1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/dma-mapping.h> 18 #include <linux/relay.h> 19 #include "ath9k.h" 20 #include "ar9003_mac.h" 21 22 #define SKB_CB_ATHBUF(__skb) (*((struct ath_buf **)__skb->cb)) 23 24 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc) 25 { 26 return sc->ps_enabled && 27 (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP); 28 } 29 30 /* 31 * Setup and link descriptors. 32 * 33 * 11N: we can no longer afford to self link the last descriptor. 34 * MAC acknowledges BA status as long as it copies frames to host 35 * buffer (or rx fifo). This can incorrectly acknowledge packets 36 * to a sender if last desc is self-linked. 37 */ 38 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf) 39 { 40 struct ath_hw *ah = sc->sc_ah; 41 struct ath_common *common = ath9k_hw_common(ah); 42 struct ath_desc *ds; 43 struct sk_buff *skb; 44 45 ds = bf->bf_desc; 46 ds->ds_link = 0; /* link to null */ 47 ds->ds_data = bf->bf_buf_addr; 48 49 /* virtual addr of the beginning of the buffer. */ 50 skb = bf->bf_mpdu; 51 BUG_ON(skb == NULL); 52 ds->ds_vdata = skb->data; 53 54 /* 55 * setup rx descriptors. The rx_bufsize here tells the hardware 56 * how much data it can DMA to us and that we are prepared 57 * to process 58 */ 59 ath9k_hw_setuprxdesc(ah, ds, 60 common->rx_bufsize, 61 0); 62 63 if (sc->rx.rxlink == NULL) 64 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 65 else 66 *sc->rx.rxlink = bf->bf_daddr; 67 68 sc->rx.rxlink = &ds->ds_link; 69 } 70 71 static void ath_rx_buf_relink(struct ath_softc *sc, struct ath_buf *bf) 72 { 73 if (sc->rx.buf_hold) 74 ath_rx_buf_link(sc, sc->rx.buf_hold); 75 76 sc->rx.buf_hold = bf; 77 } 78 79 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna) 80 { 81 /* XXX block beacon interrupts */ 82 ath9k_hw_setantenna(sc->sc_ah, antenna); 83 sc->rx.defant = antenna; 84 sc->rx.rxotherant = 0; 85 } 86 87 static void ath_opmode_init(struct ath_softc *sc) 88 { 89 struct ath_hw *ah = sc->sc_ah; 90 struct ath_common *common = ath9k_hw_common(ah); 91 92 u32 rfilt, mfilt[2]; 93 94 /* configure rx filter */ 95 rfilt = ath_calcrxfilter(sc); 96 ath9k_hw_setrxfilter(ah, rfilt); 97 98 /* configure bssid mask */ 99 ath_hw_setbssidmask(common); 100 101 /* configure operational mode */ 102 ath9k_hw_setopmode(ah); 103 104 /* calculate and install multicast filter */ 105 mfilt[0] = mfilt[1] = ~0; 106 ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]); 107 } 108 109 static bool ath_rx_edma_buf_link(struct ath_softc *sc, 110 enum ath9k_rx_qtype qtype) 111 { 112 struct ath_hw *ah = sc->sc_ah; 113 struct ath_rx_edma *rx_edma; 114 struct sk_buff *skb; 115 struct ath_buf *bf; 116 117 rx_edma = &sc->rx.rx_edma[qtype]; 118 if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize) 119 return false; 120 121 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); 122 list_del_init(&bf->list); 123 124 skb = bf->bf_mpdu; 125 126 memset(skb->data, 0, ah->caps.rx_status_len); 127 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 128 ah->caps.rx_status_len, DMA_TO_DEVICE); 129 130 SKB_CB_ATHBUF(skb) = bf; 131 ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype); 132 __skb_queue_tail(&rx_edma->rx_fifo, skb); 133 134 return true; 135 } 136 137 static void ath_rx_addbuffer_edma(struct ath_softc *sc, 138 enum ath9k_rx_qtype qtype) 139 { 140 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 141 struct ath_buf *bf, *tbf; 142 143 if (list_empty(&sc->rx.rxbuf)) { 144 ath_dbg(common, QUEUE, "No free rx buf available\n"); 145 return; 146 } 147 148 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) 149 if (!ath_rx_edma_buf_link(sc, qtype)) 150 break; 151 152 } 153 154 static void ath_rx_remove_buffer(struct ath_softc *sc, 155 enum ath9k_rx_qtype qtype) 156 { 157 struct ath_buf *bf; 158 struct ath_rx_edma *rx_edma; 159 struct sk_buff *skb; 160 161 rx_edma = &sc->rx.rx_edma[qtype]; 162 163 while ((skb = __skb_dequeue(&rx_edma->rx_fifo)) != NULL) { 164 bf = SKB_CB_ATHBUF(skb); 165 BUG_ON(!bf); 166 list_add_tail(&bf->list, &sc->rx.rxbuf); 167 } 168 } 169 170 static void ath_rx_edma_cleanup(struct ath_softc *sc) 171 { 172 struct ath_hw *ah = sc->sc_ah; 173 struct ath_common *common = ath9k_hw_common(ah); 174 struct ath_buf *bf; 175 176 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 177 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 178 179 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 180 if (bf->bf_mpdu) { 181 dma_unmap_single(sc->dev, bf->bf_buf_addr, 182 common->rx_bufsize, 183 DMA_BIDIRECTIONAL); 184 dev_kfree_skb_any(bf->bf_mpdu); 185 bf->bf_buf_addr = 0; 186 bf->bf_mpdu = NULL; 187 } 188 } 189 } 190 191 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size) 192 { 193 __skb_queue_head_init(&rx_edma->rx_fifo); 194 rx_edma->rx_fifo_hwsize = size; 195 } 196 197 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs) 198 { 199 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 200 struct ath_hw *ah = sc->sc_ah; 201 struct sk_buff *skb; 202 struct ath_buf *bf; 203 int error = 0, i; 204 u32 size; 205 206 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 207 ah->caps.rx_status_len); 208 209 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP], 210 ah->caps.rx_lp_qdepth); 211 ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP], 212 ah->caps.rx_hp_qdepth); 213 214 size = sizeof(struct ath_buf) * nbufs; 215 bf = devm_kzalloc(sc->dev, size, GFP_KERNEL); 216 if (!bf) 217 return -ENOMEM; 218 219 INIT_LIST_HEAD(&sc->rx.rxbuf); 220 221 for (i = 0; i < nbufs; i++, bf++) { 222 skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL); 223 if (!skb) { 224 error = -ENOMEM; 225 goto rx_init_fail; 226 } 227 228 memset(skb->data, 0, common->rx_bufsize); 229 bf->bf_mpdu = skb; 230 231 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 232 common->rx_bufsize, 233 DMA_BIDIRECTIONAL); 234 if (unlikely(dma_mapping_error(sc->dev, 235 bf->bf_buf_addr))) { 236 dev_kfree_skb_any(skb); 237 bf->bf_mpdu = NULL; 238 bf->bf_buf_addr = 0; 239 ath_err(common, 240 "dma_mapping_error() on RX init\n"); 241 error = -ENOMEM; 242 goto rx_init_fail; 243 } 244 245 list_add_tail(&bf->list, &sc->rx.rxbuf); 246 } 247 248 return 0; 249 250 rx_init_fail: 251 ath_rx_edma_cleanup(sc); 252 return error; 253 } 254 255 static void ath_edma_start_recv(struct ath_softc *sc) 256 { 257 ath9k_hw_rxena(sc->sc_ah); 258 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP); 259 ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP); 260 ath_opmode_init(sc); 261 ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)); 262 } 263 264 static void ath_edma_stop_recv(struct ath_softc *sc) 265 { 266 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP); 267 ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP); 268 } 269 270 int ath_rx_init(struct ath_softc *sc, int nbufs) 271 { 272 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 273 struct sk_buff *skb; 274 struct ath_buf *bf; 275 int error = 0; 276 277 spin_lock_init(&sc->sc_pcu_lock); 278 279 common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 + 280 sc->sc_ah->caps.rx_status_len; 281 282 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 283 return ath_rx_edma_init(sc, nbufs); 284 285 ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n", 286 common->cachelsz, common->rx_bufsize); 287 288 /* Initialize rx descriptors */ 289 290 error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf, 291 "rx", nbufs, 1, 0); 292 if (error != 0) { 293 ath_err(common, 294 "failed to allocate rx descriptors: %d\n", 295 error); 296 goto err; 297 } 298 299 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 300 skb = ath_rxbuf_alloc(common, common->rx_bufsize, 301 GFP_KERNEL); 302 if (skb == NULL) { 303 error = -ENOMEM; 304 goto err; 305 } 306 307 bf->bf_mpdu = skb; 308 bf->bf_buf_addr = dma_map_single(sc->dev, skb->data, 309 common->rx_bufsize, 310 DMA_FROM_DEVICE); 311 if (unlikely(dma_mapping_error(sc->dev, 312 bf->bf_buf_addr))) { 313 dev_kfree_skb_any(skb); 314 bf->bf_mpdu = NULL; 315 bf->bf_buf_addr = 0; 316 ath_err(common, 317 "dma_mapping_error() on RX init\n"); 318 error = -ENOMEM; 319 goto err; 320 } 321 } 322 sc->rx.rxlink = NULL; 323 err: 324 if (error) 325 ath_rx_cleanup(sc); 326 327 return error; 328 } 329 330 void ath_rx_cleanup(struct ath_softc *sc) 331 { 332 struct ath_hw *ah = sc->sc_ah; 333 struct ath_common *common = ath9k_hw_common(ah); 334 struct sk_buff *skb; 335 struct ath_buf *bf; 336 337 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 338 ath_rx_edma_cleanup(sc); 339 return; 340 } 341 342 list_for_each_entry(bf, &sc->rx.rxbuf, list) { 343 skb = bf->bf_mpdu; 344 if (skb) { 345 dma_unmap_single(sc->dev, bf->bf_buf_addr, 346 common->rx_bufsize, 347 DMA_FROM_DEVICE); 348 dev_kfree_skb(skb); 349 bf->bf_buf_addr = 0; 350 bf->bf_mpdu = NULL; 351 } 352 } 353 } 354 355 /* 356 * Calculate the receive filter according to the 357 * operating mode and state: 358 * 359 * o always accept unicast, broadcast, and multicast traffic 360 * o maintain current state of phy error reception (the hal 361 * may enable phy error frames for noise immunity work) 362 * o probe request frames are accepted only when operating in 363 * hostap, adhoc, or monitor modes 364 * o enable promiscuous mode according to the interface state 365 * o accept beacons: 366 * - when operating in adhoc mode so the 802.11 layer creates 367 * node table entries for peers, 368 * - when operating in station mode for collecting rssi data when 369 * the station is otherwise quiet, or 370 * - when operating as a repeater so we see repeater-sta beacons 371 * - when scanning 372 */ 373 374 u32 ath_calcrxfilter(struct ath_softc *sc) 375 { 376 u32 rfilt; 377 378 rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST 379 | ATH9K_RX_FILTER_MCAST; 380 381 /* if operating on a DFS channel, enable radar pulse detection */ 382 if (sc->hw->conf.radar_enabled) 383 rfilt |= ATH9K_RX_FILTER_PHYRADAR | ATH9K_RX_FILTER_PHYERR; 384 385 if (sc->rx.rxfilter & FIF_PROBE_REQ) 386 rfilt |= ATH9K_RX_FILTER_PROBEREQ; 387 388 /* 389 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station 390 * mode interface or when in monitor mode. AP mode does not need this 391 * since it receives all in-BSS frames anyway. 392 */ 393 if (sc->sc_ah->is_monitoring) 394 rfilt |= ATH9K_RX_FILTER_PROM; 395 396 if (sc->rx.rxfilter & FIF_CONTROL) 397 rfilt |= ATH9K_RX_FILTER_CONTROL; 398 399 if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) && 400 (sc->nvifs <= 1) && 401 !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC)) 402 rfilt |= ATH9K_RX_FILTER_MYBEACON; 403 else 404 rfilt |= ATH9K_RX_FILTER_BEACON; 405 406 if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) || 407 (sc->rx.rxfilter & FIF_PSPOLL)) 408 rfilt |= ATH9K_RX_FILTER_PSPOLL; 409 410 if (conf_is_ht(&sc->hw->conf)) 411 rfilt |= ATH9K_RX_FILTER_COMP_BAR; 412 413 if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) { 414 /* This is needed for older chips */ 415 if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160) 416 rfilt |= ATH9K_RX_FILTER_PROM; 417 rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL; 418 } 419 420 if (AR_SREV_9550(sc->sc_ah)) 421 rfilt |= ATH9K_RX_FILTER_4ADDRESS; 422 423 return rfilt; 424 425 } 426 427 int ath_startrecv(struct ath_softc *sc) 428 { 429 struct ath_hw *ah = sc->sc_ah; 430 struct ath_buf *bf, *tbf; 431 432 if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) { 433 ath_edma_start_recv(sc); 434 return 0; 435 } 436 437 if (list_empty(&sc->rx.rxbuf)) 438 goto start_recv; 439 440 sc->rx.buf_hold = NULL; 441 sc->rx.rxlink = NULL; 442 list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) { 443 ath_rx_buf_link(sc, bf); 444 } 445 446 /* We could have deleted elements so the list may be empty now */ 447 if (list_empty(&sc->rx.rxbuf)) 448 goto start_recv; 449 450 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); 451 ath9k_hw_putrxbuf(ah, bf->bf_daddr); 452 ath9k_hw_rxena(ah); 453 454 start_recv: 455 ath_opmode_init(sc); 456 ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL)); 457 458 return 0; 459 } 460 461 static void ath_flushrecv(struct ath_softc *sc) 462 { 463 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 464 ath_rx_tasklet(sc, 1, true); 465 ath_rx_tasklet(sc, 1, false); 466 } 467 468 bool ath_stoprecv(struct ath_softc *sc) 469 { 470 struct ath_hw *ah = sc->sc_ah; 471 bool stopped, reset = false; 472 473 ath9k_hw_abortpcurecv(ah); 474 ath9k_hw_setrxfilter(ah, 0); 475 stopped = ath9k_hw_stopdmarecv(ah, &reset); 476 477 ath_flushrecv(sc); 478 479 if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) 480 ath_edma_stop_recv(sc); 481 else 482 sc->rx.rxlink = NULL; 483 484 if (!(ah->ah_flags & AH_UNPLUGGED) && 485 unlikely(!stopped)) { 486 ath_err(ath9k_hw_common(sc->sc_ah), 487 "Could not stop RX, we could be " 488 "confusing the DMA engine when we start RX up\n"); 489 ATH_DBG_WARN_ON_ONCE(!stopped); 490 } 491 return stopped && !reset; 492 } 493 494 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb) 495 { 496 /* Check whether the Beacon frame has DTIM indicating buffered bc/mc */ 497 struct ieee80211_mgmt *mgmt; 498 u8 *pos, *end, id, elen; 499 struct ieee80211_tim_ie *tim; 500 501 mgmt = (struct ieee80211_mgmt *)skb->data; 502 pos = mgmt->u.beacon.variable; 503 end = skb->data + skb->len; 504 505 while (pos + 2 < end) { 506 id = *pos++; 507 elen = *pos++; 508 if (pos + elen > end) 509 break; 510 511 if (id == WLAN_EID_TIM) { 512 if (elen < sizeof(*tim)) 513 break; 514 tim = (struct ieee80211_tim_ie *) pos; 515 if (tim->dtim_count != 0) 516 break; 517 return tim->bitmap_ctrl & 0x01; 518 } 519 520 pos += elen; 521 } 522 523 return false; 524 } 525 526 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb) 527 { 528 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 529 530 if (skb->len < 24 + 8 + 2 + 2) 531 return; 532 533 sc->ps_flags &= ~PS_WAIT_FOR_BEACON; 534 535 if (sc->ps_flags & PS_BEACON_SYNC) { 536 sc->ps_flags &= ~PS_BEACON_SYNC; 537 ath_dbg(common, PS, 538 "Reconfigure beacon timers based on synchronized timestamp\n"); 539 ath9k_set_beacon(sc); 540 } 541 542 if (ath_beacon_dtim_pending_cab(skb)) { 543 /* 544 * Remain awake waiting for buffered broadcast/multicast 545 * frames. If the last broadcast/multicast frame is not 546 * received properly, the next beacon frame will work as 547 * a backup trigger for returning into NETWORK SLEEP state, 548 * so we are waiting for it as well. 549 */ 550 ath_dbg(common, PS, 551 "Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n"); 552 sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON; 553 return; 554 } 555 556 if (sc->ps_flags & PS_WAIT_FOR_CAB) { 557 /* 558 * This can happen if a broadcast frame is dropped or the AP 559 * fails to send a frame indicating that all CAB frames have 560 * been delivered. 561 */ 562 sc->ps_flags &= ~PS_WAIT_FOR_CAB; 563 ath_dbg(common, PS, "PS wait for CAB frames timed out\n"); 564 } 565 } 566 567 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon) 568 { 569 struct ieee80211_hdr *hdr; 570 struct ath_common *common = ath9k_hw_common(sc->sc_ah); 571 572 hdr = (struct ieee80211_hdr *)skb->data; 573 574 /* Process Beacon and CAB receive in PS state */ 575 if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc)) 576 && mybeacon) { 577 ath_rx_ps_beacon(sc, skb); 578 } else if ((sc->ps_flags & PS_WAIT_FOR_CAB) && 579 (ieee80211_is_data(hdr->frame_control) || 580 ieee80211_is_action(hdr->frame_control)) && 581 is_multicast_ether_addr(hdr->addr1) && 582 !ieee80211_has_moredata(hdr->frame_control)) { 583 /* 584 * No more broadcast/multicast frames to be received at this 585 * point. 586 */ 587 sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON); 588 ath_dbg(common, PS, 589 "All PS CAB frames received, back to sleep\n"); 590 } else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) && 591 !is_multicast_ether_addr(hdr->addr1) && 592 !ieee80211_has_morefrags(hdr->frame_control)) { 593 sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA; 594 ath_dbg(common, PS, 595 "Going back to sleep after having received PS-Poll data (0x%lx)\n", 596 sc->ps_flags & (PS_WAIT_FOR_BEACON | 597 PS_WAIT_FOR_CAB | 598 PS_WAIT_FOR_PSPOLL_DATA | 599 PS_WAIT_FOR_TX_ACK)); 600 } 601 } 602 603 static bool ath_edma_get_buffers(struct ath_softc *sc, 604 enum ath9k_rx_qtype qtype, 605 struct ath_rx_status *rs, 606 struct ath_buf **dest) 607 { 608 struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype]; 609 struct ath_hw *ah = sc->sc_ah; 610 struct ath_common *common = ath9k_hw_common(ah); 611 struct sk_buff *skb; 612 struct ath_buf *bf; 613 int ret; 614 615 skb = skb_peek(&rx_edma->rx_fifo); 616 if (!skb) 617 return false; 618 619 bf = SKB_CB_ATHBUF(skb); 620 BUG_ON(!bf); 621 622 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 623 common->rx_bufsize, DMA_FROM_DEVICE); 624 625 ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data); 626 if (ret == -EINPROGRESS) { 627 /*let device gain the buffer again*/ 628 dma_sync_single_for_device(sc->dev, bf->bf_buf_addr, 629 common->rx_bufsize, DMA_FROM_DEVICE); 630 return false; 631 } 632 633 __skb_unlink(skb, &rx_edma->rx_fifo); 634 if (ret == -EINVAL) { 635 /* corrupt descriptor, skip this one and the following one */ 636 list_add_tail(&bf->list, &sc->rx.rxbuf); 637 ath_rx_edma_buf_link(sc, qtype); 638 639 skb = skb_peek(&rx_edma->rx_fifo); 640 if (skb) { 641 bf = SKB_CB_ATHBUF(skb); 642 BUG_ON(!bf); 643 644 __skb_unlink(skb, &rx_edma->rx_fifo); 645 list_add_tail(&bf->list, &sc->rx.rxbuf); 646 ath_rx_edma_buf_link(sc, qtype); 647 } 648 649 bf = NULL; 650 } 651 652 *dest = bf; 653 return true; 654 } 655 656 static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc, 657 struct ath_rx_status *rs, 658 enum ath9k_rx_qtype qtype) 659 { 660 struct ath_buf *bf = NULL; 661 662 while (ath_edma_get_buffers(sc, qtype, rs, &bf)) { 663 if (!bf) 664 continue; 665 666 return bf; 667 } 668 return NULL; 669 } 670 671 static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc, 672 struct ath_rx_status *rs) 673 { 674 struct ath_hw *ah = sc->sc_ah; 675 struct ath_common *common = ath9k_hw_common(ah); 676 struct ath_desc *ds; 677 struct ath_buf *bf; 678 int ret; 679 680 if (list_empty(&sc->rx.rxbuf)) { 681 sc->rx.rxlink = NULL; 682 return NULL; 683 } 684 685 bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list); 686 if (bf == sc->rx.buf_hold) 687 return NULL; 688 689 ds = bf->bf_desc; 690 691 /* 692 * Must provide the virtual address of the current 693 * descriptor, the physical address, and the virtual 694 * address of the next descriptor in the h/w chain. 695 * This allows the HAL to look ahead to see if the 696 * hardware is done with a descriptor by checking the 697 * done bit in the following descriptor and the address 698 * of the current descriptor the DMA engine is working 699 * on. All this is necessary because of our use of 700 * a self-linked list to avoid rx overruns. 701 */ 702 ret = ath9k_hw_rxprocdesc(ah, ds, rs); 703 if (ret == -EINPROGRESS) { 704 struct ath_rx_status trs; 705 struct ath_buf *tbf; 706 struct ath_desc *tds; 707 708 memset(&trs, 0, sizeof(trs)); 709 if (list_is_last(&bf->list, &sc->rx.rxbuf)) { 710 sc->rx.rxlink = NULL; 711 return NULL; 712 } 713 714 tbf = list_entry(bf->list.next, struct ath_buf, list); 715 716 /* 717 * On some hardware the descriptor status words could 718 * get corrupted, including the done bit. Because of 719 * this, check if the next descriptor's done bit is 720 * set or not. 721 * 722 * If the next descriptor's done bit is set, the current 723 * descriptor has been corrupted. Force s/w to discard 724 * this descriptor and continue... 725 */ 726 727 tds = tbf->bf_desc; 728 ret = ath9k_hw_rxprocdesc(ah, tds, &trs); 729 if (ret == -EINPROGRESS) 730 return NULL; 731 732 /* 733 * mark descriptor as zero-length and set the 'more' 734 * flag to ensure that both buffers get discarded 735 */ 736 rs->rs_datalen = 0; 737 rs->rs_more = true; 738 } 739 740 list_del(&bf->list); 741 if (!bf->bf_mpdu) 742 return bf; 743 744 /* 745 * Synchronize the DMA transfer with CPU before 746 * 1. accessing the frame 747 * 2. requeueing the same buffer to h/w 748 */ 749 dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr, 750 common->rx_bufsize, 751 DMA_FROM_DEVICE); 752 753 return bf; 754 } 755 756 /* Assumes you've already done the endian to CPU conversion */ 757 static bool ath9k_rx_accept(struct ath_common *common, 758 struct ieee80211_hdr *hdr, 759 struct ieee80211_rx_status *rxs, 760 struct ath_rx_status *rx_stats, 761 bool *decrypt_error) 762 { 763 struct ath_softc *sc = (struct ath_softc *) common->priv; 764 bool is_mc, is_valid_tkip, strip_mic, mic_error; 765 struct ath_hw *ah = common->ah; 766 __le16 fc; 767 768 fc = hdr->frame_control; 769 770 is_mc = !!is_multicast_ether_addr(hdr->addr1); 771 is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID && 772 test_bit(rx_stats->rs_keyix, common->tkip_keymap); 773 strip_mic = is_valid_tkip && ieee80211_is_data(fc) && 774 ieee80211_has_protected(fc) && 775 !(rx_stats->rs_status & 776 (ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC | 777 ATH9K_RXERR_KEYMISS)); 778 779 /* 780 * Key miss events are only relevant for pairwise keys where the 781 * descriptor does contain a valid key index. This has been observed 782 * mostly with CCMP encryption. 783 */ 784 if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID || 785 !test_bit(rx_stats->rs_keyix, common->ccmp_keymap)) 786 rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS; 787 788 mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) && 789 !ieee80211_has_morefrags(fc) && 790 !(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) && 791 (rx_stats->rs_status & ATH9K_RXERR_MIC); 792 793 /* 794 * The rx_stats->rs_status will not be set until the end of the 795 * chained descriptors so it can be ignored if rs_more is set. The 796 * rs_more will be false at the last element of the chained 797 * descriptors. 798 */ 799 if (rx_stats->rs_status != 0) { 800 u8 status_mask; 801 802 if (rx_stats->rs_status & ATH9K_RXERR_CRC) { 803 rxs->flag |= RX_FLAG_FAILED_FCS_CRC; 804 mic_error = false; 805 } 806 807 if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) || 808 (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) { 809 *decrypt_error = true; 810 mic_error = false; 811 } 812 813 /* 814 * Reject error frames with the exception of 815 * decryption and MIC failures. For monitor mode, 816 * we also ignore the CRC error. 817 */ 818 status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC | 819 ATH9K_RXERR_KEYMISS; 820 821 if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL)) 822 status_mask |= ATH9K_RXERR_CRC; 823 824 if (rx_stats->rs_status & ~status_mask) 825 return false; 826 } 827 828 /* 829 * For unicast frames the MIC error bit can have false positives, 830 * so all MIC error reports need to be validated in software. 831 * False negatives are not common, so skip software verification 832 * if the hardware considers the MIC valid. 833 */ 834 if (strip_mic) 835 rxs->flag |= RX_FLAG_MMIC_STRIPPED; 836 else if (is_mc && mic_error) 837 rxs->flag |= RX_FLAG_MMIC_ERROR; 838 839 return true; 840 } 841 842 static int ath9k_process_rate(struct ath_common *common, 843 struct ieee80211_hw *hw, 844 struct ath_rx_status *rx_stats, 845 struct ieee80211_rx_status *rxs) 846 { 847 struct ieee80211_supported_band *sband; 848 enum ieee80211_band band; 849 unsigned int i = 0; 850 struct ath_softc __maybe_unused *sc = common->priv; 851 852 band = hw->conf.chandef.chan->band; 853 sband = hw->wiphy->bands[band]; 854 855 switch (hw->conf.chandef.width) { 856 case NL80211_CHAN_WIDTH_5: 857 rxs->flag |= RX_FLAG_5MHZ; 858 break; 859 case NL80211_CHAN_WIDTH_10: 860 rxs->flag |= RX_FLAG_10MHZ; 861 break; 862 default: 863 break; 864 } 865 866 if (rx_stats->rs_rate & 0x80) { 867 /* HT rate */ 868 rxs->flag |= RX_FLAG_HT; 869 rxs->flag |= rx_stats->flag; 870 rxs->rate_idx = rx_stats->rs_rate & 0x7f; 871 return 0; 872 } 873 874 for (i = 0; i < sband->n_bitrates; i++) { 875 if (sband->bitrates[i].hw_value == rx_stats->rs_rate) { 876 rxs->rate_idx = i; 877 return 0; 878 } 879 if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) { 880 rxs->flag |= RX_FLAG_SHORTPRE; 881 rxs->rate_idx = i; 882 return 0; 883 } 884 } 885 886 /* 887 * No valid hardware bitrate found -- we should not get here 888 * because hardware has already validated this frame as OK. 889 */ 890 ath_dbg(common, ANY, 891 "unsupported hw bitrate detected 0x%02x using 1 Mbit\n", 892 rx_stats->rs_rate); 893 RX_STAT_INC(rx_rate_err); 894 return -EINVAL; 895 } 896 897 static void ath9k_process_rssi(struct ath_common *common, 898 struct ieee80211_hw *hw, 899 struct ath_rx_status *rx_stats, 900 struct ieee80211_rx_status *rxs) 901 { 902 struct ath_softc *sc = hw->priv; 903 struct ath_hw *ah = common->ah; 904 int last_rssi; 905 int rssi = rx_stats->rs_rssi; 906 907 /* 908 * RSSI is not available for subframes in an A-MPDU. 909 */ 910 if (rx_stats->rs_moreaggr) { 911 rxs->flag |= RX_FLAG_NO_SIGNAL_VAL; 912 return; 913 } 914 915 /* 916 * Check if the RSSI for the last subframe in an A-MPDU 917 * or an unaggregated frame is valid. 918 */ 919 if (rx_stats->rs_rssi == ATH9K_RSSI_BAD) { 920 rxs->flag |= RX_FLAG_NO_SIGNAL_VAL; 921 return; 922 } 923 924 /* 925 * Update Beacon RSSI, this is used by ANI. 926 */ 927 if (rx_stats->is_mybeacon && 928 ((ah->opmode == NL80211_IFTYPE_STATION) || 929 (ah->opmode == NL80211_IFTYPE_ADHOC))) { 930 ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi); 931 last_rssi = sc->last_rssi; 932 933 if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER)) 934 rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER); 935 if (rssi < 0) 936 rssi = 0; 937 938 ah->stats.avgbrssi = rssi; 939 } 940 941 rxs->signal = ah->noise + rx_stats->rs_rssi; 942 } 943 944 static void ath9k_process_tsf(struct ath_rx_status *rs, 945 struct ieee80211_rx_status *rxs, 946 u64 tsf) 947 { 948 u32 tsf_lower = tsf & 0xffffffff; 949 950 rxs->mactime = (tsf & ~0xffffffffULL) | rs->rs_tstamp; 951 if (rs->rs_tstamp > tsf_lower && 952 unlikely(rs->rs_tstamp - tsf_lower > 0x10000000)) 953 rxs->mactime -= 0x100000000ULL; 954 955 if (rs->rs_tstamp < tsf_lower && 956 unlikely(tsf_lower - rs->rs_tstamp > 0x10000000)) 957 rxs->mactime += 0x100000000ULL; 958 } 959 960 #ifdef CONFIG_ATH9K_DEBUGFS 961 static s8 fix_rssi_inv_only(u8 rssi_val) 962 { 963 if (rssi_val == 128) 964 rssi_val = 0; 965 return (s8) rssi_val; 966 } 967 #endif 968 969 /* returns 1 if this was a spectral frame, even if not handled. */ 970 static int ath_process_fft(struct ath_softc *sc, struct ieee80211_hdr *hdr, 971 struct ath_rx_status *rs, u64 tsf) 972 { 973 #ifdef CONFIG_ATH9K_DEBUGFS 974 struct ath_hw *ah = sc->sc_ah; 975 u8 bins[SPECTRAL_HT20_NUM_BINS]; 976 u8 *vdata = (u8 *)hdr; 977 struct fft_sample_ht20 fft_sample; 978 struct ath_radar_info *radar_info; 979 struct ath_ht20_mag_info *mag_info; 980 int len = rs->rs_datalen; 981 int dc_pos; 982 u16 length, max_magnitude; 983 984 /* AR9280 and before report via ATH9K_PHYERR_RADAR, AR93xx and newer 985 * via ATH9K_PHYERR_SPECTRAL. Haven't seen ATH9K_PHYERR_FALSE_RADAR_EXT 986 * yet, but this is supposed to be possible as well. 987 */ 988 if (rs->rs_phyerr != ATH9K_PHYERR_RADAR && 989 rs->rs_phyerr != ATH9K_PHYERR_FALSE_RADAR_EXT && 990 rs->rs_phyerr != ATH9K_PHYERR_SPECTRAL) 991 return 0; 992 993 /* check if spectral scan bit is set. This does not have to be checked 994 * if received through a SPECTRAL phy error, but shouldn't hurt. 995 */ 996 radar_info = ((struct ath_radar_info *)&vdata[len]) - 1; 997 if (!(radar_info->pulse_bw_info & SPECTRAL_SCAN_BITMASK)) 998 return 0; 999 1000 /* Variation in the data length is possible and will be fixed later. 1001 * Note that we only support HT20 for now. 1002 * 1003 * TODO: add HT20_40 support as well. 1004 */ 1005 if ((len > SPECTRAL_HT20_TOTAL_DATA_LEN + 2) || 1006 (len < SPECTRAL_HT20_TOTAL_DATA_LEN - 1)) 1007 return 1; 1008 1009 fft_sample.tlv.type = ATH_FFT_SAMPLE_HT20; 1010 length = sizeof(fft_sample) - sizeof(fft_sample.tlv); 1011 fft_sample.tlv.length = __cpu_to_be16(length); 1012 1013 fft_sample.freq = __cpu_to_be16(ah->curchan->chan->center_freq); 1014 fft_sample.rssi = fix_rssi_inv_only(rs->rs_rssi_ctl0); 1015 fft_sample.noise = ah->noise; 1016 1017 switch (len - SPECTRAL_HT20_TOTAL_DATA_LEN) { 1018 case 0: 1019 /* length correct, nothing to do. */ 1020 memcpy(bins, vdata, SPECTRAL_HT20_NUM_BINS); 1021 break; 1022 case -1: 1023 /* first byte missing, duplicate it. */ 1024 memcpy(&bins[1], vdata, SPECTRAL_HT20_NUM_BINS - 1); 1025 bins[0] = vdata[0]; 1026 break; 1027 case 2: 1028 /* MAC added 2 extra bytes at bin 30 and 32, remove them. */ 1029 memcpy(bins, vdata, 30); 1030 bins[30] = vdata[31]; 1031 memcpy(&bins[31], &vdata[33], SPECTRAL_HT20_NUM_BINS - 31); 1032 break; 1033 case 1: 1034 /* MAC added 2 extra bytes AND first byte is missing. */ 1035 bins[0] = vdata[0]; 1036 memcpy(&bins[0], vdata, 30); 1037 bins[31] = vdata[31]; 1038 memcpy(&bins[32], &vdata[33], SPECTRAL_HT20_NUM_BINS - 32); 1039 break; 1040 default: 1041 return 1; 1042 } 1043 1044 /* DC value (value in the middle) is the blind spot of the spectral 1045 * sample and invalid, interpolate it. 1046 */ 1047 dc_pos = SPECTRAL_HT20_NUM_BINS / 2; 1048 bins[dc_pos] = (bins[dc_pos + 1] + bins[dc_pos - 1]) / 2; 1049 1050 /* mag data is at the end of the frame, in front of radar_info */ 1051 mag_info = ((struct ath_ht20_mag_info *)radar_info) - 1; 1052 1053 /* copy raw bins without scaling them */ 1054 memcpy(fft_sample.data, bins, SPECTRAL_HT20_NUM_BINS); 1055 fft_sample.max_exp = mag_info->max_exp & 0xf; 1056 1057 max_magnitude = spectral_max_magnitude(mag_info->all_bins); 1058 fft_sample.max_magnitude = __cpu_to_be16(max_magnitude); 1059 fft_sample.max_index = spectral_max_index(mag_info->all_bins); 1060 fft_sample.bitmap_weight = spectral_bitmap_weight(mag_info->all_bins); 1061 fft_sample.tsf = __cpu_to_be64(tsf); 1062 1063 ath_debug_send_fft_sample(sc, &fft_sample.tlv); 1064 return 1; 1065 #else 1066 return 0; 1067 #endif 1068 } 1069 1070 static bool ath9k_is_mybeacon(struct ath_softc *sc, struct ieee80211_hdr *hdr) 1071 { 1072 struct ath_hw *ah = sc->sc_ah; 1073 struct ath_common *common = ath9k_hw_common(ah); 1074 1075 if (ieee80211_is_beacon(hdr->frame_control)) { 1076 RX_STAT_INC(rx_beacons); 1077 if (!is_zero_ether_addr(common->curbssid) && 1078 ether_addr_equal(hdr->addr3, common->curbssid)) 1079 return true; 1080 } 1081 1082 return false; 1083 } 1084 1085 /* 1086 * For Decrypt or Demic errors, we only mark packet status here and always push 1087 * up the frame up to let mac80211 handle the actual error case, be it no 1088 * decryption key or real decryption error. This let us keep statistics there. 1089 */ 1090 static int ath9k_rx_skb_preprocess(struct ath_softc *sc, 1091 struct sk_buff *skb, 1092 struct ath_rx_status *rx_stats, 1093 struct ieee80211_rx_status *rx_status, 1094 bool *decrypt_error, u64 tsf) 1095 { 1096 struct ieee80211_hw *hw = sc->hw; 1097 struct ath_hw *ah = sc->sc_ah; 1098 struct ath_common *common = ath9k_hw_common(ah); 1099 struct ieee80211_hdr *hdr; 1100 bool discard_current = sc->rx.discard_next; 1101 int ret = 0; 1102 1103 /* 1104 * Discard corrupt descriptors which are marked in 1105 * ath_get_next_rx_buf(). 1106 */ 1107 sc->rx.discard_next = rx_stats->rs_more; 1108 if (discard_current) 1109 return -EINVAL; 1110 1111 /* 1112 * Discard zero-length packets. 1113 */ 1114 if (!rx_stats->rs_datalen) { 1115 RX_STAT_INC(rx_len_err); 1116 return -EINVAL; 1117 } 1118 1119 /* 1120 * rs_status follows rs_datalen so if rs_datalen is too large 1121 * we can take a hint that hardware corrupted it, so ignore 1122 * those frames. 1123 */ 1124 if (rx_stats->rs_datalen > (common->rx_bufsize - ah->caps.rx_status_len)) { 1125 RX_STAT_INC(rx_len_err); 1126 return -EINVAL; 1127 } 1128 1129 /* Only use status info from the last fragment */ 1130 if (rx_stats->rs_more) 1131 return 0; 1132 1133 /* 1134 * Return immediately if the RX descriptor has been marked 1135 * as corrupt based on the various error bits. 1136 * 1137 * This is different from the other corrupt descriptor 1138 * condition handled above. 1139 */ 1140 if (rx_stats->rs_status & ATH9K_RXERR_CORRUPT_DESC) { 1141 ret = -EINVAL; 1142 goto exit; 1143 } 1144 1145 hdr = (struct ieee80211_hdr *) (skb->data + ah->caps.rx_status_len); 1146 1147 ath9k_process_tsf(rx_stats, rx_status, tsf); 1148 ath_debug_stat_rx(sc, rx_stats); 1149 1150 /* 1151 * Process PHY errors and return so that the packet 1152 * can be dropped. 1153 */ 1154 if (rx_stats->rs_status & ATH9K_RXERR_PHY) { 1155 ath9k_dfs_process_phyerr(sc, hdr, rx_stats, rx_status->mactime); 1156 if (ath_process_fft(sc, hdr, rx_stats, rx_status->mactime)) 1157 RX_STAT_INC(rx_spectral); 1158 1159 ret = -EINVAL; 1160 goto exit; 1161 } 1162 1163 /* 1164 * everything but the rate is checked here, the rate check is done 1165 * separately to avoid doing two lookups for a rate for each frame. 1166 */ 1167 if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error)) { 1168 ret = -EINVAL; 1169 goto exit; 1170 } 1171 1172 rx_stats->is_mybeacon = ath9k_is_mybeacon(sc, hdr); 1173 if (rx_stats->is_mybeacon) { 1174 sc->hw_busy_count = 0; 1175 ath_start_rx_poll(sc, 3); 1176 } 1177 1178 if (ath9k_process_rate(common, hw, rx_stats, rx_status)) { 1179 ret =-EINVAL; 1180 goto exit; 1181 } 1182 1183 ath9k_process_rssi(common, hw, rx_stats, rx_status); 1184 1185 rx_status->band = hw->conf.chandef.chan->band; 1186 rx_status->freq = hw->conf.chandef.chan->center_freq; 1187 rx_status->antenna = rx_stats->rs_antenna; 1188 rx_status->flag |= RX_FLAG_MACTIME_END; 1189 1190 #ifdef CONFIG_ATH9K_BTCOEX_SUPPORT 1191 if (ieee80211_is_data_present(hdr->frame_control) && 1192 !ieee80211_is_qos_nullfunc(hdr->frame_control)) 1193 sc->rx.num_pkts++; 1194 #endif 1195 1196 exit: 1197 sc->rx.discard_next = false; 1198 return ret; 1199 } 1200 1201 static void ath9k_rx_skb_postprocess(struct ath_common *common, 1202 struct sk_buff *skb, 1203 struct ath_rx_status *rx_stats, 1204 struct ieee80211_rx_status *rxs, 1205 bool decrypt_error) 1206 { 1207 struct ath_hw *ah = common->ah; 1208 struct ieee80211_hdr *hdr; 1209 int hdrlen, padpos, padsize; 1210 u8 keyix; 1211 __le16 fc; 1212 1213 /* see if any padding is done by the hw and remove it */ 1214 hdr = (struct ieee80211_hdr *) skb->data; 1215 hdrlen = ieee80211_get_hdrlen_from_skb(skb); 1216 fc = hdr->frame_control; 1217 padpos = ieee80211_hdrlen(fc); 1218 1219 /* The MAC header is padded to have 32-bit boundary if the 1220 * packet payload is non-zero. The general calculation for 1221 * padsize would take into account odd header lengths: 1222 * padsize = (4 - padpos % 4) % 4; However, since only 1223 * even-length headers are used, padding can only be 0 or 2 1224 * bytes and we can optimize this a bit. In addition, we must 1225 * not try to remove padding from short control frames that do 1226 * not have payload. */ 1227 padsize = padpos & 3; 1228 if (padsize && skb->len>=padpos+padsize+FCS_LEN) { 1229 memmove(skb->data + padsize, skb->data, padpos); 1230 skb_pull(skb, padsize); 1231 } 1232 1233 keyix = rx_stats->rs_keyix; 1234 1235 if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error && 1236 ieee80211_has_protected(fc)) { 1237 rxs->flag |= RX_FLAG_DECRYPTED; 1238 } else if (ieee80211_has_protected(fc) 1239 && !decrypt_error && skb->len >= hdrlen + 4) { 1240 keyix = skb->data[hdrlen + 3] >> 6; 1241 1242 if (test_bit(keyix, common->keymap)) 1243 rxs->flag |= RX_FLAG_DECRYPTED; 1244 } 1245 if (ah->sw_mgmt_crypto && 1246 (rxs->flag & RX_FLAG_DECRYPTED) && 1247 ieee80211_is_mgmt(fc)) 1248 /* Use software decrypt for management frames. */ 1249 rxs->flag &= ~RX_FLAG_DECRYPTED; 1250 } 1251 1252 /* 1253 * Run the LNA combining algorithm only in these cases: 1254 * 1255 * Standalone WLAN cards with both LNA/Antenna diversity 1256 * enabled in the EEPROM. 1257 * 1258 * WLAN+BT cards which are in the supported card list 1259 * in ath_pci_id_table and the user has loaded the 1260 * driver with "bt_ant_diversity" set to true. 1261 */ 1262 static void ath9k_antenna_check(struct ath_softc *sc, 1263 struct ath_rx_status *rs) 1264 { 1265 struct ath_hw *ah = sc->sc_ah; 1266 struct ath9k_hw_capabilities *pCap = &ah->caps; 1267 struct ath_common *common = ath9k_hw_common(ah); 1268 1269 if (!(ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)) 1270 return; 1271 1272 /* 1273 * All MPDUs in an aggregate will use the same LNA 1274 * as the first MPDU. 1275 */ 1276 if (rs->rs_isaggr && !rs->rs_firstaggr) 1277 return; 1278 1279 /* 1280 * Change the default rx antenna if rx diversity 1281 * chooses the other antenna 3 times in a row. 1282 */ 1283 if (sc->rx.defant != rs->rs_antenna) { 1284 if (++sc->rx.rxotherant >= 3) 1285 ath_setdefantenna(sc, rs->rs_antenna); 1286 } else { 1287 sc->rx.rxotherant = 0; 1288 } 1289 1290 if (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV) { 1291 if (common->bt_ant_diversity) 1292 ath_ant_comb_scan(sc, rs); 1293 } else { 1294 ath_ant_comb_scan(sc, rs); 1295 } 1296 } 1297 1298 static void ath9k_apply_ampdu_details(struct ath_softc *sc, 1299 struct ath_rx_status *rs, struct ieee80211_rx_status *rxs) 1300 { 1301 if (rs->rs_isaggr) { 1302 rxs->flag |= RX_FLAG_AMPDU_DETAILS | RX_FLAG_AMPDU_LAST_KNOWN; 1303 1304 rxs->ampdu_reference = sc->rx.ampdu_ref; 1305 1306 if (!rs->rs_moreaggr) { 1307 rxs->flag |= RX_FLAG_AMPDU_IS_LAST; 1308 sc->rx.ampdu_ref++; 1309 } 1310 1311 if (rs->rs_flags & ATH9K_RX_DELIM_CRC_PRE) 1312 rxs->flag |= RX_FLAG_AMPDU_DELIM_CRC_ERROR; 1313 } 1314 } 1315 1316 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp) 1317 { 1318 struct ath_buf *bf; 1319 struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb; 1320 struct ieee80211_rx_status *rxs; 1321 struct ath_hw *ah = sc->sc_ah; 1322 struct ath_common *common = ath9k_hw_common(ah); 1323 struct ieee80211_hw *hw = sc->hw; 1324 int retval; 1325 struct ath_rx_status rs; 1326 enum ath9k_rx_qtype qtype; 1327 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1328 int dma_type; 1329 u64 tsf = 0; 1330 unsigned long flags; 1331 dma_addr_t new_buf_addr; 1332 1333 if (edma) 1334 dma_type = DMA_BIDIRECTIONAL; 1335 else 1336 dma_type = DMA_FROM_DEVICE; 1337 1338 qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP; 1339 1340 tsf = ath9k_hw_gettsf64(ah); 1341 1342 do { 1343 bool decrypt_error = false; 1344 1345 memset(&rs, 0, sizeof(rs)); 1346 if (edma) 1347 bf = ath_edma_get_next_rx_buf(sc, &rs, qtype); 1348 else 1349 bf = ath_get_next_rx_buf(sc, &rs); 1350 1351 if (!bf) 1352 break; 1353 1354 skb = bf->bf_mpdu; 1355 if (!skb) 1356 continue; 1357 1358 /* 1359 * Take frame header from the first fragment and RX status from 1360 * the last one. 1361 */ 1362 if (sc->rx.frag) 1363 hdr_skb = sc->rx.frag; 1364 else 1365 hdr_skb = skb; 1366 1367 rxs = IEEE80211_SKB_RXCB(hdr_skb); 1368 memset(rxs, 0, sizeof(struct ieee80211_rx_status)); 1369 1370 retval = ath9k_rx_skb_preprocess(sc, hdr_skb, &rs, rxs, 1371 &decrypt_error, tsf); 1372 if (retval) 1373 goto requeue_drop_frag; 1374 1375 /* Ensure we always have an skb to requeue once we are done 1376 * processing the current buffer's skb */ 1377 requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC); 1378 1379 /* If there is no memory we ignore the current RX'd frame, 1380 * tell hardware it can give us a new frame using the old 1381 * skb and put it at the tail of the sc->rx.rxbuf list for 1382 * processing. */ 1383 if (!requeue_skb) { 1384 RX_STAT_INC(rx_oom_err); 1385 goto requeue_drop_frag; 1386 } 1387 1388 /* We will now give hardware our shiny new allocated skb */ 1389 new_buf_addr = dma_map_single(sc->dev, requeue_skb->data, 1390 common->rx_bufsize, dma_type); 1391 if (unlikely(dma_mapping_error(sc->dev, new_buf_addr))) { 1392 dev_kfree_skb_any(requeue_skb); 1393 goto requeue_drop_frag; 1394 } 1395 1396 /* Unmap the frame */ 1397 dma_unmap_single(sc->dev, bf->bf_buf_addr, 1398 common->rx_bufsize, dma_type); 1399 1400 bf->bf_mpdu = requeue_skb; 1401 bf->bf_buf_addr = new_buf_addr; 1402 1403 skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len); 1404 if (ah->caps.rx_status_len) 1405 skb_pull(skb, ah->caps.rx_status_len); 1406 1407 if (!rs.rs_more) 1408 ath9k_rx_skb_postprocess(common, hdr_skb, &rs, 1409 rxs, decrypt_error); 1410 1411 if (rs.rs_more) { 1412 RX_STAT_INC(rx_frags); 1413 /* 1414 * rs_more indicates chained descriptors which can be 1415 * used to link buffers together for a sort of 1416 * scatter-gather operation. 1417 */ 1418 if (sc->rx.frag) { 1419 /* too many fragments - cannot handle frame */ 1420 dev_kfree_skb_any(sc->rx.frag); 1421 dev_kfree_skb_any(skb); 1422 RX_STAT_INC(rx_too_many_frags_err); 1423 skb = NULL; 1424 } 1425 sc->rx.frag = skb; 1426 goto requeue; 1427 } 1428 1429 if (sc->rx.frag) { 1430 int space = skb->len - skb_tailroom(hdr_skb); 1431 1432 if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) { 1433 dev_kfree_skb(skb); 1434 RX_STAT_INC(rx_oom_err); 1435 goto requeue_drop_frag; 1436 } 1437 1438 sc->rx.frag = NULL; 1439 1440 skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len), 1441 skb->len); 1442 dev_kfree_skb_any(skb); 1443 skb = hdr_skb; 1444 } 1445 1446 if (rxs->flag & RX_FLAG_MMIC_STRIPPED) 1447 skb_trim(skb, skb->len - 8); 1448 1449 spin_lock_irqsave(&sc->sc_pm_lock, flags); 1450 if ((sc->ps_flags & (PS_WAIT_FOR_BEACON | 1451 PS_WAIT_FOR_CAB | 1452 PS_WAIT_FOR_PSPOLL_DATA)) || 1453 ath9k_check_auto_sleep(sc)) 1454 ath_rx_ps(sc, skb, rs.is_mybeacon); 1455 spin_unlock_irqrestore(&sc->sc_pm_lock, flags); 1456 1457 ath9k_antenna_check(sc, &rs); 1458 1459 ath9k_apply_ampdu_details(sc, &rs, rxs); 1460 1461 ieee80211_rx(hw, skb); 1462 1463 requeue_drop_frag: 1464 if (sc->rx.frag) { 1465 dev_kfree_skb_any(sc->rx.frag); 1466 sc->rx.frag = NULL; 1467 } 1468 requeue: 1469 list_add_tail(&bf->list, &sc->rx.rxbuf); 1470 if (flush) 1471 continue; 1472 1473 if (edma) { 1474 ath_rx_edma_buf_link(sc, qtype); 1475 } else { 1476 ath_rx_buf_relink(sc, bf); 1477 ath9k_hw_rxena(ah); 1478 } 1479 } while (1); 1480 1481 if (!(ah->imask & ATH9K_INT_RXEOL)) { 1482 ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN); 1483 ath9k_hw_set_interrupts(ah); 1484 } 1485 1486 return 0; 1487 } 1488