1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include <linux/relay.h> 19 #include "ath9k.h" 20 #include "ar9003_mac.h" 21 22 #define SKB_CB_ATHBUF(__skb) (*((struct ath_buf **)__skb->cb)) 23 24 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc) 25 { 26 return sc->ps_enabled && 27 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP); 28 } 29 30 /* 31 * Setup and link descriptors. 32 * 33 * 11N: we can no longer afford to self link the last descriptor. 34 * MAC acknowledges BA status as long as it copies frames to host 35 * buffer (or rx fifo). This can incorrectly acknowledge packets 36 * to a sender if last desc is self-linked. 37 */ 38 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf) 39 { 40 struct ath_hw *ah = sc->sc_ah; 41 struct ath_common *common = ath9k_hw_common(ah); 42 struct ath_desc *ds; 43 struct sk_buff *skb; 44 45 ATH_RXBUF_RESET(bf); 46 47 ds = bf->bf_desc; 48 ds->ds_link = 0; /* link to null */ 49 ds->ds_data = bf->bf_buf_addr; 50 51 /* virtual addr of the beginning of the buffer. */ 52 skb = bf->bf_mpdu; 53 BUG_ON(skb == NULL); 54 ds->ds_vdata = skb->data; 55 56 /* 57 * setup rx descriptors. The rx_bufsize here tells the hardware 58 * how much data it can DMA to us and that we are prepared 59 * to process 60 */ 61 ath9k_hw_setuprxdesc(ah, ds, 62 common->rx_bufsize, 63 0); 64 65 if (sc->rx.rxlink == NULL) 66 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 67 else 68 *sc->rx.rxlink = bf->bf_daddr; 69 70 sc->rx.rxlink = &ds->ds_link; 71 } 72 73 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna) 74 { 75 /* XXX block beacon interrupts */ 76 ath9k_hw_setantenna(sc->sc_ah, antenna); 77 sc->rx.defant = antenna; 78 sc->rx.rxotherant = 0; 79 } 80 81 static void ath_opmode_init(struct ath_softc *sc) 82 { 83 struct ath_hw *ah = sc->sc_ah; 84 struct ath_common *common = ath9k_hw_common(ah); 85 86 u32 rfilt, mfilt[2]; 87 88 /* configure rx filter */ 89 rfilt = ath_calcrxfilter(sc); 90 ath9k_hw_setrxfilter(ah, rfilt); 91 92 /* configure bssid mask */ 93 ath_hw_setbssidmask(common); 94 95 /* configure operational mode */ 96 ath9k_hw_setopmode(ah); 97 98 /* calculate and install multicast filter */ 99 mfilt[0] = mfilt[1] = ~0; 100 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]); 101 } 102 103 static bool ath_rx_edma_buf_link(struct ath_softc *sc, 104 enum ath9k_rx_qtype qtype) 105 { 106 struct ath_hw *ah = sc->sc_ah; 107 struct ath_rx_edma *rx_edma; 108 struct sk_buff *skb; 109 struct ath_buf *bf; 110 111 rx_edma = &sc->rx.rx_edma[qtype]; 112 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize) 113 return false; 114 115 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); 116 list_del_init(&bf->list); 117 118 skb = bf->bf_mpdu; 119 120 ATH_RXBUF_RESET(bf); 121 memset(skb->data, 0, ah->caps.rx_status_len); 122 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 123 ah->caps.rx_status_len, DMA_TO_DEVICE); 124 125 SKB_CB_ATHBUF(skb) = bf; 126 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype); 127 __skb_queue_tail(&rx_edma->rx_fifo, skb); 128 129 return true; 130 } 131 132 static void ath_rx_addbuffer_edma(struct ath_softc *sc, 133 enum ath9k_rx_qtype qtype) 134 { 135 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 136 struct ath_buf *bf, *tbf; 137 138 if (list_empty(&sc->rx.rxbuf)) { 139 ath_dbg(common, QUEUE, "No free rx buf available\n"); 140 return; 141 } 142 143 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) 144 if (!ath_rx_edma_buf_link(sc, qtype)) 145 break; 146 147 } 148 149 static void ath_rx_remove_buffer(struct ath_softc *sc, 150 enum ath9k_rx_qtype qtype) 151 { 152 struct ath_buf *bf; 153 struct ath_rx_edma *rx_edma; 154 struct sk_buff *skb; 155 156 rx_edma = &sc->rx.rx_edma[qtype]; 157 158 while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) { 159 bf = SKB_CB_ATHBUF(skb); 160 BUG_ON(!bf); 161 list_add_tail(&bf->list, &sc->rx.rxbuf); 162 } 163 } 164 165 static void ath_rx_edma_cleanup(struct ath_softc *sc) 166 { 167 struct ath_hw *ah = sc->sc_ah; 168 struct ath_common *common = ath9k_hw_common(ah); 169 struct ath_buf *bf; 170 171 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 172 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 173 174 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 175 if (bf->bf_mpdu) { 176 dma_unmap_single(sc->dev, bf->bf_buf_addr, 177 common->rx_bufsize, 178 DMA_BIDIRECTIONAL); 179 dev_kfree_skb_any(bf->bf_mpdu); 180 bf->bf_buf_addr = 0; 181 bf->bf_mpdu = NULL; 182 } 183 } 184 } 185 186 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size) 187 { 188 skb_queue_head_init(&rx_edma->rx_fifo); 189 rx_edma->rx_fifo_hwsize = size; 190 } 191 192 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs) 193 { 194 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 195 struct ath_hw *ah = sc->sc_ah; 196 struct sk_buff *skb; 197 struct ath_buf *bf; 198 int error = 0, i; 199 u32 size; 200 201 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 202 ah->caps.rx_status_len); 203 204 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP], 205 ah->caps.rx_lp_qdepth); 206 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP], 207 ah->caps.rx_hp_qdepth); 208 209 size = sizeof(struct ath_buf) * nbufs; 210 bf = devm_kzalloc(sc->dev, size, GFP_KERNEL); 211 if (!bf) 212 return -ENOMEM; 213 214 INIT_LIST_HEAD(&sc->rx.rxbuf); 215 216 for (i = 0; i < nbufs; i++, bf++) { 217 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL); 218 if (!skb) { 219 error = -ENOMEM; 220 goto rx_init_fail; 221 } 222 223 memset(skb->data, 0, common->rx_bufsize); 224 bf->bf_mpdu = skb; 225 226 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 227 common->rx_bufsize, 228 DMA_BIDIRECTIONAL); 229 if (unlikely(dma_mapping_error(sc->dev, 230 bf->bf_buf_addr))) { 231 dev_kfree_skb_any(skb); 232 bf->bf_mpdu = NULL; 233 bf->bf_buf_addr = 0; 234 ath_err(common, 235 "dma_mapping_error() on RX init\n"); 236 error = -ENOMEM; 237 goto rx_init_fail; 238 } 239 240 list_add_tail(&bf->list, &sc->rx.rxbuf); 241 } 242 243 return 0; 244 245 rx_init_fail: 246 ath_rx_edma_cleanup(sc); 247 return error; 248 } 249 250 static void ath_edma_start_recv(struct ath_softc *sc) 251 { 252 ath9k_hw_rxena(sc->sc_ah); 253 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP); 254 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP); 255 ath_opmode_init(sc); 256 ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)); 257 } 258 259 static void ath_edma_stop_recv(struct ath_softc *sc) 260 { 261 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 262 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 263 } 264 265 int ath_rx_init(struct ath_softc *sc, int nbufs) 266 { 267 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 268 struct sk_buff *skb; 269 struct ath_buf *bf; 270 int error = 0; 271 272 spin_lock_init(&sc->sc_pcu_lock); 273 274 common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 + 275 sc->sc_ah->caps.rx_status_len; 276 277 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 278 return ath_rx_edma_init(sc, nbufs); 279 280 ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n", 281 common->cachelsz, common->rx_bufsize); 282 283 /* Initialize rx descriptors */ 284 285 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf, 286 "rx", nbufs, 1, 0); 287 if (error != 0) { 288 ath_err(common, 289 "failed to allocate rx descriptors: %d\n", 290 error); 291 goto err; 292 } 293 294 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 295 skb = ath_rxbuf_alloc(common, common->rx_bufsize, 296 GFP_KERNEL); 297 if (skb == NULL) { 298 error = -ENOMEM; 299 goto err; 300 } 301 302 bf->bf_mpdu = skb; 303 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 304 common->rx_bufsize, 305 DMA_FROM_DEVICE); 306 if (unlikely(dma_mapping_error(sc->dev, 307 bf->bf_buf_addr))) { 308 dev_kfree_skb_any(skb); 309 bf->bf_mpdu = NULL; 310 bf->bf_buf_addr = 0; 311 ath_err(common, 312 "dma_mapping_error() on RX init\n"); 313 error = -ENOMEM; 314 goto err; 315 } 316 } 317 sc->rx.rxlink = NULL; 318 err: 319 if (error) 320 ath_rx_cleanup(sc); 321 322 return error; 323 } 324 325 void ath_rx_cleanup(struct ath_softc *sc) 326 { 327 struct ath_hw *ah = sc->sc_ah; 328 struct ath_common *common = ath9k_hw_common(ah); 329 struct sk_buff *skb; 330 struct ath_buf *bf; 331 332 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 333 ath_rx_edma_cleanup(sc); 334 return; 335 } 336 337 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 338 skb = bf->bf_mpdu; 339 if (skb) { 340 dma_unmap_single(sc->dev, bf->bf_buf_addr, 341 common->rx_bufsize, 342 DMA_FROM_DEVICE); 343 dev_kfree_skb(skb); 344 bf->bf_buf_addr = 0; 345 bf->bf_mpdu = NULL; 346 } 347 } 348 } 349 350 /* 351 * Calculate the receive filter according to the 352 * operating mode and state: 353 * 354 * o always accept unicast, broadcast, and multicast traffic 355 * o maintain current state of phy error reception (the hal 356 * may enable phy error frames for noise immunity work) 357 * o probe request frames are accepted only when operating in 358 * hostap, adhoc, or monitor modes 359 * o enable promiscuous mode according to the interface state 360 * o accept beacons: 361 * - when operating in adhoc mode so the 802.11 layer creates 362 * node table entries for peers, 363 * - when operating in station mode for collecting rssi data when 364 * the station is otherwise quiet, or 365 * - when operating as a repeater so we see repeater-sta beacons 366 * - when scanning 367 */ 368 369 u32 ath_calcrxfilter(struct ath_softc *sc) 370 { 371 u32 rfilt; 372 373 rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST 374 | ATH9K_RX_FILTER_MCAST; 375 376 /* if operating on a DFS channel, enable radar pulse detection */ 377 if (sc->hw->conf.radar_enabled) 378 rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR; 379 380 if (sc->rx.rxfilter & FIF_PROBE_REQ) 381 rfilt |= ATH9K_RX_FILTER_PROBEREQ; 382 383 /* 384 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station 385 * mode interface or when in monitor mode. AP mode does not need this 386 * since it receives all in-BSS frames anyway. 387 */ 388 if (sc->sc_ah->is_monitoring) 389 rfilt |= ATH9K_RX_FILTER_PROM; 390 391 if (sc->rx.rxfilter & FIF_CONTROL) 392 rfilt |= ATH9K_RX_FILTER_CONTROL; 393 394 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) && 395 (sc->nvifs <= 1) && 396 !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)) 397 rfilt |= ATH9K_RX_FILTER_MYBEACON; 398 else 399 rfilt |= ATH9K_RX_FILTER_BEACON; 400 401 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) || 402 (sc->rx.rxfilter & FIF_PSPOLL)) 403 rfilt |= ATH9K_RX_FILTER_PSPOLL; 404 405 if (conf_is_ht(&sc->hw->conf)) 406 rfilt |= ATH9K_RX_FILTER_COMP_BAR; 407 408 if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) { 409 /* This is needed for older chips */ 410 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160) 411 rfilt |= ATH9K_RX_FILTER_PROM; 412 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL; 413 } 414 415 if (AR_SREV_9550(sc->sc_ah)) 416 rfilt |= ATH9K_RX_FILTER_4ADDRESS; 417 418 return rfilt; 419 420 } 421 422 int ath_startrecv(struct ath_softc *sc) 423 { 424 struct ath_hw *ah = sc->sc_ah; 425 struct ath_buf *bf, *tbf; 426 427 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 428 ath_edma_start_recv(sc); 429 return 0; 430 } 431 432 if (list_empty(&sc->rx.rxbuf)) 433 goto start_recv; 434 435 sc->rx.rxlink = NULL; 436 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) { 437 ath_rx_buf_link(sc, bf); 438 } 439 440 /* We could have deleted elements so the list may be empty now */ 441 if (list_empty(&sc->rx.rxbuf)) 442 goto start_recv; 443 444 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); 445 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 446 ath9k_hw_rxena(ah); 447 448 start_recv: 449 ath_opmode_init(sc); 450 ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)); 451 452 return 0; 453 } 454 455 static void ath_flushrecv(struct ath_softc *sc) 456 { 457 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 458 ath_rx_tasklet(sc, 1, true); 459 ath_rx_tasklet(sc, 1, false); 460 } 461 462 bool ath_stoprecv(struct ath_softc *sc) 463 { 464 struct ath_hw *ah = sc->sc_ah; 465 bool stopped, reset = false; 466 467 ath9k_hw_abortpcurecv(ah); 468 ath9k_hw_setrxfilter(ah, 0); 469 stopped = ath9k_hw_stopdmarecv(ah, &reset); 470 471 ath_flushrecv(sc); 472 473 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 474 ath_edma_stop_recv(sc); 475 else 476 sc->rx.rxlink = NULL; 477 478 if (!(ah->ah_flags & AH_UNPLUGGED) && 479 unlikely(!stopped)) { 480 ath_err(ath9k_hw_common(sc->sc_ah), 481 "Could not stop RX, we could be " 482 "confusing the DMA engine when we start RX up\n"); 483 ATH_DBG_WARN_ON_ONCE(!stopped); 484 } 485 return stopped && !reset; 486 } 487 488 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb) 489 { 490 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */ 491 struct ieee80211_mgmt *mgmt; 492 u8 *pos, *end, id, elen; 493 struct ieee80211_tim_ie *tim; 494 495 mgmt = (struct ieee80211_mgmt *)skb->data; 496 pos = mgmt->u.beacon.variable; 497 end = skb->data + skb->len; 498 499 while (pos + 2 < end) { 500 id = *pos++; 501 elen = *pos++; 502 if (pos + elen > end) 503 break; 504 505 if (id == WLAN_EID_TIM) { 506 if (elen < sizeof(*tim)) 507 break; 508 tim = (struct ieee80211_tim_ie *) pos; 509 if (tim->dtim_count != 0) 510 break; 511 return tim->bitmap_ctrl & 0x01; 512 } 513 514 pos += elen; 515 } 516 517 return false; 518 } 519 520 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb) 521 { 522 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 523 524 if (skb->len < 24 + 8 + 2 + 2) 525 return; 526 527 sc->ps_flags &= ~PS_WAIT_FOR_BEACON; 528 529 if (sc->ps_flags & PS_BEACON_SYNC) { 530 sc->ps_flags &= ~PS_BEACON_SYNC; 531 ath_dbg(common, PS, 532 "Reconfigure beacon timers based on synchronized timestamp\n"); 533 ath9k_set_beacon(sc); 534 } 535 536 if (ath_beacon_dtim_pending_cab(skb)) { 537 /* 538 * Remain awake waiting for buffered broadcast/multicast 539 * frames. If the last broadcast/multicast frame is not 540 * received properly, the next beacon frame will work as 541 * a backup trigger for returning into NETWORK SLEEP state, 542 * so we are waiting for it as well. 543 */ 544 ath_dbg(common, PS, 545 "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n"); 546 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON; 547 return; 548 } 549 550 if (sc->ps_flags & PS_WAIT_FOR_CAB) { 551 /* 552 * This can happen if a broadcast frame is dropped or the AP 553 * fails to send a frame indicating that all CAB frames have 554 * been delivered. 555 */ 556 sc->ps_flags &= ~PS_WAIT_FOR_CAB; 557 ath_dbg(common, PS, "PS wait for CAB frames timed out\n"); 558 } 559 } 560 561 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon) 562 { 563 struct ieee80211_hdr *hdr; 564 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 565 566 hdr = (struct ieee80211_hdr *)skb->data; 567 568 /* Process Beacon and CAB receive in PS state */ 569 if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc)) 570 && mybeacon) { 571 ath_rx_ps_beacon(sc, skb); 572 } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) && 573 (ieee80211_is_data(hdr->frame_control) || 574 ieee80211_is_action(hdr->frame_control)) && 575 is_multicast_ether_addr(hdr->addr1) && 576 !ieee80211_has_moredata(hdr->frame_control)) { 577 /* 578 * No more broadcast/multicast frames to be received at this 579 * point. 580 */ 581 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON); 582 ath_dbg(common, PS, 583 "All PS CAB frames received, back to sleep\n"); 584 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) && 585 !is_multicast_ether_addr(hdr->addr1) && 586 !ieee80211_has_morefrags(hdr->frame_control)) { 587 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA; 588 ath_dbg(common, PS, 589 "Going back to sleep after having received PS-Poll data (0x%lx)\n", 590 sc->ps_flags & (PS_WAIT_FOR_BEACON | 591 PS_WAIT_FOR_CAB | 592 PS_WAIT_FOR_PSPOLL_DATA | 593 PS_WAIT_FOR_TX_ACK)); 594 } 595 } 596 597 static bool ath_edma_get_buffers(struct ath_softc *sc, 598 enum ath9k_rx_qtype qtype, 599 struct ath_rx_status *rs, 600 struct ath_buf **dest) 601 { 602 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype]; 603 struct ath_hw *ah = sc->sc_ah; 604 struct ath_common *common = ath9k_hw_common(ah); 605 struct sk_buff *skb; 606 struct ath_buf *bf; 607 int ret; 608 609 skb = skb_peek(&rx_edma->rx_fifo); 610 if (!skb) 611 return false; 612 613 bf = SKB_CB_ATHBUF(skb); 614 BUG_ON(!bf); 615 616 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 617 common->rx_bufsize, DMA_FROM_DEVICE); 618 619 ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data); 620 if (ret == -EINPROGRESS) { 621 /*let device gain the buffer again*/ 622 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 623 common->rx_bufsize, DMA_FROM_DEVICE); 624 return false; 625 } 626 627 __skb_unlink(skb, &rx_edma->rx_fifo); 628 if (ret == -EINVAL) { 629 /* corrupt descriptor, skip this one and the following one */ 630 list_add_tail(&bf->list, &sc->rx.rxbuf); 631 ath_rx_edma_buf_link(sc, qtype); 632 633 skb = skb_peek(&rx_edma->rx_fifo); 634 if (skb) { 635 bf = SKB_CB_ATHBUF(skb); 636 BUG_ON(!bf); 637 638 __skb_unlink(skb, &rx_edma->rx_fifo); 639 list_add_tail(&bf->list, &sc->rx.rxbuf); 640 ath_rx_edma_buf_link(sc, qtype); 641 } 642 643 bf = NULL; 644 } 645 646 *dest = bf; 647 return true; 648 } 649 650 static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc, 651 struct ath_rx_status *rs, 652 enum ath9k_rx_qtype qtype) 653 { 654 struct ath_buf *bf = NULL; 655 656 while (ath_edma_get_buffers(sc, qtype, rs, &bf)) { 657 if (!bf) 658 continue; 659 660 return bf; 661 } 662 return NULL; 663 } 664 665 static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc, 666 struct ath_rx_status *rs) 667 { 668 struct ath_hw *ah = sc->sc_ah; 669 struct ath_common *common = ath9k_hw_common(ah); 670 struct ath_desc *ds; 671 struct ath_buf *bf; 672 int ret; 673 674 if (list_empty(&sc->rx.rxbuf)) { 675 sc->rx.rxlink = NULL; 676 return NULL; 677 } 678 679 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); 680 ds = bf->bf_desc; 681 682 /* 683 * Must provide the virtual address of the current 684 * descriptor, the physical address, and the virtual 685 * address of the next descriptor in the h/w chain. 686 * This allows the HAL to look ahead to see if the 687 * hardware is done with a descriptor by checking the 688 * done bit in the following descriptor and the address 689 * of the current descriptor the DMA engine is working 690 * on. All this is necessary because of our use of 691 * a self-linked list to avoid rx overruns. 692 */ 693 ret = ath9k_hw_rxprocdesc(ah, ds, rs); 694 if (ret == -EINPROGRESS) { 695 struct ath_rx_status trs; 696 struct ath_buf *tbf; 697 struct ath_desc *tds; 698 699 memset(&trs, 0, sizeof(trs)); 700 if (list_is_last(&bf->list, &sc->rx.rxbuf)) { 701 sc->rx.rxlink = NULL; 702 return NULL; 703 } 704 705 tbf = list_entry(bf->list.next, struct ath_buf, list); 706 707 /* 708 * On some hardware the descriptor status words could 709 * get corrupted, including the done bit. Because of 710 * this, check if the next descriptor's done bit is 711 * set or not. 712 * 713 * If the next descriptor's done bit is set, the current 714 * descriptor has been corrupted. Force s/w to discard 715 * this descriptor and continue... 716 */ 717 718 tds = tbf->bf_desc; 719 ret = ath9k_hw_rxprocdesc(ah, tds, &trs); 720 if (ret == -EINPROGRESS) 721 return NULL; 722 723 /* 724 * mark descriptor as zero-length and set the 'more' 725 * flag to ensure that both buffers get discarded 726 */ 727 rs->rs_datalen = 0; 728 rs->rs_more = true; 729 } 730 731 list_del(&bf->list); 732 if (!bf->bf_mpdu) 733 return bf; 734 735 /* 736 * Synchronize the DMA transfer with CPU before 737 * 1. accessing the frame 738 * 2. requeueing the same buffer to h/w 739 */ 740 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 741 common->rx_bufsize, 742 DMA_FROM_DEVICE); 743 744 return bf; 745 } 746 747 /* Assumes you've already done the endian to CPU conversion */ 748 static bool ath9k_rx_accept(struct ath_common *common, 749 struct ieee80211_hdr *hdr, 750 struct ieee80211_rx_status *rxs, 751 struct ath_rx_status *rx_stats, 752 bool *decrypt_error) 753 { 754 struct ath_softc *sc = (struct ath_softc *) common->priv; 755 bool is_mc, is_valid_tkip, strip_mic, mic_error; 756 struct ath_hw *ah = common->ah; 757 __le16 fc; 758 u8 rx_status_len = ah->caps.rx_status_len; 759 760 fc = hdr->frame_control; 761 762 is_mc = !!is_multicast_ether_addr(hdr->addr1); 763 is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID && 764 test_bit(rx_stats->rs_keyix, common->tkip_keymap); 765 strip_mic = is_valid_tkip && ieee80211_is_data(fc) && 766 ieee80211_has_protected(fc) && 767 !(rx_stats->rs_status & 768 (ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC | 769 ATH9K_RXERR_KEYMISS)); 770 771 /* 772 * Key miss events are only relevant for pairwise keys where the 773 * descriptor does contain a valid key index. This has been observed 774 * mostly with CCMP encryption. 775 */ 776 if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID || 777 !test_bit(rx_stats->rs_keyix, common->ccmp_keymap)) 778 rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS; 779 780 if (!rx_stats->rs_datalen) { 781 RX_STAT_INC(rx_len_err); 782 return false; 783 } 784 785 /* 786 * rs_status follows rs_datalen so if rs_datalen is too large 787 * we can take a hint that hardware corrupted it, so ignore 788 * those frames. 789 */ 790 if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len)) { 791 RX_STAT_INC(rx_len_err); 792 return false; 793 } 794 795 /* Only use error bits from the last fragment */ 796 if (rx_stats->rs_more) 797 return true; 798 799 mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) && 800 !ieee80211_has_morefrags(fc) && 801 !(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) && 802 (rx_stats->rs_status & ATH9K_RXERR_MIC); 803 804 /* 805 * The rx_stats->rs_status will not be set until the end of the 806 * chained descriptors so it can be ignored if rs_more is set. The 807 * rs_more will be false at the last element of the chained 808 * descriptors. 809 */ 810 if (rx_stats->rs_status != 0) { 811 u8 status_mask; 812 813 if (rx_stats->rs_status & ATH9K_RXERR_CRC) { 814 rxs->flag |= RX_FLAG_FAILED_FCS_CRC; 815 mic_error = false; 816 } 817 if (rx_stats->rs_status & ATH9K_RXERR_PHY) 818 return false; 819 820 if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) || 821 (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) { 822 *decrypt_error = true; 823 mic_error = false; 824 } 825 826 /* 827 * Reject error frames with the exception of 828 * decryption and MIC failures. For monitor mode, 829 * we also ignore the CRC error. 830 */ 831 status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC | 832 ATH9K_RXERR_KEYMISS; 833 834 if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL)) 835 status_mask |= ATH9K_RXERR_CRC; 836 837 if (rx_stats->rs_status & ~status_mask) 838 return false; 839 } 840 841 /* 842 * For unicast frames the MIC error bit can have false positives, 843 * so all MIC error reports need to be validated in software. 844 * False negatives are not common, so skip software verification 845 * if the hardware considers the MIC valid. 846 */ 847 if (strip_mic) 848 rxs->flag |= RX_FLAG_MMIC_STRIPPED; 849 else if (is_mc && mic_error) 850 rxs->flag |= RX_FLAG_MMIC_ERROR; 851 852 return true; 853 } 854 855 static int ath9k_process_rate(struct ath_common *common, 856 struct ieee80211_hw *hw, 857 struct ath_rx_status *rx_stats, 858 struct ieee80211_rx_status *rxs) 859 { 860 struct ieee80211_supported_band *sband; 861 enum ieee80211_band band; 862 unsigned int i = 0; 863 struct ath_softc __maybe_unused *sc = common->priv; 864 865 band = hw->conf.chandef.chan->band; 866 sband = hw->wiphy->bands[band]; 867 868 if (rx_stats->rs_rate & 0x80) { 869 /* HT rate */ 870 rxs->flag |= RX_FLAG_HT; 871 rxs->flag |= rx_stats->flag; 872 rxs->rate_idx = rx_stats->rs_rate & 0x7f; 873 return 0; 874 } 875 876 for (i = 0; i < sband->n_bitrates; i++) { 877 if (sband->bitrates[i].hw_value == rx_stats->rs_rate) { 878 rxs->rate_idx = i; 879 return 0; 880 } 881 if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) { 882 rxs->flag |= RX_FLAG_SHORTPRE; 883 rxs->rate_idx = i; 884 return 0; 885 } 886 } 887 888 /* 889 * No valid hardware bitrate found -- we should not get here 890 * because hardware has already validated this frame as OK. 891 */ 892 ath_dbg(common, ANY, 893 "unsupported hw bitrate detected 0x%02x using 1 Mbit\n", 894 rx_stats->rs_rate); 895 RX_STAT_INC(rx_rate_err); 896 return -EINVAL; 897 } 898 899 static void ath9k_process_rssi(struct ath_common *common, 900 struct ieee80211_hw *hw, 901 struct ieee80211_hdr *hdr, 902 struct ath_rx_status *rx_stats) 903 { 904 struct ath_softc *sc = hw->priv; 905 struct ath_hw *ah = common->ah; 906 int last_rssi; 907 int rssi = rx_stats->rs_rssi; 908 909 if (!rx_stats->is_mybeacon || 910 ((ah->opmode != NL80211_IFTYPE_STATION) && 911 (ah->opmode != NL80211_IFTYPE_ADHOC))) 912 return; 913 914 if (rx_stats->rs_rssi != ATH9K_RSSI_BAD && !rx_stats->rs_moreaggr) 915 ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi); 916 917 last_rssi = sc->last_rssi; 918 if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER)) 919 rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER); 920 if (rssi < 0) 921 rssi = 0; 922 923 /* Update Beacon RSSI, this is used by ANI. */ 924 ah->stats.avgbrssi = rssi; 925 } 926 927 /* 928 * For Decrypt or Demic errors, we only mark packet status here and always push 929 * up the frame up to let mac80211 handle the actual error case, be it no 930 * decryption key or real decryption error. This let us keep statistics there. 931 */ 932 static int ath9k_rx_skb_preprocess(struct ath_softc *sc, 933 struct ieee80211_hdr *hdr, 934 struct ath_rx_status *rx_stats, 935 struct ieee80211_rx_status *rx_status, 936 bool *decrypt_error) 937 { 938 struct ieee80211_hw *hw = sc->hw; 939 struct ath_hw *ah = sc->sc_ah; 940 struct ath_common *common = ath9k_hw_common(ah); 941 bool discard_current = sc->rx.discard_next; 942 943 sc->rx.discard_next = rx_stats->rs_more; 944 if (discard_current) 945 return -EINVAL; 946 947 /* 948 * everything but the rate is checked here, the rate check is done 949 * separately to avoid doing two lookups for a rate for each frame. 950 */ 951 if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error)) 952 return -EINVAL; 953 954 /* Only use status info from the last fragment */ 955 if (rx_stats->rs_more) 956 return 0; 957 958 if (ath9k_process_rate(common, hw, rx_stats, rx_status)) 959 return -EINVAL; 960 961 ath9k_process_rssi(common, hw, hdr, rx_stats); 962 963 rx_status->band = hw->conf.chandef.chan->band; 964 rx_status->freq = hw->conf.chandef.chan->center_freq; 965 rx_status->signal = ah->noise + rx_stats->rs_rssi; 966 rx_status->antenna = rx_stats->rs_antenna; 967 rx_status->flag |= RX_FLAG_MACTIME_END; 968 if (rx_stats->rs_moreaggr) 969 rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL; 970 971 sc->rx.discard_next = false; 972 return 0; 973 } 974 975 static void ath9k_rx_skb_postprocess(struct ath_common *common, 976 struct sk_buff *skb, 977 struct ath_rx_status *rx_stats, 978 struct ieee80211_rx_status *rxs, 979 bool decrypt_error) 980 { 981 struct ath_hw *ah = common->ah; 982 struct ieee80211_hdr *hdr; 983 int hdrlen, padpos, padsize; 984 u8 keyix; 985 __le16 fc; 986 987 /* see if any padding is done by the hw and remove it */ 988 hdr = (struct ieee80211_hdr *) skb->data; 989 hdrlen = ieee80211_get_hdrlen_from_skb(skb); 990 fc = hdr->frame_control; 991 padpos = ieee80211_hdrlen(fc); 992 993 /* The MAC header is padded to have 32-bit boundary if the 994 * packet payload is non-zero. The general calculation for 995 * padsize would take into account odd header lengths: 996 * padsize = (4 - padpos % 4) % 4; However, since only 997 * even-length headers are used, padding can only be 0 or 2 998 * bytes and we can optimize this a bit. In addition, we must 999 * not try to remove padding from short control frames that do 1000 * not have payload. */ 1001 padsize = padpos & 3; 1002 if (padsize && skb->len>=padpos+padsize+FCS_LEN) { 1003 memmove(skb->data + padsize, skb->data, padpos); 1004 skb_pull(skb, padsize); 1005 } 1006 1007 keyix = rx_stats->rs_keyix; 1008 1009 if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error && 1010 ieee80211_has_protected(fc)) { 1011 rxs->flag |= RX_FLAG_DECRYPTED; 1012 } else if (ieee80211_has_protected(fc) 1013 && !decrypt_error && skb->len >= hdrlen + 4) { 1014 keyix = skb->data[hdrlen + 3] >> 6; 1015 1016 if (test_bit(keyix, common->keymap)) 1017 rxs->flag |= RX_FLAG_DECRYPTED; 1018 } 1019 if (ah->sw_mgmt_crypto && 1020 (rxs->flag & RX_FLAG_DECRYPTED) && 1021 ieee80211_is_mgmt(fc)) 1022 /* Use software decrypt for management frames. */ 1023 rxs->flag &= ~RX_FLAG_DECRYPTED; 1024 } 1025 1026 #ifdef CONFIG_ATH9K_DEBUGFS 1027 static s8 fix_rssi_inv_only(u8 rssi_val) 1028 { 1029 if (rssi_val == 128) 1030 rssi_val = 0; 1031 return (s8) rssi_val; 1032 } 1033 #endif 1034 1035 /* returns 1 if this was a spectral frame, even if not handled. */ 1036 static int ath_process_fft(struct ath_softc *sc, struct ieee80211_hdr *hdr, 1037 struct ath_rx_status *rs, u64 tsf) 1038 { 1039 #ifdef CONFIG_ATH9K_DEBUGFS 1040 struct ath_hw *ah = sc->sc_ah; 1041 u8 bins[SPECTRAL_HT20_NUM_BINS]; 1042 u8 *vdata = (u8 *)hdr; 1043 struct fft_sample_ht20 fft_sample; 1044 struct ath_radar_info *radar_info; 1045 struct ath_ht20_mag_info *mag_info; 1046 int len = rs->rs_datalen; 1047 int dc_pos; 1048 u16 length, max_magnitude; 1049 1050 /* AR9280 and before report via ATH9K_PHYERR_RADAR, AR93xx and newer 1051 * via ATH9K_PHYERR_SPECTRAL. Haven't seen ATH9K_PHYERR_FALSE_RADAR_EXT 1052 * yet, but this is supposed to be possible as well. 1053 */ 1054 if (rs->rs_phyerr != ATH9K_PHYERR_RADAR && 1055 rs->rs_phyerr != ATH9K_PHYERR_FALSE_RADAR_EXT && 1056 rs->rs_phyerr != ATH9K_PHYERR_SPECTRAL) 1057 return 0; 1058 1059 /* check if spectral scan bit is set. This does not have to be checked 1060 * if received through a SPECTRAL phy error, but shouldn't hurt. 1061 */ 1062 radar_info = ((struct ath_radar_info *)&vdata[len]) - 1; 1063 if (!(radar_info->pulse_bw_info & SPECTRAL_SCAN_BITMASK)) 1064 return 0; 1065 1066 /* Variation in the data length is possible and will be fixed later. 1067 * Note that we only support HT20 for now. 1068 * 1069 * TODO: add HT20_40 support as well. 1070 */ 1071 if ((len > SPECTRAL_HT20_TOTAL_DATA_LEN + 2) || 1072 (len < SPECTRAL_HT20_TOTAL_DATA_LEN - 1)) 1073 return 1; 1074 1075 fft_sample.tlv.type = ATH_FFT_SAMPLE_HT20; 1076 length = sizeof(fft_sample) - sizeof(fft_sample.tlv); 1077 fft_sample.tlv.length = __cpu_to_be16(length); 1078 1079 fft_sample.freq = __cpu_to_be16(ah->curchan->chan->center_freq); 1080 fft_sample.rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0); 1081 fft_sample.noise = ah->noise; 1082 1083 switch (len - SPECTRAL_HT20_TOTAL_DATA_LEN) { 1084 case 0: 1085 /* length correct, nothing to do. */ 1086 memcpy(bins, vdata, SPECTRAL_HT20_NUM_BINS); 1087 break; 1088 case -1: 1089 /* first byte missing, duplicate it. */ 1090 memcpy(&bins[1], vdata, SPECTRAL_HT20_NUM_BINS - 1); 1091 bins[0] = vdata[0]; 1092 break; 1093 case 2: 1094 /* MAC added 2 extra bytes at bin 30 and 32, remove them. */ 1095 memcpy(bins, vdata, 30); 1096 bins[30] = vdata[31]; 1097 memcpy(&bins[31], &vdata[33], SPECTRAL_HT20_NUM_BINS - 31); 1098 break; 1099 case 1: 1100 /* MAC added 2 extra bytes AND first byte is missing. */ 1101 bins[0] = vdata[0]; 1102 memcpy(&bins[0], vdata, 30); 1103 bins[31] = vdata[31]; 1104 memcpy(&bins[32], &vdata[33], SPECTRAL_HT20_NUM_BINS - 32); 1105 break; 1106 default: 1107 return 1; 1108 } 1109 1110 /* DC value (value in the middle) is the blind spot of the spectral 1111 * sample and invalid, interpolate it. 1112 */ 1113 dc_pos = SPECTRAL_HT20_NUM_BINS / 2; 1114 bins[dc_pos] = (bins[dc_pos + 1] + bins[dc_pos - 1]) / 2; 1115 1116 /* mag data is at the end of the frame, in front of radar_info */ 1117 mag_info = ((struct ath_ht20_mag_info *)radar_info) - 1; 1118 1119 /* copy raw bins without scaling them */ 1120 memcpy(fft_sample.data, bins, SPECTRAL_HT20_NUM_BINS); 1121 fft_sample.max_exp = mag_info->max_exp & 0xf; 1122 1123 max_magnitude = spectral_max_magnitude(mag_info->all_bins); 1124 fft_sample.max_magnitude = __cpu_to_be16(max_magnitude); 1125 fft_sample.max_index = spectral_max_index(mag_info->all_bins); 1126 fft_sample.bitmap_weight = spectral_bitmap_weight(mag_info->all_bins); 1127 fft_sample.tsf = __cpu_to_be64(tsf); 1128 1129 ath_debug_send_fft_sample(sc, &fft_sample.tlv); 1130 return 1; 1131 #else 1132 return 0; 1133 #endif 1134 } 1135 1136 static void ath9k_apply_ampdu_details(struct ath_softc *sc, 1137 struct ath_rx_status *rs, struct ieee80211_rx_status *rxs) 1138 { 1139 if (rs->rs_isaggr) { 1140 rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 1141 1142 rxs->ampdu_reference = sc->rx.ampdu_ref; 1143 1144 if (!rs->rs_moreaggr) { 1145 rxs->flag |= RX_FLAG_AMPDU_IS_LAST; 1146 sc->rx.ampdu_ref++; 1147 } 1148 1149 if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE) 1150 rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR; 1151 } 1152 } 1153 1154 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp) 1155 { 1156 struct ath_buf *bf; 1157 struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb; 1158 struct ieee80211_rx_status *rxs; 1159 struct ath_hw *ah = sc->sc_ah; 1160 struct ath_common *common = ath9k_hw_common(ah); 1161 struct ieee80211_hw *hw = sc->hw; 1162 struct ieee80211_hdr *hdr; 1163 int retval; 1164 struct ath_rx_status rs; 1165 enum ath9k_rx_qtype qtype; 1166 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1167 int dma_type; 1168 u8 rx_status_len = ah->caps.rx_status_len; 1169 u64 tsf = 0; 1170 u32 tsf_lower = 0; 1171 unsigned long flags; 1172 dma_addr_t new_buf_addr; 1173 1174 if (edma) 1175 dma_type = DMA_BIDIRECTIONAL; 1176 else 1177 dma_type = DMA_FROM_DEVICE; 1178 1179 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP; 1180 1181 tsf = ath9k_hw_gettsf64(ah); 1182 tsf_lower = tsf & 0xffffffff; 1183 1184 do { 1185 bool decrypt_error = false; 1186 1187 memset(&rs, 0, sizeof(rs)); 1188 if (edma) 1189 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype); 1190 else 1191 bf = ath_get_next_rx_buf(sc, &rs); 1192 1193 if (!bf) 1194 break; 1195 1196 skb = bf->bf_mpdu; 1197 if (!skb) 1198 continue; 1199 1200 /* 1201 * Take frame header from the first fragment and RX status from 1202 * the last one. 1203 */ 1204 if (sc->rx.frag) 1205 hdr_skb = sc->rx.frag; 1206 else 1207 hdr_skb = skb; 1208 1209 hdr = (struct ieee80211_hdr *) (hdr_skb->data + rx_status_len); 1210 rxs = IEEE80211_SKB_RXCB(hdr_skb); 1211 if (ieee80211_is_beacon(hdr->frame_control)) { 1212 RX_STAT_INC(rx_beacons); 1213 if (!is_zero_ether_addr(common->curbssid) && 1214 ether_addr_equal(hdr->addr3, common->curbssid)) 1215 rs.is_mybeacon = true; 1216 else 1217 rs.is_mybeacon = false; 1218 } 1219 else 1220 rs.is_mybeacon = false; 1221 1222 if (ieee80211_is_data_present(hdr->frame_control) && 1223 !ieee80211_is_qos_nullfunc(hdr->frame_control)) 1224 sc->rx.num_pkts++; 1225 1226 ath_debug_stat_rx(sc, &rs); 1227 1228 memset(rxs, 0, sizeof(struct ieee80211_rx_status)); 1229 1230 rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp; 1231 if (rs.rs_tstamp > tsf_lower && 1232 unlikely(rs.rs_tstamp - tsf_lower > 0x10000000)) 1233 rxs->mactime -= 0x100000000ULL; 1234 1235 if (rs.rs_tstamp < tsf_lower && 1236 unlikely(tsf_lower - rs.rs_tstamp > 0x10000000)) 1237 rxs->mactime += 0x100000000ULL; 1238 1239 if (rs.rs_phyerr == ATH9K_PHYERR_RADAR) 1240 ath9k_dfs_process_phyerr(sc, hdr, &rs, rxs->mactime); 1241 1242 if (rs.rs_status & ATH9K_RXERR_PHY) { 1243 if (ath_process_fft(sc, hdr, &rs, rxs->mactime)) { 1244 RX_STAT_INC(rx_spectral); 1245 goto requeue_drop_frag; 1246 } 1247 } 1248 1249 retval = ath9k_rx_skb_preprocess(sc, hdr, &rs, rxs, 1250 &decrypt_error); 1251 if (retval) 1252 goto requeue_drop_frag; 1253 1254 if (rs.is_mybeacon) { 1255 sc->hw_busy_count = 0; 1256 ath_start_rx_poll(sc, 3); 1257 } 1258 /* Ensure we always have an skb to requeue once we are done 1259 * processing the current buffer's skb */ 1260 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC); 1261 1262 /* If there is no memory we ignore the current RX'd frame, 1263 * tell hardware it can give us a new frame using the old 1264 * skb and put it at the tail of the sc->rx.rxbuf list for 1265 * processing. */ 1266 if (!requeue_skb) { 1267 RX_STAT_INC(rx_oom_err); 1268 goto requeue_drop_frag; 1269 } 1270 1271 /* We will now give hardware our shiny new allocated skb */ 1272 new_buf_addr = dma_map_single(sc->dev, requeue_skb->data, 1273 common->rx_bufsize, dma_type); 1274 if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) { 1275 dev_kfree_skb_any(requeue_skb); 1276 goto requeue_drop_frag; 1277 } 1278 1279 /* Unmap the frame */ 1280 dma_unmap_single(sc->dev, bf->bf_buf_addr, 1281 common->rx_bufsize, dma_type); 1282 1283 bf->bf_mpdu = requeue_skb; 1284 bf->bf_buf_addr = new_buf_addr; 1285 1286 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len); 1287 if (ah->caps.rx_status_len) 1288 skb_pull(skb, ah->caps.rx_status_len); 1289 1290 if (!rs.rs_more) 1291 ath9k_rx_skb_postprocess(common, hdr_skb, &rs, 1292 rxs, decrypt_error); 1293 1294 if (rs.rs_more) { 1295 RX_STAT_INC(rx_frags); 1296 /* 1297 * rs_more indicates chained descriptors which can be 1298 * used to link buffers together for a sort of 1299 * scatter-gather operation. 1300 */ 1301 if (sc->rx.frag) { 1302 /* too many fragments - cannot handle frame */ 1303 dev_kfree_skb_any(sc->rx.frag); 1304 dev_kfree_skb_any(skb); 1305 RX_STAT_INC(rx_too_many_frags_err); 1306 skb = NULL; 1307 } 1308 sc->rx.frag = skb; 1309 goto requeue; 1310 } 1311 if (rs.rs_status & ATH9K_RXERR_CORRUPT_DESC) 1312 goto requeue_drop_frag; 1313 1314 if (sc->rx.frag) { 1315 int space = skb->len - skb_tailroom(hdr_skb); 1316 1317 if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) { 1318 dev_kfree_skb(skb); 1319 RX_STAT_INC(rx_oom_err); 1320 goto requeue_drop_frag; 1321 } 1322 1323 sc->rx.frag = NULL; 1324 1325 skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len), 1326 skb->len); 1327 dev_kfree_skb_any(skb); 1328 skb = hdr_skb; 1329 } 1330 1331 1332 if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) { 1333 1334 /* 1335 * change the default rx antenna if rx diversity 1336 * chooses the other antenna 3 times in a row. 1337 */ 1338 if (sc->rx.defant != rs.rs_antenna) { 1339 if (++sc->rx.rxotherant >= 3) 1340 ath_setdefantenna(sc, rs.rs_antenna); 1341 } else { 1342 sc->rx.rxotherant = 0; 1343 } 1344 1345 } 1346 1347 if (rxs->flag & RX_FLAG_MMIC_STRIPPED) 1348 skb_trim(skb, skb->len - 8); 1349 1350 spin_lock_irqsave(&sc->sc_pm_lock, flags); 1351 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON | 1352 PS_WAIT_FOR_CAB | 1353 PS_WAIT_FOR_PSPOLL_DATA)) || 1354 ath9k_check_auto_sleep(sc)) 1355 ath_rx_ps(sc, skb, rs.is_mybeacon); 1356 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 1357 1358 if ((ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) && sc->ant_rx == 3) 1359 ath_ant_comb_scan(sc, &rs); 1360 1361 ath9k_apply_ampdu_details(sc, &rs, rxs); 1362 1363 ieee80211_rx(hw, skb); 1364 1365 requeue_drop_frag: 1366 if (sc->rx.frag) { 1367 dev_kfree_skb_any(sc->rx.frag); 1368 sc->rx.frag = NULL; 1369 } 1370 requeue: 1371 list_add_tail(&bf->list, &sc->rx.rxbuf); 1372 if (flush) 1373 continue; 1374 1375 if (edma) { 1376 ath_rx_edma_buf_link(sc, qtype); 1377 } else { 1378 ath_rx_buf_link(sc, bf); 1379 ath9k_hw_rxena(ah); 1380 } 1381 } while (1); 1382 1383 if (!(ah->imask & ATH9K_INT_RXEOL)) { 1384 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN); 1385 ath9k_hw_set_interrupts(ah); 1386 } 1387 1388 return 0; 1389 } 1390