frame as OK.
907 		 */
908 		ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
909 			rx_stats->rs_rate);
910 		RX_STAT_INC(rx_rate_err);
911 		return -EINVAL;
912 	}
913 
914 	if (ath9k_is_chanctx_enabled()) {
915 		if (rx_stats->is_mybeacon)
916 			ath_chanctx_beacon_recv_ev(sc,
917 					   ATH_CHANCTX_EVENT_BEACON_RECEIVED);
918 	}
919 
920 	ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status);
921 
922 	rx_status->band = ah->curchan->chan->band;
923 	rx_status->freq = ah->curchan->chan->center_freq;
924 	rx_status->antenna = rx_stats->rs_antenna;
925 	rx_status->flag |= RX_FLAG_MACTIME_END;
926 
927 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT
928 	if (ieee80211_is_data_present(hdr->frame_control) &&
929 	    !ieee80211_is_qos_nullfunc(hdr->frame_control))
930 		sc->rx.num_pkts++;
931 #endif
932 
933 	return 0;
934 
935 corrupt:
936 	sc->rx.discard_next = rx_stats->rs_more;
937 	return -EINVAL;
938 }
939 
940 /*
941  * Run the LNA combining algorithm only in these cases:
942  *
943  * Standalone WLAN cards with both LNA/Antenna diversity
944  * enabled in the EEPROM.
945  *
946  * WLAN+BT cards which are in the supported card list
947  * in ath_pci_id_table and the user has loaded the
948  * driver with "bt_ant_diversity" set to true.
949  */
950 static void ath9k_antenna_check(struct ath_softc *sc,
951 				struct ath_rx_status *rs)
952 {
953 	struct ath_hw *ah = sc->sc_ah;
954 	struct ath9k_hw_capabilities *pCap = &ah->caps;
955 	struct ath_common *common = ath9k_hw_common(ah);
956 
957 	if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB))
958 		return;
959 
960 	/*
961 	 * Change the default rx antenna if rx diversity
962 	 * chooses the other antenna 3 times in a row.
963 	 */
964 	if (sc->rx.defant != rs->rs_antenna) {
965 		if (++sc->rx.rxotherant >= 3)
966 			ath_setdefantenna(sc, rs->rs_antenna);
967 	} else {
968 		sc->rx.rxotherant = 0;
969 	}
970 
971 	if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) {
972 		if (common->bt_ant_diversity)
973 			ath_ant_comb_scan(sc, rs);
974 	} else {
975 		ath_ant_comb_scan(sc, rs);
976 	}
977 }
978 
979 static void ath9k_apply_ampdu_details(struct ath_softc *sc,
980 	struct ath_rx_status *rs, struct ieee80211_rx_status *rxs)
981 {
982 	if (rs->rs_isaggr) {
983 		rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN;
984 
985 		rxs->ampdu_reference = sc->rx.ampdu_ref;
986 
987 		if (!rs->rs_moreaggr) {
988 			rxs->flag |= RX_FLAG_AMPDU_IS_LAST;
989 			sc->rx.ampdu_ref++;
990 		}
991 
992 		if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE)
993 			rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR;
994 	}
995 }
996 
997 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
998 {
999 	struct ath_rxbuf *bf;
1000 	struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1001 	struct ieee80211_rx_status *rxs;
1002 	struct ath_hw *ah = sc->sc_ah;
1003 	struct ath_common *common = ath9k_hw_common(ah);
1004 	struct ieee80211_hw *hw = sc->hw;
1005 	int retval;
1006 	struct ath_rx_status rs;
1007 	enum ath9k_rx_qtype qtype;
1008 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1009 	int dma_type;
1010 	u64 tsf = 0;
1011 	unsigned long flags;
1012 	dma_addr_t new_buf_addr;
1013 	unsigned int budget = 512;
1014 	struct ieee80211_hdr *hdr;
1015 
1016 	if (edma)
1017 		dma_type = DMA_BIDIRECTIONAL;
1018 	else
1019 		dma_type = DMA_FROM_DEVICE;
1020 
1021 	qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1022 
1023 	tsf = ath9k_hw_gettsf64(ah);
1024 
1025 	do {
1026 		bool decrypt_error = false;
1027 
1028 		memset(&rs, 0, sizeof(rs));
1029 		if (edma)
1030 			bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1031 		else
1032 			bf = ath_get_next_rx_buf(sc, &rs);
1033 
1034 		if (!bf)
1035 			break;
1036 
1037 		skb = bf->bf_mpdu;
1038 		if (!skb)
1039 			continue;
1040 
1041 		/*
1042 		 * Take frame header from the first fragment and RX status from
1043 		 * the last one.
1044 		 */
1045 		if (sc->rx.frag)
1046 			hdr_skb = sc->rx.frag;
1047 		else
1048 			hdr_skb = skb;
1049 
1050 		rxs = IEEE80211_SKB_RXCB(hdr_skb);
1051 		memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1052 
1053 		retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs,
1054 						 &decrypt_error, tsf);
1055 		if (retval)
1056 			goto requeue_drop_frag;
1057 
1058 		/* Ensure we always have an skb to requeue once we are done
1059 		 * processing the current buffer's skb */
1060 		requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1061 
1062 		/* If there is no memory we ignore the current RX'd frame,
1063 		 * tell hardware it can give us a new frame using the old
1064 		 * skb and put it at the tail of the sc->rx.rxbuf list for
1065 		 * processing. */
1066 		if (!requeue_skb) {
1067 			RX_STAT_INC(rx_oom_err);
1068 			goto requeue_drop_frag;
1069 		}
1070 
1071 		/* We will now give hardware our shiny new allocated skb */
1072 		new_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1073 					      common->rx_bufsize, dma_type);
1074 		if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) {
1075 			dev_kfree_skb_any(requeue_skb);
1076 			goto requeue_drop_frag;
1077 		}
1078 
1079 		/* Unmap the frame */
1080 		dma_unmap_single(sc->dev, bf->bf_buf_addr,
1081 				 common->rx_bufsize, dma_type);
1082 
1083 		bf->bf_mpdu = requeue_skb;
1084 		bf->bf_buf_addr = new_buf_addr;
1085 
1086 		skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1087 		if (ah->caps.rx_status_len)
1088 			skb_pull(skb, ah->caps.rx_status_len);
1089 
1090 		if (!rs.rs_more)
1091 			ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs,
1092 						     rxs, decrypt_error);
1093 
1094 		if (rs.rs_more) {
1095 			RX_STAT_INC(rx_frags);
1096 			/*
1097 			 * rs_more indicates chained descriptors which can be
1098 			 * used to link buffers together for a sort of
1099 			 * scatter-gather operation.
1100 			 */
1101 			if (sc->rx.frag) {
1102 				/* too many fragments - cannot handle frame */
1103 				dev_kfree_skb_any(sc->rx.frag);
1104 				dev_kfree_skb_any(skb);
1105 				RX_STAT_INC(rx_too_many_frags_err);
1106 				skb = NULL;
1107 			}
1108 			sc->rx.frag = skb;
1109 			goto requeue;
1110 		}
1111 
1112 		if (sc->rx.frag) {
1113 			int space = skb->len - skb_tailroom(hdr_skb);
1114 
1115 			if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1116 				dev_kfree_skb(skb);
1117 				RX_STAT_INC(rx_oom_err);
1118 				goto requeue_drop_frag;
1119 			}
1120 
1121 			sc->rx.frag = NULL;
1122 
1123 			skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1124 						  skb->len);
1125 			dev_kfree_skb_any(skb);
1126 			skb = hdr_skb;
1127 		}
1128 
1129 		if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1130 			skb_trim(skb, skb->len - 8);
1131 
1132 		spin_lock_irqsave(&sc->sc_pm_lock, flags);
1133 		if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1134 				     PS_WAIT_FOR_CAB |
1135 				     PS_WAIT_FOR_PSPOLL_DATA)) ||
1136 		    ath9k_check_auto_sleep(sc))
1137 			ath_rx_ps(sc, skb, rs.is_mybeacon);
1138 		spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1139 
1140 		ath9k_antenna_check(sc, &rs);
1141 		ath9k_apply_ampdu_details(sc, &rs, rxs);
1142 		ath_debug_rate_stats(sc, &rs, skb);
1143 
1144 		hdr = (struct ieee80211_hdr *)skb->data;
1145 		if (ieee80211_is_ack(hdr->frame_control))
1146 			ath_dynack_sample_ack_ts(sc->sc_ah, skb, rs.rs_tstamp);
1147 
1148 		ieee80211_rx(hw, skb);
1149 
1150 requeue_drop_frag:
1151 		if (sc->rx.frag) {
1152 			dev_kfree_skb_any(sc->rx.frag);
1153 			sc->rx.frag = NULL;
1154 		}
1155 requeue:
1156 		list_add_tail(&bf->list, &sc->rx.rxbuf);
1157 
1158 		if (!edma) {
1159 			ath_rx_buf_relink(sc, bf, flush);
1160 			if (!flush)
1161 				ath9k_hw_rxena(ah);
1162 		} else if (!flush) {
1163 			ath_rx_edma_buf_link(sc, qtype);
1164 		}
1165 
1166 		if (!budget--)
1167 			break;
1168 	} while (1);
1169 
1170 	if (!(ah->imask & ATH9K_INT_RXEOL)) {
1171 		ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1172 		ath9k_hw_set_interrupts(ah);
1173 	}
1174 
1175 	return 0;
1176 }
1177