xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/mac.c (revision 261a9af6)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "hw-ops.h"
19 
20 static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
21 					struct ath9k_tx_queue_info *qi)
22 {
23 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_INTERRUPT,
24 		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
25 		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
26 		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
27 		ah->txurn_interrupt_mask);
28 
29 	ENABLE_REGWRITE_BUFFER(ah);
30 
31 	REG_WRITE(ah, AR_IMR_S0,
32 		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
33 		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
34 	REG_WRITE(ah, AR_IMR_S1,
35 		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
36 		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
37 
38 	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
39 	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
40 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
41 
42 	REGWRITE_BUFFER_FLUSH(ah);
43 }
44 
45 u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
46 {
47 	return REG_READ(ah, AR_QTXDP(q));
48 }
49 EXPORT_SYMBOL(ath9k_hw_gettxbuf);
50 
51 void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
52 {
53 	REG_WRITE(ah, AR_QTXDP(q), txdp);
54 }
55 EXPORT_SYMBOL(ath9k_hw_puttxbuf);
56 
57 void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
58 {
59 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_QUEUE,
60 		"Enable TXE on queue: %u\n", q);
61 	REG_WRITE(ah, AR_Q_TXE, 1 << q);
62 }
63 EXPORT_SYMBOL(ath9k_hw_txstart);
64 
65 void ath9k_hw_cleartxdesc(struct ath_hw *ah, void *ds)
66 {
67 	struct ar5416_desc *ads = AR5416DESC(ds);
68 
69 	ads->ds_txstatus0 = ads->ds_txstatus1 = 0;
70 	ads->ds_txstatus2 = ads->ds_txstatus3 = 0;
71 	ads->ds_txstatus4 = ads->ds_txstatus5 = 0;
72 	ads->ds_txstatus6 = ads->ds_txstatus7 = 0;
73 	ads->ds_txstatus8 = ads->ds_txstatus9 = 0;
74 }
75 EXPORT_SYMBOL(ath9k_hw_cleartxdesc);
76 
77 u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
78 {
79 	u32 npend;
80 
81 	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
82 	if (npend == 0) {
83 
84 		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
85 			npend = 1;
86 	}
87 
88 	return npend;
89 }
90 EXPORT_SYMBOL(ath9k_hw_numtxpending);
91 
92 /**
93  * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
94  *
95  * @ah: atheros hardware struct
96  * @bIncTrigLevel: whether or not the frame trigger level should be updated
97  *
98  * The frame trigger level specifies the minimum number of bytes,
99  * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
100  * before the PCU will initiate sending the frame on the air. This can
101  * mean we initiate transmit before a full frame is on the PCU TX FIFO.
102  * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
103  * first)
104  *
105  * Caution must be taken to ensure to set the frame trigger level based
106  * on the DMA request size. For example if the DMA request size is set to
107  * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
108  * there need to be enough space in the tx FIFO for the requested transfer
109  * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
110  * the threshold to a value beyond 6, then the transmit will hang.
111  *
112  * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
113  * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
114  * there is a hardware issue which forces us to use 2 KB instead so the
115  * frame trigger level must not exceed 2 KB for these chipsets.
116  */
117 bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
118 {
119 	u32 txcfg, curLevel, newLevel;
120 
121 	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
122 		return false;
123 
124 	ath9k_hw_disable_interrupts(ah);
125 
126 	txcfg = REG_READ(ah, AR_TXCFG);
127 	curLevel = MS(txcfg, AR_FTRIG);
128 	newLevel = curLevel;
129 	if (bIncTrigLevel) {
130 		if (curLevel < ah->config.max_txtrig_level)
131 			newLevel++;
132 	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
133 		newLevel--;
134 	if (newLevel != curLevel)
135 		REG_WRITE(ah, AR_TXCFG,
136 			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
137 
138 	ath9k_hw_enable_interrupts(ah);
139 
140 	ah->tx_trig_level = newLevel;
141 
142 	return newLevel != curLevel;
143 }
144 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
145 
146 void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
147 {
148 	int i, q;
149 
150 	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
151 
152 	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
153 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
154 	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
155 
156 	for (q = 0; q < AR_NUM_QCU; q++) {
157 		for (i = 0; i < 1000; i++) {
158 			if (i)
159 				udelay(5);
160 
161 			if (!ath9k_hw_numtxpending(ah, q))
162 				break;
163 		}
164 	}
165 
166 	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
167 	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
168 	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
169 
170 	REG_WRITE(ah, AR_Q_TXD, 0);
171 }
172 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
173 
174 bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
175 {
176 #define ATH9K_TX_STOP_DMA_TIMEOUT	1000    /* usec */
177 #define ATH9K_TIME_QUANTUM		100     /* usec */
178 	int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
179 	int wait;
180 
181 	REG_WRITE(ah, AR_Q_TXD, 1 << q);
182 
183 	for (wait = wait_time; wait != 0; wait--) {
184 		if (wait != wait_time)
185 			udelay(ATH9K_TIME_QUANTUM);
186 
187 		if (ath9k_hw_numtxpending(ah, q) == 0)
188 			break;
189 	}
190 
191 	REG_WRITE(ah, AR_Q_TXD, 0);
192 
193 	return wait != 0;
194 
195 #undef ATH9K_TX_STOP_DMA_TIMEOUT
196 #undef ATH9K_TIME_QUANTUM
197 }
198 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
199 
200 void ath9k_hw_gettxintrtxqs(struct ath_hw *ah, u32 *txqs)
201 {
202 	*txqs &= ah->intr_txqs;
203 	ah->intr_txqs &= ~(*txqs);
204 }
205 EXPORT_SYMBOL(ath9k_hw_gettxintrtxqs);
206 
207 bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
208 			    const struct ath9k_tx_queue_info *qinfo)
209 {
210 	u32 cw;
211 	struct ath_common *common = ath9k_hw_common(ah);
212 	struct ath9k_tx_queue_info *qi;
213 
214 	qi = &ah->txq[q];
215 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
216 		ath_dbg(common, ATH_DBG_QUEUE,
217 			"Set TXQ properties, inactive queue: %u\n", q);
218 		return false;
219 	}
220 
221 	ath_dbg(common, ATH_DBG_QUEUE, "Set queue properties for: %u\n", q);
222 
223 	qi->tqi_ver = qinfo->tqi_ver;
224 	qi->tqi_subtype = qinfo->tqi_subtype;
225 	qi->tqi_qflags = qinfo->tqi_qflags;
226 	qi->tqi_priority = qinfo->tqi_priority;
227 	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
228 		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
229 	else
230 		qi->tqi_aifs = INIT_AIFS;
231 	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
232 		cw = min(qinfo->tqi_cwmin, 1024U);
233 		qi->tqi_cwmin = 1;
234 		while (qi->tqi_cwmin < cw)
235 			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
236 	} else
237 		qi->tqi_cwmin = qinfo->tqi_cwmin;
238 	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
239 		cw = min(qinfo->tqi_cwmax, 1024U);
240 		qi->tqi_cwmax = 1;
241 		while (qi->tqi_cwmax < cw)
242 			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
243 	} else
244 		qi->tqi_cwmax = INIT_CWMAX;
245 
246 	if (qinfo->tqi_shretry != 0)
247 		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
248 	else
249 		qi->tqi_shretry = INIT_SH_RETRY;
250 	if (qinfo->tqi_lgretry != 0)
251 		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
252 	else
253 		qi->tqi_lgretry = INIT_LG_RETRY;
254 	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
255 	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
256 	qi->tqi_burstTime = qinfo->tqi_burstTime;
257 	qi->tqi_readyTime = qinfo->tqi_readyTime;
258 
259 	switch (qinfo->tqi_subtype) {
260 	case ATH9K_WME_UPSD:
261 		if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
262 			qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
263 		break;
264 	default:
265 		break;
266 	}
267 
268 	return true;
269 }
270 EXPORT_SYMBOL(ath9k_hw_set_txq_props);
271 
272 bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
273 			    struct ath9k_tx_queue_info *qinfo)
274 {
275 	struct ath_common *common = ath9k_hw_common(ah);
276 	struct ath9k_tx_queue_info *qi;
277 
278 	qi = &ah->txq[q];
279 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
280 		ath_dbg(common, ATH_DBG_QUEUE,
281 			"Get TXQ properties, inactive queue: %u\n", q);
282 		return false;
283 	}
284 
285 	qinfo->tqi_qflags = qi->tqi_qflags;
286 	qinfo->tqi_ver = qi->tqi_ver;
287 	qinfo->tqi_subtype = qi->tqi_subtype;
288 	qinfo->tqi_qflags = qi->tqi_qflags;
289 	qinfo->tqi_priority = qi->tqi_priority;
290 	qinfo->tqi_aifs = qi->tqi_aifs;
291 	qinfo->tqi_cwmin = qi->tqi_cwmin;
292 	qinfo->tqi_cwmax = qi->tqi_cwmax;
293 	qinfo->tqi_shretry = qi->tqi_shretry;
294 	qinfo->tqi_lgretry = qi->tqi_lgretry;
295 	qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
296 	qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
297 	qinfo->tqi_burstTime = qi->tqi_burstTime;
298 	qinfo->tqi_readyTime = qi->tqi_readyTime;
299 
300 	return true;
301 }
302 EXPORT_SYMBOL(ath9k_hw_get_txq_props);
303 
304 int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
305 			  const struct ath9k_tx_queue_info *qinfo)
306 {
307 	struct ath_common *common = ath9k_hw_common(ah);
308 	struct ath9k_tx_queue_info *qi;
309 	int q;
310 
311 	switch (type) {
312 	case ATH9K_TX_QUEUE_BEACON:
313 		q = ATH9K_NUM_TX_QUEUES - 1;
314 		break;
315 	case ATH9K_TX_QUEUE_CAB:
316 		q = ATH9K_NUM_TX_QUEUES - 2;
317 		break;
318 	case ATH9K_TX_QUEUE_PSPOLL:
319 		q = 1;
320 		break;
321 	case ATH9K_TX_QUEUE_UAPSD:
322 		q = ATH9K_NUM_TX_QUEUES - 3;
323 		break;
324 	case ATH9K_TX_QUEUE_DATA:
325 		for (q = 0; q < ATH9K_NUM_TX_QUEUES; q++)
326 			if (ah->txq[q].tqi_type ==
327 			    ATH9K_TX_QUEUE_INACTIVE)
328 				break;
329 		if (q == ATH9K_NUM_TX_QUEUES) {
330 			ath_err(common, "No available TX queue\n");
331 			return -1;
332 		}
333 		break;
334 	default:
335 		ath_err(common, "Invalid TX queue type: %u\n", type);
336 		return -1;
337 	}
338 
339 	ath_dbg(common, ATH_DBG_QUEUE, "Setup TX queue: %u\n", q);
340 
341 	qi = &ah->txq[q];
342 	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
343 		ath_err(common, "TX queue: %u already active\n", q);
344 		return -1;
345 	}
346 	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
347 	qi->tqi_type = type;
348 	if (qinfo == NULL) {
349 		qi->tqi_qflags =
350 			TXQ_FLAG_TXOKINT_ENABLE
351 			| TXQ_FLAG_TXERRINT_ENABLE
352 			| TXQ_FLAG_TXDESCINT_ENABLE | TXQ_FLAG_TXURNINT_ENABLE;
353 		qi->tqi_aifs = INIT_AIFS;
354 		qi->tqi_cwmin = ATH9K_TXQ_USEDEFAULT;
355 		qi->tqi_cwmax = INIT_CWMAX;
356 		qi->tqi_shretry = INIT_SH_RETRY;
357 		qi->tqi_lgretry = INIT_LG_RETRY;
358 		qi->tqi_physCompBuf = 0;
359 	} else {
360 		qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
361 		(void) ath9k_hw_set_txq_props(ah, q, qinfo);
362 	}
363 
364 	return q;
365 }
366 EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
367 
368 bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
369 {
370 	struct ath_common *common = ath9k_hw_common(ah);
371 	struct ath9k_tx_queue_info *qi;
372 
373 	qi = &ah->txq[q];
374 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
375 		ath_dbg(common, ATH_DBG_QUEUE,
376 			"Release TXQ, inactive queue: %u\n", q);
377 		return false;
378 	}
379 
380 	ath_dbg(common, ATH_DBG_QUEUE, "Release TX queue: %u\n", q);
381 
382 	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
383 	ah->txok_interrupt_mask &= ~(1 << q);
384 	ah->txerr_interrupt_mask &= ~(1 << q);
385 	ah->txdesc_interrupt_mask &= ~(1 << q);
386 	ah->txeol_interrupt_mask &= ~(1 << q);
387 	ah->txurn_interrupt_mask &= ~(1 << q);
388 	ath9k_hw_set_txq_interrupts(ah, qi);
389 
390 	return true;
391 }
392 EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
393 
394 bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
395 {
396 	struct ath_common *common = ath9k_hw_common(ah);
397 	struct ath9k_channel *chan = ah->curchan;
398 	struct ath9k_tx_queue_info *qi;
399 	u32 cwMin, chanCwMin, value;
400 
401 	qi = &ah->txq[q];
402 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
403 		ath_dbg(common, ATH_DBG_QUEUE,
404 			"Reset TXQ, inactive queue: %u\n", q);
405 		return true;
406 	}
407 
408 	ath_dbg(common, ATH_DBG_QUEUE, "Reset TX queue: %u\n", q);
409 
410 	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
411 		if (chan && IS_CHAN_B(chan))
412 			chanCwMin = INIT_CWMIN_11B;
413 		else
414 			chanCwMin = INIT_CWMIN;
415 
416 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
417 	} else
418 		cwMin = qi->tqi_cwmin;
419 
420 	ENABLE_REGWRITE_BUFFER(ah);
421 
422 	REG_WRITE(ah, AR_DLCL_IFS(q),
423 		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
424 		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
425 		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
426 
427 	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
428 		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
429 		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
430 		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
431 
432 	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
433 
434 	if (AR_SREV_9340(ah))
435 		REG_WRITE(ah, AR_DMISC(q),
436 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
437 	else
438 		REG_WRITE(ah, AR_DMISC(q),
439 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
440 
441 	if (qi->tqi_cbrPeriod) {
442 		REG_WRITE(ah, AR_QCBRCFG(q),
443 			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
444 			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
445 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
446 			    (qi->tqi_cbrOverflowLimit ?
447 			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
448 	}
449 	if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
450 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
451 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
452 			  AR_Q_RDYTIMECFG_EN);
453 	}
454 
455 	REG_WRITE(ah, AR_DCHNTIME(q),
456 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
457 		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
458 
459 	if (qi->tqi_burstTime
460 	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
461 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
462 
463 	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
464 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
465 
466 	REGWRITE_BUFFER_FLUSH(ah);
467 
468 	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
469 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
470 
471 	switch (qi->tqi_type) {
472 	case ATH9K_TX_QUEUE_BEACON:
473 		ENABLE_REGWRITE_BUFFER(ah);
474 
475 		REG_SET_BIT(ah, AR_QMISC(q),
476 			    AR_Q_MISC_FSP_DBA_GATED
477 			    | AR_Q_MISC_BEACON_USE
478 			    | AR_Q_MISC_CBR_INCR_DIS1);
479 
480 		REG_SET_BIT(ah, AR_DMISC(q),
481 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
482 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
483 			    | AR_D_MISC_BEACON_USE
484 			    | AR_D_MISC_POST_FR_BKOFF_DIS);
485 
486 		REGWRITE_BUFFER_FLUSH(ah);
487 
488 		/*
489 		 * cwmin and cwmax should be 0 for beacon queue
490 		 * but not for IBSS as we would create an imbalance
491 		 * on beaconing fairness for participating nodes.
492 		 */
493 		if (AR_SREV_9300_20_OR_LATER(ah) &&
494 		    ah->opmode != NL80211_IFTYPE_ADHOC) {
495 			REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
496 				  | SM(0, AR_D_LCL_IFS_CWMAX)
497 				  | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
498 		}
499 		break;
500 	case ATH9K_TX_QUEUE_CAB:
501 		ENABLE_REGWRITE_BUFFER(ah);
502 
503 		REG_SET_BIT(ah, AR_QMISC(q),
504 			    AR_Q_MISC_FSP_DBA_GATED
505 			    | AR_Q_MISC_CBR_INCR_DIS1
506 			    | AR_Q_MISC_CBR_INCR_DIS0);
507 		value = (qi->tqi_readyTime -
508 			 (ah->config.sw_beacon_response_time -
509 			  ah->config.dma_beacon_response_time) -
510 			 ah->config.additional_swba_backoff) * 1024;
511 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
512 			  value | AR_Q_RDYTIMECFG_EN);
513 		REG_SET_BIT(ah, AR_DMISC(q),
514 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
515 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
516 
517 		REGWRITE_BUFFER_FLUSH(ah);
518 
519 		break;
520 	case ATH9K_TX_QUEUE_PSPOLL:
521 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
522 		break;
523 	case ATH9K_TX_QUEUE_UAPSD:
524 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
525 		break;
526 	default:
527 		break;
528 	}
529 
530 	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
531 		REG_SET_BIT(ah, AR_DMISC(q),
532 			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
533 			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
534 			    AR_D_MISC_POST_FR_BKOFF_DIS);
535 	}
536 
537 	if (AR_SREV_9300_20_OR_LATER(ah))
538 		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
539 
540 	if (qi->tqi_qflags & TXQ_FLAG_TXOKINT_ENABLE)
541 		ah->txok_interrupt_mask |= 1 << q;
542 	else
543 		ah->txok_interrupt_mask &= ~(1 << q);
544 	if (qi->tqi_qflags & TXQ_FLAG_TXERRINT_ENABLE)
545 		ah->txerr_interrupt_mask |= 1 << q;
546 	else
547 		ah->txerr_interrupt_mask &= ~(1 << q);
548 	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
549 		ah->txdesc_interrupt_mask |= 1 << q;
550 	else
551 		ah->txdesc_interrupt_mask &= ~(1 << q);
552 	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
553 		ah->txeol_interrupt_mask |= 1 << q;
554 	else
555 		ah->txeol_interrupt_mask &= ~(1 << q);
556 	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
557 		ah->txurn_interrupt_mask |= 1 << q;
558 	else
559 		ah->txurn_interrupt_mask &= ~(1 << q);
560 	ath9k_hw_set_txq_interrupts(ah, qi);
561 
562 	return true;
563 }
564 EXPORT_SYMBOL(ath9k_hw_resettxqueue);
565 
566 int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
567 			struct ath_rx_status *rs, u64 tsf)
568 {
569 	struct ar5416_desc ads;
570 	struct ar5416_desc *adsp = AR5416DESC(ds);
571 	u32 phyerr;
572 
573 	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
574 		return -EINPROGRESS;
575 
576 	ads.u.rx = adsp->u.rx;
577 
578 	rs->rs_status = 0;
579 	rs->rs_flags = 0;
580 
581 	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
582 	rs->rs_tstamp = ads.AR_RcvTimestamp;
583 
584 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
585 		rs->rs_rssi = ATH9K_RSSI_BAD;
586 		rs->rs_rssi_ctl0 = ATH9K_RSSI_BAD;
587 		rs->rs_rssi_ctl1 = ATH9K_RSSI_BAD;
588 		rs->rs_rssi_ctl2 = ATH9K_RSSI_BAD;
589 		rs->rs_rssi_ext0 = ATH9K_RSSI_BAD;
590 		rs->rs_rssi_ext1 = ATH9K_RSSI_BAD;
591 		rs->rs_rssi_ext2 = ATH9K_RSSI_BAD;
592 	} else {
593 		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
594 		rs->rs_rssi_ctl0 = MS(ads.ds_rxstatus0,
595 						AR_RxRSSIAnt00);
596 		rs->rs_rssi_ctl1 = MS(ads.ds_rxstatus0,
597 						AR_RxRSSIAnt01);
598 		rs->rs_rssi_ctl2 = MS(ads.ds_rxstatus0,
599 						AR_RxRSSIAnt02);
600 		rs->rs_rssi_ext0 = MS(ads.ds_rxstatus4,
601 						AR_RxRSSIAnt10);
602 		rs->rs_rssi_ext1 = MS(ads.ds_rxstatus4,
603 						AR_RxRSSIAnt11);
604 		rs->rs_rssi_ext2 = MS(ads.ds_rxstatus4,
605 						AR_RxRSSIAnt12);
606 	}
607 	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
608 		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
609 	else
610 		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
611 
612 	rs->rs_rate = RXSTATUS_RATE(ah, (&ads));
613 	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
614 
615 	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
616 	rs->rs_moreaggr =
617 		(ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
618 	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
619 	rs->rs_flags =
620 		(ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
621 	rs->rs_flags |=
622 		(ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
623 
624 	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
625 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
626 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
627 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
628 	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
629 		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
630 
631 	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
632 		/*
633 		 * Treat these errors as mutually exclusive to avoid spurious
634 		 * extra error reports from the hardware. If a CRC error is
635 		 * reported, then decryption and MIC errors are irrelevant,
636 		 * the frame is going to be dropped either way
637 		 */
638 		if (ads.ds_rxstatus8 & AR_CRCErr)
639 			rs->rs_status |= ATH9K_RXERR_CRC;
640 		else if (ads.ds_rxstatus8 & AR_PHYErr) {
641 			rs->rs_status |= ATH9K_RXERR_PHY;
642 			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
643 			rs->rs_phyerr = phyerr;
644 		} else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
645 			rs->rs_status |= ATH9K_RXERR_DECRYPT;
646 		else if (ads.ds_rxstatus8 & AR_MichaelErr)
647 			rs->rs_status |= ATH9K_RXERR_MIC;
648 
649 		if (ads.ds_rxstatus8 & AR_KeyMiss)
650 			rs->rs_status |= ATH9K_RXERR_DECRYPT;
651 	}
652 
653 	return 0;
654 }
655 EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
656 
657 /*
658  * This can stop or re-enables RX.
659  *
660  * If bool is set this will kill any frame which is currently being
661  * transferred between the MAC and baseband and also prevent any new
662  * frames from getting started.
663  */
664 bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
665 {
666 	u32 reg;
667 
668 	if (set) {
669 		REG_SET_BIT(ah, AR_DIAG_SW,
670 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
671 
672 		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
673 				   0, AH_WAIT_TIMEOUT)) {
674 			REG_CLR_BIT(ah, AR_DIAG_SW,
675 				    (AR_DIAG_RX_DIS |
676 				     AR_DIAG_RX_ABORT));
677 
678 			reg = REG_READ(ah, AR_OBS_BUS_1);
679 			ath_err(ath9k_hw_common(ah),
680 				"RX failed to go idle in 10 ms RXSM=0x%x\n",
681 				reg);
682 
683 			return false;
684 		}
685 	} else {
686 		REG_CLR_BIT(ah, AR_DIAG_SW,
687 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
688 	}
689 
690 	return true;
691 }
692 EXPORT_SYMBOL(ath9k_hw_setrxabort);
693 
694 void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
695 {
696 	REG_WRITE(ah, AR_RXDP, rxdp);
697 }
698 EXPORT_SYMBOL(ath9k_hw_putrxbuf);
699 
700 void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
701 {
702 	ath9k_enable_mib_counters(ah);
703 
704 	ath9k_ani_reset(ah, is_scanning);
705 
706 	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
707 }
708 EXPORT_SYMBOL(ath9k_hw_startpcureceive);
709 
710 void ath9k_hw_abortpcurecv(struct ath_hw *ah)
711 {
712 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
713 
714 	ath9k_hw_disable_mib_counters(ah);
715 }
716 EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
717 
718 bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
719 {
720 #define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
721 	struct ath_common *common = ath9k_hw_common(ah);
722 	u32 mac_status, last_mac_status = 0;
723 	int i;
724 
725 	/* Enable access to the DMA observation bus */
726 	REG_WRITE(ah, AR_MACMISC,
727 		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
728 		   (AR_MACMISC_MISC_OBS_BUS_1 <<
729 		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));
730 
731 	REG_WRITE(ah, AR_CR, AR_CR_RXD);
732 
733 	/* Wait for rx enable bit to go low */
734 	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
735 		if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
736 			break;
737 
738 		if (!AR_SREV_9300_20_OR_LATER(ah)) {
739 			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
740 			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
741 				*reset = true;
742 				break;
743 			}
744 
745 			last_mac_status = mac_status;
746 		}
747 
748 		udelay(AH_TIME_QUANTUM);
749 	}
750 
751 	if (i == 0) {
752 		ath_err(common,
753 			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
754 			AH_RX_STOP_DMA_TIMEOUT / 1000,
755 			REG_READ(ah, AR_CR),
756 			REG_READ(ah, AR_DIAG_SW),
757 			REG_READ(ah, AR_DMADBG_7));
758 		return false;
759 	} else {
760 		return true;
761 	}
762 
763 #undef AH_RX_STOP_DMA_TIMEOUT
764 }
765 EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
766 
767 int ath9k_hw_beaconq_setup(struct ath_hw *ah)
768 {
769 	struct ath9k_tx_queue_info qi;
770 
771 	memset(&qi, 0, sizeof(qi));
772 	qi.tqi_aifs = 1;
773 	qi.tqi_cwmin = 0;
774 	qi.tqi_cwmax = 0;
775 	/* NB: don't enable any interrupts */
776 	return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
777 }
778 EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
779 
780 bool ath9k_hw_intrpend(struct ath_hw *ah)
781 {
782 	u32 host_isr;
783 
784 	if (AR_SREV_9100(ah))
785 		return true;
786 
787 	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
788 	if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
789 		return true;
790 
791 	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
792 	if ((host_isr & AR_INTR_SYNC_DEFAULT)
793 	    && (host_isr != AR_INTR_SPURIOUS))
794 		return true;
795 
796 	return false;
797 }
798 EXPORT_SYMBOL(ath9k_hw_intrpend);
799 
800 void ath9k_hw_disable_interrupts(struct ath_hw *ah)
801 {
802 	struct ath_common *common = ath9k_hw_common(ah);
803 
804 	ath_dbg(common, ATH_DBG_INTERRUPT, "disable IER\n");
805 	REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
806 	(void) REG_READ(ah, AR_IER);
807 	if (!AR_SREV_9100(ah)) {
808 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
809 		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
810 
811 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
812 		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
813 	}
814 }
815 EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
816 
817 void ath9k_hw_enable_interrupts(struct ath_hw *ah)
818 {
819 	struct ath_common *common = ath9k_hw_common(ah);
820 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
821 
822 	if (!(ah->imask & ATH9K_INT_GLOBAL))
823 		return;
824 
825 	if (AR_SREV_9340(ah))
826 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
827 
828 	ath_dbg(common, ATH_DBG_INTERRUPT, "enable IER\n");
829 	REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
830 	if (!AR_SREV_9100(ah)) {
831 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
832 			  AR_INTR_MAC_IRQ);
833 		REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
834 
835 
836 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
837 		REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
838 	}
839 	ath_dbg(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
840 		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
841 }
842 EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
843 
844 void ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
845 {
846 	enum ath9k_int omask = ah->imask;
847 	u32 mask, mask2;
848 	struct ath9k_hw_capabilities *pCap = &ah->caps;
849 	struct ath_common *common = ath9k_hw_common(ah);
850 
851 	if (!(ints & ATH9K_INT_GLOBAL))
852 		ath9k_hw_disable_interrupts(ah);
853 
854 	ath_dbg(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
855 
856 	/* TODO: global int Ref count */
857 	mask = ints & ATH9K_INT_COMMON;
858 	mask2 = 0;
859 
860 	if (ints & ATH9K_INT_TX) {
861 		if (ah->config.tx_intr_mitigation)
862 			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
863 		else {
864 			if (ah->txok_interrupt_mask)
865 				mask |= AR_IMR_TXOK;
866 			if (ah->txdesc_interrupt_mask)
867 				mask |= AR_IMR_TXDESC;
868 		}
869 		if (ah->txerr_interrupt_mask)
870 			mask |= AR_IMR_TXERR;
871 		if (ah->txeol_interrupt_mask)
872 			mask |= AR_IMR_TXEOL;
873 	}
874 	if (ints & ATH9K_INT_RX) {
875 		if (AR_SREV_9300_20_OR_LATER(ah)) {
876 			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
877 			if (ah->config.rx_intr_mitigation) {
878 				mask &= ~AR_IMR_RXOK_LP;
879 				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
880 			} else {
881 				mask |= AR_IMR_RXOK_LP;
882 			}
883 		} else {
884 			if (ah->config.rx_intr_mitigation)
885 				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
886 			else
887 				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
888 		}
889 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
890 			mask |= AR_IMR_GENTMR;
891 	}
892 
893 	if (ints & ATH9K_INT_GENTIMER)
894 		mask |= AR_IMR_GENTMR;
895 
896 	if (ints & (ATH9K_INT_BMISC)) {
897 		mask |= AR_IMR_BCNMISC;
898 		if (ints & ATH9K_INT_TIM)
899 			mask2 |= AR_IMR_S2_TIM;
900 		if (ints & ATH9K_INT_DTIM)
901 			mask2 |= AR_IMR_S2_DTIM;
902 		if (ints & ATH9K_INT_DTIMSYNC)
903 			mask2 |= AR_IMR_S2_DTIMSYNC;
904 		if (ints & ATH9K_INT_CABEND)
905 			mask2 |= AR_IMR_S2_CABEND;
906 		if (ints & ATH9K_INT_TSFOOR)
907 			mask2 |= AR_IMR_S2_TSFOOR;
908 	}
909 
910 	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
911 		mask |= AR_IMR_BCNMISC;
912 		if (ints & ATH9K_INT_GTT)
913 			mask2 |= AR_IMR_S2_GTT;
914 		if (ints & ATH9K_INT_CST)
915 			mask2 |= AR_IMR_S2_CST;
916 	}
917 
918 	ath_dbg(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
919 	REG_WRITE(ah, AR_IMR, mask);
920 	ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
921 			   AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
922 			   AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
923 	ah->imrs2_reg |= mask2;
924 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
925 
926 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
927 		if (ints & ATH9K_INT_TIM_TIMER)
928 			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
929 		else
930 			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
931 	}
932 
933 	if (ints & ATH9K_INT_GLOBAL)
934 		ath9k_hw_enable_interrupts(ah);
935 
936 	return;
937 }
938 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
939