1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include "ath9k.h" 19 #include "ar9003_mac.h" 20 21 #define SKB_CB_ATHBUF(__skb) (*((struct ath_rxbuf **)__skb->cb)) 22 23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc) 24 { 25 return sc->ps_enabled && 26 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP); 27 } 28 29 /* 30 * Setup and link descriptors. 31 * 32 * 11N: we can no longer afford to self link the last descriptor. 33 * MAC acknowledges BA status as long as it copies frames to host 34 * buffer (or rx fifo). This can incorrectly acknowledge packets 35 * to a sender if last desc is self-linked. 36 */ 37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_rxbuf *bf) 38 { 39 struct ath_hw *ah = sc->sc_ah; 40 struct ath_common *common = ath9k_hw_common(ah); 41 struct ath_desc *ds; 42 struct sk_buff *skb; 43 44 ds = bf->bf_desc; 45 ds->ds_link = 0; /* link to null */ 46 ds->ds_data = bf->bf_buf_addr; 47 48 /* virtual addr of the beginning of the buffer. */ 49 skb = bf->bf_mpdu; 50 BUG_ON(skb == NULL); 51 ds->ds_vdata = skb->data; 52 53 /* 54 * setup rx descriptors. The rx_bufsize here tells the hardware 55 * how much data it can DMA to us and that we are prepared 56 * to process 57 */ 58 ath9k_hw_setuprxdesc(ah, ds, 59 common->rx_bufsize, 60 0); 61 62 if (sc->rx.rxlink == NULL) 63 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 64 else 65 *sc->rx.rxlink = bf->bf_daddr; 66 67 sc->rx.rxlink = &ds->ds_link; 68 } 69 70 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_rxbuf *bf) 71 { 72 if (sc->rx.buf_hold) 73 ath_rx_buf_link(sc, sc->rx.buf_hold); 74 75 sc->rx.buf_hold = bf; 76 } 77 78 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna) 79 { 80 /* XXX block beacon interrupts */ 81 ath9k_hw_setantenna(sc->sc_ah, antenna); 82 sc->rx.defant = antenna; 83 sc->rx.rxotherant = 0; 84 } 85 86 static void ath_opmode_init(struct ath_softc *sc) 87 { 88 struct ath_hw *ah = sc->sc_ah; 89 struct ath_common *common = ath9k_hw_common(ah); 90 91 u32 rfilt, mfilt[2]; 92 93 /* configure rx filter */ 94 rfilt = ath_calcrxfilter(sc); 95 ath9k_hw_setrxfilter(ah, rfilt); 96 97 /* configure bssid mask */ 98 ath_hw_setbssidmask(common); 99 100 /* configure operational mode */ 101 ath9k_hw_setopmode(ah); 102 103 /* calculate and install multicast filter */ 104 mfilt[0] = mfilt[1] = ~0; 105 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]); 106 } 107 108 static bool ath_rx_edma_buf_link(struct ath_softc *sc, 109 enum ath9k_rx_qtype qtype) 110 { 111 struct ath_hw *ah = sc->sc_ah; 112 struct ath_rx_edma *rx_edma; 113 struct sk_buff *skb; 114 struct ath_rxbuf *bf; 115 116 rx_edma = &sc->rx.rx_edma[qtype]; 117 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize) 118 return false; 119 120 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list); 121 list_del_init(&bf->list); 122 123 skb = bf->bf_mpdu; 124 125 memset(skb->data, 0, ah->caps.rx_status_len); 126 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 127 ah->caps.rx_status_len, DMA_TO_DEVICE); 128 129 SKB_CB_ATHBUF(skb) = bf; 130 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype); 131 __skb_queue_tail(&rx_edma->rx_fifo, skb); 132 133 return true; 134 } 135 136 static void ath_rx_addbuffer_edma(struct ath_softc *sc, 137 enum ath9k_rx_qtype qtype) 138 { 139 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 140 struct ath_rxbuf *bf, *tbf; 141 142 if (list_empty(&sc->rx.rxbuf)) { 143 ath_dbg(common, QUEUE, "No free rx buf available\n"); 144 return; 145 } 146 147 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) 148 if (!ath_rx_edma_buf_link(sc, qtype)) 149 break; 150 151 } 152 153 static void ath_rx_remove_buffer(struct ath_softc *sc, 154 enum ath9k_rx_qtype qtype) 155 { 156 struct ath_rxbuf *bf; 157 struct ath_rx_edma *rx_edma; 158 struct sk_buff *skb; 159 160 rx_edma = &sc->rx.rx_edma[qtype]; 161 162 while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) { 163 bf = SKB_CB_ATHBUF(skb); 164 BUG_ON(!bf); 165 list_add_tail(&bf->list, &sc->rx.rxbuf); 166 } 167 } 168 169 static void ath_rx_edma_cleanup(struct ath_softc *sc) 170 { 171 struct ath_hw *ah = sc->sc_ah; 172 struct ath_common *common = ath9k_hw_common(ah); 173 struct ath_rxbuf *bf; 174 175 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 176 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 177 178 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 179 if (bf->bf_mpdu) { 180 dma_unmap_single(sc->dev, bf->bf_buf_addr, 181 common->rx_bufsize, 182 DMA_BIDIRECTIONAL); 183 dev_kfree_skb_any(bf->bf_mpdu); 184 bf->bf_buf_addr = 0; 185 bf->bf_mpdu = NULL; 186 } 187 } 188 } 189 190 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size) 191 { 192 __skb_queue_head_init(&rx_edma->rx_fifo); 193 rx_edma->rx_fifo_hwsize = size; 194 } 195 196 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs) 197 { 198 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 199 struct ath_hw *ah = sc->sc_ah; 200 struct sk_buff *skb; 201 struct ath_rxbuf *bf; 202 int error = 0, i; 203 u32 size; 204 205 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 206 ah->caps.rx_status_len); 207 208 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP], 209 ah->caps.rx_lp_qdepth); 210 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP], 211 ah->caps.rx_hp_qdepth); 212 213 size = sizeof(struct ath_rxbuf) * nbufs; 214 bf = devm_kzalloc(sc->dev, size, GFP_KERNEL); 215 if (!bf) 216 return -ENOMEM; 217 218 INIT_LIST_HEAD(&sc->rx.rxbuf); 219 220 for (i = 0; i < nbufs; i++, bf++) { 221 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL); 222 if (!skb) { 223 error = -ENOMEM; 224 goto rx_init_fail; 225 } 226 227 memset(skb->data, 0, common->rx_bufsize); 228 bf->bf_mpdu = skb; 229 230 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 231 common->rx_bufsize, 232 DMA_BIDIRECTIONAL); 233 if (unlikely(dma_mapping_error(sc->dev, 234 bf->bf_buf_addr))) { 235 dev_kfree_skb_any(skb); 236 bf->bf_mpdu = NULL; 237 bf->bf_buf_addr = 0; 238 ath_err(common, 239 "dma_mapping_error() on RX init\n"); 240 error = -ENOMEM; 241 goto rx_init_fail; 242 } 243 244 list_add_tail(&bf->list, &sc->rx.rxbuf); 245 } 246 247 return 0; 248 249 rx_init_fail: 250 ath_rx_edma_cleanup(sc); 251 return error; 252 } 253 254 static void ath_edma_start_recv(struct ath_softc *sc) 255 { 256 ath9k_hw_rxena(sc->sc_ah); 257 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP); 258 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP); 259 ath_opmode_init(sc); 260 ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)); 261 } 262 263 static void ath_edma_stop_recv(struct ath_softc *sc) 264 { 265 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 266 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 267 } 268 269 int ath_rx_init(struct ath_softc *sc, int nbufs) 270 { 271 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 272 struct sk_buff *skb; 273 struct ath_rxbuf *bf; 274 int error = 0; 275 276 spin_lock_init(&sc->sc_pcu_lock); 277 278 common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 + 279 sc->sc_ah->caps.rx_status_len; 280 281 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 282 return ath_rx_edma_init(sc, nbufs); 283 284 ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n", 285 common->cachelsz, common->rx_bufsize); 286 287 /* Initialize rx descriptors */ 288 289 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf, 290 "rx", nbufs, 1, 0); 291 if (error != 0) { 292 ath_err(common, 293 "failed to allocate rx descriptors: %d\n", 294 error); 295 goto err; 296 } 297 298 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 299 skb = ath_rxbuf_alloc(common, common->rx_bufsize, 300 GFP_KERNEL); 301 if (skb == NULL) { 302 error = -ENOMEM; 303 goto err; 304 } 305 306 bf->bf_mpdu = skb; 307 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 308 common->rx_bufsize, 309 DMA_FROM_DEVICE); 310 if (unlikely(dma_mapping_error(sc->dev, 311 bf->bf_buf_addr))) { 312 dev_kfree_skb_any(skb); 313 bf->bf_mpdu = NULL; 314 bf->bf_buf_addr = 0; 315 ath_err(common, 316 "dma_mapping_error() on RX init\n"); 317 error = -ENOMEM; 318 goto err; 319 } 320 } 321 sc->rx.rxlink = NULL; 322 err: 323 if (error) 324 ath_rx_cleanup(sc); 325 326 return error; 327 } 328 329 void ath_rx_cleanup(struct ath_softc *sc) 330 { 331 struct ath_hw *ah = sc->sc_ah; 332 struct ath_common *common = ath9k_hw_common(ah); 333 struct sk_buff *skb; 334 struct ath_rxbuf *bf; 335 336 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 337 ath_rx_edma_cleanup(sc); 338 return; 339 } 340 341 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 342 skb = bf->bf_mpdu; 343 if (skb) { 344 dma_unmap_single(sc->dev, bf->bf_buf_addr, 345 common->rx_bufsize, 346 DMA_FROM_DEVICE); 347 dev_kfree_skb(skb); 348 bf->bf_buf_addr = 0; 349 bf->bf_mpdu = NULL; 350 } 351 } 352 } 353 354 /* 355 * Calculate the receive filter according to the 356 * operating mode and state: 357 * 358 * o always accept unicast, broadcast, and multicast traffic 359 * o maintain current state of phy error reception (the hal 360 * may enable phy error frames for noise immunity work) 361 * o probe request frames are accepted only when operating in 362 * hostap, adhoc, or monitor modes 363 * o enable promiscuous mode according to the interface state 364 * o accept beacons: 365 * - when operating in adhoc mode so the 802.11 layer creates 366 * node table entries for peers, 367 * - when operating in station mode for collecting rssi data when 368 * the station is otherwise quiet, or 369 * - when operating as a repeater so we see repeater-sta beacons 370 * - when scanning 371 */ 372 373 u32 ath_calcrxfilter(struct ath_softc *sc) 374 { 375 u32 rfilt; 376 377 if (config_enabled(CONFIG_ATH9K_TX99)) 378 return 0; 379 380 rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST 381 | ATH9K_RX_FILTER_MCAST; 382 383 /* if operating on a DFS channel, enable radar pulse detection */ 384 if (sc->hw->conf.radar_enabled) 385 rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR; 386 387 if (sc->rx.rxfilter & FIF_PROBE_REQ) 388 rfilt |= ATH9K_RX_FILTER_PROBEREQ; 389 390 /* 391 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station 392 * mode interface or when in monitor mode. AP mode does not need this 393 * since it receives all in-BSS frames anyway. 394 */ 395 if (sc->sc_ah->is_monitoring) 396 rfilt |= ATH9K_RX_FILTER_PROM; 397 398 if (sc->rx.rxfilter & FIF_CONTROL) 399 rfilt |= ATH9K_RX_FILTER_CONTROL; 400 401 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) && 402 (sc->nvifs <= 1) && 403 !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)) 404 rfilt |= ATH9K_RX_FILTER_MYBEACON; 405 else 406 rfilt |= ATH9K_RX_FILTER_BEACON; 407 408 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) || 409 (sc->rx.rxfilter & FIF_PSPOLL)) 410 rfilt |= ATH9K_RX_FILTER_PSPOLL; 411 412 if (conf_is_ht(&sc->hw->conf)) 413 rfilt |= ATH9K_RX_FILTER_COMP_BAR; 414 415 if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) { 416 /* This is needed for older chips */ 417 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160) 418 rfilt |= ATH9K_RX_FILTER_PROM; 419 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL; 420 } 421 422 if (AR_SREV_9550(sc->sc_ah) || AR_SREV_9531(sc->sc_ah)) 423 rfilt |= ATH9K_RX_FILTER_4ADDRESS; 424 425 return rfilt; 426 427 } 428 429 int ath_startrecv(struct ath_softc *sc) 430 { 431 struct ath_hw *ah = sc->sc_ah; 432 struct ath_rxbuf *bf, *tbf; 433 434 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 435 ath_edma_start_recv(sc); 436 return 0; 437 } 438 439 if (list_empty(&sc->rx.rxbuf)) 440 goto start_recv; 441 442 sc->rx.buf_hold = NULL; 443 sc->rx.rxlink = NULL; 444 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) { 445 ath_rx_buf_link(sc, bf); 446 } 447 448 /* We could have deleted elements so the list may be empty now */ 449 if (list_empty(&sc->rx.rxbuf)) 450 goto start_recv; 451 452 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list); 453 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 454 ath9k_hw_rxena(ah); 455 456 start_recv: 457 ath_opmode_init(sc); 458 ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)); 459 460 return 0; 461 } 462 463 static void ath_flushrecv(struct ath_softc *sc) 464 { 465 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 466 ath_rx_tasklet(sc, 1, true); 467 ath_rx_tasklet(sc, 1, false); 468 } 469 470 bool ath_stoprecv(struct ath_softc *sc) 471 { 472 struct ath_hw *ah = sc->sc_ah; 473 bool stopped, reset = false; 474 475 ath9k_hw_abortpcurecv(ah); 476 ath9k_hw_setrxfilter(ah, 0); 477 stopped = ath9k_hw_stopdmarecv(ah, &reset); 478 479 ath_flushrecv(sc); 480 481 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 482 ath_edma_stop_recv(sc); 483 else 484 sc->rx.rxlink = NULL; 485 486 if (!(ah->ah_flags & AH_UNPLUGGED) && 487 unlikely(!stopped)) { 488 ath_err(ath9k_hw_common(sc->sc_ah), 489 "Could not stop RX, we could be " 490 "confusing the DMA engine when we start RX up\n"); 491 ATH_DBG_WARN_ON_ONCE(!stopped); 492 } 493 return stopped && !reset; 494 } 495 496 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb) 497 { 498 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */ 499 struct ieee80211_mgmt *mgmt; 500 u8 *pos, *end, id, elen; 501 struct ieee80211_tim_ie *tim; 502 503 mgmt = (struct ieee80211_mgmt *)skb->data; 504 pos = mgmt->u.beacon.variable; 505 end = skb->data + skb->len; 506 507 while (pos + 2 < end) { 508 id = *pos++; 509 elen = *pos++; 510 if (pos + elen > end) 511 break; 512 513 if (id == WLAN_EID_TIM) { 514 if (elen < sizeof(*tim)) 515 break; 516 tim = (struct ieee80211_tim_ie *) pos; 517 if (tim->dtim_count != 0) 518 break; 519 return tim->bitmap_ctrl & 0x01; 520 } 521 522 pos += elen; 523 } 524 525 return false; 526 } 527 528 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb) 529 { 530 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 531 532 if (skb->len < 24 + 8 + 2 + 2) 533 return; 534 535 sc->ps_flags &= ~PS_WAIT_FOR_BEACON; 536 537 if (sc->ps_flags & PS_BEACON_SYNC) { 538 sc->ps_flags &= ~PS_BEACON_SYNC; 539 ath_dbg(common, PS, 540 "Reconfigure beacon timers based on synchronized timestamp\n"); 541 ath9k_set_beacon(sc); 542 } 543 544 if (ath_beacon_dtim_pending_cab(skb)) { 545 /* 546 * Remain awake waiting for buffered broadcast/multicast 547 * frames. If the last broadcast/multicast frame is not 548 * received properly, the next beacon frame will work as 549 * a backup trigger for returning into NETWORK SLEEP state, 550 * so we are waiting for it as well. 551 */ 552 ath_dbg(common, PS, 553 "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n"); 554 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON; 555 return; 556 } 557 558 if (sc->ps_flags & PS_WAIT_FOR_CAB) { 559 /* 560 * This can happen if a broadcast frame is dropped or the AP 561 * fails to send a frame indicating that all CAB frames have 562 * been delivered. 563 */ 564 sc->ps_flags &= ~PS_WAIT_FOR_CAB; 565 ath_dbg(common, PS, "PS wait for CAB frames timed out\n"); 566 } 567 } 568 569 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon) 570 { 571 struct ieee80211_hdr *hdr; 572 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 573 574 hdr = (struct ieee80211_hdr *)skb->data; 575 576 /* Process Beacon and CAB receive in PS state */ 577 if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc)) 578 && mybeacon) { 579 ath_rx_ps_beacon(sc, skb); 580 } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) && 581 (ieee80211_is_data(hdr->frame_control) || 582 ieee80211_is_action(hdr->frame_control)) && 583 is_multicast_ether_addr(hdr->addr1) && 584 !ieee80211_has_moredata(hdr->frame_control)) { 585 /* 586 * No more broadcast/multicast frames to be received at this 587 * point. 588 */ 589 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON); 590 ath_dbg(common, PS, 591 "All PS CAB frames received, back to sleep\n"); 592 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) && 593 !is_multicast_ether_addr(hdr->addr1) && 594 !ieee80211_has_morefrags(hdr->frame_control)) { 595 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA; 596 ath_dbg(common, PS, 597 "Going back to sleep after having received PS-Poll data (0x%lx)\n", 598 sc->ps_flags & (PS_WAIT_FOR_BEACON | 599 PS_WAIT_FOR_CAB | 600 PS_WAIT_FOR_PSPOLL_DATA | 601 PS_WAIT_FOR_TX_ACK)); 602 } 603 } 604 605 static bool ath_edma_get_buffers(struct ath_softc *sc, 606 enum ath9k_rx_qtype qtype, 607 struct ath_rx_status *rs, 608 struct ath_rxbuf **dest) 609 { 610 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype]; 611 struct ath_hw *ah = sc->sc_ah; 612 struct ath_common *common = ath9k_hw_common(ah); 613 struct sk_buff *skb; 614 struct ath_rxbuf *bf; 615 int ret; 616 617 skb = skb_peek(&rx_edma->rx_fifo); 618 if (!skb) 619 return false; 620 621 bf = SKB_CB_ATHBUF(skb); 622 BUG_ON(!bf); 623 624 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 625 common->rx_bufsize, DMA_FROM_DEVICE); 626 627 ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data); 628 if (ret == -EINPROGRESS) { 629 /*let device gain the buffer again*/ 630 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 631 common->rx_bufsize, DMA_FROM_DEVICE); 632 return false; 633 } 634 635 __skb_unlink(skb, &rx_edma->rx_fifo); 636 if (ret == -EINVAL) { 637 /* corrupt descriptor, skip this one and the following one */ 638 list_add_tail(&bf->list, &sc->rx.rxbuf); 639 ath_rx_edma_buf_link(sc, qtype); 640 641 skb = skb_peek(&rx_edma->rx_fifo); 642 if (skb) { 643 bf = SKB_CB_ATHBUF(skb); 644 BUG_ON(!bf); 645 646 __skb_unlink(skb, &rx_edma->rx_fifo); 647 list_add_tail(&bf->list, &sc->rx.rxbuf); 648 ath_rx_edma_buf_link(sc, qtype); 649 } 650 651 bf = NULL; 652 } 653 654 *dest = bf; 655 return true; 656 } 657 658 static struct ath_rxbuf *ath_edma_get_next_rx_buf(struct ath_softc *sc, 659 struct ath_rx_status *rs, 660 enum ath9k_rx_qtype qtype) 661 { 662 struct ath_rxbuf *bf = NULL; 663 664 while (ath_edma_get_buffers(sc, qtype, rs, &bf)) { 665 if (!bf) 666 continue; 667 668 return bf; 669 } 670 return NULL; 671 } 672 673 static struct ath_rxbuf *ath_get_next_rx_buf(struct ath_softc *sc, 674 struct ath_rx_status *rs) 675 { 676 struct ath_hw *ah = sc->sc_ah; 677 struct ath_common *common = ath9k_hw_common(ah); 678 struct ath_desc *ds; 679 struct ath_rxbuf *bf; 680 int ret; 681 682 if (list_empty(&sc->rx.rxbuf)) { 683 sc->rx.rxlink = NULL; 684 return NULL; 685 } 686 687 bf = list_first_entry(&sc->rx.rxbuf, struct ath_rxbuf, list); 688 if (bf == sc->rx.buf_hold) 689 return NULL; 690 691 ds = bf->bf_desc; 692 693 /* 694 * Must provide the virtual address of the current 695 * descriptor, the physical address, and the virtual 696 * address of the next descriptor in the h/w chain. 697 * This allows the HAL to look ahead to see if the 698 * hardware is done with a descriptor by checking the 699 * done bit in the following descriptor and the address 700 * of the current descriptor the DMA engine is working 701 * on. All this is necessary because of our use of 702 * a self-linked list to avoid rx overruns. 703 */ 704 ret = ath9k_hw_rxprocdesc(ah, ds, rs); 705 if (ret == -EINPROGRESS) { 706 struct ath_rx_status trs; 707 struct ath_rxbuf *tbf; 708 struct ath_desc *tds; 709 710 memset(&trs, 0, sizeof(trs)); 711 if (list_is_last(&bf->list, &sc->rx.rxbuf)) { 712 sc->rx.rxlink = NULL; 713 return NULL; 714 } 715 716 tbf = list_entry(bf->list.next, struct ath_rxbuf, list); 717 718 /* 719 * On some hardware the descriptor status words could 720 * get corrupted, including the done bit. Because of 721 * this, check if the next descriptor's done bit is 722 * set or not. 723 * 724 * If the next descriptor's done bit is set, the current 725 * descriptor has been corrupted. Force s/w to discard 726 * this descriptor and continue... 727 */ 728 729 tds = tbf->bf_desc; 730 ret = ath9k_hw_rxprocdesc(ah, tds, &trs); 731 if (ret == -EINPROGRESS) 732 return NULL; 733 734 /* 735 * mark descriptor as zero-length and set the 'more' 736 * flag to ensure that both buffers get discarded 737 */ 738 rs->rs_datalen = 0; 739 rs->rs_more = true; 740 } 741 742 list_del(&bf->list); 743 if (!bf->bf_mpdu) 744 return bf; 745 746 /* 747 * Synchronize the DMA transfer with CPU before 748 * 1. accessing the frame 749 * 2. requeueing the same buffer to h/w 750 */ 751 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 752 common->rx_bufsize, 753 DMA_FROM_DEVICE); 754 755 return bf; 756 } 757 758 /* Assumes you've already done the endian to CPU conversion */ 759 static bool ath9k_rx_accept(struct ath_common *common, 760 struct ieee80211_hdr *hdr, 761 struct ieee80211_rx_status *rxs, 762 struct ath_rx_status *rx_stats, 763 bool *decrypt_error) 764 { 765 struct ath_softc *sc = (struct ath_softc *) common->priv; 766 bool is_mc, is_valid_tkip, strip_mic, mic_error; 767 struct ath_hw *ah = common->ah; 768 __le16 fc; 769 770 fc = hdr->frame_control; 771 772 is_mc = !!is_multicast_ether_addr(hdr->addr1); 773 is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID && 774 test_bit(rx_stats->rs_keyix, common->tkip_keymap); 775 strip_mic = is_valid_tkip && ieee80211_is_data(fc) && 776 ieee80211_has_protected(fc) && 777 !(rx_stats->rs_status & 778 (ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC | 779 ATH9K_RXERR_KEYMISS)); 780 781 /* 782 * Key miss events are only relevant for pairwise keys where the 783 * descriptor does contain a valid key index. This has been observed 784 * mostly with CCMP encryption. 785 */ 786 if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID || 787 !test_bit(rx_stats->rs_keyix, common->ccmp_keymap)) 788 rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS; 789 790 mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) && 791 !ieee80211_has_morefrags(fc) && 792 !(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) && 793 (rx_stats->rs_status & ATH9K_RXERR_MIC); 794 795 /* 796 * The rx_stats->rs_status will not be set until the end of the 797 * chained descriptors so it can be ignored if rs_more is set. The 798 * rs_more will be false at the last element of the chained 799 * descriptors. 800 */ 801 if (rx_stats->rs_status != 0) { 802 u8 status_mask; 803 804 if (rx_stats->rs_status & ATH9K_RXERR_CRC) { 805 rxs->flag |= RX_FLAG_FAILED_FCS_CRC; 806 mic_error = false; 807 } 808 809 if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) || 810 (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) { 811 *decrypt_error = true; 812 mic_error = false; 813 } 814 815 /* 816 * Reject error frames with the exception of 817 * decryption and MIC failures. For monitor mode, 818 * we also ignore the CRC error. 819 */ 820 status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC | 821 ATH9K_RXERR_KEYMISS; 822 823 if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL)) 824 status_mask |= ATH9K_RXERR_CRC; 825 826 if (rx_stats->rs_status & ~status_mask) 827 return false; 828 } 829 830 /* 831 * For unicast frames the MIC error bit can have false positives, 832 * so all MIC error reports need to be validated in software. 833 * False negatives are not common, so skip software verification 834 * if the hardware considers the MIC valid. 835 */ 836 if (strip_mic) 837 rxs->flag |= RX_FLAG_MMIC_STRIPPED; 838 else if (is_mc && mic_error) 839 rxs->flag |= RX_FLAG_MMIC_ERROR; 840 841 return true; 842 } 843 844 static int ath9k_process_rate(struct ath_common *common, 845 struct ieee80211_hw *hw, 846 struct ath_rx_status *rx_stats, 847 struct ieee80211_rx_status *rxs) 848 { 849 struct ieee80211_supported_band *sband; 850 enum ieee80211_band band; 851 unsigned int i = 0; 852 struct ath_softc __maybe_unused *sc = common->priv; 853 struct ath_hw *ah = sc->sc_ah; 854 855 band = ah->curchan->chan->band; 856 sband = hw->wiphy->bands[band]; 857 858 if (IS_CHAN_QUARTER_RATE(ah->curchan)) 859 rxs->flag |= RX_FLAG_5MHZ; 860 else if (IS_CHAN_HALF_RATE(ah->curchan)) 861 rxs->flag |= RX_FLAG_10MHZ; 862 863 if (rx_stats->rs_rate & 0x80) { 864 /* HT rate */ 865 rxs->flag |= RX_FLAG_HT; 866 rxs->flag |= rx_stats->flag; 867 rxs->rate_idx = rx_stats->rs_rate & 0x7f; 868 return 0; 869 } 870 871 for (i = 0; i < sband->n_bitrates; i++) { 872 if (sband->bitrates[i].hw_value == rx_stats->rs_rate) { 873 rxs->rate_idx = i; 874 return 0; 875 } 876 if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) { 877 rxs->flag |= RX_FLAG_SHORTPRE; 878 rxs->rate_idx = i; 879 return 0; 880 } 881 } 882 883 /* 884 * No valid hardware bitrate found -- we should not get here 885 * because hardware has already validated this frame as OK. 886 */ 887 ath_dbg(common, ANY, 888 "unsupported hw bitrate detected 0x%02x using 1 Mbit\n", 889 rx_stats->rs_rate); 890 RX_STAT_INC(rx_rate_err); 891 return -EINVAL; 892 } 893 894 static void ath9k_process_rssi(struct ath_common *common, 895 struct ieee80211_hw *hw, 896 struct ath_rx_status *rx_stats, 897 struct ieee80211_rx_status *rxs) 898 { 899 struct ath_softc *sc = hw->priv; 900 struct ath_hw *ah = common->ah; 901 int last_rssi; 902 int rssi = rx_stats->rs_rssi; 903 int i, j; 904 905 /* 906 * RSSI is not available for subframes in an A-MPDU. 907 */ 908 if (rx_stats->rs_moreaggr) { 909 rxs->flag |= RX_FLAG_NO_SIGNAL_VAL; 910 return; 911 } 912 913 /* 914 * Check if the RSSI for the last subframe in an A-MPDU 915 * or an unaggregated frame is valid. 916 */ 917 if (rx_stats->rs_rssi == ATH9K_RSSI_BAD) { 918 rxs->flag |= RX_FLAG_NO_SIGNAL_VAL; 919 return; 920 } 921 922 for (i = 0, j = 0; i < ARRAY_SIZE(rx_stats->rs_rssi_ctl); i++) { 923 s8 rssi; 924 925 if (!(ah->rxchainmask & BIT(i))) 926 continue; 927 928 rssi = rx_stats->rs_rssi_ctl[i]; 929 if (rssi != ATH9K_RSSI_BAD) { 930 rxs->chains |= BIT(j); 931 rxs->chain_signal[j] = ah->noise + rssi; 932 } 933 j++; 934 } 935 936 /* 937 * Update Beacon RSSI, this is used by ANI. 938 */ 939 if (rx_stats->is_mybeacon && 940 ((ah->opmode == NL80211_IFTYPE_STATION) || 941 (ah->opmode == NL80211_IFTYPE_ADHOC))) { 942 ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi); 943 last_rssi = sc->last_rssi; 944 945 if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER)) 946 rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER); 947 if (rssi < 0) 948 rssi = 0; 949 950 ah->stats.avgbrssi = rssi; 951 } 952 953 rxs->signal = ah->noise + rx_stats->rs_rssi; 954 } 955 956 static void ath9k_process_tsf(struct ath_rx_status *rs, 957 struct ieee80211_rx_status *rxs, 958 u64 tsf) 959 { 960 u32 tsf_lower = tsf & 0xffffffff; 961 962 rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp; 963 if (rs->rs_tstamp > tsf_lower && 964 unlikely(rs->rs_tstamp - tsf_lower > 0x10000000)) 965 rxs->mactime -= 0x100000000ULL; 966 967 if (rs->rs_tstamp < tsf_lower && 968 unlikely(tsf_lower - rs->rs_tstamp > 0x10000000)) 969 rxs->mactime += 0x100000000ULL; 970 } 971 972 /* 973 * For Decrypt or Demic errors, we only mark packet status here and always push 974 * up the frame up to let mac80211 handle the actual error case, be it no 975 * decryption key or real decryption error. This let us keep statistics there. 976 */ 977 static int ath9k_rx_skb_preprocess(struct ath_softc *sc, 978 struct sk_buff *skb, 979 struct ath_rx_status *rx_stats, 980 struct ieee80211_rx_status *rx_status, 981 bool *decrypt_error, u64 tsf) 982 { 983 struct ieee80211_hw *hw = sc->hw; 984 struct ath_hw *ah = sc->sc_ah; 985 struct ath_common *common = ath9k_hw_common(ah); 986 struct ieee80211_hdr *hdr; 987 bool discard_current = sc->rx.discard_next; 988 int ret = 0; 989 990 /* 991 * Discard corrupt descriptors which are marked in 992 * ath_get_next_rx_buf(). 993 */ 994 sc->rx.discard_next = rx_stats->rs_more; 995 if (discard_current) 996 return -EINVAL; 997 998 /* 999 * Discard zero-length packets. 1000 */ 1001 if (!rx_stats->rs_datalen) { 1002 RX_STAT_INC(rx_len_err); 1003 return -EINVAL; 1004 } 1005 1006 /* 1007 * rs_status follows rs_datalen so if rs_datalen is too large 1008 * we can take a hint that hardware corrupted it, so ignore 1009 * those frames. 1010 */ 1011 if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) { 1012 RX_STAT_INC(rx_len_err); 1013 return -EINVAL; 1014 } 1015 1016 /* Only use status info from the last fragment */ 1017 if (rx_stats->rs_more) 1018 return 0; 1019 1020 /* 1021 * Return immediately if the RX descriptor has been marked 1022 * as corrupt based on the various error bits. 1023 * 1024 * This is different from the other corrupt descriptor 1025 * condition handled above. 1026 */ 1027 if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC) { 1028 ret = -EINVAL; 1029 goto exit; 1030 } 1031 1032 hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len); 1033 1034 ath9k_process_tsf(rx_stats, rx_status, tsf); 1035 ath_debug_stat_rx(sc, rx_stats); 1036 1037 /* 1038 * Process PHY errors and return so that the packet 1039 * can be dropped. 1040 */ 1041 if (rx_stats->rs_status & ATH9K_RXERR_PHY) { 1042 ath9k_dfs_process_phyerr(sc, hdr, rx_stats, rx_status->mactime); 1043 if (ath_process_fft(sc, hdr, rx_stats, rx_status->mactime)) 1044 RX_STAT_INC(rx_spectral); 1045 1046 ret = -EINVAL; 1047 goto exit; 1048 } 1049 1050 /* 1051 * everything but the rate is checked here, the rate check is done 1052 * separately to avoid doing two lookups for a rate for each frame. 1053 */ 1054 if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error)) { 1055 ret = -EINVAL; 1056 goto exit; 1057 } 1058 1059 if (ath_is_mybeacon(common, hdr)) { 1060 RX_STAT_INC(rx_beacons); 1061 rx_stats->is_mybeacon = true; 1062 } 1063 1064 /* 1065 * This shouldn't happen, but have a safety check anyway. 1066 */ 1067 if (WARN_ON(!ah->curchan)) { 1068 ret = -EINVAL; 1069 goto exit; 1070 } 1071 1072 if (ath9k_process_rate(common, hw, rx_stats, rx_status)) { 1073 ret =-EINVAL; 1074 goto exit; 1075 } 1076 1077 ath9k_process_rssi(common, hw, rx_stats, rx_status); 1078 1079 rx_status->band = ah->curchan->chan->band; 1080 rx_status->freq = ah->curchan->chan->center_freq; 1081 rx_status->antenna = rx_stats->rs_antenna; 1082 rx_status->flag |= RX_FLAG_MACTIME_END; 1083 1084 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT 1085 if (ieee80211_is_data_present(hdr->frame_control) && 1086 !ieee80211_is_qos_nullfunc(hdr->frame_control)) 1087 sc->rx.num_pkts++; 1088 #endif 1089 1090 exit: 1091 sc->rx.discard_next = false; 1092 return ret; 1093 } 1094 1095 static void ath9k_rx_skb_postprocess(struct ath_common *common, 1096 struct sk_buff *skb, 1097 struct ath_rx_status *rx_stats, 1098 struct ieee80211_rx_status *rxs, 1099 bool decrypt_error) 1100 { 1101 struct ath_hw *ah = common->ah; 1102 struct ieee80211_hdr *hdr; 1103 int hdrlen, padpos, padsize; 1104 u8 keyix; 1105 __le16 fc; 1106 1107 /* see if any padding is done by the hw and remove it */ 1108 hdr = (struct ieee80211_hdr *) skb->data; 1109 hdrlen = ieee80211_get_hdrlen_from_skb(skb); 1110 fc = hdr->frame_control; 1111 padpos = ieee80211_hdrlen(fc); 1112 1113 /* The MAC header is padded to have 32-bit boundary if the 1114 * packet payload is non-zero. The general calculation for 1115 * padsize would take into account odd header lengths: 1116 * padsize = (4 - padpos % 4) % 4; However, since only 1117 * even-length headers are used, padding can only be 0 or 2 1118 * bytes and we can optimize this a bit. In addition, we must 1119 * not try to remove padding from short control frames that do 1120 * not have payload. */ 1121 padsize = padpos & 3; 1122 if (padsize && skb->len>=padpos+padsize+FCS_LEN) { 1123 memmove(skb->data + padsize, skb->data, padpos); 1124 skb_pull(skb, padsize); 1125 } 1126 1127 keyix = rx_stats->rs_keyix; 1128 1129 if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error && 1130 ieee80211_has_protected(fc)) { 1131 rxs->flag |= RX_FLAG_DECRYPTED; 1132 } else if (ieee80211_has_protected(fc) 1133 && !decrypt_error && skb->len >= hdrlen + 4) { 1134 keyix = skb->data[hdrlen + 3] >> 6; 1135 1136 if (test_bit(keyix, common->keymap)) 1137 rxs->flag |= RX_FLAG_DECRYPTED; 1138 } 1139 if (ah->sw_mgmt_crypto && 1140 (rxs->flag & RX_FLAG_DECRYPTED) && 1141 ieee80211_is_mgmt(fc)) 1142 /* Use software decrypt for management frames. */ 1143 rxs->flag &= ~RX_FLAG_DECRYPTED; 1144 } 1145 1146 /* 1147 * Run the LNA combining algorithm only in these cases: 1148 * 1149 * Standalone WLAN cards with both LNA/Antenna diversity 1150 * enabled in the EEPROM. 1151 * 1152 * WLAN+BT cards which are in the supported card list 1153 * in ath_pci_id_table and the user has loaded the 1154 * driver with "bt_ant_diversity" set to true. 1155 */ 1156 static void ath9k_antenna_check(struct ath_softc *sc, 1157 struct ath_rx_status *rs) 1158 { 1159 struct ath_hw *ah = sc->sc_ah; 1160 struct ath9k_hw_capabilities *pCap = &ah->caps; 1161 struct ath_common *common = ath9k_hw_common(ah); 1162 1163 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)) 1164 return; 1165 1166 /* 1167 * Change the default rx antenna if rx diversity 1168 * chooses the other antenna 3 times in a row. 1169 */ 1170 if (sc->rx.defant != rs->rs_antenna) { 1171 if (++sc->rx.rxotherant >= 3) 1172 ath_setdefantenna(sc, rs->rs_antenna); 1173 } else { 1174 sc->rx.rxotherant = 0; 1175 } 1176 1177 if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) { 1178 if (common->bt_ant_diversity) 1179 ath_ant_comb_scan(sc, rs); 1180 } else { 1181 ath_ant_comb_scan(sc, rs); 1182 } 1183 } 1184 1185 static void ath9k_apply_ampdu_details(struct ath_softc *sc, 1186 struct ath_rx_status *rs, struct ieee80211_rx_status *rxs) 1187 { 1188 if (rs->rs_isaggr) { 1189 rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 1190 1191 rxs->ampdu_reference = sc->rx.ampdu_ref; 1192 1193 if (!rs->rs_moreaggr) { 1194 rxs->flag |= RX_FLAG_AMPDU_IS_LAST; 1195 sc->rx.ampdu_ref++; 1196 } 1197 1198 if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE) 1199 rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR; 1200 } 1201 } 1202 1203 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp) 1204 { 1205 struct ath_rxbuf *bf; 1206 struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb; 1207 struct ieee80211_rx_status *rxs; 1208 struct ath_hw *ah = sc->sc_ah; 1209 struct ath_common *common = ath9k_hw_common(ah); 1210 struct ieee80211_hw *hw = sc->hw; 1211 int retval; 1212 struct ath_rx_status rs; 1213 enum ath9k_rx_qtype qtype; 1214 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1215 int dma_type; 1216 u64 tsf = 0; 1217 unsigned long flags; 1218 dma_addr_t new_buf_addr; 1219 1220 if (edma) 1221 dma_type = DMA_BIDIRECTIONAL; 1222 else 1223 dma_type = DMA_FROM_DEVICE; 1224 1225 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP; 1226 1227 tsf = ath9k_hw_gettsf64(ah); 1228 1229 do { 1230 bool decrypt_error = false; 1231 1232 memset(&rs, 0, sizeof(rs)); 1233 if (edma) 1234 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype); 1235 else 1236 bf = ath_get_next_rx_buf(sc, &rs); 1237 1238 if (!bf) 1239 break; 1240 1241 skb = bf->bf_mpdu; 1242 if (!skb) 1243 continue; 1244 1245 /* 1246 * Take frame header from the first fragment and RX status from 1247 * the last one. 1248 */ 1249 if (sc->rx.frag) 1250 hdr_skb = sc->rx.frag; 1251 else 1252 hdr_skb = skb; 1253 1254 rxs = IEEE80211_SKB_RXCB(hdr_skb); 1255 memset(rxs, 0, sizeof(struct ieee80211_rx_status)); 1256 1257 retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs, 1258 &decrypt_error, tsf); 1259 if (retval) 1260 goto requeue_drop_frag; 1261 1262 /* Ensure we always have an skb to requeue once we are done 1263 * processing the current buffer's skb */ 1264 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC); 1265 1266 /* If there is no memory we ignore the current RX'd frame, 1267 * tell hardware it can give us a new frame using the old 1268 * skb and put it at the tail of the sc->rx.rxbuf list for 1269 * processing. */ 1270 if (!requeue_skb) { 1271 RX_STAT_INC(rx_oom_err); 1272 goto requeue_drop_frag; 1273 } 1274 1275 /* We will now give hardware our shiny new allocated skb */ 1276 new_buf_addr = dma_map_single(sc->dev, requeue_skb->data, 1277 common->rx_bufsize, dma_type); 1278 if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) { 1279 dev_kfree_skb_any(requeue_skb); 1280 goto requeue_drop_frag; 1281 } 1282 1283 /* Unmap the frame */ 1284 dma_unmap_single(sc->dev, bf->bf_buf_addr, 1285 common->rx_bufsize, dma_type); 1286 1287 bf->bf_mpdu = requeue_skb; 1288 bf->bf_buf_addr = new_buf_addr; 1289 1290 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len); 1291 if (ah->caps.rx_status_len) 1292 skb_pull(skb, ah->caps.rx_status_len); 1293 1294 if (!rs.rs_more) 1295 ath9k_rx_skb_postprocess(common, hdr_skb, &rs, 1296 rxs, decrypt_error); 1297 1298 if (rs.rs_more) { 1299 RX_STAT_INC(rx_frags); 1300 /* 1301 * rs_more indicates chained descriptors which can be 1302 * used to link buffers together for a sort of 1303 * scatter-gather operation. 1304 */ 1305 if (sc->rx.frag) { 1306 /* too many fragments - cannot handle frame */ 1307 dev_kfree_skb_any(sc->rx.frag); 1308 dev_kfree_skb_any(skb); 1309 RX_STAT_INC(rx_too_many_frags_err); 1310 skb = NULL; 1311 } 1312 sc->rx.frag = skb; 1313 goto requeue; 1314 } 1315 1316 if (sc->rx.frag) { 1317 int space = skb->len - skb_tailroom(hdr_skb); 1318 1319 if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) { 1320 dev_kfree_skb(skb); 1321 RX_STAT_INC(rx_oom_err); 1322 goto requeue_drop_frag; 1323 } 1324 1325 sc->rx.frag = NULL; 1326 1327 skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len), 1328 skb->len); 1329 dev_kfree_skb_any(skb); 1330 skb = hdr_skb; 1331 } 1332 1333 if (rxs->flag & RX_FLAG_MMIC_STRIPPED) 1334 skb_trim(skb, skb->len - 8); 1335 1336 spin_lock_irqsave(&sc->sc_pm_lock, flags); 1337 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON | 1338 PS_WAIT_FOR_CAB | 1339 PS_WAIT_FOR_PSPOLL_DATA)) || 1340 ath9k_check_auto_sleep(sc)) 1341 ath_rx_ps(sc, skb, rs.is_mybeacon); 1342 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 1343 1344 ath9k_antenna_check(sc, &rs); 1345 ath9k_apply_ampdu_details(sc, &rs, rxs); 1346 ath_debug_rate_stats(sc, &rs, skb); 1347 1348 ieee80211_rx(hw, skb); 1349 1350 requeue_drop_frag: 1351 if (sc->rx.frag) { 1352 dev_kfree_skb_any(sc->rx.frag); 1353 sc->rx.frag = NULL; 1354 } 1355 requeue: 1356 list_add_tail(&bf->list, &sc->rx.rxbuf); 1357 if (flush) 1358 continue; 1359 1360 if (edma) { 1361 ath_rx_edma_buf_link(sc, qtype); 1362 } else { 1363 ath_rx_buf_relink(sc, bf); 1364 ath9k_hw_rxena(ah); 1365 } 1366 } while (1); 1367 1368 if (!(ah->imask & ATH9K_INT_RXEOL)) { 1369 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN); 1370 ath9k_hw_set_interrupts(ah); 1371 } 1372 1373 return 0; 1374 } 1375