xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/mac.c (revision afb46f79)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include <linux/export.h>
20 
21 static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
22 					struct ath9k_tx_queue_info *qi)
23 {
24 	ath_dbg(ath9k_hw_common(ah), INTERRUPT,
25 		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26 		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
27 		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
28 		ah->txurn_interrupt_mask);
29 
30 	ENABLE_REGWRITE_BUFFER(ah);
31 
32 	REG_WRITE(ah, AR_IMR_S0,
33 		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
34 		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
35 	REG_WRITE(ah, AR_IMR_S1,
36 		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
37 		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
38 
39 	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
40 	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
41 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
42 
43 	REGWRITE_BUFFER_FLUSH(ah);
44 }
45 
46 u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
47 {
48 	return REG_READ(ah, AR_QTXDP(q));
49 }
50 EXPORT_SYMBOL(ath9k_hw_gettxbuf);
51 
52 void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
53 {
54 	REG_WRITE(ah, AR_QTXDP(q), txdp);
55 }
56 EXPORT_SYMBOL(ath9k_hw_puttxbuf);
57 
58 void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
59 {
60 	ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
61 	REG_WRITE(ah, AR_Q_TXE, 1 << q);
62 }
63 EXPORT_SYMBOL(ath9k_hw_txstart);
64 
65 u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
66 {
67 	u32 npend;
68 
69 	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
70 	if (npend == 0) {
71 
72 		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
73 			npend = 1;
74 	}
75 
76 	return npend;
77 }
78 EXPORT_SYMBOL(ath9k_hw_numtxpending);
79 
80 /**
81  * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
82  *
83  * @ah: atheros hardware struct
84  * @bIncTrigLevel: whether or not the frame trigger level should be updated
85  *
86  * The frame trigger level specifies the minimum number of bytes,
87  * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88  * before the PCU will initiate sending the frame on the air. This can
89  * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90  * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
91  * first)
92  *
93  * Caution must be taken to ensure to set the frame trigger level based
94  * on the DMA request size. For example if the DMA request size is set to
95  * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96  * there need to be enough space in the tx FIFO for the requested transfer
97  * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98  * the threshold to a value beyond 6, then the transmit will hang.
99  *
100  * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
101  * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102  * there is a hardware issue which forces us to use 2 KB instead so the
103  * frame trigger level must not exceed 2 KB for these chipsets.
104  */
105 bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
106 {
107 	u32 txcfg, curLevel, newLevel;
108 
109 	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
110 		return false;
111 
112 	ath9k_hw_disable_interrupts(ah);
113 
114 	txcfg = REG_READ(ah, AR_TXCFG);
115 	curLevel = MS(txcfg, AR_FTRIG);
116 	newLevel = curLevel;
117 	if (bIncTrigLevel) {
118 		if (curLevel < ah->config.max_txtrig_level)
119 			newLevel++;
120 	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
121 		newLevel--;
122 	if (newLevel != curLevel)
123 		REG_WRITE(ah, AR_TXCFG,
124 			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
125 
126 	ath9k_hw_enable_interrupts(ah);
127 
128 	ah->tx_trig_level = newLevel;
129 
130 	return newLevel != curLevel;
131 }
132 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
133 
134 void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
135 {
136 	int maxdelay = 1000;
137 	int i, q;
138 
139 	if (ah->curchan) {
140 		if (IS_CHAN_HALF_RATE(ah->curchan))
141 			maxdelay *= 2;
142 		else if (IS_CHAN_QUARTER_RATE(ah->curchan))
143 			maxdelay *= 4;
144 	}
145 
146 	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
147 
148 	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
149 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
150 	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
151 
152 	for (q = 0; q < AR_NUM_QCU; q++) {
153 		for (i = 0; i < maxdelay; i++) {
154 			if (i)
155 				udelay(5);
156 
157 			if (!ath9k_hw_numtxpending(ah, q))
158 				break;
159 		}
160 	}
161 
162 	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
163 	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
164 	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
165 
166 	REG_WRITE(ah, AR_Q_TXD, 0);
167 }
168 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
169 
170 bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
171 {
172 #define ATH9K_TX_STOP_DMA_TIMEOUT	1000    /* usec */
173 #define ATH9K_TIME_QUANTUM		100     /* usec */
174 	int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
175 	int wait;
176 
177 	REG_WRITE(ah, AR_Q_TXD, 1 << q);
178 
179 	for (wait = wait_time; wait != 0; wait--) {
180 		if (wait != wait_time)
181 			udelay(ATH9K_TIME_QUANTUM);
182 
183 		if (ath9k_hw_numtxpending(ah, q) == 0)
184 			break;
185 	}
186 
187 	REG_WRITE(ah, AR_Q_TXD, 0);
188 
189 	return wait != 0;
190 
191 #undef ATH9K_TX_STOP_DMA_TIMEOUT
192 #undef ATH9K_TIME_QUANTUM
193 }
194 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
195 
196 bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
197 			    const struct ath9k_tx_queue_info *qinfo)
198 {
199 	u32 cw;
200 	struct ath_common *common = ath9k_hw_common(ah);
201 	struct ath9k_tx_queue_info *qi;
202 
203 	qi = &ah->txq[q];
204 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
205 		ath_dbg(common, QUEUE,
206 			"Set TXQ properties, inactive queue: %u\n", q);
207 		return false;
208 	}
209 
210 	ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);
211 
212 	qi->tqi_ver = qinfo->tqi_ver;
213 	qi->tqi_subtype = qinfo->tqi_subtype;
214 	qi->tqi_qflags = qinfo->tqi_qflags;
215 	qi->tqi_priority = qinfo->tqi_priority;
216 	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
217 		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
218 	else
219 		qi->tqi_aifs = INIT_AIFS;
220 	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
221 		cw = min(qinfo->tqi_cwmin, 1024U);
222 		qi->tqi_cwmin = 1;
223 		while (qi->tqi_cwmin < cw)
224 			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
225 	} else
226 		qi->tqi_cwmin = qinfo->tqi_cwmin;
227 	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
228 		cw = min(qinfo->tqi_cwmax, 1024U);
229 		qi->tqi_cwmax = 1;
230 		while (qi->tqi_cwmax < cw)
231 			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
232 	} else
233 		qi->tqi_cwmax = INIT_CWMAX;
234 
235 	if (qinfo->tqi_shretry != 0)
236 		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
237 	else
238 		qi->tqi_shretry = INIT_SH_RETRY;
239 	if (qinfo->tqi_lgretry != 0)
240 		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
241 	else
242 		qi->tqi_lgretry = INIT_LG_RETRY;
243 	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
244 	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
245 	qi->tqi_burstTime = qinfo->tqi_burstTime;
246 	qi->tqi_readyTime = qinfo->tqi_readyTime;
247 
248 	switch (qinfo->tqi_subtype) {
249 	case ATH9K_WME_UPSD:
250 		if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
251 			qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
252 		break;
253 	default:
254 		break;
255 	}
256 
257 	return true;
258 }
259 EXPORT_SYMBOL(ath9k_hw_set_txq_props);
260 
261 bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
262 			    struct ath9k_tx_queue_info *qinfo)
263 {
264 	struct ath_common *common = ath9k_hw_common(ah);
265 	struct ath9k_tx_queue_info *qi;
266 
267 	qi = &ah->txq[q];
268 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
269 		ath_dbg(common, QUEUE,
270 			"Get TXQ properties, inactive queue: %u\n", q);
271 		return false;
272 	}
273 
274 	qinfo->tqi_qflags = qi->tqi_qflags;
275 	qinfo->tqi_ver = qi->tqi_ver;
276 	qinfo->tqi_subtype = qi->tqi_subtype;
277 	qinfo->tqi_qflags = qi->tqi_qflags;
278 	qinfo->tqi_priority = qi->tqi_priority;
279 	qinfo->tqi_aifs = qi->tqi_aifs;
280 	qinfo->tqi_cwmin = qi->tqi_cwmin;
281 	qinfo->tqi_cwmax = qi->tqi_cwmax;
282 	qinfo->tqi_shretry = qi->tqi_shretry;
283 	qinfo->tqi_lgretry = qi->tqi_lgretry;
284 	qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
285 	qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
286 	qinfo->tqi_burstTime = qi->tqi_burstTime;
287 	qinfo->tqi_readyTime = qi->tqi_readyTime;
288 
289 	return true;
290 }
291 EXPORT_SYMBOL(ath9k_hw_get_txq_props);
292 
293 int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
294 			  const struct ath9k_tx_queue_info *qinfo)
295 {
296 	struct ath_common *common = ath9k_hw_common(ah);
297 	struct ath9k_tx_queue_info *qi;
298 	int q;
299 
300 	switch (type) {
301 	case ATH9K_TX_QUEUE_BEACON:
302 		q = ATH9K_NUM_TX_QUEUES - 1;
303 		break;
304 	case ATH9K_TX_QUEUE_CAB:
305 		q = ATH9K_NUM_TX_QUEUES - 2;
306 		break;
307 	case ATH9K_TX_QUEUE_PSPOLL:
308 		q = 1;
309 		break;
310 	case ATH9K_TX_QUEUE_UAPSD:
311 		q = ATH9K_NUM_TX_QUEUES - 3;
312 		break;
313 	case ATH9K_TX_QUEUE_DATA:
314 		for (q = 0; q < ATH9K_NUM_TX_QUEUES; q++)
315 			if (ah->txq[q].tqi_type ==
316 			    ATH9K_TX_QUEUE_INACTIVE)
317 				break;
318 		if (q == ATH9K_NUM_TX_QUEUES) {
319 			ath_err(common, "No available TX queue\n");
320 			return -1;
321 		}
322 		break;
323 	default:
324 		ath_err(common, "Invalid TX queue type: %u\n", type);
325 		return -1;
326 	}
327 
328 	ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);
329 
330 	qi = &ah->txq[q];
331 	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
332 		ath_err(common, "TX queue: %u already active\n", q);
333 		return -1;
334 	}
335 	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
336 	qi->tqi_type = type;
337 	qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
338 	(void) ath9k_hw_set_txq_props(ah, q, qinfo);
339 
340 	return q;
341 }
342 EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
343 
344 static void ath9k_hw_clear_queue_interrupts(struct ath_hw *ah, u32 q)
345 {
346 	ah->txok_interrupt_mask &= ~(1 << q);
347 	ah->txerr_interrupt_mask &= ~(1 << q);
348 	ah->txdesc_interrupt_mask &= ~(1 << q);
349 	ah->txeol_interrupt_mask &= ~(1 << q);
350 	ah->txurn_interrupt_mask &= ~(1 << q);
351 }
352 
353 bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
354 {
355 	struct ath_common *common = ath9k_hw_common(ah);
356 	struct ath9k_tx_queue_info *qi;
357 
358 	qi = &ah->txq[q];
359 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
360 		ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
361 		return false;
362 	}
363 
364 	ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);
365 
366 	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
367 	ath9k_hw_clear_queue_interrupts(ah, q);
368 	ath9k_hw_set_txq_interrupts(ah, qi);
369 
370 	return true;
371 }
372 EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
373 
374 bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
375 {
376 	struct ath_common *common = ath9k_hw_common(ah);
377 	struct ath9k_tx_queue_info *qi;
378 	u32 cwMin, chanCwMin, value;
379 
380 	qi = &ah->txq[q];
381 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
382 		ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
383 		return true;
384 	}
385 
386 	ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);
387 
388 	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
389 		chanCwMin = INIT_CWMIN;
390 
391 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
392 	} else
393 		cwMin = qi->tqi_cwmin;
394 
395 	ENABLE_REGWRITE_BUFFER(ah);
396 
397 	REG_WRITE(ah, AR_DLCL_IFS(q),
398 		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
399 		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
400 		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
401 
402 	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
403 		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
404 		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
405 		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
406 
407 	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
408 
409 	if (AR_SREV_9340(ah) && !AR_SREV_9340_13_OR_LATER(ah))
410 		REG_WRITE(ah, AR_DMISC(q),
411 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
412 	else
413 		REG_WRITE(ah, AR_DMISC(q),
414 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
415 
416 	if (qi->tqi_cbrPeriod) {
417 		REG_WRITE(ah, AR_QCBRCFG(q),
418 			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
419 			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
420 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
421 			    (qi->tqi_cbrOverflowLimit ?
422 			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
423 	}
424 	if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
425 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
426 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
427 			  AR_Q_RDYTIMECFG_EN);
428 	}
429 
430 	REG_WRITE(ah, AR_DCHNTIME(q),
431 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
432 		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
433 
434 	if (qi->tqi_burstTime
435 	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
436 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
437 
438 	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
439 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
440 
441 	REGWRITE_BUFFER_FLUSH(ah);
442 
443 	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
444 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
445 
446 	switch (qi->tqi_type) {
447 	case ATH9K_TX_QUEUE_BEACON:
448 		ENABLE_REGWRITE_BUFFER(ah);
449 
450 		REG_SET_BIT(ah, AR_QMISC(q),
451 			    AR_Q_MISC_FSP_DBA_GATED
452 			    | AR_Q_MISC_BEACON_USE
453 			    | AR_Q_MISC_CBR_INCR_DIS1);
454 
455 		REG_SET_BIT(ah, AR_DMISC(q),
456 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
457 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
458 			    | AR_D_MISC_BEACON_USE
459 			    | AR_D_MISC_POST_FR_BKOFF_DIS);
460 
461 		REGWRITE_BUFFER_FLUSH(ah);
462 
463 		/*
464 		 * cwmin and cwmax should be 0 for beacon queue
465 		 * but not for IBSS as we would create an imbalance
466 		 * on beaconing fairness for participating nodes.
467 		 */
468 		if (AR_SREV_9300_20_OR_LATER(ah) &&
469 		    ah->opmode != NL80211_IFTYPE_ADHOC) {
470 			REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
471 				  | SM(0, AR_D_LCL_IFS_CWMAX)
472 				  | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
473 		}
474 		break;
475 	case ATH9K_TX_QUEUE_CAB:
476 		ENABLE_REGWRITE_BUFFER(ah);
477 
478 		REG_SET_BIT(ah, AR_QMISC(q),
479 			    AR_Q_MISC_FSP_DBA_GATED
480 			    | AR_Q_MISC_CBR_INCR_DIS1
481 			    | AR_Q_MISC_CBR_INCR_DIS0);
482 		value = (qi->tqi_readyTime -
483 			 (ah->config.sw_beacon_response_time -
484 			  ah->config.dma_beacon_response_time)) * 1024;
485 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
486 			  value | AR_Q_RDYTIMECFG_EN);
487 		REG_SET_BIT(ah, AR_DMISC(q),
488 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
489 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
490 
491 		REGWRITE_BUFFER_FLUSH(ah);
492 
493 		break;
494 	case ATH9K_TX_QUEUE_PSPOLL:
495 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
496 		break;
497 	case ATH9K_TX_QUEUE_UAPSD:
498 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
499 		break;
500 	default:
501 		break;
502 	}
503 
504 	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
505 		REG_SET_BIT(ah, AR_DMISC(q),
506 			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
507 			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
508 			    AR_D_MISC_POST_FR_BKOFF_DIS);
509 	}
510 
511 	if (AR_SREV_9300_20_OR_LATER(ah))
512 		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
513 
514 	ath9k_hw_clear_queue_interrupts(ah, q);
515 	if (qi->tqi_qflags & TXQ_FLAG_TXINT_ENABLE) {
516 		ah->txok_interrupt_mask |= 1 << q;
517 		ah->txerr_interrupt_mask |= 1 << q;
518 	}
519 	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
520 		ah->txdesc_interrupt_mask |= 1 << q;
521 	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
522 		ah->txeol_interrupt_mask |= 1 << q;
523 	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
524 		ah->txurn_interrupt_mask |= 1 << q;
525 	ath9k_hw_set_txq_interrupts(ah, qi);
526 
527 	return true;
528 }
529 EXPORT_SYMBOL(ath9k_hw_resettxqueue);
530 
531 int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
532 			struct ath_rx_status *rs)
533 {
534 	struct ar5416_desc ads;
535 	struct ar5416_desc *adsp = AR5416DESC(ds);
536 	u32 phyerr;
537 
538 	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
539 		return -EINPROGRESS;
540 
541 	ads.u.rx = adsp->u.rx;
542 
543 	rs->rs_status = 0;
544 	rs->rs_flags = 0;
545 	rs->flag = 0;
546 
547 	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
548 	rs->rs_tstamp = ads.AR_RcvTimestamp;
549 
550 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
551 		rs->rs_rssi = ATH9K_RSSI_BAD;
552 		rs->rs_rssi_ctl[0] = ATH9K_RSSI_BAD;
553 		rs->rs_rssi_ctl[1] = ATH9K_RSSI_BAD;
554 		rs->rs_rssi_ctl[2] = ATH9K_RSSI_BAD;
555 		rs->rs_rssi_ext[0] = ATH9K_RSSI_BAD;
556 		rs->rs_rssi_ext[1] = ATH9K_RSSI_BAD;
557 		rs->rs_rssi_ext[2] = ATH9K_RSSI_BAD;
558 	} else {
559 		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
560 		rs->rs_rssi_ctl[0] = MS(ads.ds_rxstatus0,
561 						AR_RxRSSIAnt00);
562 		rs->rs_rssi_ctl[1] = MS(ads.ds_rxstatus0,
563 						AR_RxRSSIAnt01);
564 		rs->rs_rssi_ctl[2] = MS(ads.ds_rxstatus0,
565 						AR_RxRSSIAnt02);
566 		rs->rs_rssi_ext[0] = MS(ads.ds_rxstatus4,
567 						AR_RxRSSIAnt10);
568 		rs->rs_rssi_ext[1] = MS(ads.ds_rxstatus4,
569 						AR_RxRSSIAnt11);
570 		rs->rs_rssi_ext[2] = MS(ads.ds_rxstatus4,
571 						AR_RxRSSIAnt12);
572 	}
573 	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
574 		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
575 	else
576 		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
577 
578 	rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
579 	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
580 
581 	rs->rs_firstaggr = (ads.ds_rxstatus8 & AR_RxFirstAggr) ? 1 : 0;
582 	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
583 	rs->rs_moreaggr = (ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
584 	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
585 
586 	/* directly mapped flags for ieee80211_rx_status */
587 	rs->flag |=
588 		(ads.ds_rxstatus3 & AR_GI) ? RX_FLAG_SHORT_GI : 0;
589 	rs->flag |=
590 		(ads.ds_rxstatus3 & AR_2040) ? RX_FLAG_40MHZ : 0;
591 	if (AR_SREV_9280_20_OR_LATER(ah))
592 		rs->flag |=
593 			(ads.ds_rxstatus3 & AR_STBC) ?
594 				/* we can only Nss=1 STBC */
595 				(1 << RX_FLAG_STBC_SHIFT) : 0;
596 
597 	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
598 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
599 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
600 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
601 	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
602 		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
603 
604 	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
605 		/*
606 		 * Treat these errors as mutually exclusive to avoid spurious
607 		 * extra error reports from the hardware. If a CRC error is
608 		 * reported, then decryption and MIC errors are irrelevant,
609 		 * the frame is going to be dropped either way
610 		 */
611 		if (ads.ds_rxstatus8 & AR_PHYErr) {
612 			rs->rs_status |= ATH9K_RXERR_PHY;
613 			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
614 			rs->rs_phyerr = phyerr;
615 		} else if (ads.ds_rxstatus8 & AR_CRCErr)
616 			rs->rs_status |= ATH9K_RXERR_CRC;
617 		else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
618 			rs->rs_status |= ATH9K_RXERR_DECRYPT;
619 		else if (ads.ds_rxstatus8 & AR_MichaelErr)
620 			rs->rs_status |= ATH9K_RXERR_MIC;
621 	} else {
622 		if (ads.ds_rxstatus8 &
623 		    (AR_CRCErr | AR_PHYErr | AR_DecryptCRCErr | AR_MichaelErr))
624 			rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
625 
626 		/* Only up to MCS16 supported, everything above is invalid */
627 		if (rs->rs_rate >= 0x90)
628 			rs->rs_status |= ATH9K_RXERR_CORRUPT_DESC;
629 	}
630 
631 	if (ads.ds_rxstatus8 & AR_KeyMiss)
632 		rs->rs_status |= ATH9K_RXERR_KEYMISS;
633 
634 	return 0;
635 }
636 EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
637 
638 /*
639  * This can stop or re-enables RX.
640  *
641  * If bool is set this will kill any frame which is currently being
642  * transferred between the MAC and baseband and also prevent any new
643  * frames from getting started.
644  */
645 bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
646 {
647 	u32 reg;
648 
649 	if (set) {
650 		REG_SET_BIT(ah, AR_DIAG_SW,
651 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
652 
653 		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
654 				   0, AH_WAIT_TIMEOUT)) {
655 			REG_CLR_BIT(ah, AR_DIAG_SW,
656 				    (AR_DIAG_RX_DIS |
657 				     AR_DIAG_RX_ABORT));
658 
659 			reg = REG_READ(ah, AR_OBS_BUS_1);
660 			ath_err(ath9k_hw_common(ah),
661 				"RX failed to go idle in 10 ms RXSM=0x%x\n",
662 				reg);
663 
664 			return false;
665 		}
666 	} else {
667 		REG_CLR_BIT(ah, AR_DIAG_SW,
668 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
669 	}
670 
671 	return true;
672 }
673 EXPORT_SYMBOL(ath9k_hw_setrxabort);
674 
675 void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
676 {
677 	REG_WRITE(ah, AR_RXDP, rxdp);
678 }
679 EXPORT_SYMBOL(ath9k_hw_putrxbuf);
680 
681 void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
682 {
683 	ath9k_enable_mib_counters(ah);
684 
685 	ath9k_ani_reset(ah, is_scanning);
686 
687 	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
688 }
689 EXPORT_SYMBOL(ath9k_hw_startpcureceive);
690 
691 void ath9k_hw_abortpcurecv(struct ath_hw *ah)
692 {
693 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
694 
695 	ath9k_hw_disable_mib_counters(ah);
696 }
697 EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
698 
699 bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
700 {
701 #define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
702 	struct ath_common *common = ath9k_hw_common(ah);
703 	u32 mac_status, last_mac_status = 0;
704 	int i;
705 
706 	/* Enable access to the DMA observation bus */
707 	REG_WRITE(ah, AR_MACMISC,
708 		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
709 		   (AR_MACMISC_MISC_OBS_BUS_1 <<
710 		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));
711 
712 	REG_WRITE(ah, AR_CR, AR_CR_RXD);
713 
714 	/* Wait for rx enable bit to go low */
715 	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
716 		if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
717 			break;
718 
719 		if (!AR_SREV_9300_20_OR_LATER(ah)) {
720 			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
721 			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
722 				*reset = true;
723 				break;
724 			}
725 
726 			last_mac_status = mac_status;
727 		}
728 
729 		udelay(AH_TIME_QUANTUM);
730 	}
731 
732 	if (i == 0) {
733 		ath_err(common,
734 			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
735 			AH_RX_STOP_DMA_TIMEOUT / 1000,
736 			REG_READ(ah, AR_CR),
737 			REG_READ(ah, AR_DIAG_SW),
738 			REG_READ(ah, AR_DMADBG_7));
739 		return false;
740 	} else {
741 		return true;
742 	}
743 
744 #undef AH_RX_STOP_DMA_TIMEOUT
745 }
746 EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
747 
748 int ath9k_hw_beaconq_setup(struct ath_hw *ah)
749 {
750 	struct ath9k_tx_queue_info qi;
751 
752 	memset(&qi, 0, sizeof(qi));
753 	qi.tqi_aifs = 1;
754 	qi.tqi_cwmin = 0;
755 	qi.tqi_cwmax = 0;
756 
757 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
758 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
759 
760 	return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
761 }
762 EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
763 
764 bool ath9k_hw_intrpend(struct ath_hw *ah)
765 {
766 	u32 host_isr;
767 
768 	if (AR_SREV_9100(ah))
769 		return true;
770 
771 	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
772 
773 	if (((host_isr & AR_INTR_MAC_IRQ) ||
774 	     (host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
775 	    (host_isr != AR_INTR_SPURIOUS))
776 		return true;
777 
778 	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
779 	if ((host_isr & AR_INTR_SYNC_DEFAULT)
780 	    && (host_isr != AR_INTR_SPURIOUS))
781 		return true;
782 
783 	return false;
784 }
785 EXPORT_SYMBOL(ath9k_hw_intrpend);
786 
787 void ath9k_hw_kill_interrupts(struct ath_hw *ah)
788 {
789 	struct ath_common *common = ath9k_hw_common(ah);
790 
791 	ath_dbg(common, INTERRUPT, "disable IER\n");
792 	REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
793 	(void) REG_READ(ah, AR_IER);
794 	if (!AR_SREV_9100(ah)) {
795 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
796 		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
797 
798 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
799 		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
800 	}
801 }
802 EXPORT_SYMBOL(ath9k_hw_kill_interrupts);
803 
804 void ath9k_hw_disable_interrupts(struct ath_hw *ah)
805 {
806 	if (!(ah->imask & ATH9K_INT_GLOBAL))
807 		atomic_set(&ah->intr_ref_cnt, -1);
808 	else
809 		atomic_dec(&ah->intr_ref_cnt);
810 
811 	ath9k_hw_kill_interrupts(ah);
812 }
813 EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
814 
815 void ath9k_hw_enable_interrupts(struct ath_hw *ah)
816 {
817 	struct ath_common *common = ath9k_hw_common(ah);
818 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
819 	u32 async_mask;
820 
821 	if (!(ah->imask & ATH9K_INT_GLOBAL))
822 		return;
823 
824 	if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
825 		ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
826 			atomic_read(&ah->intr_ref_cnt));
827 		return;
828 	}
829 
830 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah))
831 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
832 
833 	async_mask = AR_INTR_MAC_IRQ;
834 
835 	if (ah->imask & ATH9K_INT_MCI)
836 		async_mask |= AR_INTR_ASYNC_MASK_MCI;
837 
838 	ath_dbg(common, INTERRUPT, "enable IER\n");
839 	REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
840 	if (!AR_SREV_9100(ah)) {
841 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, async_mask);
842 		REG_WRITE(ah, AR_INTR_ASYNC_MASK, async_mask);
843 
844 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
845 		REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
846 	}
847 	ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
848 		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
849 }
850 EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
851 
852 void ath9k_hw_set_interrupts(struct ath_hw *ah)
853 {
854 	enum ath9k_int ints = ah->imask;
855 	u32 mask, mask2;
856 	struct ath9k_hw_capabilities *pCap = &ah->caps;
857 	struct ath_common *common = ath9k_hw_common(ah);
858 
859 	if (!(ints & ATH9K_INT_GLOBAL))
860 		ath9k_hw_disable_interrupts(ah);
861 
862 	ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);
863 
864 	mask = ints & ATH9K_INT_COMMON;
865 	mask2 = 0;
866 
867 	if (ints & ATH9K_INT_TX) {
868 		if (ah->config.tx_intr_mitigation)
869 			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
870 		else {
871 			if (ah->txok_interrupt_mask)
872 				mask |= AR_IMR_TXOK;
873 			if (ah->txdesc_interrupt_mask)
874 				mask |= AR_IMR_TXDESC;
875 		}
876 		if (ah->txerr_interrupt_mask)
877 			mask |= AR_IMR_TXERR;
878 		if (ah->txeol_interrupt_mask)
879 			mask |= AR_IMR_TXEOL;
880 	}
881 	if (ints & ATH9K_INT_RX) {
882 		if (AR_SREV_9300_20_OR_LATER(ah)) {
883 			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
884 			if (ah->config.rx_intr_mitigation) {
885 				mask &= ~AR_IMR_RXOK_LP;
886 				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
887 			} else {
888 				mask |= AR_IMR_RXOK_LP;
889 			}
890 		} else {
891 			if (ah->config.rx_intr_mitigation)
892 				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
893 			else
894 				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
895 		}
896 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
897 			mask |= AR_IMR_GENTMR;
898 	}
899 
900 	if (ints & ATH9K_INT_GENTIMER)
901 		mask |= AR_IMR_GENTMR;
902 
903 	if (ints & (ATH9K_INT_BMISC)) {
904 		mask |= AR_IMR_BCNMISC;
905 		if (ints & ATH9K_INT_TIM)
906 			mask2 |= AR_IMR_S2_TIM;
907 		if (ints & ATH9K_INT_DTIM)
908 			mask2 |= AR_IMR_S2_DTIM;
909 		if (ints & ATH9K_INT_DTIMSYNC)
910 			mask2 |= AR_IMR_S2_DTIMSYNC;
911 		if (ints & ATH9K_INT_CABEND)
912 			mask2 |= AR_IMR_S2_CABEND;
913 		if (ints & ATH9K_INT_TSFOOR)
914 			mask2 |= AR_IMR_S2_TSFOOR;
915 	}
916 
917 	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
918 		mask |= AR_IMR_BCNMISC;
919 		if (ints & ATH9K_INT_GTT)
920 			mask2 |= AR_IMR_S2_GTT;
921 		if (ints & ATH9K_INT_CST)
922 			mask2 |= AR_IMR_S2_CST;
923 	}
924 
925 	if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
926 		if (ints & ATH9K_INT_BB_WATCHDOG) {
927 			mask |= AR_IMR_BCNMISC;
928 			mask2 |= AR_IMR_S2_BB_WATCHDOG;
929 		}
930 	}
931 
932 	ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
933 	REG_WRITE(ah, AR_IMR, mask);
934 	ah->imrs2_reg &= ~(AR_IMR_S2_TIM |
935 			   AR_IMR_S2_DTIM |
936 			   AR_IMR_S2_DTIMSYNC |
937 			   AR_IMR_S2_CABEND |
938 			   AR_IMR_S2_CABTO |
939 			   AR_IMR_S2_TSFOOR |
940 			   AR_IMR_S2_GTT |
941 			   AR_IMR_S2_CST);
942 
943 	if (ah->config.hw_hang_checks & HW_BB_WATCHDOG) {
944 		if (ints & ATH9K_INT_BB_WATCHDOG)
945 			ah->imrs2_reg &= ~AR_IMR_S2_BB_WATCHDOG;
946 	}
947 
948 	ah->imrs2_reg |= mask2;
949 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
950 
951 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
952 		if (ints & ATH9K_INT_TIM_TIMER)
953 			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
954 		else
955 			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
956 	}
957 
958 	return;
959 }
960 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
961