xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/mac.c (revision 15e47304)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "hw-ops.h"
19 #include <linux/export.h>
20 
21 static void ath9k_hw_set_txq_interrupts(struct ath_hw *ah,
22 					struct ath9k_tx_queue_info *qi)
23 {
24 	ath_dbg(ath9k_hw_common(ah), INTERRUPT,
25 		"tx ok 0x%x err 0x%x desc 0x%x eol 0x%x urn 0x%x\n",
26 		ah->txok_interrupt_mask, ah->txerr_interrupt_mask,
27 		ah->txdesc_interrupt_mask, ah->txeol_interrupt_mask,
28 		ah->txurn_interrupt_mask);
29 
30 	ENABLE_REGWRITE_BUFFER(ah);
31 
32 	REG_WRITE(ah, AR_IMR_S0,
33 		  SM(ah->txok_interrupt_mask, AR_IMR_S0_QCU_TXOK)
34 		  | SM(ah->txdesc_interrupt_mask, AR_IMR_S0_QCU_TXDESC));
35 	REG_WRITE(ah, AR_IMR_S1,
36 		  SM(ah->txerr_interrupt_mask, AR_IMR_S1_QCU_TXERR)
37 		  | SM(ah->txeol_interrupt_mask, AR_IMR_S1_QCU_TXEOL));
38 
39 	ah->imrs2_reg &= ~AR_IMR_S2_QCU_TXURN;
40 	ah->imrs2_reg |= (ah->txurn_interrupt_mask & AR_IMR_S2_QCU_TXURN);
41 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
42 
43 	REGWRITE_BUFFER_FLUSH(ah);
44 }
45 
46 u32 ath9k_hw_gettxbuf(struct ath_hw *ah, u32 q)
47 {
48 	return REG_READ(ah, AR_QTXDP(q));
49 }
50 EXPORT_SYMBOL(ath9k_hw_gettxbuf);
51 
52 void ath9k_hw_puttxbuf(struct ath_hw *ah, u32 q, u32 txdp)
53 {
54 	REG_WRITE(ah, AR_QTXDP(q), txdp);
55 }
56 EXPORT_SYMBOL(ath9k_hw_puttxbuf);
57 
58 void ath9k_hw_txstart(struct ath_hw *ah, u32 q)
59 {
60 	ath_dbg(ath9k_hw_common(ah), QUEUE, "Enable TXE on queue: %u\n", q);
61 	REG_WRITE(ah, AR_Q_TXE, 1 << q);
62 }
63 EXPORT_SYMBOL(ath9k_hw_txstart);
64 
65 u32 ath9k_hw_numtxpending(struct ath_hw *ah, u32 q)
66 {
67 	u32 npend;
68 
69 	npend = REG_READ(ah, AR_QSTS(q)) & AR_Q_STS_PEND_FR_CNT;
70 	if (npend == 0) {
71 
72 		if (REG_READ(ah, AR_Q_TXE) & (1 << q))
73 			npend = 1;
74 	}
75 
76 	return npend;
77 }
78 EXPORT_SYMBOL(ath9k_hw_numtxpending);
79 
80 /**
81  * ath9k_hw_updatetxtriglevel - adjusts the frame trigger level
82  *
83  * @ah: atheros hardware struct
84  * @bIncTrigLevel: whether or not the frame trigger level should be updated
85  *
86  * The frame trigger level specifies the minimum number of bytes,
87  * in units of 64 bytes, that must be DMA'ed into the PCU TX FIFO
88  * before the PCU will initiate sending the frame on the air. This can
89  * mean we initiate transmit before a full frame is on the PCU TX FIFO.
90  * Resets to 0x1 (meaning 64 bytes or a full frame, whichever occurs
91  * first)
92  *
93  * Caution must be taken to ensure to set the frame trigger level based
94  * on the DMA request size. For example if the DMA request size is set to
95  * 128 bytes the trigger level cannot exceed 6 * 64 = 384. This is because
96  * there need to be enough space in the tx FIFO for the requested transfer
97  * size. Hence the tx FIFO will stop with 512 - 128 = 384 bytes. If we set
98  * the threshold to a value beyond 6, then the transmit will hang.
99  *
100  * Current dual   stream devices have a PCU TX FIFO size of 8 KB.
101  * Current single stream devices have a PCU TX FIFO size of 4 KB, however,
102  * there is a hardware issue which forces us to use 2 KB instead so the
103  * frame trigger level must not exceed 2 KB for these chipsets.
104  */
105 bool ath9k_hw_updatetxtriglevel(struct ath_hw *ah, bool bIncTrigLevel)
106 {
107 	u32 txcfg, curLevel, newLevel;
108 
109 	if (ah->tx_trig_level >= ah->config.max_txtrig_level)
110 		return false;
111 
112 	ath9k_hw_disable_interrupts(ah);
113 
114 	txcfg = REG_READ(ah, AR_TXCFG);
115 	curLevel = MS(txcfg, AR_FTRIG);
116 	newLevel = curLevel;
117 	if (bIncTrigLevel) {
118 		if (curLevel < ah->config.max_txtrig_level)
119 			newLevel++;
120 	} else if (curLevel > MIN_TX_FIFO_THRESHOLD)
121 		newLevel--;
122 	if (newLevel != curLevel)
123 		REG_WRITE(ah, AR_TXCFG,
124 			  (txcfg & ~AR_FTRIG) | SM(newLevel, AR_FTRIG));
125 
126 	ath9k_hw_enable_interrupts(ah);
127 
128 	ah->tx_trig_level = newLevel;
129 
130 	return newLevel != curLevel;
131 }
132 EXPORT_SYMBOL(ath9k_hw_updatetxtriglevel);
133 
134 void ath9k_hw_abort_tx_dma(struct ath_hw *ah)
135 {
136 	int maxdelay = 1000;
137 	int i, q;
138 
139 	if (ah->curchan) {
140 		if (IS_CHAN_HALF_RATE(ah->curchan))
141 			maxdelay *= 2;
142 		else if (IS_CHAN_QUARTER_RATE(ah->curchan))
143 			maxdelay *= 4;
144 	}
145 
146 	REG_WRITE(ah, AR_Q_TXD, AR_Q_TXD_M);
147 
148 	REG_SET_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
149 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
150 	REG_SET_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
151 
152 	for (q = 0; q < AR_NUM_QCU; q++) {
153 		for (i = 0; i < maxdelay; i++) {
154 			if (i)
155 				udelay(5);
156 
157 			if (!ath9k_hw_numtxpending(ah, q))
158 				break;
159 		}
160 	}
161 
162 	REG_CLR_BIT(ah, AR_PCU_MISC, AR_PCU_FORCE_QUIET_COLL | AR_PCU_CLEAR_VMF);
163 	REG_CLR_BIT(ah, AR_DIAG_SW, AR_DIAG_FORCE_CH_IDLE_HIGH);
164 	REG_CLR_BIT(ah, AR_D_GBL_IFS_MISC, AR_D_GBL_IFS_MISC_IGNORE_BACKOFF);
165 
166 	REG_WRITE(ah, AR_Q_TXD, 0);
167 }
168 EXPORT_SYMBOL(ath9k_hw_abort_tx_dma);
169 
170 bool ath9k_hw_stop_dma_queue(struct ath_hw *ah, u32 q)
171 {
172 #define ATH9K_TX_STOP_DMA_TIMEOUT	1000    /* usec */
173 #define ATH9K_TIME_QUANTUM		100     /* usec */
174 	int wait_time = ATH9K_TX_STOP_DMA_TIMEOUT / ATH9K_TIME_QUANTUM;
175 	int wait;
176 
177 	REG_WRITE(ah, AR_Q_TXD, 1 << q);
178 
179 	for (wait = wait_time; wait != 0; wait--) {
180 		if (wait != wait_time)
181 			udelay(ATH9K_TIME_QUANTUM);
182 
183 		if (ath9k_hw_numtxpending(ah, q) == 0)
184 			break;
185 	}
186 
187 	REG_WRITE(ah, AR_Q_TXD, 0);
188 
189 	return wait != 0;
190 
191 #undef ATH9K_TX_STOP_DMA_TIMEOUT
192 #undef ATH9K_TIME_QUANTUM
193 }
194 EXPORT_SYMBOL(ath9k_hw_stop_dma_queue);
195 
196 bool ath9k_hw_set_txq_props(struct ath_hw *ah, int q,
197 			    const struct ath9k_tx_queue_info *qinfo)
198 {
199 	u32 cw;
200 	struct ath_common *common = ath9k_hw_common(ah);
201 	struct ath9k_tx_queue_info *qi;
202 
203 	qi = &ah->txq[q];
204 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
205 		ath_dbg(common, QUEUE,
206 			"Set TXQ properties, inactive queue: %u\n", q);
207 		return false;
208 	}
209 
210 	ath_dbg(common, QUEUE, "Set queue properties for: %u\n", q);
211 
212 	qi->tqi_ver = qinfo->tqi_ver;
213 	qi->tqi_subtype = qinfo->tqi_subtype;
214 	qi->tqi_qflags = qinfo->tqi_qflags;
215 	qi->tqi_priority = qinfo->tqi_priority;
216 	if (qinfo->tqi_aifs != ATH9K_TXQ_USEDEFAULT)
217 		qi->tqi_aifs = min(qinfo->tqi_aifs, 255U);
218 	else
219 		qi->tqi_aifs = INIT_AIFS;
220 	if (qinfo->tqi_cwmin != ATH9K_TXQ_USEDEFAULT) {
221 		cw = min(qinfo->tqi_cwmin, 1024U);
222 		qi->tqi_cwmin = 1;
223 		while (qi->tqi_cwmin < cw)
224 			qi->tqi_cwmin = (qi->tqi_cwmin << 1) | 1;
225 	} else
226 		qi->tqi_cwmin = qinfo->tqi_cwmin;
227 	if (qinfo->tqi_cwmax != ATH9K_TXQ_USEDEFAULT) {
228 		cw = min(qinfo->tqi_cwmax, 1024U);
229 		qi->tqi_cwmax = 1;
230 		while (qi->tqi_cwmax < cw)
231 			qi->tqi_cwmax = (qi->tqi_cwmax << 1) | 1;
232 	} else
233 		qi->tqi_cwmax = INIT_CWMAX;
234 
235 	if (qinfo->tqi_shretry != 0)
236 		qi->tqi_shretry = min((u32) qinfo->tqi_shretry, 15U);
237 	else
238 		qi->tqi_shretry = INIT_SH_RETRY;
239 	if (qinfo->tqi_lgretry != 0)
240 		qi->tqi_lgretry = min((u32) qinfo->tqi_lgretry, 15U);
241 	else
242 		qi->tqi_lgretry = INIT_LG_RETRY;
243 	qi->tqi_cbrPeriod = qinfo->tqi_cbrPeriod;
244 	qi->tqi_cbrOverflowLimit = qinfo->tqi_cbrOverflowLimit;
245 	qi->tqi_burstTime = qinfo->tqi_burstTime;
246 	qi->tqi_readyTime = qinfo->tqi_readyTime;
247 
248 	switch (qinfo->tqi_subtype) {
249 	case ATH9K_WME_UPSD:
250 		if (qi->tqi_type == ATH9K_TX_QUEUE_DATA)
251 			qi->tqi_intFlags = ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS;
252 		break;
253 	default:
254 		break;
255 	}
256 
257 	return true;
258 }
259 EXPORT_SYMBOL(ath9k_hw_set_txq_props);
260 
261 bool ath9k_hw_get_txq_props(struct ath_hw *ah, int q,
262 			    struct ath9k_tx_queue_info *qinfo)
263 {
264 	struct ath_common *common = ath9k_hw_common(ah);
265 	struct ath9k_tx_queue_info *qi;
266 
267 	qi = &ah->txq[q];
268 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
269 		ath_dbg(common, QUEUE,
270 			"Get TXQ properties, inactive queue: %u\n", q);
271 		return false;
272 	}
273 
274 	qinfo->tqi_qflags = qi->tqi_qflags;
275 	qinfo->tqi_ver = qi->tqi_ver;
276 	qinfo->tqi_subtype = qi->tqi_subtype;
277 	qinfo->tqi_qflags = qi->tqi_qflags;
278 	qinfo->tqi_priority = qi->tqi_priority;
279 	qinfo->tqi_aifs = qi->tqi_aifs;
280 	qinfo->tqi_cwmin = qi->tqi_cwmin;
281 	qinfo->tqi_cwmax = qi->tqi_cwmax;
282 	qinfo->tqi_shretry = qi->tqi_shretry;
283 	qinfo->tqi_lgretry = qi->tqi_lgretry;
284 	qinfo->tqi_cbrPeriod = qi->tqi_cbrPeriod;
285 	qinfo->tqi_cbrOverflowLimit = qi->tqi_cbrOverflowLimit;
286 	qinfo->tqi_burstTime = qi->tqi_burstTime;
287 	qinfo->tqi_readyTime = qi->tqi_readyTime;
288 
289 	return true;
290 }
291 EXPORT_SYMBOL(ath9k_hw_get_txq_props);
292 
293 int ath9k_hw_setuptxqueue(struct ath_hw *ah, enum ath9k_tx_queue type,
294 			  const struct ath9k_tx_queue_info *qinfo)
295 {
296 	struct ath_common *common = ath9k_hw_common(ah);
297 	struct ath9k_tx_queue_info *qi;
298 	int q;
299 
300 	switch (type) {
301 	case ATH9K_TX_QUEUE_BEACON:
302 		q = ATH9K_NUM_TX_QUEUES - 1;
303 		break;
304 	case ATH9K_TX_QUEUE_CAB:
305 		q = ATH9K_NUM_TX_QUEUES - 2;
306 		break;
307 	case ATH9K_TX_QUEUE_PSPOLL:
308 		q = 1;
309 		break;
310 	case ATH9K_TX_QUEUE_UAPSD:
311 		q = ATH9K_NUM_TX_QUEUES - 3;
312 		break;
313 	case ATH9K_TX_QUEUE_DATA:
314 		for (q = 0; q < ATH9K_NUM_TX_QUEUES; q++)
315 			if (ah->txq[q].tqi_type ==
316 			    ATH9K_TX_QUEUE_INACTIVE)
317 				break;
318 		if (q == ATH9K_NUM_TX_QUEUES) {
319 			ath_err(common, "No available TX queue\n");
320 			return -1;
321 		}
322 		break;
323 	default:
324 		ath_err(common, "Invalid TX queue type: %u\n", type);
325 		return -1;
326 	}
327 
328 	ath_dbg(common, QUEUE, "Setup TX queue: %u\n", q);
329 
330 	qi = &ah->txq[q];
331 	if (qi->tqi_type != ATH9K_TX_QUEUE_INACTIVE) {
332 		ath_err(common, "TX queue: %u already active\n", q);
333 		return -1;
334 	}
335 	memset(qi, 0, sizeof(struct ath9k_tx_queue_info));
336 	qi->tqi_type = type;
337 	qi->tqi_physCompBuf = qinfo->tqi_physCompBuf;
338 	(void) ath9k_hw_set_txq_props(ah, q, qinfo);
339 
340 	return q;
341 }
342 EXPORT_SYMBOL(ath9k_hw_setuptxqueue);
343 
344 static void ath9k_hw_clear_queue_interrupts(struct ath_hw *ah, u32 q)
345 {
346 	ah->txok_interrupt_mask &= ~(1 << q);
347 	ah->txerr_interrupt_mask &= ~(1 << q);
348 	ah->txdesc_interrupt_mask &= ~(1 << q);
349 	ah->txeol_interrupt_mask &= ~(1 << q);
350 	ah->txurn_interrupt_mask &= ~(1 << q);
351 }
352 
353 bool ath9k_hw_releasetxqueue(struct ath_hw *ah, u32 q)
354 {
355 	struct ath_common *common = ath9k_hw_common(ah);
356 	struct ath9k_tx_queue_info *qi;
357 
358 	qi = &ah->txq[q];
359 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
360 		ath_dbg(common, QUEUE, "Release TXQ, inactive queue: %u\n", q);
361 		return false;
362 	}
363 
364 	ath_dbg(common, QUEUE, "Release TX queue: %u\n", q);
365 
366 	qi->tqi_type = ATH9K_TX_QUEUE_INACTIVE;
367 	ath9k_hw_clear_queue_interrupts(ah, q);
368 	ath9k_hw_set_txq_interrupts(ah, qi);
369 
370 	return true;
371 }
372 EXPORT_SYMBOL(ath9k_hw_releasetxqueue);
373 
374 bool ath9k_hw_resettxqueue(struct ath_hw *ah, u32 q)
375 {
376 	struct ath_common *common = ath9k_hw_common(ah);
377 	struct ath9k_channel *chan = ah->curchan;
378 	struct ath9k_tx_queue_info *qi;
379 	u32 cwMin, chanCwMin, value;
380 
381 	qi = &ah->txq[q];
382 	if (qi->tqi_type == ATH9K_TX_QUEUE_INACTIVE) {
383 		ath_dbg(common, QUEUE, "Reset TXQ, inactive queue: %u\n", q);
384 		return true;
385 	}
386 
387 	ath_dbg(common, QUEUE, "Reset TX queue: %u\n", q);
388 
389 	if (qi->tqi_cwmin == ATH9K_TXQ_USEDEFAULT) {
390 		if (chan && IS_CHAN_B(chan))
391 			chanCwMin = INIT_CWMIN_11B;
392 		else
393 			chanCwMin = INIT_CWMIN;
394 
395 		for (cwMin = 1; cwMin < chanCwMin; cwMin = (cwMin << 1) | 1);
396 	} else
397 		cwMin = qi->tqi_cwmin;
398 
399 	ENABLE_REGWRITE_BUFFER(ah);
400 
401 	REG_WRITE(ah, AR_DLCL_IFS(q),
402 		  SM(cwMin, AR_D_LCL_IFS_CWMIN) |
403 		  SM(qi->tqi_cwmax, AR_D_LCL_IFS_CWMAX) |
404 		  SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
405 
406 	REG_WRITE(ah, AR_DRETRY_LIMIT(q),
407 		  SM(INIT_SSH_RETRY, AR_D_RETRY_LIMIT_STA_SH) |
408 		  SM(INIT_SLG_RETRY, AR_D_RETRY_LIMIT_STA_LG) |
409 		  SM(qi->tqi_shretry, AR_D_RETRY_LIMIT_FR_SH));
410 
411 	REG_WRITE(ah, AR_QMISC(q), AR_Q_MISC_DCU_EARLY_TERM_REQ);
412 
413 	if (AR_SREV_9340(ah))
414 		REG_WRITE(ah, AR_DMISC(q),
415 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x1);
416 	else
417 		REG_WRITE(ah, AR_DMISC(q),
418 			  AR_D_MISC_CW_BKOFF_EN | AR_D_MISC_FRAG_WAIT_EN | 0x2);
419 
420 	if (qi->tqi_cbrPeriod) {
421 		REG_WRITE(ah, AR_QCBRCFG(q),
422 			  SM(qi->tqi_cbrPeriod, AR_Q_CBRCFG_INTERVAL) |
423 			  SM(qi->tqi_cbrOverflowLimit, AR_Q_CBRCFG_OVF_THRESH));
424 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_FSP_CBR |
425 			    (qi->tqi_cbrOverflowLimit ?
426 			     AR_Q_MISC_CBR_EXP_CNTR_LIMIT_EN : 0));
427 	}
428 	if (qi->tqi_readyTime && (qi->tqi_type != ATH9K_TX_QUEUE_CAB)) {
429 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
430 			  SM(qi->tqi_readyTime, AR_Q_RDYTIMECFG_DURATION) |
431 			  AR_Q_RDYTIMECFG_EN);
432 	}
433 
434 	REG_WRITE(ah, AR_DCHNTIME(q),
435 		  SM(qi->tqi_burstTime, AR_D_CHNTIME_DUR) |
436 		  (qi->tqi_burstTime ? AR_D_CHNTIME_EN : 0));
437 
438 	if (qi->tqi_burstTime
439 	    && (qi->tqi_qflags & TXQ_FLAG_RDYTIME_EXP_POLICY_ENABLE))
440 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_RDYTIME_EXP_POLICY);
441 
442 	if (qi->tqi_qflags & TXQ_FLAG_BACKOFF_DISABLE)
443 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
444 
445 	REGWRITE_BUFFER_FLUSH(ah);
446 
447 	if (qi->tqi_qflags & TXQ_FLAG_FRAG_BURST_BACKOFF_ENABLE)
448 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_FRAG_BKOFF_EN);
449 
450 	switch (qi->tqi_type) {
451 	case ATH9K_TX_QUEUE_BEACON:
452 		ENABLE_REGWRITE_BUFFER(ah);
453 
454 		REG_SET_BIT(ah, AR_QMISC(q),
455 			    AR_Q_MISC_FSP_DBA_GATED
456 			    | AR_Q_MISC_BEACON_USE
457 			    | AR_Q_MISC_CBR_INCR_DIS1);
458 
459 		REG_SET_BIT(ah, AR_DMISC(q),
460 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
461 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S)
462 			    | AR_D_MISC_BEACON_USE
463 			    | AR_D_MISC_POST_FR_BKOFF_DIS);
464 
465 		REGWRITE_BUFFER_FLUSH(ah);
466 
467 		/*
468 		 * cwmin and cwmax should be 0 for beacon queue
469 		 * but not for IBSS as we would create an imbalance
470 		 * on beaconing fairness for participating nodes.
471 		 */
472 		if (AR_SREV_9300_20_OR_LATER(ah) &&
473 		    ah->opmode != NL80211_IFTYPE_ADHOC) {
474 			REG_WRITE(ah, AR_DLCL_IFS(q), SM(0, AR_D_LCL_IFS_CWMIN)
475 				  | SM(0, AR_D_LCL_IFS_CWMAX)
476 				  | SM(qi->tqi_aifs, AR_D_LCL_IFS_AIFS));
477 		}
478 		break;
479 	case ATH9K_TX_QUEUE_CAB:
480 		ENABLE_REGWRITE_BUFFER(ah);
481 
482 		REG_SET_BIT(ah, AR_QMISC(q),
483 			    AR_Q_MISC_FSP_DBA_GATED
484 			    | AR_Q_MISC_CBR_INCR_DIS1
485 			    | AR_Q_MISC_CBR_INCR_DIS0);
486 		value = (qi->tqi_readyTime -
487 			 (ah->config.sw_beacon_response_time -
488 			  ah->config.dma_beacon_response_time) -
489 			 ah->config.additional_swba_backoff) * 1024;
490 		REG_WRITE(ah, AR_QRDYTIMECFG(q),
491 			  value | AR_Q_RDYTIMECFG_EN);
492 		REG_SET_BIT(ah, AR_DMISC(q),
493 			    (AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL <<
494 			     AR_D_MISC_ARB_LOCKOUT_CNTRL_S));
495 
496 		REGWRITE_BUFFER_FLUSH(ah);
497 
498 		break;
499 	case ATH9K_TX_QUEUE_PSPOLL:
500 		REG_SET_BIT(ah, AR_QMISC(q), AR_Q_MISC_CBR_INCR_DIS1);
501 		break;
502 	case ATH9K_TX_QUEUE_UAPSD:
503 		REG_SET_BIT(ah, AR_DMISC(q), AR_D_MISC_POST_FR_BKOFF_DIS);
504 		break;
505 	default:
506 		break;
507 	}
508 
509 	if (qi->tqi_intFlags & ATH9K_TXQ_USE_LOCKOUT_BKOFF_DIS) {
510 		REG_SET_BIT(ah, AR_DMISC(q),
511 			    SM(AR_D_MISC_ARB_LOCKOUT_CNTRL_GLOBAL,
512 			       AR_D_MISC_ARB_LOCKOUT_CNTRL) |
513 			    AR_D_MISC_POST_FR_BKOFF_DIS);
514 	}
515 
516 	if (AR_SREV_9300_20_OR_LATER(ah))
517 		REG_WRITE(ah, AR_Q_DESC_CRCCHK, AR_Q_DESC_CRCCHK_EN);
518 
519 	ath9k_hw_clear_queue_interrupts(ah, q);
520 	if (qi->tqi_qflags & TXQ_FLAG_TXINT_ENABLE) {
521 		ah->txok_interrupt_mask |= 1 << q;
522 		ah->txerr_interrupt_mask |= 1 << q;
523 	}
524 	if (qi->tqi_qflags & TXQ_FLAG_TXDESCINT_ENABLE)
525 		ah->txdesc_interrupt_mask |= 1 << q;
526 	if (qi->tqi_qflags & TXQ_FLAG_TXEOLINT_ENABLE)
527 		ah->txeol_interrupt_mask |= 1 << q;
528 	if (qi->tqi_qflags & TXQ_FLAG_TXURNINT_ENABLE)
529 		ah->txurn_interrupt_mask |= 1 << q;
530 	ath9k_hw_set_txq_interrupts(ah, qi);
531 
532 	return true;
533 }
534 EXPORT_SYMBOL(ath9k_hw_resettxqueue);
535 
536 int ath9k_hw_rxprocdesc(struct ath_hw *ah, struct ath_desc *ds,
537 			struct ath_rx_status *rs)
538 {
539 	struct ar5416_desc ads;
540 	struct ar5416_desc *adsp = AR5416DESC(ds);
541 	u32 phyerr;
542 
543 	if ((adsp->ds_rxstatus8 & AR_RxDone) == 0)
544 		return -EINPROGRESS;
545 
546 	ads.u.rx = adsp->u.rx;
547 
548 	rs->rs_status = 0;
549 	rs->rs_flags = 0;
550 
551 	rs->rs_datalen = ads.ds_rxstatus1 & AR_DataLen;
552 	rs->rs_tstamp = ads.AR_RcvTimestamp;
553 
554 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr) {
555 		rs->rs_rssi = ATH9K_RSSI_BAD;
556 		rs->rs_rssi_ctl0 = ATH9K_RSSI_BAD;
557 		rs->rs_rssi_ctl1 = ATH9K_RSSI_BAD;
558 		rs->rs_rssi_ctl2 = ATH9K_RSSI_BAD;
559 		rs->rs_rssi_ext0 = ATH9K_RSSI_BAD;
560 		rs->rs_rssi_ext1 = ATH9K_RSSI_BAD;
561 		rs->rs_rssi_ext2 = ATH9K_RSSI_BAD;
562 	} else {
563 		rs->rs_rssi = MS(ads.ds_rxstatus4, AR_RxRSSICombined);
564 		rs->rs_rssi_ctl0 = MS(ads.ds_rxstatus0,
565 						AR_RxRSSIAnt00);
566 		rs->rs_rssi_ctl1 = MS(ads.ds_rxstatus0,
567 						AR_RxRSSIAnt01);
568 		rs->rs_rssi_ctl2 = MS(ads.ds_rxstatus0,
569 						AR_RxRSSIAnt02);
570 		rs->rs_rssi_ext0 = MS(ads.ds_rxstatus4,
571 						AR_RxRSSIAnt10);
572 		rs->rs_rssi_ext1 = MS(ads.ds_rxstatus4,
573 						AR_RxRSSIAnt11);
574 		rs->rs_rssi_ext2 = MS(ads.ds_rxstatus4,
575 						AR_RxRSSIAnt12);
576 	}
577 	if (ads.ds_rxstatus8 & AR_RxKeyIdxValid)
578 		rs->rs_keyix = MS(ads.ds_rxstatus8, AR_KeyIdx);
579 	else
580 		rs->rs_keyix = ATH9K_RXKEYIX_INVALID;
581 
582 	rs->rs_rate = MS(ads.ds_rxstatus0, AR_RxRate);
583 	rs->rs_more = (ads.ds_rxstatus1 & AR_RxMore) ? 1 : 0;
584 
585 	rs->rs_isaggr = (ads.ds_rxstatus8 & AR_RxAggr) ? 1 : 0;
586 	rs->rs_moreaggr =
587 		(ads.ds_rxstatus8 & AR_RxMoreAggr) ? 1 : 0;
588 	rs->rs_antenna = MS(ads.ds_rxstatus3, AR_RxAntenna);
589 	rs->rs_flags =
590 		(ads.ds_rxstatus3 & AR_GI) ? ATH9K_RX_GI : 0;
591 	rs->rs_flags |=
592 		(ads.ds_rxstatus3 & AR_2040) ? ATH9K_RX_2040 : 0;
593 
594 	if (ads.ds_rxstatus8 & AR_PreDelimCRCErr)
595 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_PRE;
596 	if (ads.ds_rxstatus8 & AR_PostDelimCRCErr)
597 		rs->rs_flags |= ATH9K_RX_DELIM_CRC_POST;
598 	if (ads.ds_rxstatus8 & AR_DecryptBusyErr)
599 		rs->rs_flags |= ATH9K_RX_DECRYPT_BUSY;
600 
601 	if ((ads.ds_rxstatus8 & AR_RxFrameOK) == 0) {
602 		/*
603 		 * Treat these errors as mutually exclusive to avoid spurious
604 		 * extra error reports from the hardware. If a CRC error is
605 		 * reported, then decryption and MIC errors are irrelevant,
606 		 * the frame is going to be dropped either way
607 		 */
608 		if (ads.ds_rxstatus8 & AR_CRCErr)
609 			rs->rs_status |= ATH9K_RXERR_CRC;
610 		else if (ads.ds_rxstatus8 & AR_PHYErr) {
611 			rs->rs_status |= ATH9K_RXERR_PHY;
612 			phyerr = MS(ads.ds_rxstatus8, AR_PHYErrCode);
613 			rs->rs_phyerr = phyerr;
614 		} else if (ads.ds_rxstatus8 & AR_DecryptCRCErr)
615 			rs->rs_status |= ATH9K_RXERR_DECRYPT;
616 		else if (ads.ds_rxstatus8 & AR_MichaelErr)
617 			rs->rs_status |= ATH9K_RXERR_MIC;
618 	}
619 
620 	if (ads.ds_rxstatus8 & AR_KeyMiss)
621 		rs->rs_status |= ATH9K_RXERR_KEYMISS;
622 
623 	return 0;
624 }
625 EXPORT_SYMBOL(ath9k_hw_rxprocdesc);
626 
627 /*
628  * This can stop or re-enables RX.
629  *
630  * If bool is set this will kill any frame which is currently being
631  * transferred between the MAC and baseband and also prevent any new
632  * frames from getting started.
633  */
634 bool ath9k_hw_setrxabort(struct ath_hw *ah, bool set)
635 {
636 	u32 reg;
637 
638 	if (set) {
639 		REG_SET_BIT(ah, AR_DIAG_SW,
640 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
641 
642 		if (!ath9k_hw_wait(ah, AR_OBS_BUS_1, AR_OBS_BUS_1_RX_STATE,
643 				   0, AH_WAIT_TIMEOUT)) {
644 			REG_CLR_BIT(ah, AR_DIAG_SW,
645 				    (AR_DIAG_RX_DIS |
646 				     AR_DIAG_RX_ABORT));
647 
648 			reg = REG_READ(ah, AR_OBS_BUS_1);
649 			ath_err(ath9k_hw_common(ah),
650 				"RX failed to go idle in 10 ms RXSM=0x%x\n",
651 				reg);
652 
653 			return false;
654 		}
655 	} else {
656 		REG_CLR_BIT(ah, AR_DIAG_SW,
657 			    (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
658 	}
659 
660 	return true;
661 }
662 EXPORT_SYMBOL(ath9k_hw_setrxabort);
663 
664 void ath9k_hw_putrxbuf(struct ath_hw *ah, u32 rxdp)
665 {
666 	REG_WRITE(ah, AR_RXDP, rxdp);
667 }
668 EXPORT_SYMBOL(ath9k_hw_putrxbuf);
669 
670 void ath9k_hw_startpcureceive(struct ath_hw *ah, bool is_scanning)
671 {
672 	ath9k_enable_mib_counters(ah);
673 
674 	ath9k_ani_reset(ah, is_scanning);
675 
676 	REG_CLR_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
677 }
678 EXPORT_SYMBOL(ath9k_hw_startpcureceive);
679 
680 void ath9k_hw_abortpcurecv(struct ath_hw *ah)
681 {
682 	REG_SET_BIT(ah, AR_DIAG_SW, AR_DIAG_RX_ABORT | AR_DIAG_RX_DIS);
683 
684 	ath9k_hw_disable_mib_counters(ah);
685 }
686 EXPORT_SYMBOL(ath9k_hw_abortpcurecv);
687 
688 bool ath9k_hw_stopdmarecv(struct ath_hw *ah, bool *reset)
689 {
690 #define AH_RX_STOP_DMA_TIMEOUT 10000   /* usec */
691 	struct ath_common *common = ath9k_hw_common(ah);
692 	u32 mac_status, last_mac_status = 0;
693 	int i;
694 
695 	/* Enable access to the DMA observation bus */
696 	REG_WRITE(ah, AR_MACMISC,
697 		  ((AR_MACMISC_DMA_OBS_LINE_8 << AR_MACMISC_DMA_OBS_S) |
698 		   (AR_MACMISC_MISC_OBS_BUS_1 <<
699 		    AR_MACMISC_MISC_OBS_BUS_MSB_S)));
700 
701 	REG_WRITE(ah, AR_CR, AR_CR_RXD);
702 
703 	/* Wait for rx enable bit to go low */
704 	for (i = AH_RX_STOP_DMA_TIMEOUT / AH_TIME_QUANTUM; i != 0; i--) {
705 		if ((REG_READ(ah, AR_CR) & AR_CR_RXE) == 0)
706 			break;
707 
708 		if (!AR_SREV_9300_20_OR_LATER(ah)) {
709 			mac_status = REG_READ(ah, AR_DMADBG_7) & 0x7f0;
710 			if (mac_status == 0x1c0 && mac_status == last_mac_status) {
711 				*reset = true;
712 				break;
713 			}
714 
715 			last_mac_status = mac_status;
716 		}
717 
718 		udelay(AH_TIME_QUANTUM);
719 	}
720 
721 	if (i == 0) {
722 		ath_err(common,
723 			"DMA failed to stop in %d ms AR_CR=0x%08x AR_DIAG_SW=0x%08x DMADBG_7=0x%08x\n",
724 			AH_RX_STOP_DMA_TIMEOUT / 1000,
725 			REG_READ(ah, AR_CR),
726 			REG_READ(ah, AR_DIAG_SW),
727 			REG_READ(ah, AR_DMADBG_7));
728 		return false;
729 	} else {
730 		return true;
731 	}
732 
733 #undef AH_RX_STOP_DMA_TIMEOUT
734 }
735 EXPORT_SYMBOL(ath9k_hw_stopdmarecv);
736 
737 int ath9k_hw_beaconq_setup(struct ath_hw *ah)
738 {
739 	struct ath9k_tx_queue_info qi;
740 
741 	memset(&qi, 0, sizeof(qi));
742 	qi.tqi_aifs = 1;
743 	qi.tqi_cwmin = 0;
744 	qi.tqi_cwmax = 0;
745 
746 	if (ah->caps.hw_caps & ATH9K_HW_CAP_EDMA)
747 		qi.tqi_qflags = TXQ_FLAG_TXINT_ENABLE;
748 
749 	return ath9k_hw_setuptxqueue(ah, ATH9K_TX_QUEUE_BEACON, &qi);
750 }
751 EXPORT_SYMBOL(ath9k_hw_beaconq_setup);
752 
753 bool ath9k_hw_intrpend(struct ath_hw *ah)
754 {
755 	u32 host_isr;
756 
757 	if (AR_SREV_9100(ah))
758 		return true;
759 
760 	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
761 
762 	if (((host_isr & AR_INTR_MAC_IRQ) ||
763 	     (host_isr & AR_INTR_ASYNC_MASK_MCI)) &&
764 	    (host_isr != AR_INTR_SPURIOUS))
765 		return true;
766 
767 	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
768 	if ((host_isr & AR_INTR_SYNC_DEFAULT)
769 	    && (host_isr != AR_INTR_SPURIOUS))
770 		return true;
771 
772 	return false;
773 }
774 EXPORT_SYMBOL(ath9k_hw_intrpend);
775 
776 void ath9k_hw_kill_interrupts(struct ath_hw *ah)
777 {
778 	struct ath_common *common = ath9k_hw_common(ah);
779 
780 	ath_dbg(common, INTERRUPT, "disable IER\n");
781 	REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
782 	(void) REG_READ(ah, AR_IER);
783 	if (!AR_SREV_9100(ah)) {
784 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
785 		(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
786 
787 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
788 		(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
789 	}
790 }
791 EXPORT_SYMBOL(ath9k_hw_kill_interrupts);
792 
793 void ath9k_hw_disable_interrupts(struct ath_hw *ah)
794 {
795 	if (!(ah->imask & ATH9K_INT_GLOBAL))
796 		atomic_set(&ah->intr_ref_cnt, -1);
797 	else
798 		atomic_dec(&ah->intr_ref_cnt);
799 
800 	ath9k_hw_kill_interrupts(ah);
801 }
802 EXPORT_SYMBOL(ath9k_hw_disable_interrupts);
803 
804 void ath9k_hw_enable_interrupts(struct ath_hw *ah)
805 {
806 	struct ath_common *common = ath9k_hw_common(ah);
807 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
808 	u32 async_mask;
809 
810 	if (!(ah->imask & ATH9K_INT_GLOBAL))
811 		return;
812 
813 	if (!atomic_inc_and_test(&ah->intr_ref_cnt)) {
814 		ath_dbg(common, INTERRUPT, "Do not enable IER ref count %d\n",
815 			atomic_read(&ah->intr_ref_cnt));
816 		return;
817 	}
818 
819 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
820 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
821 
822 	async_mask = AR_INTR_MAC_IRQ;
823 
824 	if (ah->imask & ATH9K_INT_MCI)
825 		async_mask |= AR_INTR_ASYNC_MASK_MCI;
826 
827 	ath_dbg(common, INTERRUPT, "enable IER\n");
828 	REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
829 	if (!AR_SREV_9100(ah)) {
830 		REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, async_mask);
831 		REG_WRITE(ah, AR_INTR_ASYNC_MASK, async_mask);
832 
833 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
834 		REG_WRITE(ah, AR_INTR_SYNC_MASK, sync_default);
835 	}
836 	ath_dbg(common, INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
837 		REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
838 }
839 EXPORT_SYMBOL(ath9k_hw_enable_interrupts);
840 
841 void ath9k_hw_set_interrupts(struct ath_hw *ah)
842 {
843 	enum ath9k_int ints = ah->imask;
844 	u32 mask, mask2;
845 	struct ath9k_hw_capabilities *pCap = &ah->caps;
846 	struct ath_common *common = ath9k_hw_common(ah);
847 
848 	if (!(ints & ATH9K_INT_GLOBAL))
849 		ath9k_hw_disable_interrupts(ah);
850 
851 	ath_dbg(common, INTERRUPT, "New interrupt mask 0x%x\n", ints);
852 
853 	mask = ints & ATH9K_INT_COMMON;
854 	mask2 = 0;
855 
856 	if (ints & ATH9K_INT_TX) {
857 		if (ah->config.tx_intr_mitigation)
858 			mask |= AR_IMR_TXMINTR | AR_IMR_TXINTM;
859 		else {
860 			if (ah->txok_interrupt_mask)
861 				mask |= AR_IMR_TXOK;
862 			if (ah->txdesc_interrupt_mask)
863 				mask |= AR_IMR_TXDESC;
864 		}
865 		if (ah->txerr_interrupt_mask)
866 			mask |= AR_IMR_TXERR;
867 		if (ah->txeol_interrupt_mask)
868 			mask |= AR_IMR_TXEOL;
869 	}
870 	if (ints & ATH9K_INT_RX) {
871 		if (AR_SREV_9300_20_OR_LATER(ah)) {
872 			mask |= AR_IMR_RXERR | AR_IMR_RXOK_HP;
873 			if (ah->config.rx_intr_mitigation) {
874 				mask &= ~AR_IMR_RXOK_LP;
875 				mask |=  AR_IMR_RXMINTR | AR_IMR_RXINTM;
876 			} else {
877 				mask |= AR_IMR_RXOK_LP;
878 			}
879 		} else {
880 			if (ah->config.rx_intr_mitigation)
881 				mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
882 			else
883 				mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
884 		}
885 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
886 			mask |= AR_IMR_GENTMR;
887 	}
888 
889 	if (ints & ATH9K_INT_GENTIMER)
890 		mask |= AR_IMR_GENTMR;
891 
892 	if (ints & (ATH9K_INT_BMISC)) {
893 		mask |= AR_IMR_BCNMISC;
894 		if (ints & ATH9K_INT_TIM)
895 			mask2 |= AR_IMR_S2_TIM;
896 		if (ints & ATH9K_INT_DTIM)
897 			mask2 |= AR_IMR_S2_DTIM;
898 		if (ints & ATH9K_INT_DTIMSYNC)
899 			mask2 |= AR_IMR_S2_DTIMSYNC;
900 		if (ints & ATH9K_INT_CABEND)
901 			mask2 |= AR_IMR_S2_CABEND;
902 		if (ints & ATH9K_INT_TSFOOR)
903 			mask2 |= AR_IMR_S2_TSFOOR;
904 	}
905 
906 	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
907 		mask |= AR_IMR_BCNMISC;
908 		if (ints & ATH9K_INT_GTT)
909 			mask2 |= AR_IMR_S2_GTT;
910 		if (ints & ATH9K_INT_CST)
911 			mask2 |= AR_IMR_S2_CST;
912 	}
913 
914 	ath_dbg(common, INTERRUPT, "new IMR 0x%x\n", mask);
915 	REG_WRITE(ah, AR_IMR, mask);
916 	ah->imrs2_reg &= ~(AR_IMR_S2_TIM | AR_IMR_S2_DTIM | AR_IMR_S2_DTIMSYNC |
917 			   AR_IMR_S2_CABEND | AR_IMR_S2_CABTO |
918 			   AR_IMR_S2_TSFOOR | AR_IMR_S2_GTT | AR_IMR_S2_CST);
919 	ah->imrs2_reg |= mask2;
920 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
921 
922 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
923 		if (ints & ATH9K_INT_TIM_TIMER)
924 			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
925 		else
926 			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
927 	}
928 
929 	return;
930 }
931 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
932