xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/mac.c (revision e290ed81)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "hw-ops.h"
19 
20 static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
21 					struct ath9k_tx_queue_info *qi)
22 {
23 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_INTERRUPT,
24 		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
25 		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
26 		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
27 		ah->txurn_interrupt_mask);
28 
29 	ENABLE_REGWRITE_BUFFER(ah);
30 
31 	REG_WRITE(ah, AR_IMR_S0,
32 		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
33 		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
34 	REG_WRITE(ah, AR_IMR_S1,
35 		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
36 		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
37 
38 	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
39 	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
40 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
41 
42 	REGWRITE_BUFFER_FLUSH(ah);
43 }
44 
45 u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
46 {
47 	return REG_READ(ah, AR_QTXDP(q));
48 }
49 EXPORT_SYMBOL(ath9k_hw_gettxbuf);
50 
51 void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
52 {
53 	REG_WRITE(ah, AR_QTXDP(q), txdp);
54 }
55 EXPORT_SYMBOL(ath9k_hw_puttxbuf);
56 
57 void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
58 {
59 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_QUEUE,
60 		"Enable TXE on queue: %u\n", q);
61 	REG_WRITE(ah, AR_Q_TXE, 1 << q);
62 }
63 EXPORT_SYMBOL(ath9k_hw_txstart);
64 
65 u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
66 {
67 	u32 npend;
68 
69 	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
70 	if (npend == 0) {
71 
72 		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
73 			npend = 1;
74 	}
75 
76 	return npend;
77 }
78 EXPORT_SYMBOL(ath9k_hw_numtxpending);
79 
80 /**
81  * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
82  *
83  * @ah: atheros hardware struct
84  * @bIncTrigLevel: whether or not the frame trigger level should be updated
85  *
86  * The frame trigger level specifies the minimum number of bytes,
87  * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88  * before the PCU will initiate sending the frame on the air. This can
89  * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90  * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
91  * first)
92  *
93  * Caution must be taken to ensure to set the frame trigger level based
94  * on the DMA request size. For example if the DMA request size is set to
95  * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96  * there need to be enough space in the tx FIFO for the requested transfer
97  * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98  * the threshold to a value beyond 6, then the transmit will hang.
99  *
100  * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
101  * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102  * there is a hardware issue which forces us to use 2 KB instead so the
103  * frame trigger level must not exceed 2 KB for these chipsets.
104  */
105 bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
106 {
107 	u32 txcfg, curLevel, newLevel;
108 
109 	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
110 		return false;
111 
112 	ath9k_hw_disable_interrupts(ah);
113 
114 	txcfg = REG_READ(ah, AR_TXCFG);
115 	curLevel = MS(txcfg, AR_FTRIG);
116 	newLevel = curLevel;
117 	if (bIncTrigLevel) {
118 		if (curLevel < ah->config.max_txtrig_level)
119 			newLevel++;
120 	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
121 		newLevel--;
122 	if (newLevel != curLevel)
123 		REG_WRITE(ah, AR_TXCFG,
124 			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
125 
126 	ath9k_hw_enable_interrupts(ah);
127 
128 	ah->tx_trig_level = newLevel;
129 
130 	return newLevel != curLevel;
131 }
132 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
133 
134 void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
135 {
136 	int i, q;
137 
138 	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
139 
140 	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
141 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
142 	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
143 
144 	for (q = 0; q < AR_NUM_QCU; q++) {
145 		for (i = 0; i < 1000; i++) {
146 			if (i)
147 				udelay(5);
148 
149 			if (!ath9k_hw_numtxpending(ah, q))
150 				break;
151 		}
152 	}
153 
154 	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
155 	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
156 	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
157 
158 	REG_WRITE(ah, AR_Q_TXD, 0);
159 }
160 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
161 
162 bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
163 {
164 #define ATH9K_TX_STOP_DMA_TIMEOUT	1000    /* usec */
165 #define ATH9K_TIME_QUANTUM		100     /* usec */
166 	int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
167 	int wait;
168 
169 	REG_WRITE(ah, AR_Q_TXD, 1 << q);
170 
171 	for (wait = wait_time; wait != 0; wait--) {
172 		if (wait != wait_time)
173 			udelay(ATH9K_TIME_QUANTUM);
174 
175 		if (ath9k_hw_numtxpending(ah, q) == 0)
176 			break;
177 	}
178 
179 	REG_WRITE(ah, AR_Q_TXD, 0);
180 
181 	return wait != 0;
182 
183 #undef ATH9K_TX_STOP_DMA_TIMEOUT
184 #undef ATH9K_TIME_QUANTUM
185 }
186 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
187 
188 void ath9k_hw_gettxintrtxqs(struct ath_hw *ah, u32 *txqs)
189 {
190 	*txqs &= ah->intr_txqs;
191 	ah->intr_txqs &= ~(*txqs);
192 }
193 EXPORT_SYMBOL(ath9k_hw_gettxintrtxqs);
194 
195 bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
196 			    const struct ath9k_tx_queue_info *qinfo)
197 {
198 	u32 cw;
199 	struct ath_common *common = ath9k_hw_common(ah);
200 	struct ath9k_tx_queue_info *qi;
201 
202 	qi = &ah->txq[q];
203 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
204 		ath_dbg(common, ATH_DBG_QUEUE,
205 			"Set TXQ properties, inactive queue: %u\n", q);
206 		return false;
207 	}
208 
209 	ath_dbg(common, ATH_DBG_QUEUE, "Set queue properties for: %u\n", q);
210 
211 	qi->tqi_ver = qinfo->tqi_ver;
212 	qi->tqi_subtype = qinfo->tqi_subtype;
213 	qi->tqi_qflags = qinfo->tqi_qflags;
214 	qi->tqi_priority = qinfo->tqi_priority;
215 	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
216 		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
217 	else
218 		qi->tqi_aifs = INIT_AIFS;
219 	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
220 		cw = min(qinfo->tqi_cwmin, 1024U);
221 		qi->tqi_cwmin = 1;
222 		while (qi->tqi_cwmin < cw)
223 			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
224 	} else
225 		qi->tqi_cwmin = qinfo->tqi_cwmin;
226 	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
227 		cw = min(qinfo->tqi_cwmax, 1024U);
228 		qi->tqi_cwmax = 1;
229 		while (qi->tqi_cwmax < cw)
230 			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
231 	} else
232 		qi->tqi_cwmax = INIT_CWMAX;
233 
234 	if (qinfo->tqi_shretry != 0)
235 		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
236 	else
237 		qi->tqi_shretry = INIT_SH_RETRY;
238 	if (qinfo->tqi_lgretry != 0)
239 		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
240 	else
241 		qi->tqi_lgretry = INIT_LG_RETRY;
242 	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
243 	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
244 	qi->tqi_burstTime = qinfo->tqi_burstTime;
245 	qi->tqi_readyTime = qinfo->tqi_readyTime;
246 
247 	switch (qinfo->tqi_subtype) {
248 	case ATH9K_WME_UPSD:
249 		if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
250 			qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
251 		break;
252 	default:
253 		break;
254 	}
255 
256 	return true;
257 }
258 EXPORT_SYMBOL(ath9k_hw_set_txq_props);
259 
260 bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
261 			    struct ath9k_tx_queue_info *qinfo)
262 {
263 	struct ath_common *common = ath9k_hw_common(ah);
264 	struct ath9k_tx_queue_info *qi;
265 
266 	qi = &ah->txq[q];
267 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
268 		ath_dbg(common, ATH_DBG_QUEUE,
269 			"Get TXQ properties, inactive queue: %u\n", q);
270 		return false;
271 	}
272 
273 	qinfo->tqi_qflags = qi->tqi_qflags;
274 	qinfo->tqi_ver = qi->tqi_ver;
275 	qinfo->tqi_subtype = qi->tqi_subtype;
276 	qinfo->tqi_qflags = qi->tqi_qflags;
277 	qinfo->tqi_priority = qi->tqi_priority;
278 	qinfo->tqi_aifs = qi->tqi_aifs;
279 	qinfo->tqi_cwmin = qi->tqi_cwmin;
280 	qinfo->tqi_cwmax = qi->tqi_cwmax;
281 	qinfo->tqi_shretry = qi->tqi_shretry;
282 	qinfo->tqi_lgretry = qi->tqi_lgretry;
283 	qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
284 	qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
285 	qinfo->tqi_burstTime = qi->tqi_burstTime;
286 	qinfo->tqi_readyTime = qi->tqi_readyTime;
287 
288 	return true;
289 }
290 EXPORT_SYMBOL(ath9k_hw_get_txq_props);
291 
292 int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
293 			  const struct ath9k_tx_queue_info *qinfo)
294 {
295 	struct ath_common *common = ath9k_hw_common(ah);
296 	struct ath9k_tx_queue_info *qi;
297 	int q;
298 
299 	switch (type) {
300 	case ATH9K_TX_QUEUE_BEACON:
301 		q = ATH9K_NUM_TX_QUEUES - 1;
302 		break;
303 	case ATH9K_TX_QUEUE_CAB:
304 		q = ATH9K_NUM_TX_QUEUES - 2;
305 		break;
306 	case ATH9K_TX_QUEUE_PSPOLL:
307 		q = 1;
308 		break;
309 	case ATH9K_TX_QUEUE_UAPSD:
310 		q = ATH9K_NUM_TX_QUEUES - 3;
311 		break;
312 	case ATH9K_TX_QUEUE_DATA:
313 		for (q = 0; q < ATH9K_NUM_TX_QUEUES; q++)
314 			if (ah->txq[q].tqi_type ==
315 			    ATH9K_TX_QUEUE_INACTIVE)
316 				break;
317 		if (q == ATH9K_NUM_TX_QUEUES) {
318 			ath_err(common, "No available TX queue\n");
319 			return -1;
320 		}
321 		break;
322 	default:
323 		ath_err(common, "Invalid TX queue type: %u\n", type);
324 		return -1;
325 	}
326 
327 	ath_dbg(common, ATH_DBG_QUEUE, "Setup TX queue: %u\n", q);
328 
329 	qi = &ah->txq[q];
330 	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
331 		ath_err(common, "TX queue: %u already active\n", q);
332 		return -1;
333 	}
334 	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
335 	qi->tqi_type = type;
336 	qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
337 	(void) ath9k_hw_set_txq_props(ah, q, qinfo);
338 
339 	return q;
340 }
341 EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
342 
343 bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
344 {
345 	struct ath_common *common = ath9k_hw_common(ah);
346 	struct ath9k_tx_queue_info *qi;
347 
348 	qi = &ah->txq[q];
349 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
350 		ath_dbg(common, ATH_DBG_QUEUE,
351 			"Release TXQ, inactive queue: %u\n", q);
352 		return false;
353 	}
354 
355 	ath_dbg(common, ATH_DBG_QUEUE, "Release TX queue: %u\n", q);
356 
357 	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
358 	ah->txok_interrupt_mask &= ~(1 << q);
359 	ah->txerr_interrupt_mask &= ~(1 << q);
360 	ah->txdesc_interrupt_mask &= ~(1 << q);
361 	ah->txeol_interrupt_mask &= ~(1 << q);
362 	ah->txurn_interrupt_mask &= ~(1 << q);
363 	ath9k_hw_set_txq_interrupts(ah, qi);
364 
365 	return true;
366 }
367 EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
368 
369 bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
370 {
371 	struct ath_common *common = ath9k_hw_common(ah);
372 	struct ath9k_channel *chan = ah->curchan;
373 	struct ath9k_tx_queue_info *qi;
374 	u32 cwMin, chanCwMin, value;
375 
376 	qi = &ah->txq[q];
377 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
378 		ath_dbg(common, ATH_DBG_QUEUE,
379 			"Reset TXQ, inactive queue: %u\n", q);
380 		return true;
381 	}
382 
383 	ath_dbg(common, ATH_DBG_QUEUE, "Reset TX queue: %u\n", q);
384 
385 	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
386 		if (chan && IS_CHAN_B(chan))
387 			chanCwMin = INIT_CWMIN_11B;
388 		else
389 			chanCwMin = INIT_CWMIN;
390 
391 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
392 	} else
393 		cwMin = qi->tqi_cwmin;
394 
395 	ENABLE_REGWRITE_BUFFER(ah);
396 
397 	REG_WRITE(ah, AR_DLCL_IFS(q),
398 		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
399 		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
400 		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
401 
402 	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
403 		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
404 		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
405 		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
406 
407 	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
408 
409 	if (AR_SREV_9340(ah))
410 		REG_WRITE(ah, AR_DMISC(q),
411 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
412 	else
413 		REG_WRITE(ah, AR_DMISC(q),
414 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
415 
416 	if (qi->tqi_cbrPeriod) {
417 		REG_WRITE(ah, AR_QCBRCFG(q),
418 			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
419 			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
420 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
421 			    (qi->tqi_cbrOverflowLimit ?
422 			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
423 	}
424 	if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
425 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
426 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
427 			  AR_Q_RDYTIMECFG_EN);
428 	}
429 
430 	REG_WRITE(ah, AR_DCHNTIME(q),
431 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
432 		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
433 
434 	if (qi->tqi_burstTime
435 	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
436 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
437 
438 	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
439 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
440 
441 	REGWRITE_BUFFER_FLUSH(ah);
442 
443 	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
444 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
445 
446 	switch (qi->tqi_type) {
447 	case ATH9K_TX_QUEUE_BEACON:
448 		ENABLE_REGWRITE_BUFFER(ah);
449 
450 		REG_SET_BIT(ah, AR_QMISC(q),
451 			    AR_Q_MISC_FSP_DBA_GATED
452 			    | AR_Q_MISC_BEACON_USE
453 			    | AR_Q_MISC_CBR_INCR_DIS1);
454 
455 		REG_SET_BIT(ah, AR_DMISC(q),
456 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
457 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
458 			    | AR_D_MISC_BEACON_USE
459 			    | AR_D_MISC_POST_FR_BKOFF_DIS);
460 
461 		REGWRITE_BUFFER_FLUSH(ah);
462 
463 		/*
464 		 * cwmin and cwmax should be 0 for beacon queue
465 		 * but not for IBSS as we would create an imbalance
466 		 * on beaconing fairness for participating nodes.
467 		 */
468 		if (AR_SREV_9300_20_OR_LATER(ah) &&
469 		    ah->opmode != NL80211_IFTYPE_ADHOC) {
470 			REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
471 				  | SM(0, AR_D_LCL_IFS_CWMAX)
472 				  | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
473 		}
474 		break;
475 	case ATH9K_TX_QUEUE_CAB:
476 		ENABLE_REGWRITE_BUFFER(ah);
477 
478 		REG_SET_BIT(ah, AR_QMISC(q),
479 			    AR_Q_MISC_FSP_DBA_GATED
480 			    | AR_Q_MISC_CBR_INCR_DIS1
481 			    | AR_Q_MISC_CBR_INCR_DIS0);
482 		value = (qi->tqi_readyTime -
483 			 (ah->config.sw_beacon_response_time -
484 			  ah->config.dma_beacon_response_time) -
485 			 ah->config.additional_swba_backoff) * 1024;
486 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
487 			  value | AR_Q_RDYTIMECFG_EN);
488 		REG_SET_BIT(ah, AR_DMISC(q),
489 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
490 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
491 
492 		REGWRITE_BUFFER_FLUSH(ah);
493 
494 		break;
495 	case ATH9K_TX_QUEUE_PSPOLL:
496 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
497 		break;
498 	case ATH9K_TX_QUEUE_UAPSD:
499 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
500 		break;
501 	default:
502 		break;
503 	}
504 
505 	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
506 		REG_SET_BIT(ah, AR_DMISC(q),
507 			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
508 			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
509 			    AR_D_MISC_POST_FR_BKOFF_DIS);
510 	}
511 
512 	if (AR_SREV_9300_20_OR_LATER(ah))
513 		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
514 
515 	if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE)
516 		ah->txok_interrupt_mask |= 1 << q;
517 	else
518 		ah->txok_interrupt_mask &= ~(1 << q);
519 	if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE)
520 		ah->txerr_interrupt_mask |= 1 << q;
521 	else
522 		ah->txerr_interrupt_mask &= ~(1 << q);
523 	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
524 		ah->txdesc_interrupt_mask |= 1 << q;
525 	else
526 		ah->txdesc_interrupt_mask &= ~(1 << q);
527 	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
528 		ah->txeol_interrupt_mask |= 1 << q;
529 	else
530 		ah->txeol_interrupt_mask &= ~(1 << q);
531 	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
532 		ah->txurn_interrupt_mask |= 1 << q;
533 	else
534 		ah->txurn_interrupt_mask &= ~(1 << q);
535 	ath9k_hw_set_txq_interrupts(ah, qi);
536 
537 	return true;
538 }
539 EXPORT_SYMBOL(ath9k_hw_resettxqueue);
540 
541 int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
542 			struct ath_rx_status *rs)
543 {
544 	struct ar5416_desc ads;
545 	struct ar5416_desc *adsp = AR5416DESC(ds);
546 	u32 phyerr;
547 
548 	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
549 		return -EINPROGRESS;
550 
551 	ads.u.rx = adsp->u.rx;
552 
553 	rs->rs_status = 0;
554 	rs->rs_flags = 0;
555 
556 	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
557 	rs->rs_tstamp = ads.AR_RcvTimestamp;
558 
559 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
560 		rs->rs_rssi = ATH9K_RSSI_BAD;
561 		rs->rs_rssi_ctl0 = ATH9K_RSSI_BAD;
562 		rs->rs_rssi_ctl1 = ATH9K_RSSI_BAD;
563 		rs->rs_rssi_ctl2 = ATH9K_RSSI_BAD;
564 		rs->rs_rssi_ext0 = ATH9K_RSSI_BAD;
565 		rs->rs_rssi_ext1 = ATH9K_RSSI_BAD;
566 		rs->rs_rssi_ext2 = ATH9K_RSSI_BAD;
567 	} else {
568 		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
569 		rs->rs_rssi_ctl0 = MS(ads.ds_rxstatus0,
570 						AR_RxRSSIAnt00);
571 		rs->rs_rssi_ctl1 = MS(ads.ds_rxstatus0,
572 						AR_RxRSSIAnt01);
573 		rs->rs_rssi_ctl2 = MS(ads.ds_rxstatus0,
574 						AR_RxRSSIAnt02);
575 		rs->rs_rssi_ext0 = MS(ads.ds_rxstatus4,
576 						AR_RxRSSIAnt10);
577 		rs->rs_rssi_ext1 = MS(ads.ds_rxstatus4,
578 						AR_RxRSSIAnt11);
579 		rs->rs_rssi_ext2 = MS(ads.ds_rxstatus4,
580 						AR_RxRSSIAnt12);
581 	}
582 	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
583 		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
584 	else
585 		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
586 
587 	rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
588 	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
589 
590 	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
591 	rs->rs_moreaggr =
592 		(ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
593 	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
594 	rs->rs_flags =
595 		(ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
596 	rs->rs_flags |=
597 		(ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
598 
599 	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
600 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
601 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
602 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
603 	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
604 		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
605 
606 	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
607 		/*
608 		 * Treat these errors as mutually exclusive to avoid spurious
609 		 * extra error reports from the hardware. If a CRC error is
610 		 * reported, then decryption and MIC errors are irrelevant,
611 		 * the frame is going to be dropped either way
612 		 */
613 		if (ads.ds_rxstatus8 & AR_CRCErr)
614 			rs->rs_status |= ATH9K_RXERR_CRC;
615 		else if (ads.ds_rxstatus8 & AR_PHYErr) {
616 			rs->rs_status |= ATH9K_RXERR_PHY;
617 			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
618 			rs->rs_phyerr = phyerr;
619 		} else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
620 			rs->rs_status |= ATH9K_RXERR_DECRYPT;
621 		else if (ads.ds_rxstatus8 & AR_MichaelErr)
622 			rs->rs_status |= ATH9K_RXERR_MIC;
623 		else if (ads.ds_rxstatus8 & AR_KeyMiss)
624 			rs->rs_status |= ATH9K_RXERR_DECRYPT;
625 	}
626 
627 	return 0;
628 }
629 EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
630 
631 /*
632  * This can stop or re-enables RX.
633  *
634  * If bool is set this will kill any frame which is currently being
635  * transferred between the MAC and baseband and also prevent any new
636  * frames from getting started.
637  */
638 bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
639 {
640 	u32 reg;
641 
642 	if (set) {
643 		REG_SET_BIT(ah, AR_DIAG_SW,
644 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
645 
646 		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
647 				   0, AH_WAIT_TIMEOUT)) {
648 			REG_CLR_BIT(ah, AR_DIAG_SW,
649 				    (AR_DIAG_RX_DIS |
650 				     AR_DIAG_RX_ABORT));
651 
652 			reg = REG_READ(ah, AR_OBS_BUS_1);
653 			ath_err(ath9k_hw_common(ah),
654 				"RX failed to go idle in 10 ms RXSM=0x%x\n",
655 				reg);
656 
657 			return false;
658 		}
659 	} else {
660 		REG_CLR_BIT(ah, AR_DIAG_SW,
661 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
662 	}
663 
664 	return true;
665 }
666 EXPORT_SYMBOL(ath9k_hw_setrxabort);
667 
668 void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
669 {
670 	REG_WRITE(ah, AR_RXDP, rxdp);
671 }
672 EXPORT_SYMBOL(ath9k_hw_putrxbuf);
673 
674 void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
675 {
676 	ath9k_enable_mib_counters(ah);
677 
678 	ath9k_ani_reset(ah, is_scanning);
679 
680 	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
681 }
682 EXPORT_SYMBOL(ath9k_hw_startpcureceive);
683 
684 void ath9k_hw_abortpcurecv(struct ath_hw *ah)
685 {
686 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
687 
688 	ath9k_hw_disable_mib_counters(ah);
689 }
690 EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
691 
692 bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
693 {
694 #define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
695 	struct ath_common *common = ath9k_hw_common(ah);
696 	u32 mac_status, last_mac_status = 0;
697 	int i;
698 
699 	/* Enable access to the DMA observation bus */
700 	REG_WRITE(ah, AR_MACMISC,
701 		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
702 		   (AR_MACMISC_MISC_OBS_BUS_1 <<
703 		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));
704 
705 	REG_WRITE(ah, AR_CR, AR_CR_RXD);
706 
707 	/* Wait for rx enable bit to go low */
708 	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
709 		if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
710 			break;
711 
712 		if (!AR_SREV_9300_20_OR_LATER(ah)) {
713 			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
714 			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
715 				*reset = true;
716 				break;
717 			}
718 
719 			last_mac_status = mac_status;
720 		}
721 
722 		udelay(AH_TIME_QUANTUM);
723 	}
724 
725 	if (i == 0) {
726 		ath_err(common,
727 			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
728 			AH_RX_STOP_DMA_TIMEOUT / 1000,
729 			REG_READ(ah, AR_CR),
730 			REG_READ(ah, AR_DIAG_SW),
731 			REG_READ(ah, AR_DMADBG_7));
732 		return false;
733 	} else {
734 		return true;
735 	}
736 
737 #undef AH_RX_STOP_DMA_TIMEOUT
738 }
739 EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
740 
741 int ath9k_hw_beaconq_setup(struct ath_hw *ah)
742 {
743 	struct ath9k_tx_queue_info qi;
744 
745 	memset(&qi, 0, sizeof(qi));
746 	qi.tqi_aifs = 1;
747 	qi.tqi_cwmin = 0;
748 	qi.tqi_cwmax = 0;
749 	/* NB: don't enable any interrupts */
750 	return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
751 }
752 EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
753 
754 bool ath9k_hw_intrpend(struct ath_hw *ah)
755 {
756 	u32 host_isr;
757 
758 	if (AR_SREV_9100(ah))
759 		return true;
760 
761 	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
762 	if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
763 		return true;
764 
765 	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
766 	if ((host_isr & AR_INTR_SYNC_DEFAULT)
767 	    && (host_isr != AR_INTR_SPURIOUS))
768 		return true;
769 
770 	return false;
771 }
772 EXPORT_SYMBOL(ath9k_hw_intrpend);
773 
774 void ath9k_hw_disable_interrupts(struct ath_hw *ah)
775 {
776 	struct ath_common *common = ath9k_hw_common(ah);
777 
778 	if (!(ah->imask & ATH9K_INT_GLOBAL))
779 		atomic_set(&ah->intr_ref_cnt, -1);
780 	else
781 		atomic_dec(&ah->intr_ref_cnt);
782 
783 	ath_dbg(common, ATH_DBG_INTERRUPT, "disable IER\n");
784 	REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
785 	(void) REG_READ(ah, AR_IER);
786 	if (!AR_SREV_9100(ah)) {
787 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
788 		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
789 
790 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
791 		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
792 	}
793 }
794 EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
795 
796 void ath9k_hw_enable_interrupts(struct ath_hw *ah)
797 {
798 	struct ath_common *common = ath9k_hw_common(ah);
799 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
800 
801 	if (!(ah->imask & ATH9K_INT_GLOBAL))
802 		return;
803 
804 	if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
805 		ath_dbg(common, ATH_DBG_INTERRUPT,
806 			"Do not enable IER ref count %d\n",
807 			atomic_read(&ah->intr_ref_cnt));
808 		return;
809 	}
810 
811 	if (AR_SREV_9340(ah))
812 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
813 
814 	ath_dbg(common, ATH_DBG_INTERRUPT, "enable IER\n");
815 	REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
816 	if (!AR_SREV_9100(ah)) {
817 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
818 			  AR_INTR_MAC_IRQ);
819 		REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
820 
821 
822 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
823 		REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
824 	}
825 	ath_dbg(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
826 		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
827 }
828 EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
829 
830 void ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
831 {
832 	enum ath9k_int omask = ah->imask;
833 	u32 mask, mask2;
834 	struct ath9k_hw_capabilities *pCap = &ah->caps;
835 	struct ath_common *common = ath9k_hw_common(ah);
836 
837 	if (!(ints & ATH9K_INT_GLOBAL))
838 		ath9k_hw_disable_interrupts(ah);
839 
840 	ath_dbg(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
841 
842 	mask = ints & ATH9K_INT_COMMON;
843 	mask2 = 0;
844 
845 	if (ints & ATH9K_INT_TX) {
846 		if (ah->config.tx_intr_mitigation)
847 			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
848 		else {
849 			if (ah->txok_interrupt_mask)
850 				mask |= AR_IMR_TXOK;
851 			if (ah->txdesc_interrupt_mask)
852 				mask |= AR_IMR_TXDESC;
853 		}
854 		if (ah->txerr_interrupt_mask)
855 			mask |= AR_IMR_TXERR;
856 		if (ah->txeol_interrupt_mask)
857 			mask |= AR_IMR_TXEOL;
858 	}
859 	if (ints & ATH9K_INT_RX) {
860 		if (AR_SREV_9300_20_OR_LATER(ah)) {
861 			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
862 			if (ah->config.rx_intr_mitigation) {
863 				mask &= ~AR_IMR_RXOK_LP;
864 				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
865 			} else {
866 				mask |= AR_IMR_RXOK_LP;
867 			}
868 		} else {
869 			if (ah->config.rx_intr_mitigation)
870 				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
871 			else
872 				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
873 		}
874 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
875 			mask |= AR_IMR_GENTMR;
876 	}
877 
878 	if (ints & ATH9K_INT_GENTIMER)
879 		mask |= AR_IMR_GENTMR;
880 
881 	if (ints & (ATH9K_INT_BMISC)) {
882 		mask |= AR_IMR_BCNMISC;
883 		if (ints & ATH9K_INT_TIM)
884 			mask2 |= AR_IMR_S2_TIM;
885 		if (ints & ATH9K_INT_DTIM)
886 			mask2 |= AR_IMR_S2_DTIM;
887 		if (ints & ATH9K_INT_DTIMSYNC)
888 			mask2 |= AR_IMR_S2_DTIMSYNC;
889 		if (ints & ATH9K_INT_CABEND)
890 			mask2 |= AR_IMR_S2_CABEND;
891 		if (ints & ATH9K_INT_TSFOOR)
892 			mask2 |= AR_IMR_S2_TSFOOR;
893 	}
894 
895 	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
896 		mask |= AR_IMR_BCNMISC;
897 		if (ints & ATH9K_INT_GTT)
898 			mask2 |= AR_IMR_S2_GTT;
899 		if (ints & ATH9K_INT_CST)
900 			mask2 |= AR_IMR_S2_CST;
901 	}
902 
903 	ath_dbg(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
904 	REG_WRITE(ah, AR_IMR, mask);
905 	ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
906 			   AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
907 			   AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
908 	ah->imrs2_reg |= mask2;
909 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
910 
911 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
912 		if (ints & ATH9K_INT_TIM_TIMER)
913 			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
914 		else
915 			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
916 	}
917 
918 	return;
919 }
920 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
921