xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/mac.c (revision d78c317f)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include <linux/export.h>
20 
21 static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
22 					struct ath9k_tx_queue_info *qi)
23 {
24 	ath_dbg(ath9k_hw_common(ah), INTERRUPT,
25 		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26 		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
27 		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
28 		ah->txurn_interrupt_mask);
29 
30 	ENABLE_REGWRITE_BUFFER(ah);
31 
32 	REG_WRITE(ah, AR_IMR_S0,
33 		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
34 		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
35 	REG_WRITE(ah, AR_IMR_S1,
36 		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
37 		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
38 
39 	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
40 	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
41 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
42 
43 	REGWRITE_BUFFER_FLUSH(ah);
44 }
45 
46 u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
47 {
48 	return REG_READ(ah, AR_QTXDP(q));
49 }
50 EXPORT_SYMBOL(ath9k_hw_gettxbuf);
51 
52 void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
53 {
54 	REG_WRITE(ah, AR_QTXDP(q), txdp);
55 }
56 EXPORT_SYMBOL(ath9k_hw_puttxbuf);
57 
58 void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
59 {
60 	ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
61 	REG_WRITE(ah, AR_Q_TXE, 1 << q);
62 }
63 EXPORT_SYMBOL(ath9k_hw_txstart);
64 
65 u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
66 {
67 	u32 npend;
68 
69 	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
70 	if (npend == 0) {
71 
72 		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
73 			npend = 1;
74 	}
75 
76 	return npend;
77 }
78 EXPORT_SYMBOL(ath9k_hw_numtxpending);
79 
80 /**
81  * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
82  *
83  * @ah: atheros hardware struct
84  * @bIncTrigLevel: whether or not the frame trigger level should be updated
85  *
86  * The frame trigger level specifies the minimum number of bytes,
87  * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88  * before the PCU will initiate sending the frame on the air. This can
89  * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90  * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
91  * first)
92  *
93  * Caution must be taken to ensure to set the frame trigger level based
94  * on the DMA request size. For example if the DMA request size is set to
95  * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96  * there need to be enough space in the tx FIFO for the requested transfer
97  * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98  * the threshold to a value beyond 6, then the transmit will hang.
99  *
100  * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
101  * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102  * there is a hardware issue which forces us to use 2 KB instead so the
103  * frame trigger level must not exceed 2 KB for these chipsets.
104  */
105 bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
106 {
107 	u32 txcfg, curLevel, newLevel;
108 
109 	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
110 		return false;
111 
112 	ath9k_hw_disable_interrupts(ah);
113 
114 	txcfg = REG_READ(ah, AR_TXCFG);
115 	curLevel = MS(txcfg, AR_FTRIG);
116 	newLevel = curLevel;
117 	if (bIncTrigLevel) {
118 		if (curLevel < ah->config.max_txtrig_level)
119 			newLevel++;
120 	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
121 		newLevel--;
122 	if (newLevel != curLevel)
123 		REG_WRITE(ah, AR_TXCFG,
124 			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
125 
126 	ath9k_hw_enable_interrupts(ah);
127 
128 	ah->tx_trig_level = newLevel;
129 
130 	return newLevel != curLevel;
131 }
132 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
133 
134 void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
135 {
136 	int i, q;
137 
138 	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
139 
140 	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
141 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
142 	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
143 
144 	for (q = 0; q < AR_NUM_QCU; q++) {
145 		for (i = 0; i < 1000; i++) {
146 			if (i)
147 				udelay(5);
148 
149 			if (!ath9k_hw_numtxpending(ah, q))
150 				break;
151 		}
152 	}
153 
154 	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
155 	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
156 	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
157 
158 	REG_WRITE(ah, AR_Q_TXD, 0);
159 }
160 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
161 
162 bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
163 {
164 #define ATH9K_TX_STOP_DMA_TIMEOUT	1000    /* usec */
165 #define ATH9K_TIME_QUANTUM		100     /* usec */
166 	int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
167 	int wait;
168 
169 	REG_WRITE(ah, AR_Q_TXD, 1 << q);
170 
171 	for (wait = wait_time; wait != 0; wait--) {
172 		if (wait != wait_time)
173 			udelay(ATH9K_TIME_QUANTUM);
174 
175 		if (ath9k_hw_numtxpending(ah, q) == 0)
176 			break;
177 	}
178 
179 	REG_WRITE(ah, AR_Q_TXD, 0);
180 
181 	return wait != 0;
182 
183 #undef ATH9K_TX_STOP_DMA_TIMEOUT
184 #undef ATH9K_TIME_QUANTUM
185 }
186 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
187 
188 void ath9k_hw_gettxintrtxqs(struct ath_hw *ah, u32 *txqs)
189 {
190 	*txqs &= ah->intr_txqs;
191 	ah->intr_txqs &= ~(*txqs);
192 }
193 EXPORT_SYMBOL(ath9k_hw_gettxintrtxqs);
194 
195 bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
196 			    const struct ath9k_tx_queue_info *qinfo)
197 {
198 	u32 cw;
199 	struct ath_common *common = ath9k_hw_common(ah);
200 	struct ath9k_tx_queue_info *qi;
201 
202 	qi = &ah->txq[q];
203 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
204 		ath_dbg(common, QUEUE,
205 			"Set TXQ properties, inactive queue: %u\n", q);
206 		return false;
207 	}
208 
209 	ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);
210 
211 	qi->tqi_ver = qinfo->tqi_ver;
212 	qi->tqi_subtype = qinfo->tqi_subtype;
213 	qi->tqi_qflags = qinfo->tqi_qflags;
214 	qi->tqi_priority = qinfo->tqi_priority;
215 	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
216 		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
217 	else
218 		qi->tqi_aifs = INIT_AIFS;
219 	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
220 		cw = min(qinfo->tqi_cwmin, 1024U);
221 		qi->tqi_cwmin = 1;
222 		while (qi->tqi_cwmin < cw)
223 			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
224 	} else
225 		qi->tqi_cwmin = qinfo->tqi_cwmin;
226 	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
227 		cw = min(qinfo->tqi_cwmax, 1024U);
228 		qi->tqi_cwmax = 1;
229 		while (qi->tqi_cwmax < cw)
230 			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
231 	} else
232 		qi->tqi_cwmax = INIT_CWMAX;
233 
234 	if (qinfo->tqi_shretry != 0)
235 		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
236 	else
237 		qi->tqi_shretry = INIT_SH_RETRY;
238 	if (qinfo->tqi_lgretry != 0)
239 		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
240 	else
241 		qi->tqi_lgretry = INIT_LG_RETRY;
242 	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
243 	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
244 	qi->tqi_burstTime = qinfo->tqi_burstTime;
245 	qi->tqi_readyTime = qinfo->tqi_readyTime;
246 
247 	switch (qinfo->tqi_subtype) {
248 	case ATH9K_WME_UPSD:
249 		if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
250 			qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
251 		break;
252 	default:
253 		break;
254 	}
255 
256 	return true;
257 }
258 EXPORT_SYMBOL(ath9k_hw_set_txq_props);
259 
260 bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
261 			    struct ath9k_tx_queue_info *qinfo)
262 {
263 	struct ath_common *common = ath9k_hw_common(ah);
264 	struct ath9k_tx_queue_info *qi;
265 
266 	qi = &ah->txq[q];
267 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
268 		ath_dbg(common, QUEUE,
269 			"Get TXQ properties, inactive queue: %u\n", q);
270 		return false;
271 	}
272 
273 	qinfo->tqi_qflags = qi->tqi_qflags;
274 	qinfo->tqi_ver = qi->tqi_ver;
275 	qinfo->tqi_subtype = qi->tqi_subtype;
276 	qinfo->tqi_qflags = qi->tqi_qflags;
277 	qinfo->tqi_priority = qi->tqi_priority;
278 	qinfo->tqi_aifs = qi->tqi_aifs;
279 	qinfo->tqi_cwmin = qi->tqi_cwmin;
280 	qinfo->tqi_cwmax = qi->tqi_cwmax;
281 	qinfo->tqi_shretry = qi->tqi_shretry;
282 	qinfo->tqi_lgretry = qi->tqi_lgretry;
283 	qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
284 	qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
285 	qinfo->tqi_burstTime = qi->tqi_burstTime;
286 	qinfo->tqi_readyTime = qi->tqi_readyTime;
287 
288 	return true;
289 }
290 EXPORT_SYMBOL(ath9k_hw_get_txq_props);
291 
292 int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
293 			  const struct ath9k_tx_queue_info *qinfo)
294 {
295 	struct ath_common *common = ath9k_hw_common(ah);
296 	struct ath9k_tx_queue_info *qi;
297 	int q;
298 
299 	switch (type) {
300 	case ATH9K_TX_QUEUE_BEACON:
301 		q = ATH9K_NUM_TX_QUEUES - 1;
302 		break;
303 	case ATH9K_TX_QUEUE_CAB:
304 		q = ATH9K_NUM_TX_QUEUES - 2;
305 		break;
306 	case ATH9K_TX_QUEUE_PSPOLL:
307 		q = 1;
308 		break;
309 	case ATH9K_TX_QUEUE_UAPSD:
310 		q = ATH9K_NUM_TX_QUEUES - 3;
311 		break;
312 	case ATH9K_TX_QUEUE_DATA:
313 		for (q = 0; q < ATH9K_NUM_TX_QUEUES; q++)
314 			if (ah->txq[q].tqi_type ==
315 			    ATH9K_TX_QUEUE_INACTIVE)
316 				break;
317 		if (q == ATH9K_NUM_TX_QUEUES) {
318 			ath_err(common, "No available TX queue\n");
319 			return -1;
320 		}
321 		break;
322 	default:
323 		ath_err(common, "Invalid TX queue type: %u\n", type);
324 		return -1;
325 	}
326 
327 	ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);
328 
329 	qi = &ah->txq[q];
330 	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
331 		ath_err(common, "TX queue: %u already active\n", q);
332 		return -1;
333 	}
334 	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
335 	qi->tqi_type = type;
336 	qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
337 	(void) ath9k_hw_set_txq_props(ah, q, qinfo);
338 
339 	return q;
340 }
341 EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
342 
343 bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
344 {
345 	struct ath_common *common = ath9k_hw_common(ah);
346 	struct ath9k_tx_queue_info *qi;
347 
348 	qi = &ah->txq[q];
349 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
350 		ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
351 		return false;
352 	}
353 
354 	ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);
355 
356 	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
357 	ah->txok_interrupt_mask &= ~(1 << q);
358 	ah->txerr_interrupt_mask &= ~(1 << q);
359 	ah->txdesc_interrupt_mask &= ~(1 << q);
360 	ah->txeol_interrupt_mask &= ~(1 << q);
361 	ah->txurn_interrupt_mask &= ~(1 << q);
362 	ath9k_hw_set_txq_interrupts(ah, qi);
363 
364 	return true;
365 }
366 EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
367 
368 bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
369 {
370 	struct ath_common *common = ath9k_hw_common(ah);
371 	struct ath9k_channel *chan = ah->curchan;
372 	struct ath9k_tx_queue_info *qi;
373 	u32 cwMin, chanCwMin, value;
374 
375 	qi = &ah->txq[q];
376 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
377 		ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
378 		return true;
379 	}
380 
381 	ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);
382 
383 	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
384 		if (chan && IS_CHAN_B(chan))
385 			chanCwMin = INIT_CWMIN_11B;
386 		else
387 			chanCwMin = INIT_CWMIN;
388 
389 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
390 	} else
391 		cwMin = qi->tqi_cwmin;
392 
393 	ENABLE_REGWRITE_BUFFER(ah);
394 
395 	REG_WRITE(ah, AR_DLCL_IFS(q),
396 		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
397 		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
398 		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
399 
400 	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
401 		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
402 		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
403 		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
404 
405 	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
406 
407 	if (AR_SREV_9340(ah))
408 		REG_WRITE(ah, AR_DMISC(q),
409 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
410 	else
411 		REG_WRITE(ah, AR_DMISC(q),
412 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
413 
414 	if (qi->tqi_cbrPeriod) {
415 		REG_WRITE(ah, AR_QCBRCFG(q),
416 			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
417 			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
418 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
419 			    (qi->tqi_cbrOverflowLimit ?
420 			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
421 	}
422 	if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
423 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
424 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
425 			  AR_Q_RDYTIMECFG_EN);
426 	}
427 
428 	REG_WRITE(ah, AR_DCHNTIME(q),
429 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
430 		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
431 
432 	if (qi->tqi_burstTime
433 	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
434 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
435 
436 	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
437 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
438 
439 	REGWRITE_BUFFER_FLUSH(ah);
440 
441 	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
442 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
443 
444 	switch (qi->tqi_type) {
445 	case ATH9K_TX_QUEUE_BEACON:
446 		ENABLE_REGWRITE_BUFFER(ah);
447 
448 		REG_SET_BIT(ah, AR_QMISC(q),
449 			    AR_Q_MISC_FSP_DBA_GATED
450 			    | AR_Q_MISC_BEACON_USE
451 			    | AR_Q_MISC_CBR_INCR_DIS1);
452 
453 		REG_SET_BIT(ah, AR_DMISC(q),
454 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
455 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
456 			    | AR_D_MISC_BEACON_USE
457 			    | AR_D_MISC_POST_FR_BKOFF_DIS);
458 
459 		REGWRITE_BUFFER_FLUSH(ah);
460 
461 		/*
462 		 * cwmin and cwmax should be 0 for beacon queue
463 		 * but not for IBSS as we would create an imbalance
464 		 * on beaconing fairness for participating nodes.
465 		 */
466 		if (AR_SREV_9300_20_OR_LATER(ah) &&
467 		    ah->opmode != NL80211_IFTYPE_ADHOC) {
468 			REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
469 				  | SM(0, AR_D_LCL_IFS_CWMAX)
470 				  | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
471 		}
472 		break;
473 	case ATH9K_TX_QUEUE_CAB:
474 		ENABLE_REGWRITE_BUFFER(ah);
475 
476 		REG_SET_BIT(ah, AR_QMISC(q),
477 			    AR_Q_MISC_FSP_DBA_GATED
478 			    | AR_Q_MISC_CBR_INCR_DIS1
479 			    | AR_Q_MISC_CBR_INCR_DIS0);
480 		value = (qi->tqi_readyTime -
481 			 (ah->config.sw_beacon_response_time -
482 			  ah->config.dma_beacon_response_time) -
483 			 ah->config.additional_swba_backoff) * 1024;
484 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
485 			  value | AR_Q_RDYTIMECFG_EN);
486 		REG_SET_BIT(ah, AR_DMISC(q),
487 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
488 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
489 
490 		REGWRITE_BUFFER_FLUSH(ah);
491 
492 		break;
493 	case ATH9K_TX_QUEUE_PSPOLL:
494 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
495 		break;
496 	case ATH9K_TX_QUEUE_UAPSD:
497 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
498 		break;
499 	default:
500 		break;
501 	}
502 
503 	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
504 		REG_SET_BIT(ah, AR_DMISC(q),
505 			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
506 			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
507 			    AR_D_MISC_POST_FR_BKOFF_DIS);
508 	}
509 
510 	if (AR_SREV_9300_20_OR_LATER(ah))
511 		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
512 
513 	if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE)
514 		ah->txok_interrupt_mask |= 1 << q;
515 	else
516 		ah->txok_interrupt_mask &= ~(1 << q);
517 	if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE)
518 		ah->txerr_interrupt_mask |= 1 << q;
519 	else
520 		ah->txerr_interrupt_mask &= ~(1 << q);
521 	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
522 		ah->txdesc_interrupt_mask |= 1 << q;
523 	else
524 		ah->txdesc_interrupt_mask &= ~(1 << q);
525 	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
526 		ah->txeol_interrupt_mask |= 1 << q;
527 	else
528 		ah->txeol_interrupt_mask &= ~(1 << q);
529 	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
530 		ah->txurn_interrupt_mask |= 1 << q;
531 	else
532 		ah->txurn_interrupt_mask &= ~(1 << q);
533 	ath9k_hw_set_txq_interrupts(ah, qi);
534 
535 	return true;
536 }
537 EXPORT_SYMBOL(ath9k_hw_resettxqueue);
538 
539 int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
540 			struct ath_rx_status *rs)
541 {
542 	struct ar5416_desc ads;
543 	struct ar5416_desc *adsp = AR5416DESC(ds);
544 	u32 phyerr;
545 
546 	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
547 		return -EINPROGRESS;
548 
549 	ads.u.rx = adsp->u.rx;
550 
551 	rs->rs_status = 0;
552 	rs->rs_flags = 0;
553 
554 	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
555 	rs->rs_tstamp = ads.AR_RcvTimestamp;
556 
557 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
558 		rs->rs_rssi = ATH9K_RSSI_BAD;
559 		rs->rs_rssi_ctl0 = ATH9K_RSSI_BAD;
560 		rs->rs_rssi_ctl1 = ATH9K_RSSI_BAD;
561 		rs->rs_rssi_ctl2 = ATH9K_RSSI_BAD;
562 		rs->rs_rssi_ext0 = ATH9K_RSSI_BAD;
563 		rs->rs_rssi_ext1 = ATH9K_RSSI_BAD;
564 		rs->rs_rssi_ext2 = ATH9K_RSSI_BAD;
565 	} else {
566 		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
567 		rs->rs_rssi_ctl0 = MS(ads.ds_rxstatus0,
568 						AR_RxRSSIAnt00);
569 		rs->rs_rssi_ctl1 = MS(ads.ds_rxstatus0,
570 						AR_RxRSSIAnt01);
571 		rs->rs_rssi_ctl2 = MS(ads.ds_rxstatus0,
572 						AR_RxRSSIAnt02);
573 		rs->rs_rssi_ext0 = MS(ads.ds_rxstatus4,
574 						AR_RxRSSIAnt10);
575 		rs->rs_rssi_ext1 = MS(ads.ds_rxstatus4,
576 						AR_RxRSSIAnt11);
577 		rs->rs_rssi_ext2 = MS(ads.ds_rxstatus4,
578 						AR_RxRSSIAnt12);
579 	}
580 	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
581 		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
582 	else
583 		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
584 
585 	rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
586 	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
587 
588 	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
589 	rs->rs_moreaggr =
590 		(ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
591 	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
592 	rs->rs_flags =
593 		(ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
594 	rs->rs_flags |=
595 		(ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
596 
597 	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
598 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
599 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
600 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
601 	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
602 		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
603 
604 	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
605 		/*
606 		 * Treat these errors as mutually exclusive to avoid spurious
607 		 * extra error reports from the hardware. If a CRC error is
608 		 * reported, then decryption and MIC errors are irrelevant,
609 		 * the frame is going to be dropped either way
610 		 */
611 		if (ads.ds_rxstatus8 & AR_CRCErr)
612 			rs->rs_status |= ATH9K_RXERR_CRC;
613 		else if (ads.ds_rxstatus8 & AR_PHYErr) {
614 			rs->rs_status |= ATH9K_RXERR_PHY;
615 			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
616 			rs->rs_phyerr = phyerr;
617 		} else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
618 			rs->rs_status |= ATH9K_RXERR_DECRYPT;
619 		else if (ads.ds_rxstatus8 & AR_MichaelErr)
620 			rs->rs_status |= ATH9K_RXERR_MIC;
621 	}
622 
623 	if (ads.ds_rxstatus8 & AR_KeyMiss)
624 		rs->rs_status |= ATH9K_RXERR_KEYMISS;
625 
626 	return 0;
627 }
628 EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
629 
630 /*
631  * This can stop or re-enables RX.
632  *
633  * If bool is set this will kill any frame which is currently being
634  * transferred between the MAC and baseband and also prevent any new
635  * frames from getting started.
636  */
637 bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
638 {
639 	u32 reg;
640 
641 	if (set) {
642 		REG_SET_BIT(ah, AR_DIAG_SW,
643 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
644 
645 		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
646 				   0, AH_WAIT_TIMEOUT)) {
647 			REG_CLR_BIT(ah, AR_DIAG_SW,
648 				    (AR_DIAG_RX_DIS |
649 				     AR_DIAG_RX_ABORT));
650 
651 			reg = REG_READ(ah, AR_OBS_BUS_1);
652 			ath_err(ath9k_hw_common(ah),
653 				"RX failed to go idle in 10 ms RXSM=0x%x\n",
654 				reg);
655 
656 			return false;
657 		}
658 	} else {
659 		REG_CLR_BIT(ah, AR_DIAG_SW,
660 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
661 	}
662 
663 	return true;
664 }
665 EXPORT_SYMBOL(ath9k_hw_setrxabort);
666 
667 void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
668 {
669 	REG_WRITE(ah, AR_RXDP, rxdp);
670 }
671 EXPORT_SYMBOL(ath9k_hw_putrxbuf);
672 
673 void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
674 {
675 	ath9k_enable_mib_counters(ah);
676 
677 	ath9k_ani_reset(ah, is_scanning);
678 
679 	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
680 }
681 EXPORT_SYMBOL(ath9k_hw_startpcureceive);
682 
683 void ath9k_hw_abortpcurecv(struct ath_hw *ah)
684 {
685 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
686 
687 	ath9k_hw_disable_mib_counters(ah);
688 }
689 EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
690 
691 bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
692 {
693 #define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
694 	struct ath_common *common = ath9k_hw_common(ah);
695 	u32 mac_status, last_mac_status = 0;
696 	int i;
697 
698 	/* Enable access to the DMA observation bus */
699 	REG_WRITE(ah, AR_MACMISC,
700 		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
701 		   (AR_MACMISC_MISC_OBS_BUS_1 <<
702 		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));
703 
704 	REG_WRITE(ah, AR_CR, AR_CR_RXD);
705 
706 	/* Wait for rx enable bit to go low */
707 	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
708 		if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
709 			break;
710 
711 		if (!AR_SREV_9300_20_OR_LATER(ah)) {
712 			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
713 			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
714 				*reset = true;
715 				break;
716 			}
717 
718 			last_mac_status = mac_status;
719 		}
720 
721 		udelay(AH_TIME_QUANTUM);
722 	}
723 
724 	if (i == 0) {
725 		ath_err(common,
726 			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
727 			AH_RX_STOP_DMA_TIMEOUT / 1000,
728 			REG_READ(ah, AR_CR),
729 			REG_READ(ah, AR_DIAG_SW),
730 			REG_READ(ah, AR_DMADBG_7));
731 		return false;
732 	} else {
733 		return true;
734 	}
735 
736 #undef AH_RX_STOP_DMA_TIMEOUT
737 }
738 EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
739 
740 int ath9k_hw_beaconq_setup(struct ath_hw *ah)
741 {
742 	struct ath9k_tx_queue_info qi;
743 
744 	memset(&qi, 0, sizeof(qi));
745 	qi.tqi_aifs = 1;
746 	qi.tqi_cwmin = 0;
747 	qi.tqi_cwmax = 0;
748 	/* NB: don't enable any interrupts */
749 	return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
750 }
751 EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
752 
753 bool ath9k_hw_intrpend(struct ath_hw *ah)
754 {
755 	u32 host_isr;
756 
757 	if (AR_SREV_9100(ah))
758 		return true;
759 
760 	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
761 
762 	if (((host_isr & AR_INTR_MAC_IRQ) ||
763 	     (host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
764 	    (host_isr != AR_INTR_SPURIOUS))
765 		return true;
766 
767 	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
768 	if ((host_isr & AR_INTR_SYNC_DEFAULT)
769 	    && (host_isr != AR_INTR_SPURIOUS))
770 		return true;
771 
772 	return false;
773 }
774 EXPORT_SYMBOL(ath9k_hw_intrpend);
775 
776 void ath9k_hw_disable_interrupts(struct ath_hw *ah)
777 {
778 	struct ath_common *common = ath9k_hw_common(ah);
779 
780 	if (!(ah->imask & ATH9K_INT_GLOBAL))
781 		atomic_set(&ah->intr_ref_cnt, -1);
782 	else
783 		atomic_dec(&ah->intr_ref_cnt);
784 
785 	ath_dbg(common, INTERRUPT, "disable IER\n");
786 	REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
787 	(void) REG_READ(ah, AR_IER);
788 	if (!AR_SREV_9100(ah)) {
789 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
790 		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
791 
792 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
793 		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
794 	}
795 }
796 EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
797 
798 void ath9k_hw_enable_interrupts(struct ath_hw *ah)
799 {
800 	struct ath_common *common = ath9k_hw_common(ah);
801 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
802 	u32 async_mask;
803 
804 	if (!(ah->imask & ATH9K_INT_GLOBAL))
805 		return;
806 
807 	if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
808 		ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
809 			atomic_read(&ah->intr_ref_cnt));
810 		return;
811 	}
812 
813 	if (AR_SREV_9340(ah))
814 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
815 
816 	async_mask = AR_INTR_MAC_IRQ;
817 
818 	if (ah->imask & ATH9K_INT_MCI)
819 		async_mask |= AR_INTR_ASYNC_MASK_MCI;
820 
821 	ath_dbg(common, INTERRUPT, "enable IER\n");
822 	REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
823 	if (!AR_SREV_9100(ah)) {
824 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, async_mask);
825 		REG_WRITE(ah, AR_INTR_ASYNC_MASK, async_mask);
826 
827 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
828 		REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
829 	}
830 	ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
831 		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
832 }
833 EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
834 
835 void ath9k_hw_set_interrupts(struct ath_hw *ah)
836 {
837 	enum ath9k_int ints = ah->imask;
838 	u32 mask, mask2;
839 	struct ath9k_hw_capabilities *pCap = &ah->caps;
840 	struct ath_common *common = ath9k_hw_common(ah);
841 
842 	if (!(ints & ATH9K_INT_GLOBAL))
843 		ath9k_hw_disable_interrupts(ah);
844 
845 	ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);
846 
847 	mask = ints & ATH9K_INT_COMMON;
848 	mask2 = 0;
849 
850 	if (ints & ATH9K_INT_TX) {
851 		if (ah->config.tx_intr_mitigation)
852 			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
853 		else {
854 			if (ah->txok_interrupt_mask)
855 				mask |= AR_IMR_TXOK;
856 			if (ah->txdesc_interrupt_mask)
857 				mask |= AR_IMR_TXDESC;
858 		}
859 		if (ah->txerr_interrupt_mask)
860 			mask |= AR_IMR_TXERR;
861 		if (ah->txeol_interrupt_mask)
862 			mask |= AR_IMR_TXEOL;
863 	}
864 	if (ints & ATH9K_INT_RX) {
865 		if (AR_SREV_9300_20_OR_LATER(ah)) {
866 			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
867 			if (ah->config.rx_intr_mitigation) {
868 				mask &= ~AR_IMR_RXOK_LP;
869 				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
870 			} else {
871 				mask |= AR_IMR_RXOK_LP;
872 			}
873 		} else {
874 			if (ah->config.rx_intr_mitigation)
875 				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
876 			else
877 				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
878 		}
879 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
880 			mask |= AR_IMR_GENTMR;
881 	}
882 
883 	if (ints & ATH9K_INT_GENTIMER)
884 		mask |= AR_IMR_GENTMR;
885 
886 	if (ints & (ATH9K_INT_BMISC)) {
887 		mask |= AR_IMR_BCNMISC;
888 		if (ints & ATH9K_INT_TIM)
889 			mask2 |= AR_IMR_S2_TIM;
890 		if (ints & ATH9K_INT_DTIM)
891 			mask2 |= AR_IMR_S2_DTIM;
892 		if (ints & ATH9K_INT_DTIMSYNC)
893 			mask2 |= AR_IMR_S2_DTIMSYNC;
894 		if (ints & ATH9K_INT_CABEND)
895 			mask2 |= AR_IMR_S2_CABEND;
896 		if (ints & ATH9K_INT_TSFOOR)
897 			mask2 |= AR_IMR_S2_TSFOOR;
898 	}
899 
900 	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
901 		mask |= AR_IMR_BCNMISC;
902 		if (ints & ATH9K_INT_GTT)
903 			mask2 |= AR_IMR_S2_GTT;
904 		if (ints & ATH9K_INT_CST)
905 			mask2 |= AR_IMR_S2_CST;
906 	}
907 
908 	ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
909 	REG_WRITE(ah, AR_IMR, mask);
910 	ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
911 			   AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
912 			   AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
913 	ah->imrs2_reg |= mask2;
914 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
915 
916 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
917 		if (ints & ATH9K_INT_TIM_TIMER)
918 			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
919 		else
920 			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
921 	}
922 
923 	return;
924 }
925 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
926