xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/recv.c (revision 05bcf503)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/dma-mapping.h>
18 #include "ath9k.h"
19 #include "ar9003_mac.h"
20 
21 #define SKB_CB_ATHBUF(__skb)	(*((struct ath_buf **)__skb->cb))
22 
23 static inline bool ath9k_check_auto_sleep(struct ath_softc *sc)
24 {
25 	return sc->ps_enabled &&
26 	       (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_AUTOSLEEP);
27 }
28 
29 /*
30  * Setup and link descriptors.
31  *
32  * 11N: we can no longer afford to self link the last descriptor.
33  * MAC acknowledges BA status as long as it copies frames to host
34  * buffer (or rx fifo). This can incorrectly acknowledge packets
35  * to a sender if last desc is self-linked.
36  */
37 static void ath_rx_buf_link(struct ath_softc *sc, struct ath_buf *bf)
38 {
39 	struct ath_hw *ah = sc->sc_ah;
40 	struct ath_common *common = ath9k_hw_common(ah);
41 	struct ath_desc *ds;
42 	struct sk_buff *skb;
43 
44 	ATH_RXBUF_RESET(bf);
45 
46 	ds = bf->bf_desc;
47 	ds->ds_link = 0; /* link to null */
48 	ds->ds_data = bf->bf_buf_addr;
49 
50 	/* virtual addr of the beginning of the buffer. */
51 	skb = bf->bf_mpdu;
52 	BUG_ON(skb == NULL);
53 	ds->ds_vdata = skb->data;
54 
55 	/*
56 	 * setup rx descriptors. The rx_bufsize here tells the hardware
57 	 * how much data it can DMA to us and that we are prepared
58 	 * to process
59 	 */
60 	ath9k_hw_setuprxdesc(ah, ds,
61 			     common->rx_bufsize,
62 			     0);
63 
64 	if (sc->rx.rxlink == NULL)
65 		ath9k_hw_putrxbuf(ah, bf->bf_daddr);
66 	else
67 		*sc->rx.rxlink = bf->bf_daddr;
68 
69 	sc->rx.rxlink = &ds->ds_link;
70 }
71 
72 static void ath_setdefantenna(struct ath_softc *sc, u32 antenna)
73 {
74 	/* XXX block beacon interrupts */
75 	ath9k_hw_setantenna(sc->sc_ah, antenna);
76 	sc->rx.defant = antenna;
77 	sc->rx.rxotherant = 0;
78 }
79 
80 static void ath_opmode_init(struct ath_softc *sc)
81 {
82 	struct ath_hw *ah = sc->sc_ah;
83 	struct ath_common *common = ath9k_hw_common(ah);
84 
85 	u32 rfilt, mfilt[2];
86 
87 	/* configure rx filter */
88 	rfilt = ath_calcrxfilter(sc);
89 	ath9k_hw_setrxfilter(ah, rfilt);
90 
91 	/* configure bssid mask */
92 	ath_hw_setbssidmask(common);
93 
94 	/* configure operational mode */
95 	ath9k_hw_setopmode(ah);
96 
97 	/* calculate and install multicast filter */
98 	mfilt[0] = mfilt[1] = ~0;
99 	ath9k_hw_setmcastfilter(ah, mfilt[0], mfilt[1]);
100 }
101 
102 static bool ath_rx_edma_buf_link(struct ath_softc *sc,
103 				 enum ath9k_rx_qtype qtype)
104 {
105 	struct ath_hw *ah = sc->sc_ah;
106 	struct ath_rx_edma *rx_edma;
107 	struct sk_buff *skb;
108 	struct ath_buf *bf;
109 
110 	rx_edma = &sc->rx.rx_edma[qtype];
111 	if (skb_queue_len(&rx_edma->rx_fifo) >= rx_edma->rx_fifo_hwsize)
112 		return false;
113 
114 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
115 	list_del_init(&bf->list);
116 
117 	skb = bf->bf_mpdu;
118 
119 	ATH_RXBUF_RESET(bf);
120 	memset(skb->data, 0, ah->caps.rx_status_len);
121 	dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
122 				ah->caps.rx_status_len, DMA_TO_DEVICE);
123 
124 	SKB_CB_ATHBUF(skb) = bf;
125 	ath9k_hw_addrxbuf_edma(ah, bf->bf_buf_addr, qtype);
126 	skb_queue_tail(&rx_edma->rx_fifo, skb);
127 
128 	return true;
129 }
130 
131 static void ath_rx_addbuffer_edma(struct ath_softc *sc,
132 				  enum ath9k_rx_qtype qtype, int size)
133 {
134 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
135 	struct ath_buf *bf, *tbf;
136 
137 	if (list_empty(&sc->rx.rxbuf)) {
138 		ath_dbg(common, QUEUE, "No free rx buf available\n");
139 		return;
140 	}
141 
142 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list)
143 		if (!ath_rx_edma_buf_link(sc, qtype))
144 			break;
145 
146 }
147 
148 static void ath_rx_remove_buffer(struct ath_softc *sc,
149 				 enum ath9k_rx_qtype qtype)
150 {
151 	struct ath_buf *bf;
152 	struct ath_rx_edma *rx_edma;
153 	struct sk_buff *skb;
154 
155 	rx_edma = &sc->rx.rx_edma[qtype];
156 
157 	while ((skb = skb_dequeue(&rx_edma->rx_fifo)) != NULL) {
158 		bf = SKB_CB_ATHBUF(skb);
159 		BUG_ON(!bf);
160 		list_add_tail(&bf->list, &sc->rx.rxbuf);
161 	}
162 }
163 
164 static void ath_rx_edma_cleanup(struct ath_softc *sc)
165 {
166 	struct ath_hw *ah = sc->sc_ah;
167 	struct ath_common *common = ath9k_hw_common(ah);
168 	struct ath_buf *bf;
169 
170 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
171 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
172 
173 	list_for_each_entry(bf, &sc->rx.rxbuf, list) {
174 		if (bf->bf_mpdu) {
175 			dma_unmap_single(sc->dev, bf->bf_buf_addr,
176 					common->rx_bufsize,
177 					DMA_BIDIRECTIONAL);
178 			dev_kfree_skb_any(bf->bf_mpdu);
179 			bf->bf_buf_addr = 0;
180 			bf->bf_mpdu = NULL;
181 		}
182 	}
183 
184 	INIT_LIST_HEAD(&sc->rx.rxbuf);
185 
186 	kfree(sc->rx.rx_bufptr);
187 	sc->rx.rx_bufptr = NULL;
188 }
189 
190 static void ath_rx_edma_init_queue(struct ath_rx_edma *rx_edma, int size)
191 {
192 	skb_queue_head_init(&rx_edma->rx_fifo);
193 	rx_edma->rx_fifo_hwsize = size;
194 }
195 
196 static int ath_rx_edma_init(struct ath_softc *sc, int nbufs)
197 {
198 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
199 	struct ath_hw *ah = sc->sc_ah;
200 	struct sk_buff *skb;
201 	struct ath_buf *bf;
202 	int error = 0, i;
203 	u32 size;
204 
205 	ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
206 				    ah->caps.rx_status_len);
207 
208 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_LP],
209 			       ah->caps.rx_lp_qdepth);
210 	ath_rx_edma_init_queue(&sc->rx.rx_edma[ATH9K_RX_QUEUE_HP],
211 			       ah->caps.rx_hp_qdepth);
212 
213 	size = sizeof(struct ath_buf) * nbufs;
214 	bf = kzalloc(size, GFP_KERNEL);
215 	if (!bf)
216 		return -ENOMEM;
217 
218 	INIT_LIST_HEAD(&sc->rx.rxbuf);
219 	sc->rx.rx_bufptr = bf;
220 
221 	for (i = 0; i < nbufs; i++, bf++) {
222 		skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_KERNEL);
223 		if (!skb) {
224 			error = -ENOMEM;
225 			goto rx_init_fail;
226 		}
227 
228 		memset(skb->data, 0, common->rx_bufsize);
229 		bf->bf_mpdu = skb;
230 
231 		bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
232 						 common->rx_bufsize,
233 						 DMA_BIDIRECTIONAL);
234 		if (unlikely(dma_mapping_error(sc->dev,
235 						bf->bf_buf_addr))) {
236 				dev_kfree_skb_any(skb);
237 				bf->bf_mpdu = NULL;
238 				bf->bf_buf_addr = 0;
239 				ath_err(common,
240 					"dma_mapping_error() on RX init\n");
241 				error = -ENOMEM;
242 				goto rx_init_fail;
243 		}
244 
245 		list_add_tail(&bf->list, &sc->rx.rxbuf);
246 	}
247 
248 	return 0;
249 
250 rx_init_fail:
251 	ath_rx_edma_cleanup(sc);
252 	return error;
253 }
254 
255 static void ath_edma_start_recv(struct ath_softc *sc)
256 {
257 	spin_lock_bh(&sc->rx.rxbuflock);
258 
259 	ath9k_hw_rxena(sc->sc_ah);
260 
261 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_HP,
262 			      sc->rx.rx_edma[ATH9K_RX_QUEUE_HP].rx_fifo_hwsize);
263 
264 	ath_rx_addbuffer_edma(sc, ATH9K_RX_QUEUE_LP,
265 			      sc->rx.rx_edma[ATH9K_RX_QUEUE_LP].rx_fifo_hwsize);
266 
267 	ath_opmode_init(sc);
268 
269 	ath9k_hw_startpcureceive(sc->sc_ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
270 
271 	spin_unlock_bh(&sc->rx.rxbuflock);
272 }
273 
274 static void ath_edma_stop_recv(struct ath_softc *sc)
275 {
276 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_HP);
277 	ath_rx_remove_buffer(sc, ATH9K_RX_QUEUE_LP);
278 }
279 
280 int ath_rx_init(struct ath_softc *sc, int nbufs)
281 {
282 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
283 	struct sk_buff *skb;
284 	struct ath_buf *bf;
285 	int error = 0;
286 
287 	spin_lock_init(&sc->sc_pcu_lock);
288 	spin_lock_init(&sc->rx.rxbuflock);
289 	clear_bit(SC_OP_RXFLUSH, &sc->sc_flags);
290 
291 	common->rx_bufsize = IEEE80211_MAX_MPDU_LEN / 2 +
292 			     sc->sc_ah->caps.rx_status_len;
293 
294 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
295 		return ath_rx_edma_init(sc, nbufs);
296 	} else {
297 		ath_dbg(common, CONFIG, "cachelsz %u rxbufsize %u\n",
298 			common->cachelsz, common->rx_bufsize);
299 
300 		/* Initialize rx descriptors */
301 
302 		error = ath_descdma_setup(sc, &sc->rx.rxdma, &sc->rx.rxbuf,
303 				"rx", nbufs, 1, 0);
304 		if (error != 0) {
305 			ath_err(common,
306 				"failed to allocate rx descriptors: %d\n",
307 				error);
308 			goto err;
309 		}
310 
311 		list_for_each_entry(bf, &sc->rx.rxbuf, list) {
312 			skb = ath_rxbuf_alloc(common, common->rx_bufsize,
313 					      GFP_KERNEL);
314 			if (skb == NULL) {
315 				error = -ENOMEM;
316 				goto err;
317 			}
318 
319 			bf->bf_mpdu = skb;
320 			bf->bf_buf_addr = dma_map_single(sc->dev, skb->data,
321 					common->rx_bufsize,
322 					DMA_FROM_DEVICE);
323 			if (unlikely(dma_mapping_error(sc->dev,
324 							bf->bf_buf_addr))) {
325 				dev_kfree_skb_any(skb);
326 				bf->bf_mpdu = NULL;
327 				bf->bf_buf_addr = 0;
328 				ath_err(common,
329 					"dma_mapping_error() on RX init\n");
330 				error = -ENOMEM;
331 				goto err;
332 			}
333 		}
334 		sc->rx.rxlink = NULL;
335 	}
336 
337 err:
338 	if (error)
339 		ath_rx_cleanup(sc);
340 
341 	return error;
342 }
343 
344 void ath_rx_cleanup(struct ath_softc *sc)
345 {
346 	struct ath_hw *ah = sc->sc_ah;
347 	struct ath_common *common = ath9k_hw_common(ah);
348 	struct sk_buff *skb;
349 	struct ath_buf *bf;
350 
351 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
352 		ath_rx_edma_cleanup(sc);
353 		return;
354 	} else {
355 		list_for_each_entry(bf, &sc->rx.rxbuf, list) {
356 			skb = bf->bf_mpdu;
357 			if (skb) {
358 				dma_unmap_single(sc->dev, bf->bf_buf_addr,
359 						common->rx_bufsize,
360 						DMA_FROM_DEVICE);
361 				dev_kfree_skb(skb);
362 				bf->bf_buf_addr = 0;
363 				bf->bf_mpdu = NULL;
364 			}
365 		}
366 
367 		if (sc->rx.rxdma.dd_desc_len != 0)
368 			ath_descdma_cleanup(sc, &sc->rx.rxdma, &sc->rx.rxbuf);
369 	}
370 }
371 
372 /*
373  * Calculate the receive filter according to the
374  * operating mode and state:
375  *
376  * o always accept unicast, broadcast, and multicast traffic
377  * o maintain current state of phy error reception (the hal
378  *   may enable phy error frames for noise immunity work)
379  * o probe request frames are accepted only when operating in
380  *   hostap, adhoc, or monitor modes
381  * o enable promiscuous mode according to the interface state
382  * o accept beacons:
383  *   - when operating in adhoc mode so the 802.11 layer creates
384  *     node table entries for peers,
385  *   - when operating in station mode for collecting rssi data when
386  *     the station is otherwise quiet, or
387  *   - when operating as a repeater so we see repeater-sta beacons
388  *   - when scanning
389  */
390 
391 u32 ath_calcrxfilter(struct ath_softc *sc)
392 {
393 	u32 rfilt;
394 
395 	rfilt = ATH9K_RX_FILTER_UCAST | ATH9K_RX_FILTER_BCAST
396 		| ATH9K_RX_FILTER_MCAST;
397 
398 	if (sc->rx.rxfilter & FIF_PROBE_REQ)
399 		rfilt |= ATH9K_RX_FILTER_PROBEREQ;
400 
401 	/*
402 	 * Set promiscuous mode when FIF_PROMISC_IN_BSS is enabled for station
403 	 * mode interface or when in monitor mode. AP mode does not need this
404 	 * since it receives all in-BSS frames anyway.
405 	 */
406 	if (sc->sc_ah->is_monitoring)
407 		rfilt |= ATH9K_RX_FILTER_PROM;
408 
409 	if (sc->rx.rxfilter & FIF_CONTROL)
410 		rfilt |= ATH9K_RX_FILTER_CONTROL;
411 
412 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_STATION) &&
413 	    (sc->nvifs <= 1) &&
414 	    !(sc->rx.rxfilter & FIF_BCN_PRBRESP_PROMISC))
415 		rfilt |= ATH9K_RX_FILTER_MYBEACON;
416 	else
417 		rfilt |= ATH9K_RX_FILTER_BEACON;
418 
419 	if ((sc->sc_ah->opmode == NL80211_IFTYPE_AP) ||
420 	    (sc->rx.rxfilter & FIF_PSPOLL))
421 		rfilt |= ATH9K_RX_FILTER_PSPOLL;
422 
423 	if (conf_is_ht(&sc->hw->conf))
424 		rfilt |= ATH9K_RX_FILTER_COMP_BAR;
425 
426 	if (sc->nvifs > 1 || (sc->rx.rxfilter & FIF_OTHER_BSS)) {
427 		/* This is needed for older chips */
428 		if (sc->sc_ah->hw_version.macVersion <= AR_SREV_VERSION_9160)
429 			rfilt |= ATH9K_RX_FILTER_PROM;
430 		rfilt |= ATH9K_RX_FILTER_MCAST_BCAST_ALL;
431 	}
432 
433 	if (AR_SREV_9550(sc->sc_ah))
434 		rfilt |= ATH9K_RX_FILTER_4ADDRESS;
435 
436 	return rfilt;
437 
438 }
439 
440 int ath_startrecv(struct ath_softc *sc)
441 {
442 	struct ath_hw *ah = sc->sc_ah;
443 	struct ath_buf *bf, *tbf;
444 
445 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA) {
446 		ath_edma_start_recv(sc);
447 		return 0;
448 	}
449 
450 	spin_lock_bh(&sc->rx.rxbuflock);
451 	if (list_empty(&sc->rx.rxbuf))
452 		goto start_recv;
453 
454 	sc->rx.rxlink = NULL;
455 	list_for_each_entry_safe(bf, tbf, &sc->rx.rxbuf, list) {
456 		ath_rx_buf_link(sc, bf);
457 	}
458 
459 	/* We could have deleted elements so the list may be empty now */
460 	if (list_empty(&sc->rx.rxbuf))
461 		goto start_recv;
462 
463 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
464 	ath9k_hw_putrxbuf(ah, bf->bf_daddr);
465 	ath9k_hw_rxena(ah);
466 
467 start_recv:
468 	ath_opmode_init(sc);
469 	ath9k_hw_startpcureceive(ah, !!(sc->hw->conf.flags & IEEE80211_CONF_OFFCHANNEL));
470 
471 	spin_unlock_bh(&sc->rx.rxbuflock);
472 
473 	return 0;
474 }
475 
476 bool ath_stoprecv(struct ath_softc *sc)
477 {
478 	struct ath_hw *ah = sc->sc_ah;
479 	bool stopped, reset = false;
480 
481 	spin_lock_bh(&sc->rx.rxbuflock);
482 	ath9k_hw_abortpcurecv(ah);
483 	ath9k_hw_setrxfilter(ah, 0);
484 	stopped = ath9k_hw_stopdmarecv(ah, &reset);
485 
486 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
487 		ath_edma_stop_recv(sc);
488 	else
489 		sc->rx.rxlink = NULL;
490 	spin_unlock_bh(&sc->rx.rxbuflock);
491 
492 	if (!(ah->ah_flags & AH_UNPLUGGED) &&
493 	    unlikely(!stopped)) {
494 		ath_err(ath9k_hw_common(sc->sc_ah),
495 			"Could not stop RX, we could be "
496 			"confusing the DMA engine when we start RX up\n");
497 		ATH_DBG_WARN_ON_ONCE(!stopped);
498 	}
499 	return stopped && !reset;
500 }
501 
502 void ath_flushrecv(struct ath_softc *sc)
503 {
504 	set_bit(SC_OP_RXFLUSH, &sc->sc_flags);
505 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
506 		ath_rx_tasklet(sc, 1, true);
507 	ath_rx_tasklet(sc, 1, false);
508 	clear_bit(SC_OP_RXFLUSH, &sc->sc_flags);
509 }
510 
511 static bool ath_beacon_dtim_pending_cab(struct sk_buff *skb)
512 {
513 	/* Check whether the Beacon frame has DTIM indicating buffered bc/mc */
514 	struct ieee80211_mgmt *mgmt;
515 	u8 *pos, *end, id, elen;
516 	struct ieee80211_tim_ie *tim;
517 
518 	mgmt = (struct ieee80211_mgmt *)skb->data;
519 	pos = mgmt->u.beacon.variable;
520 	end = skb->data + skb->len;
521 
522 	while (pos + 2 < end) {
523 		id = *pos++;
524 		elen = *pos++;
525 		if (pos + elen > end)
526 			break;
527 
528 		if (id == WLAN_EID_TIM) {
529 			if (elen < sizeof(*tim))
530 				break;
531 			tim = (struct ieee80211_tim_ie *) pos;
532 			if (tim->dtim_count != 0)
533 				break;
534 			return tim->bitmap_ctrl & 0x01;
535 		}
536 
537 		pos += elen;
538 	}
539 
540 	return false;
541 }
542 
543 static void ath_rx_ps_beacon(struct ath_softc *sc, struct sk_buff *skb)
544 {
545 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
546 
547 	if (skb->len < 24 + 8 + 2 + 2)
548 		return;
549 
550 	sc->ps_flags &= ~PS_WAIT_FOR_BEACON;
551 
552 	if (sc->ps_flags & PS_BEACON_SYNC) {
553 		sc->ps_flags &= ~PS_BEACON_SYNC;
554 		ath_dbg(common, PS,
555 			"Reconfigure Beacon timers based on timestamp from the AP\n");
556 		ath9k_set_beacon(sc);
557 	}
558 
559 	if (ath_beacon_dtim_pending_cab(skb)) {
560 		/*
561 		 * Remain awake waiting for buffered broadcast/multicast
562 		 * frames. If the last broadcast/multicast frame is not
563 		 * received properly, the next beacon frame will work as
564 		 * a backup trigger for returning into NETWORK SLEEP state,
565 		 * so we are waiting for it as well.
566 		 */
567 		ath_dbg(common, PS,
568 			"Received DTIM beacon indicating buffered broadcast/multicast frame(s)\n");
569 		sc->ps_flags |= PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON;
570 		return;
571 	}
572 
573 	if (sc->ps_flags & PS_WAIT_FOR_CAB) {
574 		/*
575 		 * This can happen if a broadcast frame is dropped or the AP
576 		 * fails to send a frame indicating that all CAB frames have
577 		 * been delivered.
578 		 */
579 		sc->ps_flags &= ~PS_WAIT_FOR_CAB;
580 		ath_dbg(common, PS, "PS wait for CAB frames timed out\n");
581 	}
582 }
583 
584 static void ath_rx_ps(struct ath_softc *sc, struct sk_buff *skb, bool mybeacon)
585 {
586 	struct ieee80211_hdr *hdr;
587 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
588 
589 	hdr = (struct ieee80211_hdr *)skb->data;
590 
591 	/* Process Beacon and CAB receive in PS state */
592 	if (((sc->ps_flags & PS_WAIT_FOR_BEACON) || ath9k_check_auto_sleep(sc))
593 	    && mybeacon) {
594 		ath_rx_ps_beacon(sc, skb);
595 	} else if ((sc->ps_flags & PS_WAIT_FOR_CAB) &&
596 		   (ieee80211_is_data(hdr->frame_control) ||
597 		    ieee80211_is_action(hdr->frame_control)) &&
598 		   is_multicast_ether_addr(hdr->addr1) &&
599 		   !ieee80211_has_moredata(hdr->frame_control)) {
600 		/*
601 		 * No more broadcast/multicast frames to be received at this
602 		 * point.
603 		 */
604 		sc->ps_flags &= ~(PS_WAIT_FOR_CAB | PS_WAIT_FOR_BEACON);
605 		ath_dbg(common, PS,
606 			"All PS CAB frames received, back to sleep\n");
607 	} else if ((sc->ps_flags & PS_WAIT_FOR_PSPOLL_DATA) &&
608 		   !is_multicast_ether_addr(hdr->addr1) &&
609 		   !ieee80211_has_morefrags(hdr->frame_control)) {
610 		sc->ps_flags &= ~PS_WAIT_FOR_PSPOLL_DATA;
611 		ath_dbg(common, PS,
612 			"Going back to sleep after having received PS-Poll data (0x%lx)\n",
613 			sc->ps_flags & (PS_WAIT_FOR_BEACON |
614 					PS_WAIT_FOR_CAB |
615 					PS_WAIT_FOR_PSPOLL_DATA |
616 					PS_WAIT_FOR_TX_ACK));
617 	}
618 }
619 
620 static bool ath_edma_get_buffers(struct ath_softc *sc,
621 				 enum ath9k_rx_qtype qtype,
622 				 struct ath_rx_status *rs,
623 				 struct ath_buf **dest)
624 {
625 	struct ath_rx_edma *rx_edma = &sc->rx.rx_edma[qtype];
626 	struct ath_hw *ah = sc->sc_ah;
627 	struct ath_common *common = ath9k_hw_common(ah);
628 	struct sk_buff *skb;
629 	struct ath_buf *bf;
630 	int ret;
631 
632 	skb = skb_peek(&rx_edma->rx_fifo);
633 	if (!skb)
634 		return false;
635 
636 	bf = SKB_CB_ATHBUF(skb);
637 	BUG_ON(!bf);
638 
639 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
640 				common->rx_bufsize, DMA_FROM_DEVICE);
641 
642 	ret = ath9k_hw_process_rxdesc_edma(ah, rs, skb->data);
643 	if (ret == -EINPROGRESS) {
644 		/*let device gain the buffer again*/
645 		dma_sync_single_for_device(sc->dev, bf->bf_buf_addr,
646 				common->rx_bufsize, DMA_FROM_DEVICE);
647 		return false;
648 	}
649 
650 	__skb_unlink(skb, &rx_edma->rx_fifo);
651 	if (ret == -EINVAL) {
652 		/* corrupt descriptor, skip this one and the following one */
653 		list_add_tail(&bf->list, &sc->rx.rxbuf);
654 		ath_rx_edma_buf_link(sc, qtype);
655 
656 		skb = skb_peek(&rx_edma->rx_fifo);
657 		if (skb) {
658 			bf = SKB_CB_ATHBUF(skb);
659 			BUG_ON(!bf);
660 
661 			__skb_unlink(skb, &rx_edma->rx_fifo);
662 			list_add_tail(&bf->list, &sc->rx.rxbuf);
663 			ath_rx_edma_buf_link(sc, qtype);
664 		}
665 
666 		bf = NULL;
667 	}
668 
669 	*dest = bf;
670 	return true;
671 }
672 
673 static struct ath_buf *ath_edma_get_next_rx_buf(struct ath_softc *sc,
674 						struct ath_rx_status *rs,
675 						enum ath9k_rx_qtype qtype)
676 {
677 	struct ath_buf *bf = NULL;
678 
679 	while (ath_edma_get_buffers(sc, qtype, rs, &bf)) {
680 		if (!bf)
681 			continue;
682 
683 		return bf;
684 	}
685 	return NULL;
686 }
687 
688 static struct ath_buf *ath_get_next_rx_buf(struct ath_softc *sc,
689 					   struct ath_rx_status *rs)
690 {
691 	struct ath_hw *ah = sc->sc_ah;
692 	struct ath_common *common = ath9k_hw_common(ah);
693 	struct ath_desc *ds;
694 	struct ath_buf *bf;
695 	int ret;
696 
697 	if (list_empty(&sc->rx.rxbuf)) {
698 		sc->rx.rxlink = NULL;
699 		return NULL;
700 	}
701 
702 	bf = list_first_entry(&sc->rx.rxbuf, struct ath_buf, list);
703 	ds = bf->bf_desc;
704 
705 	/*
706 	 * Must provide the virtual address of the current
707 	 * descriptor, the physical address, and the virtual
708 	 * address of the next descriptor in the h/w chain.
709 	 * This allows the HAL to look ahead to see if the
710 	 * hardware is done with a descriptor by checking the
711 	 * done bit in the following descriptor and the address
712 	 * of the current descriptor the DMA engine is working
713 	 * on.  All this is necessary because of our use of
714 	 * a self-linked list to avoid rx overruns.
715 	 */
716 	ret = ath9k_hw_rxprocdesc(ah, ds, rs);
717 	if (ret == -EINPROGRESS) {
718 		struct ath_rx_status trs;
719 		struct ath_buf *tbf;
720 		struct ath_desc *tds;
721 
722 		memset(&trs, 0, sizeof(trs));
723 		if (list_is_last(&bf->list, &sc->rx.rxbuf)) {
724 			sc->rx.rxlink = NULL;
725 			return NULL;
726 		}
727 
728 		tbf = list_entry(bf->list.next, struct ath_buf, list);
729 
730 		/*
731 		 * On some hardware the descriptor status words could
732 		 * get corrupted, including the done bit. Because of
733 		 * this, check if the next descriptor's done bit is
734 		 * set or not.
735 		 *
736 		 * If the next descriptor's done bit is set, the current
737 		 * descriptor has been corrupted. Force s/w to discard
738 		 * this descriptor and continue...
739 		 */
740 
741 		tds = tbf->bf_desc;
742 		ret = ath9k_hw_rxprocdesc(ah, tds, &trs);
743 		if (ret == -EINPROGRESS)
744 			return NULL;
745 	}
746 
747 	if (!bf->bf_mpdu)
748 		return bf;
749 
750 	/*
751 	 * Synchronize the DMA transfer with CPU before
752 	 * 1. accessing the frame
753 	 * 2. requeueing the same buffer to h/w
754 	 */
755 	dma_sync_single_for_cpu(sc->dev, bf->bf_buf_addr,
756 			common->rx_bufsize,
757 			DMA_FROM_DEVICE);
758 
759 	return bf;
760 }
761 
762 /* Assumes you've already done the endian to CPU conversion */
763 static bool ath9k_rx_accept(struct ath_common *common,
764 			    struct ieee80211_hdr *hdr,
765 			    struct ieee80211_rx_status *rxs,
766 			    struct ath_rx_status *rx_stats,
767 			    bool *decrypt_error)
768 {
769 	struct ath_softc *sc = (struct ath_softc *) common->priv;
770 	bool is_mc, is_valid_tkip, strip_mic, mic_error;
771 	struct ath_hw *ah = common->ah;
772 	__le16 fc;
773 	u8 rx_status_len = ah->caps.rx_status_len;
774 
775 	fc = hdr->frame_control;
776 
777 	is_mc = !!is_multicast_ether_addr(hdr->addr1);
778 	is_valid_tkip = rx_stats->rs_keyix != ATH9K_RXKEYIX_INVALID &&
779 		test_bit(rx_stats->rs_keyix, common->tkip_keymap);
780 	strip_mic = is_valid_tkip && ieee80211_is_data(fc) &&
781 		ieee80211_has_protected(fc) &&
782 		!(rx_stats->rs_status &
783 		(ATH9K_RXERR_DECRYPT | ATH9K_RXERR_CRC | ATH9K_RXERR_MIC |
784 		 ATH9K_RXERR_KEYMISS));
785 
786 	/*
787 	 * Key miss events are only relevant for pairwise keys where the
788 	 * descriptor does contain a valid key index. This has been observed
789 	 * mostly with CCMP encryption.
790 	 */
791 	if (rx_stats->rs_keyix == ATH9K_RXKEYIX_INVALID ||
792 	    !test_bit(rx_stats->rs_keyix, common->ccmp_keymap))
793 		rx_stats->rs_status &= ~ATH9K_RXERR_KEYMISS;
794 
795 	if (!rx_stats->rs_datalen) {
796 		RX_STAT_INC(rx_len_err);
797 		return false;
798 	}
799 
800         /*
801          * rs_status follows rs_datalen so if rs_datalen is too large
802          * we can take a hint that hardware corrupted it, so ignore
803          * those frames.
804          */
805 	if (rx_stats->rs_datalen > (common->rx_bufsize - rx_status_len)) {
806 		RX_STAT_INC(rx_len_err);
807 		return false;
808 	}
809 
810 	/* Only use error bits from the last fragment */
811 	if (rx_stats->rs_more)
812 		return true;
813 
814 	mic_error = is_valid_tkip && !ieee80211_is_ctl(fc) &&
815 		!ieee80211_has_morefrags(fc) &&
816 		!(le16_to_cpu(hdr->seq_ctrl) & IEEE80211_SCTL_FRAG) &&
817 		(rx_stats->rs_status & ATH9K_RXERR_MIC);
818 
819 	/*
820 	 * The rx_stats->rs_status will not be set until the end of the
821 	 * chained descriptors so it can be ignored if rs_more is set. The
822 	 * rs_more will be false at the last element of the chained
823 	 * descriptors.
824 	 */
825 	if (rx_stats->rs_status != 0) {
826 		u8 status_mask;
827 
828 		if (rx_stats->rs_status & ATH9K_RXERR_CRC) {
829 			rxs->flag |= RX_FLAG_FAILED_FCS_CRC;
830 			mic_error = false;
831 		}
832 		if (rx_stats->rs_status & ATH9K_RXERR_PHY)
833 			return false;
834 
835 		if ((rx_stats->rs_status & ATH9K_RXERR_DECRYPT) ||
836 		    (!is_mc && (rx_stats->rs_status & ATH9K_RXERR_KEYMISS))) {
837 			*decrypt_error = true;
838 			mic_error = false;
839 		}
840 
841 		/*
842 		 * Reject error frames with the exception of
843 		 * decryption and MIC failures. For monitor mode,
844 		 * we also ignore the CRC error.
845 		 */
846 		status_mask = ATH9K_RXERR_DECRYPT | ATH9K_RXERR_MIC |
847 			      ATH9K_RXERR_KEYMISS;
848 
849 		if (ah->is_monitoring && (sc->rx.rxfilter & FIF_FCSFAIL))
850 			status_mask |= ATH9K_RXERR_CRC;
851 
852 		if (rx_stats->rs_status & ~status_mask)
853 			return false;
854 	}
855 
856 	/*
857 	 * For unicast frames the MIC error bit can have false positives,
858 	 * so all MIC error reports need to be validated in software.
859 	 * False negatives are not common, so skip software verification
860 	 * if the hardware considers the MIC valid.
861 	 */
862 	if (strip_mic)
863 		rxs->flag |= RX_FLAG_MMIC_STRIPPED;
864 	else if (is_mc && mic_error)
865 		rxs->flag |= RX_FLAG_MMIC_ERROR;
866 
867 	return true;
868 }
869 
870 static int ath9k_process_rate(struct ath_common *common,
871 			      struct ieee80211_hw *hw,
872 			      struct ath_rx_status *rx_stats,
873 			      struct ieee80211_rx_status *rxs)
874 {
875 	struct ieee80211_supported_band *sband;
876 	enum ieee80211_band band;
877 	unsigned int i = 0;
878 	struct ath_softc __maybe_unused *sc = common->priv;
879 
880 	band = hw->conf.channel->band;
881 	sband = hw->wiphy->bands[band];
882 
883 	if (rx_stats->rs_rate & 0x80) {
884 		/* HT rate */
885 		rxs->flag |= RX_FLAG_HT;
886 		if (rx_stats->rs_flags & ATH9K_RX_2040)
887 			rxs->flag |= RX_FLAG_40MHZ;
888 		if (rx_stats->rs_flags & ATH9K_RX_GI)
889 			rxs->flag |= RX_FLAG_SHORT_GI;
890 		rxs->rate_idx = rx_stats->rs_rate & 0x7f;
891 		return 0;
892 	}
893 
894 	for (i = 0; i < sband->n_bitrates; i++) {
895 		if (sband->bitrates[i].hw_value == rx_stats->rs_rate) {
896 			rxs->rate_idx = i;
897 			return 0;
898 		}
899 		if (sband->bitrates[i].hw_value_short == rx_stats->rs_rate) {
900 			rxs->flag |= RX_FLAG_SHORTPRE;
901 			rxs->rate_idx = i;
902 			return 0;
903 		}
904 	}
905 
906 	/*
907 	 * No valid hardware bitrate found -- we should not get here
908 	 * because hardware has already validated this frame as OK.
909 	 */
910 	ath_dbg(common, ANY,
911 		"unsupported hw bitrate detected 0x%02x using 1 Mbit\n",
912 		rx_stats->rs_rate);
913 	RX_STAT_INC(rx_rate_err);
914 	return -EINVAL;
915 }
916 
917 static void ath9k_process_rssi(struct ath_common *common,
918 			       struct ieee80211_hw *hw,
919 			       struct ieee80211_hdr *hdr,
920 			       struct ath_rx_status *rx_stats)
921 {
922 	struct ath_softc *sc = hw->priv;
923 	struct ath_hw *ah = common->ah;
924 	int last_rssi;
925 	int rssi = rx_stats->rs_rssi;
926 
927 	if (!rx_stats->is_mybeacon ||
928 	    ((ah->opmode != NL80211_IFTYPE_STATION) &&
929 	     (ah->opmode != NL80211_IFTYPE_ADHOC)))
930 		return;
931 
932 	if (rx_stats->rs_rssi != ATH9K_RSSI_BAD && !rx_stats->rs_moreaggr)
933 		ATH_RSSI_LPF(sc->last_rssi, rx_stats->rs_rssi);
934 
935 	last_rssi = sc->last_rssi;
936 	if (likely(last_rssi != ATH_RSSI_DUMMY_MARKER))
937 		rssi = ATH_EP_RND(last_rssi, ATH_RSSI_EP_MULTIPLIER);
938 	if (rssi < 0)
939 		rssi = 0;
940 
941 	/* Update Beacon RSSI, this is used by ANI. */
942 	ah->stats.avgbrssi = rssi;
943 }
944 
945 /*
946  * For Decrypt or Demic errors, we only mark packet status here and always push
947  * up the frame up to let mac80211 handle the actual error case, be it no
948  * decryption key or real decryption error. This let us keep statistics there.
949  */
950 static int ath9k_rx_skb_preprocess(struct ath_common *common,
951 				   struct ieee80211_hw *hw,
952 				   struct ieee80211_hdr *hdr,
953 				   struct ath_rx_status *rx_stats,
954 				   struct ieee80211_rx_status *rx_status,
955 				   bool *decrypt_error)
956 {
957 	struct ath_hw *ah = common->ah;
958 
959 	/*
960 	 * everything but the rate is checked here, the rate check is done
961 	 * separately to avoid doing two lookups for a rate for each frame.
962 	 */
963 	if (!ath9k_rx_accept(common, hdr, rx_status, rx_stats, decrypt_error))
964 		return -EINVAL;
965 
966 	/* Only use status info from the last fragment */
967 	if (rx_stats->rs_more)
968 		return 0;
969 
970 	ath9k_process_rssi(common, hw, hdr, rx_stats);
971 
972 	if (ath9k_process_rate(common, hw, rx_stats, rx_status))
973 		return -EINVAL;
974 
975 	rx_status->band = hw->conf.channel->band;
976 	rx_status->freq = hw->conf.channel->center_freq;
977 	rx_status->signal = ah->noise + rx_stats->rs_rssi;
978 	rx_status->antenna = rx_stats->rs_antenna;
979 	rx_status->flag |= RX_FLAG_MACTIME_MPDU;
980 	if (rx_stats->rs_moreaggr)
981 		rx_status->flag |= RX_FLAG_NO_SIGNAL_VAL;
982 
983 	return 0;
984 }
985 
986 static void ath9k_rx_skb_postprocess(struct ath_common *common,
987 				     struct sk_buff *skb,
988 				     struct ath_rx_status *rx_stats,
989 				     struct ieee80211_rx_status *rxs,
990 				     bool decrypt_error)
991 {
992 	struct ath_hw *ah = common->ah;
993 	struct ieee80211_hdr *hdr;
994 	int hdrlen, padpos, padsize;
995 	u8 keyix;
996 	__le16 fc;
997 
998 	/* see if any padding is done by the hw and remove it */
999 	hdr = (struct ieee80211_hdr *) skb->data;
1000 	hdrlen = ieee80211_get_hdrlen_from_skb(skb);
1001 	fc = hdr->frame_control;
1002 	padpos = ath9k_cmn_padpos(hdr->frame_control);
1003 
1004 	/* The MAC header is padded to have 32-bit boundary if the
1005 	 * packet payload is non-zero. The general calculation for
1006 	 * padsize would take into account odd header lengths:
1007 	 * padsize = (4 - padpos % 4) % 4; However, since only
1008 	 * even-length headers are used, padding can only be 0 or 2
1009 	 * bytes and we can optimize this a bit. In addition, we must
1010 	 * not try to remove padding from short control frames that do
1011 	 * not have payload. */
1012 	padsize = padpos & 3;
1013 	if (padsize && skb->len>=padpos+padsize+FCS_LEN) {
1014 		memmove(skb->data + padsize, skb->data, padpos);
1015 		skb_pull(skb, padsize);
1016 	}
1017 
1018 	keyix = rx_stats->rs_keyix;
1019 
1020 	if (!(keyix == ATH9K_RXKEYIX_INVALID) && !decrypt_error &&
1021 	    ieee80211_has_protected(fc)) {
1022 		rxs->flag |= RX_FLAG_DECRYPTED;
1023 	} else if (ieee80211_has_protected(fc)
1024 		   && !decrypt_error && skb->len >= hdrlen + 4) {
1025 		keyix = skb->data[hdrlen + 3] >> 6;
1026 
1027 		if (test_bit(keyix, common->keymap))
1028 			rxs->flag |= RX_FLAG_DECRYPTED;
1029 	}
1030 	if (ah->sw_mgmt_crypto &&
1031 	    (rxs->flag & RX_FLAG_DECRYPTED) &&
1032 	    ieee80211_is_mgmt(fc))
1033 		/* Use software decrypt for management frames. */
1034 		rxs->flag &= ~RX_FLAG_DECRYPTED;
1035 }
1036 
1037 int ath_rx_tasklet(struct ath_softc *sc, int flush, bool hp)
1038 {
1039 	struct ath_buf *bf;
1040 	struct sk_buff *skb = NULL, *requeue_skb, *hdr_skb;
1041 	struct ieee80211_rx_status *rxs;
1042 	struct ath_hw *ah = sc->sc_ah;
1043 	struct ath_common *common = ath9k_hw_common(ah);
1044 	struct ieee80211_hw *hw = sc->hw;
1045 	struct ieee80211_hdr *hdr;
1046 	int retval;
1047 	struct ath_rx_status rs;
1048 	enum ath9k_rx_qtype qtype;
1049 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1050 	int dma_type;
1051 	u8 rx_status_len = ah->caps.rx_status_len;
1052 	u64 tsf = 0;
1053 	u32 tsf_lower = 0;
1054 	unsigned long flags;
1055 
1056 	if (edma)
1057 		dma_type = DMA_BIDIRECTIONAL;
1058 	else
1059 		dma_type = DMA_FROM_DEVICE;
1060 
1061 	qtype = hp ? ATH9K_RX_QUEUE_HP : ATH9K_RX_QUEUE_LP;
1062 	spin_lock_bh(&sc->rx.rxbuflock);
1063 
1064 	tsf = ath9k_hw_gettsf64(ah);
1065 	tsf_lower = tsf & 0xffffffff;
1066 
1067 	do {
1068 		bool decrypt_error = false;
1069 		/* If handling rx interrupt and flush is in progress => exit */
1070 		if (test_bit(SC_OP_RXFLUSH, &sc->sc_flags) && (flush == 0))
1071 			break;
1072 
1073 		memset(&rs, 0, sizeof(rs));
1074 		if (edma)
1075 			bf = ath_edma_get_next_rx_buf(sc, &rs, qtype);
1076 		else
1077 			bf = ath_get_next_rx_buf(sc, &rs);
1078 
1079 		if (!bf)
1080 			break;
1081 
1082 		skb = bf->bf_mpdu;
1083 		if (!skb)
1084 			continue;
1085 
1086 		/*
1087 		 * Take frame header from the first fragment and RX status from
1088 		 * the last one.
1089 		 */
1090 		if (sc->rx.frag)
1091 			hdr_skb = sc->rx.frag;
1092 		else
1093 			hdr_skb = skb;
1094 
1095 		hdr = (struct ieee80211_hdr *) (hdr_skb->data + rx_status_len);
1096 		rxs = IEEE80211_SKB_RXCB(hdr_skb);
1097 		if (ieee80211_is_beacon(hdr->frame_control)) {
1098 			RX_STAT_INC(rx_beacons);
1099 			if (!is_zero_ether_addr(common->curbssid) &&
1100 			    ether_addr_equal(hdr->addr3, common->curbssid))
1101 				rs.is_mybeacon = true;
1102 			else
1103 				rs.is_mybeacon = false;
1104 		}
1105 		else
1106 			rs.is_mybeacon = false;
1107 
1108 		sc->rx.num_pkts++;
1109 		ath_debug_stat_rx(sc, &rs);
1110 
1111 		/*
1112 		 * If we're asked to flush receive queue, directly
1113 		 * chain it back at the queue without processing it.
1114 		 */
1115 		if (test_bit(SC_OP_RXFLUSH, &sc->sc_flags)) {
1116 			RX_STAT_INC(rx_drop_rxflush);
1117 			goto requeue_drop_frag;
1118 		}
1119 
1120 		memset(rxs, 0, sizeof(struct ieee80211_rx_status));
1121 
1122 		rxs->mactime = (tsf & ~0xffffffffULL) | rs.rs_tstamp;
1123 		if (rs.rs_tstamp > tsf_lower &&
1124 		    unlikely(rs.rs_tstamp - tsf_lower > 0x10000000))
1125 			rxs->mactime -= 0x100000000ULL;
1126 
1127 		if (rs.rs_tstamp < tsf_lower &&
1128 		    unlikely(tsf_lower - rs.rs_tstamp > 0x10000000))
1129 			rxs->mactime += 0x100000000ULL;
1130 
1131 		retval = ath9k_rx_skb_preprocess(common, hw, hdr, &rs,
1132 						 rxs, &decrypt_error);
1133 		if (retval)
1134 			goto requeue_drop_frag;
1135 
1136 		if (rs.is_mybeacon) {
1137 			sc->hw_busy_count = 0;
1138 			ath_start_rx_poll(sc, 3);
1139 		}
1140 		/* Ensure we always have an skb to requeue once we are done
1141 		 * processing the current buffer's skb */
1142 		requeue_skb = ath_rxbuf_alloc(common, common->rx_bufsize, GFP_ATOMIC);
1143 
1144 		/* If there is no memory we ignore the current RX'd frame,
1145 		 * tell hardware it can give us a new frame using the old
1146 		 * skb and put it at the tail of the sc->rx.rxbuf list for
1147 		 * processing. */
1148 		if (!requeue_skb) {
1149 			RX_STAT_INC(rx_oom_err);
1150 			goto requeue_drop_frag;
1151 		}
1152 
1153 		/* Unmap the frame */
1154 		dma_unmap_single(sc->dev, bf->bf_buf_addr,
1155 				 common->rx_bufsize,
1156 				 dma_type);
1157 
1158 		skb_put(skb, rs.rs_datalen + ah->caps.rx_status_len);
1159 		if (ah->caps.rx_status_len)
1160 			skb_pull(skb, ah->caps.rx_status_len);
1161 
1162 		if (!rs.rs_more)
1163 			ath9k_rx_skb_postprocess(common, hdr_skb, &rs,
1164 						 rxs, decrypt_error);
1165 
1166 		/* We will now give hardware our shiny new allocated skb */
1167 		bf->bf_mpdu = requeue_skb;
1168 		bf->bf_buf_addr = dma_map_single(sc->dev, requeue_skb->data,
1169 						 common->rx_bufsize,
1170 						 dma_type);
1171 		if (unlikely(dma_mapping_error(sc->dev,
1172 			  bf->bf_buf_addr))) {
1173 			dev_kfree_skb_any(requeue_skb);
1174 			bf->bf_mpdu = NULL;
1175 			bf->bf_buf_addr = 0;
1176 			ath_err(common, "dma_mapping_error() on RX\n");
1177 			ieee80211_rx(hw, skb);
1178 			break;
1179 		}
1180 
1181 		if (rs.rs_more) {
1182 			RX_STAT_INC(rx_frags);
1183 			/*
1184 			 * rs_more indicates chained descriptors which can be
1185 			 * used to link buffers together for a sort of
1186 			 * scatter-gather operation.
1187 			 */
1188 			if (sc->rx.frag) {
1189 				/* too many fragments - cannot handle frame */
1190 				dev_kfree_skb_any(sc->rx.frag);
1191 				dev_kfree_skb_any(skb);
1192 				RX_STAT_INC(rx_too_many_frags_err);
1193 				skb = NULL;
1194 			}
1195 			sc->rx.frag = skb;
1196 			goto requeue;
1197 		}
1198 
1199 		if (sc->rx.frag) {
1200 			int space = skb->len - skb_tailroom(hdr_skb);
1201 
1202 			if (pskb_expand_head(hdr_skb, 0, space, GFP_ATOMIC) < 0) {
1203 				dev_kfree_skb(skb);
1204 				RX_STAT_INC(rx_oom_err);
1205 				goto requeue_drop_frag;
1206 			}
1207 
1208 			sc->rx.frag = NULL;
1209 
1210 			skb_copy_from_linear_data(skb, skb_put(hdr_skb, skb->len),
1211 						  skb->len);
1212 			dev_kfree_skb_any(skb);
1213 			skb = hdr_skb;
1214 		}
1215 
1216 
1217 		if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) {
1218 
1219 			/*
1220 			 * change the default rx antenna if rx diversity
1221 			 * chooses the other antenna 3 times in a row.
1222 			 */
1223 			if (sc->rx.defant != rs.rs_antenna) {
1224 				if (++sc->rx.rxotherant >= 3)
1225 					ath_setdefantenna(sc, rs.rs_antenna);
1226 			} else {
1227 				sc->rx.rxotherant = 0;
1228 			}
1229 
1230 		}
1231 
1232 		if (rxs->flag & RX_FLAG_MMIC_STRIPPED)
1233 			skb_trim(skb, skb->len - 8);
1234 
1235 		spin_lock_irqsave(&sc->sc_pm_lock, flags);
1236 		if ((sc->ps_flags & (PS_WAIT_FOR_BEACON |
1237 				     PS_WAIT_FOR_CAB |
1238 				     PS_WAIT_FOR_PSPOLL_DATA)) ||
1239 		    ath9k_check_auto_sleep(sc))
1240 			ath_rx_ps(sc, skb, rs.is_mybeacon);
1241 		spin_unlock_irqrestore(&sc->sc_pm_lock, flags);
1242 
1243 		if ((ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB) && sc->ant_rx == 3)
1244 			ath_ant_comb_scan(sc, &rs);
1245 
1246 		ieee80211_rx(hw, skb);
1247 
1248 requeue_drop_frag:
1249 		if (sc->rx.frag) {
1250 			dev_kfree_skb_any(sc->rx.frag);
1251 			sc->rx.frag = NULL;
1252 		}
1253 requeue:
1254 		if (edma) {
1255 			list_add_tail(&bf->list, &sc->rx.rxbuf);
1256 			ath_rx_edma_buf_link(sc, qtype);
1257 		} else {
1258 			list_move_tail(&bf->list, &sc->rx.rxbuf);
1259 			ath_rx_buf_link(sc, bf);
1260 			if (!flush)
1261 				ath9k_hw_rxena(ah);
1262 		}
1263 	} while (1);
1264 
1265 	spin_unlock_bh(&sc->rx.rxbuflock);
1266 
1267 	if (!(ah->imask & ATH9K_INT_RXEOL)) {
1268 		ah->imask |= (ATH9K_INT_RXEOL | ATH9K_INT_RXORN);
1269 		ath9k_hw_set_interrupts(ah);
1270 	}
1271 
1272 	return 0;
1273 }
1274