xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/mac.c (revision 615c36f5)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include <linux/export.h>
20 
21 static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
22 					struct ath9k_tx_queue_info *qi)
23 {
24 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_INTERRUPT,
25 		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26 		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
27 		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
28 		ah->txurn_interrupt_mask);
29 
30 	ENABLE_REGWRITE_BUFFER(ah);
31 
32 	REG_WRITE(ah, AR_IMR_S0,
33 		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
34 		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
35 	REG_WRITE(ah, AR_IMR_S1,
36 		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
37 		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
38 
39 	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
40 	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
41 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
42 
43 	REGWRITE_BUFFER_FLUSH(ah);
44 }
45 
46 u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
47 {
48 	return REG_READ(ah, AR_QTXDP(q));
49 }
50 EXPORT_SYMBOL(ath9k_hw_gettxbuf);
51 
52 void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
53 {
54 	REG_WRITE(ah, AR_QTXDP(q), txdp);
55 }
56 EXPORT_SYMBOL(ath9k_hw_puttxbuf);
57 
58 void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
59 {
60 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_QUEUE,
61 		"Enable TXE on queue: %u\n", q);
62 	REG_WRITE(ah, AR_Q_TXE, 1 << q);
63 }
64 EXPORT_SYMBOL(ath9k_hw_txstart);
65 
66 u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
67 {
68 	u32 npend;
69 
70 	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
71 	if (npend == 0) {
72 
73 		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
74 			npend = 1;
75 	}
76 
77 	return npend;
78 }
79 EXPORT_SYMBOL(ath9k_hw_numtxpending);
80 
81 /**
82  * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
83  *
84  * @ah: atheros hardware struct
85  * @bIncTrigLevel: whether or not the frame trigger level should be updated
86  *
87  * The frame trigger level specifies the minimum number of bytes,
88  * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
89  * before the PCU will initiate sending the frame on the air. This can
90  * mean we initiate transmit before a full frame is on the PCU TX FIFO.
91  * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
92  * first)
93  *
94  * Caution must be taken to ensure to set the frame trigger level based
95  * on the DMA request size. For example if the DMA request size is set to
96  * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
97  * there need to be enough space in the tx FIFO for the requested transfer
98  * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
99  * the threshold to a value beyond 6, then the transmit will hang.
100  *
101  * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
102  * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
103  * there is a hardware issue which forces us to use 2 KB instead so the
104  * frame trigger level must not exceed 2 KB for these chipsets.
105  */
106 bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
107 {
108 	u32 txcfg, curLevel, newLevel;
109 
110 	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
111 		return false;
112 
113 	ath9k_hw_disable_interrupts(ah);
114 
115 	txcfg = REG_READ(ah, AR_TXCFG);
116 	curLevel = MS(txcfg, AR_FTRIG);
117 	newLevel = curLevel;
118 	if (bIncTrigLevel) {
119 		if (curLevel < ah->config.max_txtrig_level)
120 			newLevel++;
121 	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
122 		newLevel--;
123 	if (newLevel != curLevel)
124 		REG_WRITE(ah, AR_TXCFG,
125 			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
126 
127 	ath9k_hw_enable_interrupts(ah);
128 
129 	ah->tx_trig_level = newLevel;
130 
131 	return newLevel != curLevel;
132 }
133 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
134 
135 void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
136 {
137 	int i, q;
138 
139 	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
140 
141 	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
142 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
143 	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
144 
145 	for (q = 0; q < AR_NUM_QCU; q++) {
146 		for (i = 0; i < 1000; i++) {
147 			if (i)
148 				udelay(5);
149 
150 			if (!ath9k_hw_numtxpending(ah, q))
151 				break;
152 		}
153 	}
154 
155 	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
156 	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
157 	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
158 
159 	REG_WRITE(ah, AR_Q_TXD, 0);
160 }
161 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
162 
163 bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
164 {
165 #define ATH9K_TX_STOP_DMA_TIMEOUT	1000    /* usec */
166 #define ATH9K_TIME_QUANTUM		100     /* usec */
167 	int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
168 	int wait;
169 
170 	REG_WRITE(ah, AR_Q_TXD, 1 << q);
171 
172 	for (wait = wait_time; wait != 0; wait--) {
173 		if (wait != wait_time)
174 			udelay(ATH9K_TIME_QUANTUM);
175 
176 		if (ath9k_hw_numtxpending(ah, q) == 0)
177 			break;
178 	}
179 
180 	REG_WRITE(ah, AR_Q_TXD, 0);
181 
182 	return wait != 0;
183 
184 #undef ATH9K_TX_STOP_DMA_TIMEOUT
185 #undef ATH9K_TIME_QUANTUM
186 }
187 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
188 
189 void ath9k_hw_gettxintrtxqs(struct ath_hw *ah, u32 *txqs)
190 {
191 	*txqs &= ah->intr_txqs;
192 	ah->intr_txqs &= ~(*txqs);
193 }
194 EXPORT_SYMBOL(ath9k_hw_gettxintrtxqs);
195 
196 bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
197 			    const struct ath9k_tx_queue_info *qinfo)
198 {
199 	u32 cw;
200 	struct ath_common *common = ath9k_hw_common(ah);
201 	struct ath9k_tx_queue_info *qi;
202 
203 	qi = &ah->txq[q];
204 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
205 		ath_dbg(common, ATH_DBG_QUEUE,
206 			"Set TXQ properties, inactive queue: %u\n", q);
207 		return false;
208 	}
209 
210 	ath_dbg(common, ATH_DBG_QUEUE, "Set queue properties for: %u\n", q);
211 
212 	qi->tqi_ver = qinfo->tqi_ver;
213 	qi->tqi_subtype = qinfo->tqi_subtype;
214 	qi->tqi_qflags = qinfo->tqi_qflags;
215 	qi->tqi_priority = qinfo->tqi_priority;
216 	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
217 		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
218 	else
219 		qi->tqi_aifs = INIT_AIFS;
220 	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
221 		cw = min(qinfo->tqi_cwmin, 1024U);
222 		qi->tqi_cwmin = 1;
223 		while (qi->tqi_cwmin < cw)
224 			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
225 	} else
226 		qi->tqi_cwmin = qinfo->tqi_cwmin;
227 	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
228 		cw = min(qinfo->tqi_cwmax, 1024U);
229 		qi->tqi_cwmax = 1;
230 		while (qi->tqi_cwmax < cw)
231 			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
232 	} else
233 		qi->tqi_cwmax = INIT_CWMAX;
234 
235 	if (qinfo->tqi_shretry != 0)
236 		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
237 	else
238 		qi->tqi_shretry = INIT_SH_RETRY;
239 	if (qinfo->tqi_lgretry != 0)
240 		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
241 	else
242 		qi->tqi_lgretry = INIT_LG_RETRY;
243 	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
244 	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
245 	qi->tqi_burstTime = qinfo->tqi_burstTime;
246 	qi->tqi_readyTime = qinfo->tqi_readyTime;
247 
248 	switch (qinfo->tqi_subtype) {
249 	case ATH9K_WME_UPSD:
250 		if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
251 			qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
252 		break;
253 	default:
254 		break;
255 	}
256 
257 	return true;
258 }
259 EXPORT_SYMBOL(ath9k_hw_set_txq_props);
260 
261 bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
262 			    struct ath9k_tx_queue_info *qinfo)
263 {
264 	struct ath_common *common = ath9k_hw_common(ah);
265 	struct ath9k_tx_queue_info *qi;
266 
267 	qi = &ah->txq[q];
268 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
269 		ath_dbg(common, ATH_DBG_QUEUE,
270 			"Get TXQ properties, inactive queue: %u\n", q);
271 		return false;
272 	}
273 
274 	qinfo->tqi_qflags = qi->tqi_qflags;
275 	qinfo->tqi_ver = qi->tqi_ver;
276 	qinfo->tqi_subtype = qi->tqi_subtype;
277 	qinfo->tqi_qflags = qi->tqi_qflags;
278 	qinfo->tqi_priority = qi->tqi_priority;
279 	qinfo->tqi_aifs = qi->tqi_aifs;
280 	qinfo->tqi_cwmin = qi->tqi_cwmin;
281 	qinfo->tqi_cwmax = qi->tqi_cwmax;
282 	qinfo->tqi_shretry = qi->tqi_shretry;
283 	qinfo->tqi_lgretry = qi->tqi_lgretry;
284 	qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
285 	qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
286 	qinfo->tqi_burstTime = qi->tqi_burstTime;
287 	qinfo->tqi_readyTime = qi->tqi_readyTime;
288 
289 	return true;
290 }
291 EXPORT_SYMBOL(ath9k_hw_get_txq_props);
292 
293 int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
294 			  const struct ath9k_tx_queue_info *qinfo)
295 {
296 	struct ath_common *common = ath9k_hw_common(ah);
297 	struct ath9k_tx_queue_info *qi;
298 	int q;
299 
300 	switch (type) {
301 	case ATH9K_TX_QUEUE_BEACON:
302 		q = ATH9K_NUM_TX_QUEUES - 1;
303 		break;
304 	case ATH9K_TX_QUEUE_CAB:
305 		q = ATH9K_NUM_TX_QUEUES - 2;
306 		break;
307 	case ATH9K_TX_QUEUE_PSPOLL:
308 		q = 1;
309 		break;
310 	case ATH9K_TX_QUEUE_UAPSD:
311 		q = ATH9K_NUM_TX_QUEUES - 3;
312 		break;
313 	case ATH9K_TX_QUEUE_DATA:
314 		for (q = 0; q < ATH9K_NUM_TX_QUEUES; q++)
315 			if (ah->txq[q].tqi_type ==
316 			    ATH9K_TX_QUEUE_INACTIVE)
317 				break;
318 		if (q == ATH9K_NUM_TX_QUEUES) {
319 			ath_err(common, "No available TX queue\n");
320 			return -1;
321 		}
322 		break;
323 	default:
324 		ath_err(common, "Invalid TX queue type: %u\n", type);
325 		return -1;
326 	}
327 
328 	ath_dbg(common, ATH_DBG_QUEUE, "Setup TX queue: %u\n", q);
329 
330 	qi = &ah->txq[q];
331 	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
332 		ath_err(common, "TX queue: %u already active\n", q);
333 		return -1;
334 	}
335 	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
336 	qi->tqi_type = type;
337 	qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
338 	(void) ath9k_hw_set_txq_props(ah, q, qinfo);
339 
340 	return q;
341 }
342 EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
343 
344 bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
345 {
346 	struct ath_common *common = ath9k_hw_common(ah);
347 	struct ath9k_tx_queue_info *qi;
348 
349 	qi = &ah->txq[q];
350 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
351 		ath_dbg(common, ATH_DBG_QUEUE,
352 			"Release TXQ, inactive queue: %u\n", q);
353 		return false;
354 	}
355 
356 	ath_dbg(common, ATH_DBG_QUEUE, "Release TX queue: %u\n", q);
357 
358 	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
359 	ah->txok_interrupt_mask &= ~(1 << q);
360 	ah->txerr_interrupt_mask &= ~(1 << q);
361 	ah->txdesc_interrupt_mask &= ~(1 << q);
362 	ah->txeol_interrupt_mask &= ~(1 << q);
363 	ah->txurn_interrupt_mask &= ~(1 << q);
364 	ath9k_hw_set_txq_interrupts(ah, qi);
365 
366 	return true;
367 }
368 EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
369 
370 bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
371 {
372 	struct ath_common *common = ath9k_hw_common(ah);
373 	struct ath9k_channel *chan = ah->curchan;
374 	struct ath9k_tx_queue_info *qi;
375 	u32 cwMin, chanCwMin, value;
376 
377 	qi = &ah->txq[q];
378 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
379 		ath_dbg(common, ATH_DBG_QUEUE,
380 			"Reset TXQ, inactive queue: %u\n", q);
381 		return true;
382 	}
383 
384 	ath_dbg(common, ATH_DBG_QUEUE, "Reset TX queue: %u\n", q);
385 
386 	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
387 		if (chan && IS_CHAN_B(chan))
388 			chanCwMin = INIT_CWMIN_11B;
389 		else
390 			chanCwMin = INIT_CWMIN;
391 
392 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
393 	} else
394 		cwMin = qi->tqi_cwmin;
395 
396 	ENABLE_REGWRITE_BUFFER(ah);
397 
398 	REG_WRITE(ah, AR_DLCL_IFS(q),
399 		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
400 		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
401 		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
402 
403 	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
404 		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
405 		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
406 		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
407 
408 	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
409 
410 	if (AR_SREV_9340(ah))
411 		REG_WRITE(ah, AR_DMISC(q),
412 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
413 	else
414 		REG_WRITE(ah, AR_DMISC(q),
415 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
416 
417 	if (qi->tqi_cbrPeriod) {
418 		REG_WRITE(ah, AR_QCBRCFG(q),
419 			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
420 			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
421 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
422 			    (qi->tqi_cbrOverflowLimit ?
423 			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
424 	}
425 	if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
426 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
427 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
428 			  AR_Q_RDYTIMECFG_EN);
429 	}
430 
431 	REG_WRITE(ah, AR_DCHNTIME(q),
432 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
433 		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
434 
435 	if (qi->tqi_burstTime
436 	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
437 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
438 
439 	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
440 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
441 
442 	REGWRITE_BUFFER_FLUSH(ah);
443 
444 	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
445 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
446 
447 	switch (qi->tqi_type) {
448 	case ATH9K_TX_QUEUE_BEACON:
449 		ENABLE_REGWRITE_BUFFER(ah);
450 
451 		REG_SET_BIT(ah, AR_QMISC(q),
452 			    AR_Q_MISC_FSP_DBA_GATED
453 			    | AR_Q_MISC_BEACON_USE
454 			    | AR_Q_MISC_CBR_INCR_DIS1);
455 
456 		REG_SET_BIT(ah, AR_DMISC(q),
457 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
458 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
459 			    | AR_D_MISC_BEACON_USE
460 			    | AR_D_MISC_POST_FR_BKOFF_DIS);
461 
462 		REGWRITE_BUFFER_FLUSH(ah);
463 
464 		/*
465 		 * cwmin and cwmax should be 0 for beacon queue
466 		 * but not for IBSS as we would create an imbalance
467 		 * on beaconing fairness for participating nodes.
468 		 */
469 		if (AR_SREV_9300_20_OR_LATER(ah) &&
470 		    ah->opmode != NL80211_IFTYPE_ADHOC) {
471 			REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
472 				  | SM(0, AR_D_LCL_IFS_CWMAX)
473 				  | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
474 		}
475 		break;
476 	case ATH9K_TX_QUEUE_CAB:
477 		ENABLE_REGWRITE_BUFFER(ah);
478 
479 		REG_SET_BIT(ah, AR_QMISC(q),
480 			    AR_Q_MISC_FSP_DBA_GATED
481 			    | AR_Q_MISC_CBR_INCR_DIS1
482 			    | AR_Q_MISC_CBR_INCR_DIS0);
483 		value = (qi->tqi_readyTime -
484 			 (ah->config.sw_beacon_response_time -
485 			  ah->config.dma_beacon_response_time) -
486 			 ah->config.additional_swba_backoff) * 1024;
487 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
488 			  value | AR_Q_RDYTIMECFG_EN);
489 		REG_SET_BIT(ah, AR_DMISC(q),
490 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
491 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
492 
493 		REGWRITE_BUFFER_FLUSH(ah);
494 
495 		break;
496 	case ATH9K_TX_QUEUE_PSPOLL:
497 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
498 		break;
499 	case ATH9K_TX_QUEUE_UAPSD:
500 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
501 		break;
502 	default:
503 		break;
504 	}
505 
506 	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
507 		REG_SET_BIT(ah, AR_DMISC(q),
508 			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
509 			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
510 			    AR_D_MISC_POST_FR_BKOFF_DIS);
511 	}
512 
513 	if (AR_SREV_9300_20_OR_LATER(ah))
514 		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
515 
516 	if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE)
517 		ah->txok_interrupt_mask |= 1 << q;
518 	else
519 		ah->txok_interrupt_mask &= ~(1 << q);
520 	if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE)
521 		ah->txerr_interrupt_mask |= 1 << q;
522 	else
523 		ah->txerr_interrupt_mask &= ~(1 << q);
524 	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
525 		ah->txdesc_interrupt_mask |= 1 << q;
526 	else
527 		ah->txdesc_interrupt_mask &= ~(1 << q);
528 	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
529 		ah->txeol_interrupt_mask |= 1 << q;
530 	else
531 		ah->txeol_interrupt_mask &= ~(1 << q);
532 	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
533 		ah->txurn_interrupt_mask |= 1 << q;
534 	else
535 		ah->txurn_interrupt_mask &= ~(1 << q);
536 	ath9k_hw_set_txq_interrupts(ah, qi);
537 
538 	return true;
539 }
540 EXPORT_SYMBOL(ath9k_hw_resettxqueue);
541 
542 int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
543 			struct ath_rx_status *rs)
544 {
545 	struct ar5416_desc ads;
546 	struct ar5416_desc *adsp = AR5416DESC(ds);
547 	u32 phyerr;
548 
549 	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
550 		return -EINPROGRESS;
551 
552 	ads.u.rx = adsp->u.rx;
553 
554 	rs->rs_status = 0;
555 	rs->rs_flags = 0;
556 
557 	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
558 	rs->rs_tstamp = ads.AR_RcvTimestamp;
559 
560 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
561 		rs->rs_rssi = ATH9K_RSSI_BAD;
562 		rs->rs_rssi_ctl0 = ATH9K_RSSI_BAD;
563 		rs->rs_rssi_ctl1 = ATH9K_RSSI_BAD;
564 		rs->rs_rssi_ctl2 = ATH9K_RSSI_BAD;
565 		rs->rs_rssi_ext0 = ATH9K_RSSI_BAD;
566 		rs->rs_rssi_ext1 = ATH9K_RSSI_BAD;
567 		rs->rs_rssi_ext2 = ATH9K_RSSI_BAD;
568 	} else {
569 		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
570 		rs->rs_rssi_ctl0 = MS(ads.ds_rxstatus0,
571 						AR_RxRSSIAnt00);
572 		rs->rs_rssi_ctl1 = MS(ads.ds_rxstatus0,
573 						AR_RxRSSIAnt01);
574 		rs->rs_rssi_ctl2 = MS(ads.ds_rxstatus0,
575 						AR_RxRSSIAnt02);
576 		rs->rs_rssi_ext0 = MS(ads.ds_rxstatus4,
577 						AR_RxRSSIAnt10);
578 		rs->rs_rssi_ext1 = MS(ads.ds_rxstatus4,
579 						AR_RxRSSIAnt11);
580 		rs->rs_rssi_ext2 = MS(ads.ds_rxstatus4,
581 						AR_RxRSSIAnt12);
582 	}
583 	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
584 		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
585 	else
586 		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
587 
588 	rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
589 	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
590 
591 	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
592 	rs->rs_moreaggr =
593 		(ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
594 	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
595 	rs->rs_flags =
596 		(ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
597 	rs->rs_flags |=
598 		(ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
599 
600 	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
601 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
602 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
603 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
604 	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
605 		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
606 
607 	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
608 		/*
609 		 * Treat these errors as mutually exclusive to avoid spurious
610 		 * extra error reports from the hardware. If a CRC error is
611 		 * reported, then decryption and MIC errors are irrelevant,
612 		 * the frame is going to be dropped either way
613 		 */
614 		if (ads.ds_rxstatus8 & AR_CRCErr)
615 			rs->rs_status |= ATH9K_RXERR_CRC;
616 		else if (ads.ds_rxstatus8 & AR_PHYErr) {
617 			rs->rs_status |= ATH9K_RXERR_PHY;
618 			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
619 			rs->rs_phyerr = phyerr;
620 		} else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
621 			rs->rs_status |= ATH9K_RXERR_DECRYPT;
622 		else if (ads.ds_rxstatus8 & AR_MichaelErr)
623 			rs->rs_status |= ATH9K_RXERR_MIC;
624 		if (ads.ds_rxstatus8 & AR_KeyMiss)
625 			rs->rs_status |= ATH9K_RXERR_KEYMISS;
626 	}
627 
628 	return 0;
629 }
630 EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
631 
632 /*
633  * This can stop or re-enables RX.
634  *
635  * If bool is set this will kill any frame which is currently being
636  * transferred between the MAC and baseband and also prevent any new
637  * frames from getting started.
638  */
639 bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
640 {
641 	u32 reg;
642 
643 	if (set) {
644 		REG_SET_BIT(ah, AR_DIAG_SW,
645 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
646 
647 		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
648 				   0, AH_WAIT_TIMEOUT)) {
649 			REG_CLR_BIT(ah, AR_DIAG_SW,
650 				    (AR_DIAG_RX_DIS |
651 				     AR_DIAG_RX_ABORT));
652 
653 			reg = REG_READ(ah, AR_OBS_BUS_1);
654 			ath_err(ath9k_hw_common(ah),
655 				"RX failed to go idle in 10 ms RXSM=0x%x\n",
656 				reg);
657 
658 			return false;
659 		}
660 	} else {
661 		REG_CLR_BIT(ah, AR_DIAG_SW,
662 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
663 	}
664 
665 	return true;
666 }
667 EXPORT_SYMBOL(ath9k_hw_setrxabort);
668 
669 void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
670 {
671 	REG_WRITE(ah, AR_RXDP, rxdp);
672 }
673 EXPORT_SYMBOL(ath9k_hw_putrxbuf);
674 
675 void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
676 {
677 	ath9k_enable_mib_counters(ah);
678 
679 	ath9k_ani_reset(ah, is_scanning);
680 
681 	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
682 }
683 EXPORT_SYMBOL(ath9k_hw_startpcureceive);
684 
685 void ath9k_hw_abortpcurecv(struct ath_hw *ah)
686 {
687 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
688 
689 	ath9k_hw_disable_mib_counters(ah);
690 }
691 EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
692 
693 bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
694 {
695 #define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
696 	struct ath_common *common = ath9k_hw_common(ah);
697 	u32 mac_status, last_mac_status = 0;
698 	int i;
699 
700 	/* Enable access to the DMA observation bus */
701 	REG_WRITE(ah, AR_MACMISC,
702 		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
703 		   (AR_MACMISC_MISC_OBS_BUS_1 <<
704 		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));
705 
706 	REG_WRITE(ah, AR_CR, AR_CR_RXD);
707 
708 	/* Wait for rx enable bit to go low */
709 	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
710 		if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
711 			break;
712 
713 		if (!AR_SREV_9300_20_OR_LATER(ah)) {
714 			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
715 			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
716 				*reset = true;
717 				break;
718 			}
719 
720 			last_mac_status = mac_status;
721 		}
722 
723 		udelay(AH_TIME_QUANTUM);
724 	}
725 
726 	if (i == 0) {
727 		ath_err(common,
728 			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
729 			AH_RX_STOP_DMA_TIMEOUT / 1000,
730 			REG_READ(ah, AR_CR),
731 			REG_READ(ah, AR_DIAG_SW),
732 			REG_READ(ah, AR_DMADBG_7));
733 		return false;
734 	} else {
735 		return true;
736 	}
737 
738 #undef AH_RX_STOP_DMA_TIMEOUT
739 }
740 EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
741 
742 int ath9k_hw_beaconq_setup(struct ath_hw *ah)
743 {
744 	struct ath9k_tx_queue_info qi;
745 
746 	memset(&qi, 0, sizeof(qi));
747 	qi.tqi_aifs = 1;
748 	qi.tqi_cwmin = 0;
749 	qi.tqi_cwmax = 0;
750 	/* NB: don't enable any interrupts */
751 	return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
752 }
753 EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
754 
755 bool ath9k_hw_intrpend(struct ath_hw *ah)
756 {
757 	u32 host_isr;
758 
759 	if (AR_SREV_9100(ah))
760 		return true;
761 
762 	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
763 	if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
764 		return true;
765 
766 	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
767 	if ((host_isr & AR_INTR_SYNC_DEFAULT)
768 	    && (host_isr != AR_INTR_SPURIOUS))
769 		return true;
770 
771 	return false;
772 }
773 EXPORT_SYMBOL(ath9k_hw_intrpend);
774 
775 void ath9k_hw_disable_interrupts(struct ath_hw *ah)
776 {
777 	struct ath_common *common = ath9k_hw_common(ah);
778 
779 	if (!(ah->imask & ATH9K_INT_GLOBAL))
780 		atomic_set(&ah->intr_ref_cnt, -1);
781 	else
782 		atomic_dec(&ah->intr_ref_cnt);
783 
784 	ath_dbg(common, ATH_DBG_INTERRUPT, "disable IER\n");
785 	REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
786 	(void) REG_READ(ah, AR_IER);
787 	if (!AR_SREV_9100(ah)) {
788 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
789 		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
790 
791 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
792 		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
793 	}
794 }
795 EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
796 
797 void ath9k_hw_enable_interrupts(struct ath_hw *ah)
798 {
799 	struct ath_common *common = ath9k_hw_common(ah);
800 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
801 
802 	if (!(ah->imask & ATH9K_INT_GLOBAL))
803 		return;
804 
805 	if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
806 		ath_dbg(common, ATH_DBG_INTERRUPT,
807 			"Do not enable IER ref count %d\n",
808 			atomic_read(&ah->intr_ref_cnt));
809 		return;
810 	}
811 
812 	if (AR_SREV_9340(ah))
813 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
814 
815 	ath_dbg(common, ATH_DBG_INTERRUPT, "enable IER\n");
816 	REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
817 	if (!AR_SREV_9100(ah)) {
818 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
819 			  AR_INTR_MAC_IRQ);
820 		REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
821 
822 
823 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
824 		REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
825 	}
826 	ath_dbg(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
827 		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
828 }
829 EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
830 
831 void ath9k_hw_set_interrupts(struct ath_hw *ah)
832 {
833 	enum ath9k_int ints = ah->imask;
834 	u32 mask, mask2;
835 	struct ath9k_hw_capabilities *pCap = &ah->caps;
836 	struct ath_common *common = ath9k_hw_common(ah);
837 
838 	if (!(ints & ATH9K_INT_GLOBAL))
839 		ath9k_hw_disable_interrupts(ah);
840 
841 	ath_dbg(common, ATH_DBG_INTERRUPT, "New interrupt mask 0x%x\n", ints);
842 
843 	mask = ints & ATH9K_INT_COMMON;
844 	mask2 = 0;
845 
846 	if (ints & ATH9K_INT_TX) {
847 		if (ah->config.tx_intr_mitigation)
848 			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
849 		else {
850 			if (ah->txok_interrupt_mask)
851 				mask |= AR_IMR_TXOK;
852 			if (ah->txdesc_interrupt_mask)
853 				mask |= AR_IMR_TXDESC;
854 		}
855 		if (ah->txerr_interrupt_mask)
856 			mask |= AR_IMR_TXERR;
857 		if (ah->txeol_interrupt_mask)
858 			mask |= AR_IMR_TXEOL;
859 	}
860 	if (ints & ATH9K_INT_RX) {
861 		if (AR_SREV_9300_20_OR_LATER(ah)) {
862 			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
863 			if (ah->config.rx_intr_mitigation) {
864 				mask &= ~AR_IMR_RXOK_LP;
865 				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
866 			} else {
867 				mask |= AR_IMR_RXOK_LP;
868 			}
869 		} else {
870 			if (ah->config.rx_intr_mitigation)
871 				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
872 			else
873 				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
874 		}
875 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
876 			mask |= AR_IMR_GENTMR;
877 	}
878 
879 	if (ints & ATH9K_INT_GENTIMER)
880 		mask |= AR_IMR_GENTMR;
881 
882 	if (ints & (ATH9K_INT_BMISC)) {
883 		mask |= AR_IMR_BCNMISC;
884 		if (ints & ATH9K_INT_TIM)
885 			mask2 |= AR_IMR_S2_TIM;
886 		if (ints & ATH9K_INT_DTIM)
887 			mask2 |= AR_IMR_S2_DTIM;
888 		if (ints & ATH9K_INT_DTIMSYNC)
889 			mask2 |= AR_IMR_S2_DTIMSYNC;
890 		if (ints & ATH9K_INT_CABEND)
891 			mask2 |= AR_IMR_S2_CABEND;
892 		if (ints & ATH9K_INT_TSFOOR)
893 			mask2 |= AR_IMR_S2_TSFOOR;
894 	}
895 
896 	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
897 		mask |= AR_IMR_BCNMISC;
898 		if (ints & ATH9K_INT_GTT)
899 			mask2 |= AR_IMR_S2_GTT;
900 		if (ints & ATH9K_INT_CST)
901 			mask2 |= AR_IMR_S2_CST;
902 	}
903 
904 	ath_dbg(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
905 	REG_WRITE(ah, AR_IMR, mask);
906 	ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
907 			   AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
908 			   AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
909 	ah->imrs2_reg |= mask2;
910 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
911 
912 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
913 		if (ints & ATH9K_INT_TIM_TIMER)
914 			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
915 		else
916 			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
917 	}
918 
919 	return;
920 }
921 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
922