1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define SKB_CB_ATHBUF(__skb) (*((struct ath_rxbuf **)__skb->cb)) 22 23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc) 24 { 25 return sc->ps_enabled && 26 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP); 27 } 28 29 /* 30 * Setup and link descriptors. 31 * 32 * 11N: we can no longer afford to self link the last descriptor. 33 * MAC acknowledges BA status as long as it copies frames to host 34 * buffer (or rx fifo). This can incorrectly acknowledge packets 35 * to a sender if last desc is self-linked. 36 */ 37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf, 38 bool flush) 39 { 40 struct ath_hw *ah = sc->sc_ah; 41 struct ath_common *common = ath9k_hw_common(ah); 42 struct ath_desc *ds; 43 struct sk_buff *skb; 44 45 ds = bf->bf_desc; 46 ds->ds_link = 0; /* link to null */ 47 ds->ds_data = bf->bf_buf_addr; 48 49 /* virtual addr of the beginning of the buffer. */ 50 skb = bf->bf_mpdu; 51 BUG_ON(skb == NULL); 52 ds->ds_vdata = skb->data; 53 54 /* 55 * setup rx descriptors. The rx_bufsize here tells the hardware 56 * how much data it can DMA to us and that we are prepared 57 * to process 58 */ 59 ath9k_hw_setuprxdesc(ah, ds, 60 common->rx_bufsize, 61 0); 62 63 if (sc->rx.rxlink) 64 *sc->rx.rxlink = bf->bf_daddr; 65 else if (!flush) 66 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 67 68 sc->rx.rxlink = &ds->ds_link; 69 } 70 71 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf, 72 bool flush) 73 { 74 if (sc->rx.buf_hold) 75 ath_rx_buf_link(sc, sc->rx.buf_hold, flush); 76 77 sc->rx.buf_hold = bf; 78 } 79 80 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna) 81 { 82 /* XXX block beacon interrupts */ 83 ath9k_hw_setantenna(sc->sc_ah, antenna); 84 sc->rx.defant = antenna; 85 sc->rx.rxotherant = 0; 86 } 87 88 static void ath_opmode_init(struct ath_softc *sc) 89 { 90 struct ath_hw *ah = sc->sc_ah; 91 struct ath_common *common = ath9k_hw_common(ah); 92 93 u32 rfilt, mfilt[2]; 94 95 /* configure rx filter */ 96 rfilt = ath_calcrxfilter(sc); 97 ath9k_hw_setrxfilter(ah, rfilt); 98 99 /* configure bssid mask */ 100 ath_hw_setbssidmask(common); 101 102 /* configure operational mode */ 103 ath9k_hw_setopmode(ah); 104 105 /* calculate and install multicast filter */ 106 mfilt[0] = mfilt[1] = ~0; 107 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]); 108 } 109 110 static bool ath_rx_edma_buf_link(struct ath_softc *sc, 111 enum ath9k_rx_qtype qtype) 112 { 113 struct ath_hw *ah = sc->sc_ah; 114 struct ath_rx_edma *rx_edma; 115 struct sk_buff *skb; 116 struct ath_rxbuf *bf; 117 118 rx_edma = &sc->rx.rx_edma[qtype]; 119 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize) 120 return false; 121 122 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list); 123 list_del_init(&bf->list); 124 125 skb = bf->bf_mpdu; 126 127 memset(skb->data, 0, ah->caps.rx_status_len); 128 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 129 ah->caps.rx_status_len, DMA_TO_DEVICE); 130 131 SKB_CB_ATHBUF(skb) = bf; 132 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype); 133 __skb_queue_tail(&rx_edma->rx_fifo, skb); 134 135 return true; 136 } 137 138 static void ath_rx_addbuffer_edma(struct ath_softc *sc, 139 enum ath9k_rx_qtype qtype) 140 { 141 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 142 struct ath_rxbuf *bf, *tbf; 143 144 if (list_empty(&sc->rx.rxbuf)) { 145 ath_dbg(common, QUEUE, "No free rx buf available\n"); 146 return; 147 } 148 149 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) 150 if (!ath_rx_edma_buf_link(sc, qtype)) 151 break; 152 153 } 154 155 static void ath_rx_remove_buffer(struct ath_softc *sc, 156 enum ath9k_rx_qtype qtype) 157 { 158 struct ath_rxbuf *bf; 159 struct ath_rx_edma *rx_edma; 160 struct sk_buff *skb; 161 162 rx_edma = &sc->rx.rx_edma[qtype]; 163 164 while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) { 165 bf = SKB_CB_ATHBUF(skb); 166 BUG_ON(!bf); 167 list_add_tail(&bf->list, &sc->rx.rxbuf); 168 } 169 } 170 171 static void ath_rx_edma_cleanup(struct ath_softc *sc) 172 { 173 struct ath_hw *ah = sc->sc_ah; 174 struct ath_common *common = ath9k_hw_common(ah); 175 struct ath_rxbuf *bf; 176 177 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 178 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 179 180 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 181 if (bf->bf_mpdu) { 182 dma_unmap_single(sc->dev, bf->bf_buf_addr, 183 common->rx_bufsize, 184 DMA_BIDIRECTIONAL); 185 dev_kfree_skb_any(bf->bf_mpdu); 186 bf->bf_buf_addr = 0; 187 bf->bf_mpdu = NULL; 188 } 189 } 190 } 191 192 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size) 193 { 194 __skb_queue_head_init(&rx_edma->rx_fifo); 195 rx_edma->rx_fifo_hwsize = size; 196 } 197 198 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs) 199 { 200 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 201 struct ath_hw *ah = sc->sc_ah; 202 struct sk_buff *skb; 203 struct ath_rxbuf *bf; 204 int error = 0, i; 205 u32 size; 206 207 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 208 ah->caps.rx_status_len); 209 210 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP], 211 ah->caps.rx_lp_qdepth); 212 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP], 213 ah->caps.rx_hp_qdepth); 214 215 size = sizeof(struct ath_rxbuf) * nbufs; 216 bf = devm_kzalloc(sc->dev, size, GFP_KERNEL); 217 if (!bf) 218 return -ENOMEM; 219 220 INIT_LIST_HEAD(&sc->rx.rxbuf); 221 222 for (i = 0; i < nbufs; i++, bf++) { 223 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL); 224 if (!skb) { 225 error = -ENOMEM; 226 goto rx_init_fail; 227 } 228 229 memset(skb->data, 0, common->rx_bufsize); 230 bf->bf_mpdu = skb; 231 232 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 233 common->rx_bufsize, 234 DMA_BIDIRECTIONAL); 235 if (unlikely(dma_mapping_error(sc->dev, 236 bf->bf_buf_addr))) { 237 dev_kfree_skb_any(skb); 238 bf->bf_mpdu = NULL; 239 bf->bf_buf_addr = 0; 240 ath_err(common, 241 "dma_mapping_error() on RX init\n"); 242 error = -ENOMEM; 243 goto rx_init_fail; 244 } 245 246 list_add_tail(&bf->list, &sc->rx.rxbuf); 247 } 248 249 return 0; 250 251 rx_init_fail: 252 ath_rx_edma_cleanup(sc); 253 return error; 254 } 255 256 static void ath_edma_start_recv(struct ath_softc *sc) 257 { 258 ath9k_hw_rxena(sc->sc_ah); 259 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP); 260 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP); 261 ath_opmode_init(sc); 262 ath9k_hw_startpcureceive(sc->sc_ah, sc->cur_chan->offchannel); 263 } 264 265 static void ath_edma_stop_recv(struct ath_softc *sc) 266 { 267 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 268 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 269 } 270 271 int ath_rx_init(struct ath_softc *sc, int nbufs) 272 { 273 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 274 struct sk_buff *skb; 275 struct ath_rxbuf *bf; 276 int error = 0; 277 278 spin_lock_init(&sc->sc_pcu_lock); 279 280 common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 + 281 sc->sc_ah->caps.rx_status_len; 282 283 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 284 return ath_rx_edma_init(sc, nbufs); 285 286 ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n", 287 common->cachelsz, common->rx_bufsize); 288 289 /* Initialize rx descriptors */ 290 291 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf, 292 "rx", nbufs, 1, 0); 293 if (error != 0) { 294 ath_err(common, 295 "failed to allocate rx descriptors: %d\n", 296 error); 297 goto err; 298 } 299 300 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 301 skb = ath_rxbuf_alloc(common, common->rx_bufsize, 302 GFP_KERNEL); 303 if (skb == NULL) { 304 error = -ENOMEM; 305 goto err; 306 } 307 308 bf->bf_mpdu = skb; 309 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 310 common->rx_bufsize, 311 DMA_FROM_DEVICE); 312 if (unlikely(dma_mapping_error(sc->dev, 313 bf->bf_buf_addr))) { 314 dev_kfree_skb_any(skb); 315 bf->bf_mpdu = NULL; 316 bf->bf_buf_addr = 0; 317 ath_err(common, 318 "dma_mapping_error() on RX init\n"); 319 error = -ENOMEM; 320 goto err; 321 } 322 } 323 sc->rx.rxlink = NULL; 324 err: 325 if (error) 326 ath_rx_cleanup(sc); 327 328 return error; 329 } 330 331 void ath_rx_cleanup(struct ath_softc *sc) 332 { 333 struct ath_hw *ah = sc->sc_ah; 334 struct ath_common *common = ath9k_hw_common(ah); 335 struct sk_buff *skb; 336 struct ath_rxbuf *bf; 337 338 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 339 ath_rx_edma_cleanup(sc); 340 return; 341 } 342 343 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 344 skb = bf->bf_mpdu; 345 if (skb) { 346 dma_unmap_single(sc->dev, bf->bf_buf_addr, 347 common->rx_bufsize, 348 DMA_FROM_DEVICE); 349 dev_kfree_skb(skb); 350 bf->bf_buf_addr = 0; 351 bf->bf_mpdu = NULL; 352 } 353 } 354 } 355 356 /* 357 * Calculate the receive filter according to the 358 * operating mode and state: 359 * 360 * o always accept unicast, broadcast, and multicast traffic 361 * o maintain current state of phy error reception (the hal 362 * may enable phy error frames for noise immunity work) 363 * o probe request frames are accepted only when operating in 364 * hostap, adhoc, or monitor modes 365 * o enable promiscuous mode according to the interface state 366 * o accept beacons: 367 * - when operating in adhoc mode so the 802.11 layer creates 368 * node table entries for peers, 369 * - when operating in station mode for collecting rssi data when 370 * the station is otherwise quiet, or 371 * - when operating as a repeater so we see repeater-sta beacons 372 * - when scanning 373 */ 374 375 u32 ath_calcrxfilter(struct ath_softc *sc) 376 { 377 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 378 u32 rfilt; 379 380 if (IS_ENABLED(CONFIG_ATH9K_TX99)) 381 return 0; 382 383 rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST 384 | ATH9K_RX_FILTER_MCAST; 385 386 /* if operating on a DFS channel, enable radar pulse detection */ 387 if (sc->hw->conf.radar_enabled) 388 rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR; 389 390 spin_lock_bh(&sc->chan_lock); 391 392 if (sc->cur_chan->rxfilter & FIF_PROBE_REQ) 393 rfilt |= ATH9K_RX_FILTER_PROBEREQ; 394 395 if (sc->sc_ah->is_monitoring) 396 rfilt |= ATH9K_RX_FILTER_PROM; 397 398 if ((sc->cur_chan->rxfilter & FIF_CONTROL) || 399 sc->sc_ah->dynack.enabled) 400 rfilt |= ATH9K_RX_FILTER_CONTROL; 401 402 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) && 403 (sc->cur_chan->nvifs <= 1) && 404 !(sc->cur_chan->rxfilter & FIF_BCN_PRBRESP_PROMISC)) 405 rfilt |= ATH9K_RX_FILTER_MYBEACON; 406 else if (sc->sc_ah->opmode != NL80211_IFTYPE_OCB) 407 rfilt |= ATH9K_RX_FILTER_BEACON; 408 409 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) || 410 (sc->cur_chan->rxfilter & FIF_PSPOLL)) 411 rfilt |= ATH9K_RX_FILTER_PSPOLL; 412 413 if (sc->cur_chandef.width != NL80211_CHAN_WIDTH_20_NOHT) 414 rfilt |= ATH9K_RX_FILTER_COMP_BAR; 415 416 if (sc->cur_chan->nvifs > 1 || 417 (sc->cur_chan->rxfilter & (FIF_OTHER_BSS | FIF_MCAST_ACTION))) { 418 /* This is needed for older chips */ 419 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160) 420 rfilt |= ATH9K_RX_FILTER_PROM; 421 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL; 422 } 423 424 if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah) || 425 AR_SREV_9561(sc->sc_ah)) 426 rfilt |= ATH9K_RX_FILTER_4ADDRESS; 427 428 if (AR_SREV_9462(sc->sc_ah) || AR_SREV_9565(sc->sc_ah)) 429 rfilt |= ATH9K_RX_FILTER_CONTROL_WRAPPER; 430 431 if (ath9k_is_chanctx_enabled() && 432 test_bit(ATH_OP_SCANNING, &common->op_flags)) 433 rfilt |= ATH9K_RX_FILTER_BEACON; 434 435 spin_unlock_bh(&sc->chan_lock); 436 437 return rfilt; 438 439 } 440 441 void ath_startrecv(struct ath_softc *sc) 442 { 443 struct ath_hw *ah = sc->sc_ah; 444 struct ath_rxbuf *bf, *tbf; 445 446 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 447 ath_edma_start_recv(sc); 448 return; 449 } 450 451 if (list_empty(&sc->rx.rxbuf)) 452 goto start_recv; 453 454 sc->rx.buf_hold = NULL; 455 sc->rx.rxlink = NULL; 456 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) { 457 ath_rx_buf_link(sc, bf, false); 458 } 459 460 /* We could have deleted elements so the list may be empty now */ 461 if (list_empty(&sc->rx.rxbuf)) 462 goto start_recv; 463 464 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list); 465 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 466 ath9k_hw_rxena(ah); 467 468 start_recv: 469 ath_opmode_init(sc); 470 ath9k_hw_startpcureceive(ah, sc->cur_chan->offchannel); 471 } 472 473 static void ath_flushrecv(struct ath_softc *sc) 474 { 475 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 476 ath_rx_tasklet(sc, 1, true); 477 ath_rx_tasklet(sc, 1, false); 478 } 479 480 bool ath_stoprecv(struct ath_softc *sc) 481 { 482 struct ath_hw *ah = sc->sc_ah; 483 bool stopped, reset = false; 484 485 ath9k_hw_abortpcurecv(ah); 486 ath9k_hw_setrxfilter(ah, 0); 487 stopped = ath9k_hw_stopdmarecv(ah, &reset); 488 489 ath_flushrecv(sc); 490 491 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 492 ath_edma_stop_recv(sc); 493 else 494 sc->rx.rxlink = NULL; 495 496 if (!(ah->ah_flags & AH_UNPLUGGED) && 497 unlikely(!stopped)) { 498 ath_dbg(ath9k_hw_common(sc->sc_ah), RESET, 499 "Failed to stop Rx DMA\n"); 500 RESET_STAT_INC(sc, RESET_RX_DMA_ERROR); 501 } 502 return stopped && !reset; 503 } 504 505 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb) 506 { 507 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */ 508 struct ieee80211_mgmt *mgmt; 509 u8 *pos, *end, id, elen; 510 struct ieee80211_tim_ie *tim; 511 512 mgmt = (struct ieee80211_mgmt *)skb->data; 513 pos = mgmt->u.beacon.variable; 514 end = skb->data + skb->len; 515 516 while (pos + 2 < end) { 517 id = *pos++; 518 elen = *pos++; 519 if (pos + elen > end) 520 break; 521 522 if (id == WLAN_EID_TIM) { 523 if (elen < sizeof(*tim)) 524 break; 525 tim = (struct ieee80211_tim_ie *) pos; 526 if (tim->dtim_count != 0) 527 break; 528 return tim->bitmap_ctrl & 0x01; 529 } 530 531 pos += elen; 532 } 533 534 return false; 535 } 536 537 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb) 538 { 539 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 540 bool skip_beacon = false; 541 542 if (skb->len < 24 + 8 + 2 + 2) 543 return; 544 545 sc->ps_flags &= ~PS_WAIT_FOR_BEACON; 546 547 if (sc->ps_flags & PS_BEACON_SYNC) { 548 sc->ps_flags &= ~PS_BEACON_SYNC; 549 ath_dbg(common, PS, 550 "Reconfigure beacon timers based on synchronized timestamp\n"); 551 552 #ifdef CONFIG_ATH9K_CHANNEL_CONTEXT 553 if (ath9k_is_chanctx_enabled()) { 554 if (sc->cur_chan == &sc->offchannel.chan) 555 skip_beacon = true; 556 } 557 #endif 558 559 if (!skip_beacon && 560 !(WARN_ON_ONCE(sc->cur_chan->beacon.beacon_interval == 0))) 561 ath9k_set_beacon(sc); 562 563 ath9k_p2p_beacon_sync(sc); 564 } 565 566 if (ath_beacon_dtim_pending_cab(skb)) { 567 /* 568 * Remain awake waiting for buffered broadcast/multicast 569 * frames. If the last broadcast/multicast frame is not 570 * received properly, the next beacon frame will work as 571 * a backup trigger for returning into NETWORK SLEEP state, 572 * so we are waiting for it as well. 573 */ 574 ath_dbg(common, PS, 575 "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n"); 576 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON; 577 return; 578 } 579 580 if (sc->ps_flags & PS_WAIT_FOR_CAB) { 581 /* 582 * This can happen if a broadcast frame is dropped or the AP 583 * fails to send a frame indicating that all CAB frames have 584 * been delivered. 585 */ 586 sc->ps_flags &= ~PS_WAIT_FOR_CAB; 587 ath_dbg(common, PS, "PS wait for CAB frames timed out\n"); 588 } 589 } 590 591 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon) 592 { 593 struct ieee80211_hdr *hdr; 594 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 595 596 hdr = (struct ieee80211_hdr *)skb->data; 597 598 /* Process Beacon and CAB receive in PS state */ 599 if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc)) 600 && mybeacon) { 601 ath_rx_ps_beacon(sc, skb); 602 } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) && 603 (ieee80211_is_data(hdr->frame_control) || 604 ieee80211_is_action(hdr->frame_control)) && 605 is_multicast_ether_addr(hdr->addr1) && 606 !ieee80211_has_moredata(hdr->frame_control)) { 607 /* 608 * No more broadcast/multicast frames to be received at this 609 * point. 610 */ 611 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON); 612 ath_dbg(common, PS, 613 "All PS CAB frames received, back to sleep\n"); 614 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) && 615 !is_multicast_ether_addr(hdr->addr1) && 616 !ieee80211_has_morefrags(hdr->frame_control)) { 617 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA; 618 ath_dbg(common, PS, 619 "Going back to sleep after having received PS-Poll data (0x%lx)\n", 620 sc->ps_flags & (PS_WAIT_FOR_BEACON | 621 PS_WAIT_FOR_CAB | 622 PS_WAIT_FOR_PSPOLL_DATA | 623 PS_WAIT_FOR_TX_ACK)); 624 } 625 } 626 627 static bool ath_edma_get_buffers(struct ath_softc *sc, 628 enum ath9k_rx_qtype qtype, 629 struct ath_rx_status *rs, 630 struct ath_rxbuf **dest) 631 { 632 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype]; 633 struct ath_hw *ah = sc->sc_ah; 634 struct ath_common *common = ath9k_hw_common(ah); 635 struct sk_buff *skb; 636 struct ath_rxbuf *bf; 637 int ret; 638 639 skb = skb_peek(&rx_edma->rx_fifo); 640 if (!skb) 641 return false; 642 643 bf = SKB_CB_ATHBUF(skb); 644 BUG_ON(!bf); 645 646 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 647 common->rx_bufsize, DMA_FROM_DEVICE); 648 649 ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data); 650 if (ret == -EINPROGRESS) { 651 /*let device gain the buffer again*/ 652 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 653 common->rx_bufsize, DMA_FROM_DEVICE); 654 return false; 655 } 656 657 __skb_unlink(skb, &rx_edma->rx_fifo); 658 if (ret == -EINVAL) { 659 /* corrupt descriptor, skip this one and the following one */ 660 list_add_tail(&bf->list, &sc->rx.rxbuf); 661 ath_rx_edma_buf_link(sc, qtype); 662 663 skb = skb_peek(&rx_edma->rx_fifo); 664 if (skb) { 665 bf = SKB_CB_ATHBUF(skb); 666 BUG_ON(!bf); 667 668 __skb_unlink(skb, &rx_edma->rx_fifo); 669 list_add_tail(&bf->list, &sc->rx.rxbuf); 670 ath_rx_edma_buf_link(sc, qtype); 671 } 672 673 bf = NULL; 674 } 675 676 *dest = bf; 677 return true; 678 } 679 680 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc, 681 struct ath_rx_status *rs, 682 enum ath9k_rx_qtype qtype) 683 { 684 struct ath_rxbuf *bf = NULL; 685 686 while (ath_edma_get_buffers(sc, qtype, rs, &bf)) { 687 if (!bf) 688 continue; 689 690 return bf; 691 } 692 return NULL; 693 } 694 695 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc, 696 struct ath_rx_status *rs) 697 { 698 struct ath_hw *ah = sc->sc_ah; 699 struct ath_common *common = ath9k_hw_common(ah); 700 struct ath_desc *ds; 701 struct ath_rxbuf *bf; 702 int ret; 703 704 if (list_empty(&sc->rx.rxbuf)) { 705 sc->rx.rxlink = NULL; 706 return NULL; 707 } 708 709 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list); 710 if (bf == sc->rx.buf_hold) 711 return NULL; 712 713 ds = bf->bf_desc; 714 715 /* 716 * Must provide the virtual address of the current 717 * descriptor, the physical address, and the virtual 718 * address of the next descriptor in the h/w chain. 719 * This allows the HAL to look ahead to see if the 720 * hardware is done with a descriptor by checking the 721 * done bit in the following descriptor and the address 722 * of the current descriptor the DMA engine is working 723 * on. All this is necessary because of our use of 724 * a self-linked list to avoid rx overruns. 725 */ 726 ret = ath9k_hw_rxprocdesc(ah, ds, rs); 727 if (ret == -EINPROGRESS) { 728 struct ath_rx_status trs; 729 struct ath_rxbuf *tbf; 730 struct ath_desc *tds; 731 732 memset(&trs, 0, sizeof(trs)); 733 if (list_is_last(&bf->list, &sc->rx.rxbuf)) { 734 sc->rx.rxlink = NULL; 735 return NULL; 736 } 737 738 tbf = list_entry(bf->list.next, struct ath_rxbuf, list); 739 740 /* 741 * On some hardware the descriptor status words could 742 * get corrupted, including the done bit. Because of 743 * this, check if the next descriptor's done bit is 744 * set or not. 745 * 746 * If the next descriptor's done bit is set, the current 747 * descriptor has been corrupted. Force s/w to discard 748 * this descriptor and continue... 749 */ 750 751 tds = tbf->bf_desc; 752 ret = ath9k_hw_rxprocdesc(ah, tds, &trs); 753 if (ret == -EINPROGRESS) 754 return NULL; 755 756 /* 757 * Re-check previous descriptor, in case it has been filled 758 * in the mean time. 759 */ 760 ret = ath9k_hw_rxprocdesc(ah, ds, rs); 761 if (ret == -EINPROGRESS) { 762 /* 763 * mark descriptor as zero-length and set the 'more' 764 * flag to ensure that both buffers get discarded 765 */ 766 rs->rs_datalen = 0; 767 rs->rs_more = true; 768 } 769 } 770 771 list_del(&bf->list); 772 if (!bf->bf_mpdu) 773 return bf; 774 775 /* 776 * Synchronize the DMA transfer with CPU before 777 * 1. accessing the frame 778 * 2. requeueing the same buffer to h/w 779 */ 780 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 781 common->rx_bufsize, 782 DMA_FROM_DEVICE); 783 784 return bf; 785 } 786 787 static void ath9k_process_tsf(struct ath_rx_status *rs, 788 struct ieee80211_rx_status *rxs, 789 u64 tsf) 790 { 791 u32 tsf_lower = tsf & 0xffffffff; 792 793 rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp; 794 if (rs->rs_tstamp > tsf_lower && 795 unlikely(rs->rs_tstamp - tsf_lower > 0x10000000)) 796 rxs->mactime -= 0x100000000ULL; 797 798 if (rs->rs_tstamp < tsf_lower && 799 unlikely(tsf_lower - rs->rs_tstamp > 0x10000000)) 800 rxs->mactime += 0x100000000ULL; 801 } 802 803 /* 804 * For Decrypt or Demic errors, we only mark packet status here and always push 805 * up the frame up to let mac80211 handle the actual error case, be it no 806 * decryption key or real decryption error. This let us keep statistics there. 807 */ 808 static int ath9k_rx_skb_preprocess(struct ath_softc *sc, 809 struct sk_buff *skb, 810 struct ath_rx_status *rx_stats, 811 struct ieee80211_rx_status *rx_status, 812 bool *decrypt_error, u64 tsf) 813 { 814 struct ieee80211_hw *hw = sc->hw; 815 struct ath_hw *ah = sc->sc_ah; 816 struct ath_common *common = ath9k_hw_common(ah); 817 struct ieee80211_hdr *hdr; 818 bool discard_current = sc->rx.discard_next; 819 bool is_phyerr; 820 821 /* 822 * Discard corrupt descriptors which are marked in 823 * ath_get_next_rx_buf(). 824 */ 825 if (discard_current) 826 goto corrupt; 827 828 sc->rx.discard_next = false; 829 830 /* 831 * Discard zero-length packets and packets smaller than an ACK 832 * which are not PHY_ERROR (short radar pulses have a length of 3) 833 */ 834 is_phyerr = rx_stats->rs_status & ATH9K_RXERR_PHY; 835 if (!rx_stats->rs_datalen || 836 (rx_stats->rs_datalen < 10 && !is_phyerr)) { 837 RX_STAT_INC(sc, rx_len_err); 838 goto corrupt; 839 } 840 841 /* 842 * rs_status follows rs_datalen so if rs_datalen is too large 843 * we can take a hint that hardware corrupted it, so ignore 844 * those frames. 845 */ 846 if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) { 847 RX_STAT_INC(sc, rx_len_err); 848 goto corrupt; 849 } 850 851 /* Only use status info from the last fragment */ 852 if (rx_stats->rs_more) 853 return 0; 854 855 /* 856 * Return immediately if the RX descriptor has been marked 857 * as corrupt based on the various error bits. 858 * 859 * This is different from the other corrupt descriptor 860 * condition handled above. 861 */ 862 if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC) 863 goto corrupt; 864 865 hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len); 866 867 ath9k_process_tsf(rx_stats, rx_status, tsf); 868 ath_debug_stat_rx(sc, rx_stats); 869 870 /* 871 * Process PHY errors and return so that the packet 872 * can be dropped. 873 */ 874 if (rx_stats->rs_status & ATH9K_RXERR_PHY) { 875 /* 876 * DFS and spectral are mutually exclusive 877 * 878 * Since some chips use PHYERR_RADAR as indication for both, we 879 * need to double check which feature is enabled to prevent 880 * feeding spectral or dfs-detector with wrong frames. 881 */ 882 if (hw->conf.radar_enabled) { 883 ath9k_dfs_process_phyerr(sc, hdr, rx_stats, 884 rx_status->mactime); 885 } else if (sc->spec_priv.spectral_mode != SPECTRAL_DISABLED && 886 ath_cmn_process_fft(&sc->spec_priv, hdr, rx_stats, 887 rx_status->mactime)) { 888 RX_STAT_INC(sc, rx_spectral); 889 } 890 return -EINVAL; 891 } 892 893 /* 894 * everything but the rate is checked here, the rate check is done 895 * separately to avoid doing two lookups for a rate for each frame. 896 */ 897 spin_lock_bh(&sc->chan_lock); 898 if (!ath9k_cmn_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error, 899 sc->cur_chan->rxfilter)) { 900 spin_unlock_bh(&sc->chan_lock); 901 return -EINVAL; 902 } 903 spin_unlock_bh(&sc->chan_lock); 904 905 if (ath_is_mybeacon(common, hdr)) { 906 RX_STAT_INC(sc, rx_beacons); 907 rx_stats->is_mybeacon = true; 908 } 909 910 /* 911 * This shouldn't happen, but have a safety check anyway. 912 */ 913 if (WARN_ON(!ah->curchan)) 914 return -EINVAL; 915 916 if (ath9k_cmn_process_rate(common, hw, rx_stats, rx_status)) { 917 /* 918 * No valid hardware bitrate found -- we should not get here 919 * because hardware has already validated this frame as OK. 920 */ 921 ath_dbg(common, ANY, "unsupported hw bitrate detected 0x%02x using 1 Mbit\n", 922 rx_stats->rs_rate); 923 RX_STAT_INC(sc, rx_rate_err); 924 return -EINVAL; 925 } 926 927 if (ath9k_is_chanctx_enabled()) { 928 if (rx_stats->is_mybeacon) 929 ath_chanctx_beacon_recv_ev(sc, 930 ATH_CHANCTX_EVENT_BEACON_RECEIVED); 931 } 932 933 ath9k_cmn_process_rssi(common, hw, rx_stats, rx_status); 934 935 rx_status->band = ah->curchan->chan->band; 936 rx_status->freq = ah->curchan->chan->center_freq; 937 rx_status->antenna = rx_stats->rs_antenna; 938 rx_status->flag |= RX_FLAG_MACTIME_END; 939 940 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT 941 if (ieee80211_is_data_present(hdr->frame_control) && 942 !ieee80211_is_qos_nullfunc(hdr->frame_control)) 943 sc->rx.num_pkts++; 944 #endif 945 946 return 0; 947 948 corrupt: 949 sc->rx.discard_next = rx_stats->rs_more; 950 return -EINVAL; 951 } 952 953 /* 954 * Run the LNA combining algorithm only in these cases: 955 * 956 * Standalone WLAN cards with both LNA/Antenna diversity 957 * enabled in the EEPROM. 958 * 959 * WLAN+BT cards which are in the supported card list 960 * in ath_pci_id_table and the user has loaded the 961 * driver with "bt_ant_diversity" set to true. 962 */ 963 static void ath9k_antenna_check(struct ath_softc *sc, 964 struct ath_rx_status *rs) 965 { 966 struct ath_hw *ah = sc->sc_ah; 967 struct ath9k_hw_capabilities *pCap = &ah->caps; 968 struct ath_common *common = ath9k_hw_common(ah); 969 970 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)) 971 return; 972 973 /* 974 * Change the default rx antenna if rx diversity 975 * chooses the other antenna 3 times in a row. 976 */ 977 if (sc->rx.defant != rs->rs_antenna) { 978 if (++sc->rx.rxotherant >= 3) 979 ath_setdefantenna(sc, rs->rs_antenna); 980 } else { 981 sc->rx.rxotherant = 0; 982 } 983 984 if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) { 985 if (common->bt_ant_diversity) 986 ath_ant_comb_scan(sc, rs); 987 } else { 988 ath_ant_comb_scan(sc, rs); 989 } 990 } 991 992 static void ath9k_apply_ampdu_details(struct ath_softc *sc, 993 struct ath_rx_status *rs, struct ieee80211_rx_status *rxs) 994 { 995 if (rs->rs_isaggr) { 996 rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 997 998 rxs->ampdu_reference = sc->rx.ampdu_ref; 999 1000 if (!rs->rs_moreaggr) { 1001 rxs->flag |= RX_FLAG_AMPDU_IS_LAST; 1002 sc->rx.ampdu_ref++; 1003 } 1004 1005 if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE) 1006 rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR; 1007 } 1008 } 1009 1010 static void ath_rx_count_airtime(struct ath_softc *sc, 1011 struct ath_rx_status *rs, 1012 struct sk_buff *skb) 1013 { 1014 struct ieee80211_hdr *hdr = (struct ieee80211_hdr *) skb->data; 1015 struct ath_hw *ah = sc->sc_ah; 1016 struct ath_common *common = ath9k_hw_common(ah); 1017 struct ieee80211_sta *sta; 1018 struct ieee80211_rx_status *rxs; 1019 const struct ieee80211_rate *rate; 1020 bool is_sgi, is_40, is_sp; 1021 int phy; 1022 u16 len = rs->rs_datalen; 1023 u32 airtime = 0; 1024 u8 tidno; 1025 1026 if (!ieee80211_is_data(hdr->frame_control)) 1027 return; 1028 1029 rcu_read_lock(); 1030 1031 sta = ieee80211_find_sta_by_ifaddr(sc->hw, hdr->addr2, NULL); 1032 if (!sta) 1033 goto exit; 1034 tidno = skb->priority & IEEE80211_QOS_CTL_TID_MASK; 1035 1036 rxs = IEEE80211_SKB_RXCB(skb); 1037 1038 is_sgi = !!(rxs->enc_flags & RX_ENC_FLAG_SHORT_GI); 1039 is_40 = !!(rxs->bw == RATE_INFO_BW_40); 1040 is_sp = !!(rxs->enc_flags & RX_ENC_FLAG_SHORTPRE); 1041 1042 if (!!(rxs->encoding == RX_ENC_HT)) { 1043 /* MCS rates */ 1044 1045 airtime += ath_pkt_duration(sc, rxs->rate_idx, len, 1046 is_40, is_sgi, is_sp); 1047 } else { 1048 1049 phy = IS_CCK_RATE(rs->rs_rate) ? WLAN_RC_PHY_CCK : WLAN_RC_PHY_OFDM; 1050 rate = &common->sbands[rxs->band].bitrates[rxs->rate_idx]; 1051 airtime += ath9k_hw_computetxtime(ah, phy, rate->bitrate * 100, 1052 len, rxs->rate_idx, is_sp); 1053 } 1054 1055 ieee80211_sta_register_airtime(sta, tidno, 0, airtime); 1056 exit: 1057 rcu_read_unlock(); 1058 } 1059 1060 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp) 1061 { 1062 struct ath_rxbuf *bf; 1063 struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb; 1064 struct ieee80211_rx_status *rxs; 1065 struct ath_hw *ah = sc->sc_ah; 1066 struct ath_common *common = ath9k_hw_common(ah); 1067 struct ieee80211_hw *hw = sc->hw; 1068 int retval; 1069 struct ath_rx_status rs; 1070 enum ath9k_rx_qtype qtype; 1071 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1072 int dma_type; 1073 u64 tsf = 0; 1074 unsigned long flags; 1075 dma_addr_t new_buf_addr; 1076 unsigned int budget = 512; 1077 struct ieee80211_hdr *hdr; 1078 1079 if (edma) 1080 dma_type = DMA_BIDIRECTIONAL; 1081 else 1082 dma_type = DMA_FROM_DEVICE; 1083 1084 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP; 1085 1086 tsf = ath9k_hw_gettsf64(ah); 1087 1088 do { 1089 bool decrypt_error = false; 1090 1091 memset(&rs, 0, sizeof(rs)); 1092 if (edma) 1093 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype); 1094 else 1095 bf = ath_get_next_rx_buf(sc, &rs); 1096 1097 if (!bf) 1098 break; 1099 1100 skb = bf->bf_mpdu; 1101 if (!skb) 1102 continue; 1103 1104 /* 1105 * Take frame header from the first fragment and RX status from 1106 * the last one. 1107 */ 1108 if (sc->rx.frag) 1109 hdr_skb = sc->rx.frag; 1110 else 1111 hdr_skb = skb; 1112 1113 rxs = IEEE80211_SKB_RXCB(hdr_skb); 1114 memset(rxs, 0, sizeof(struct ieee80211_rx_status)); 1115 1116 retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs, 1117 &decrypt_error, tsf); 1118 if (retval) 1119 goto requeue_drop_frag; 1120 1121 /* Ensure we always have an skb to requeue once we are done 1122 * processing the current buffer's skb */ 1123 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC); 1124 1125 /* If there is no memory we ignore the current RX'd frame, 1126 * tell hardware it can give us a new frame using the old 1127 * skb and put it at the tail of the sc->rx.rxbuf list for 1128 * processing. */ 1129 if (!requeue_skb) { 1130 RX_STAT_INC(sc, rx_oom_err); 1131 goto requeue_drop_frag; 1132 } 1133 1134 /* We will now give hardware our shiny new allocated skb */ 1135 new_buf_addr = dma_map_single(sc->dev, requeue_skb->data, 1136 common->rx_bufsize, dma_type); 1137 if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) { 1138 dev_kfree_skb_any(requeue_skb); 1139 goto requeue_drop_frag; 1140 } 1141 1142 /* Unmap the frame */ 1143 dma_unmap_single(sc->dev, bf->bf_buf_addr, 1144 common->rx_bufsize, dma_type); 1145 1146 bf->bf_mpdu = requeue_skb; 1147 bf->bf_buf_addr = new_buf_addr; 1148 1149 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len); 1150 if (ah->caps.rx_status_len) 1151 skb_pull(skb, ah->caps.rx_status_len); 1152 1153 if (!rs.rs_more) 1154 ath9k_cmn_rx_skb_postprocess(common, hdr_skb, &rs, 1155 rxs, decrypt_error); 1156 1157 if (rs.rs_more) { 1158 RX_STAT_INC(sc, rx_frags); 1159 /* 1160 * rs_more indicates chained descriptors which can be 1161 * used to link buffers together for a sort of 1162 * scatter-gather operation. 1163 */ 1164 if (sc->rx.frag) { 1165 /* too many fragments - cannot handle frame */ 1166 dev_kfree_skb_any(sc->rx.frag); 1167 dev_kfree_skb_any(skb); 1168 RX_STAT_INC(sc, rx_too_many_frags_err); 1169 skb = NULL; 1170 } 1171 sc->rx.frag = skb; 1172 goto requeue; 1173 } 1174 1175 if (sc->rx.frag) { 1176 int space = skb->len - skb_tailroom(hdr_skb); 1177 1178 if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) { 1179 dev_kfree_skb(skb); 1180 RX_STAT_INC(sc, rx_oom_err); 1181 goto requeue_drop_frag; 1182 } 1183 1184 sc->rx.frag = NULL; 1185 1186 skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len), 1187 skb->len); 1188 dev_kfree_skb_any(skb); 1189 skb = hdr_skb; 1190 } 1191 1192 if (rxs->flag & RX_FLAG_MMIC_STRIPPED) 1193 skb_trim(skb, skb->len - 8); 1194 1195 spin_lock_irqsave(&sc->sc_pm_lock, flags); 1196 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON | 1197 PS_WAIT_FOR_CAB | 1198 PS_WAIT_FOR_PSPOLL_DATA)) || 1199 ath9k_check_auto_sleep(sc)) 1200 ath_rx_ps(sc, skb, rs.is_mybeacon); 1201 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 1202 1203 ath9k_antenna_check(sc, &rs); 1204 ath9k_apply_ampdu_details(sc, &rs, rxs); 1205 ath_debug_rate_stats(sc, &rs, skb); 1206 ath_rx_count_airtime(sc, &rs, skb); 1207 1208 hdr = (struct ieee80211_hdr *)skb->data; 1209 if (ieee80211_is_ack(hdr->frame_control)) 1210 ath_dynack_sample_ack_ts(sc->sc_ah, skb, rs.rs_tstamp); 1211 1212 ieee80211_rx(hw, skb); 1213 1214 requeue_drop_frag: 1215 if (sc->rx.frag) { 1216 dev_kfree_skb_any(sc->rx.frag); 1217 sc->rx.frag = NULL; 1218 } 1219 requeue: 1220 list_add_tail(&bf->list, &sc->rx.rxbuf); 1221 1222 if (!edma) { 1223 ath_rx_buf_relink(sc, bf, flush); 1224 if (!flush) 1225 ath9k_hw_rxena(ah); 1226 } else if (!flush) { 1227 ath_rx_edma_buf_link(sc, qtype); 1228 } 1229 1230 if (!budget--) 1231 break; 1232 } while (1); 1233 1234 if (!(ah->imask & ATH9K_INT_RXEOL)) { 1235 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN); 1236 ath9k_hw_set_interrupts(ah); 1237 } 1238 1239 return 0; 1240 } 1241