xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/init.c (revision f6723b56)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
18 
19 #include <linux/dma-mapping.h>
20 #include <linux/slab.h>
21 #include <linux/ath9k_platform.h>
22 #include <linux/module.h>
23 #include <linux/relay.h>
24 #include <net/ieee80211_radiotap.h>
25 
26 #include "ath9k.h"
27 
28 struct ath9k_eeprom_ctx {
29 	struct completion complete;
30 	struct ath_hw *ah;
31 };
32 
33 static char *dev_info = "ath9k";
34 
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
39 
40 static unsigned int ath9k_debug = ATH_DBG_DEFAULT;
41 module_param_named(debug, ath9k_debug, uint, 0);
42 MODULE_PARM_DESC(debug, "Debugging mask");
43 
44 int ath9k_modparam_nohwcrypt;
45 module_param_named(nohwcrypt, ath9k_modparam_nohwcrypt, int, 0444);
46 MODULE_PARM_DESC(nohwcrypt, "Disable hardware encryption");
47 
48 int led_blink;
49 module_param_named(blink, led_blink, int, 0444);
50 MODULE_PARM_DESC(blink, "Enable LED blink on activity");
51 
52 static int ath9k_btcoex_enable;
53 module_param_named(btcoex_enable, ath9k_btcoex_enable, int, 0444);
54 MODULE_PARM_DESC(btcoex_enable, "Enable wifi-BT coexistence");
55 
56 static int ath9k_bt_ant_diversity;
57 module_param_named(bt_ant_diversity, ath9k_bt_ant_diversity, int, 0444);
58 MODULE_PARM_DESC(bt_ant_diversity, "Enable WLAN/BT RX antenna diversity");
59 
60 static int ath9k_ps_enable;
61 module_param_named(ps_enable, ath9k_ps_enable, int, 0444);
62 MODULE_PARM_DESC(ps_enable, "Enable WLAN PowerSave");
63 
64 bool is_ath9k_unloaded;
65 /* We use the hw_value as an index into our private channel structure */
66 
67 #define CHAN2G(_freq, _idx)  { \
68 	.band = IEEE80211_BAND_2GHZ, \
69 	.center_freq = (_freq), \
70 	.hw_value = (_idx), \
71 	.max_power = 20, \
72 }
73 
74 #define CHAN5G(_freq, _idx) { \
75 	.band = IEEE80211_BAND_5GHZ, \
76 	.center_freq = (_freq), \
77 	.hw_value = (_idx), \
78 	.max_power = 20, \
79 }
80 
81 /* Some 2 GHz radios are actually tunable on 2312-2732
82  * on 5 MHz steps, we support the channels which we know
83  * we have calibration data for all cards though to make
84  * this static */
85 static const struct ieee80211_channel ath9k_2ghz_chantable[] = {
86 	CHAN2G(2412, 0), /* Channel 1 */
87 	CHAN2G(2417, 1), /* Channel 2 */
88 	CHAN2G(2422, 2), /* Channel 3 */
89 	CHAN2G(2427, 3), /* Channel 4 */
90 	CHAN2G(2432, 4), /* Channel 5 */
91 	CHAN2G(2437, 5), /* Channel 6 */
92 	CHAN2G(2442, 6), /* Channel 7 */
93 	CHAN2G(2447, 7), /* Channel 8 */
94 	CHAN2G(2452, 8), /* Channel 9 */
95 	CHAN2G(2457, 9), /* Channel 10 */
96 	CHAN2G(2462, 10), /* Channel 11 */
97 	CHAN2G(2467, 11), /* Channel 12 */
98 	CHAN2G(2472, 12), /* Channel 13 */
99 	CHAN2G(2484, 13), /* Channel 14 */
100 };
101 
102 /* Some 5 GHz radios are actually tunable on XXXX-YYYY
103  * on 5 MHz steps, we support the channels which we know
104  * we have calibration data for all cards though to make
105  * this static */
106 static const struct ieee80211_channel ath9k_5ghz_chantable[] = {
107 	/* _We_ call this UNII 1 */
108 	CHAN5G(5180, 14), /* Channel 36 */
109 	CHAN5G(5200, 15), /* Channel 40 */
110 	CHAN5G(5220, 16), /* Channel 44 */
111 	CHAN5G(5240, 17), /* Channel 48 */
112 	/* _We_ call this UNII 2 */
113 	CHAN5G(5260, 18), /* Channel 52 */
114 	CHAN5G(5280, 19), /* Channel 56 */
115 	CHAN5G(5300, 20), /* Channel 60 */
116 	CHAN5G(5320, 21), /* Channel 64 */
117 	/* _We_ call this "Middle band" */
118 	CHAN5G(5500, 22), /* Channel 100 */
119 	CHAN5G(5520, 23), /* Channel 104 */
120 	CHAN5G(5540, 24), /* Channel 108 */
121 	CHAN5G(5560, 25), /* Channel 112 */
122 	CHAN5G(5580, 26), /* Channel 116 */
123 	CHAN5G(5600, 27), /* Channel 120 */
124 	CHAN5G(5620, 28), /* Channel 124 */
125 	CHAN5G(5640, 29), /* Channel 128 */
126 	CHAN5G(5660, 30), /* Channel 132 */
127 	CHAN5G(5680, 31), /* Channel 136 */
128 	CHAN5G(5700, 32), /* Channel 140 */
129 	/* _We_ call this UNII 3 */
130 	CHAN5G(5745, 33), /* Channel 149 */
131 	CHAN5G(5765, 34), /* Channel 153 */
132 	CHAN5G(5785, 35), /* Channel 157 */
133 	CHAN5G(5805, 36), /* Channel 161 */
134 	CHAN5G(5825, 37), /* Channel 165 */
135 };
136 
137 /* Atheros hardware rate code addition for short premble */
138 #define SHPCHECK(__hw_rate, __flags) \
139 	((__flags & IEEE80211_RATE_SHORT_PREAMBLE) ? (__hw_rate | 0x04 ) : 0)
140 
141 #define RATE(_bitrate, _hw_rate, _flags) {              \
142 	.bitrate        = (_bitrate),                   \
143 	.flags          = (_flags),                     \
144 	.hw_value       = (_hw_rate),                   \
145 	.hw_value_short = (SHPCHECK(_hw_rate, _flags))  \
146 }
147 
148 static struct ieee80211_rate ath9k_legacy_rates[] = {
149 	RATE(10, 0x1b, 0),
150 	RATE(20, 0x1a, IEEE80211_RATE_SHORT_PREAMBLE),
151 	RATE(55, 0x19, IEEE80211_RATE_SHORT_PREAMBLE),
152 	RATE(110, 0x18, IEEE80211_RATE_SHORT_PREAMBLE),
153 	RATE(60, 0x0b, (IEEE80211_RATE_SUPPORTS_5MHZ |
154 			IEEE80211_RATE_SUPPORTS_10MHZ)),
155 	RATE(90, 0x0f, (IEEE80211_RATE_SUPPORTS_5MHZ |
156 			IEEE80211_RATE_SUPPORTS_10MHZ)),
157 	RATE(120, 0x0a, (IEEE80211_RATE_SUPPORTS_5MHZ |
158 			 IEEE80211_RATE_SUPPORTS_10MHZ)),
159 	RATE(180, 0x0e, (IEEE80211_RATE_SUPPORTS_5MHZ |
160 			 IEEE80211_RATE_SUPPORTS_10MHZ)),
161 	RATE(240, 0x09, (IEEE80211_RATE_SUPPORTS_5MHZ |
162 			 IEEE80211_RATE_SUPPORTS_10MHZ)),
163 	RATE(360, 0x0d, (IEEE80211_RATE_SUPPORTS_5MHZ |
164 			 IEEE80211_RATE_SUPPORTS_10MHZ)),
165 	RATE(480, 0x08, (IEEE80211_RATE_SUPPORTS_5MHZ |
166 			 IEEE80211_RATE_SUPPORTS_10MHZ)),
167 	RATE(540, 0x0c, (IEEE80211_RATE_SUPPORTS_5MHZ |
168 			 IEEE80211_RATE_SUPPORTS_10MHZ)),
169 };
170 
171 #ifdef CONFIG_MAC80211_LEDS
172 static const struct ieee80211_tpt_blink ath9k_tpt_blink[] = {
173 	{ .throughput = 0 * 1024, .blink_time = 334 },
174 	{ .throughput = 1 * 1024, .blink_time = 260 },
175 	{ .throughput = 5 * 1024, .blink_time = 220 },
176 	{ .throughput = 10 * 1024, .blink_time = 190 },
177 	{ .throughput = 20 * 1024, .blink_time = 170 },
178 	{ .throughput = 50 * 1024, .blink_time = 150 },
179 	{ .throughput = 70 * 1024, .blink_time = 130 },
180 	{ .throughput = 100 * 1024, .blink_time = 110 },
181 	{ .throughput = 200 * 1024, .blink_time = 80 },
182 	{ .throughput = 300 * 1024, .blink_time = 50 },
183 };
184 #endif
185 
186 static void ath9k_deinit_softc(struct ath_softc *sc);
187 
188 /*
189  * Read and write, they both share the same lock. We do this to serialize
190  * reads and writes on Atheros 802.11n PCI devices only. This is required
191  * as the FIFO on these devices can only accept sanely 2 requests.
192  */
193 
194 static void ath9k_iowrite32(void *hw_priv, u32 val, u32 reg_offset)
195 {
196 	struct ath_hw *ah = (struct ath_hw *) hw_priv;
197 	struct ath_common *common = ath9k_hw_common(ah);
198 	struct ath_softc *sc = (struct ath_softc *) common->priv;
199 
200 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_ON) {
201 		unsigned long flags;
202 		spin_lock_irqsave(&sc->sc_serial_rw, flags);
203 		iowrite32(val, sc->mem + reg_offset);
204 		spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
205 	} else
206 		iowrite32(val, sc->mem + reg_offset);
207 }
208 
209 static unsigned int ath9k_ioread32(void *hw_priv, u32 reg_offset)
210 {
211 	struct ath_hw *ah = (struct ath_hw *) hw_priv;
212 	struct ath_common *common = ath9k_hw_common(ah);
213 	struct ath_softc *sc = (struct ath_softc *) common->priv;
214 	u32 val;
215 
216 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_ON) {
217 		unsigned long flags;
218 		spin_lock_irqsave(&sc->sc_serial_rw, flags);
219 		val = ioread32(sc->mem + reg_offset);
220 		spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
221 	} else
222 		val = ioread32(sc->mem + reg_offset);
223 	return val;
224 }
225 
226 static unsigned int __ath9k_reg_rmw(struct ath_softc *sc, u32 reg_offset,
227 				    u32 set, u32 clr)
228 {
229 	u32 val;
230 
231 	val = ioread32(sc->mem + reg_offset);
232 	val &= ~clr;
233 	val |= set;
234 	iowrite32(val, sc->mem + reg_offset);
235 
236 	return val;
237 }
238 
239 static unsigned int ath9k_reg_rmw(void *hw_priv, u32 reg_offset, u32 set, u32 clr)
240 {
241 	struct ath_hw *ah = (struct ath_hw *) hw_priv;
242 	struct ath_common *common = ath9k_hw_common(ah);
243 	struct ath_softc *sc = (struct ath_softc *) common->priv;
244 	unsigned long uninitialized_var(flags);
245 	u32 val;
246 
247 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_ON) {
248 		spin_lock_irqsave(&sc->sc_serial_rw, flags);
249 		val = __ath9k_reg_rmw(sc, reg_offset, set, clr);
250 		spin_unlock_irqrestore(&sc->sc_serial_rw, flags);
251 	} else
252 		val = __ath9k_reg_rmw(sc, reg_offset, set, clr);
253 
254 	return val;
255 }
256 
257 /**************************/
258 /*     Initialization     */
259 /**************************/
260 
261 static void setup_ht_cap(struct ath_softc *sc,
262 			 struct ieee80211_sta_ht_cap *ht_info)
263 {
264 	struct ath_hw *ah = sc->sc_ah;
265 	struct ath_common *common = ath9k_hw_common(ah);
266 	u8 tx_streams, rx_streams;
267 	int i, max_streams;
268 
269 	ht_info->ht_supported = true;
270 	ht_info->cap = IEEE80211_HT_CAP_SUP_WIDTH_20_40 |
271 		       IEEE80211_HT_CAP_SM_PS |
272 		       IEEE80211_HT_CAP_SGI_40 |
273 		       IEEE80211_HT_CAP_DSSSCCK40;
274 
275 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_LDPC)
276 		ht_info->cap |= IEEE80211_HT_CAP_LDPC_CODING;
277 
278 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_SGI_20)
279 		ht_info->cap |= IEEE80211_HT_CAP_SGI_20;
280 
281 	ht_info->ampdu_factor = IEEE80211_HT_MAX_AMPDU_64K;
282 	ht_info->ampdu_density = IEEE80211_HT_MPDU_DENSITY_8;
283 
284 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah))
285 		max_streams = 1;
286 	else if (AR_SREV_9462(ah))
287 		max_streams = 2;
288 	else if (AR_SREV_9300_20_OR_LATER(ah))
289 		max_streams = 3;
290 	else
291 		max_streams = 2;
292 
293 	if (AR_SREV_9280_20_OR_LATER(ah)) {
294 		if (max_streams >= 2)
295 			ht_info->cap |= IEEE80211_HT_CAP_TX_STBC;
296 		ht_info->cap |= (1 << IEEE80211_HT_CAP_RX_STBC_SHIFT);
297 	}
298 
299 	/* set up supported mcs set */
300 	memset(&ht_info->mcs, 0, sizeof(ht_info->mcs));
301 	tx_streams = ath9k_cmn_count_streams(ah->txchainmask, max_streams);
302 	rx_streams = ath9k_cmn_count_streams(ah->rxchainmask, max_streams);
303 
304 	ath_dbg(common, CONFIG, "TX streams %d, RX streams: %d\n",
305 		tx_streams, rx_streams);
306 
307 	if (tx_streams != rx_streams) {
308 		ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_RX_DIFF;
309 		ht_info->mcs.tx_params |= ((tx_streams - 1) <<
310 				IEEE80211_HT_MCS_TX_MAX_STREAMS_SHIFT);
311 	}
312 
313 	for (i = 0; i < rx_streams; i++)
314 		ht_info->mcs.rx_mask[i] = 0xff;
315 
316 	ht_info->mcs.tx_params |= IEEE80211_HT_MCS_TX_DEFINED;
317 }
318 
319 static void ath9k_reg_notifier(struct wiphy *wiphy,
320 			       struct regulatory_request *request)
321 {
322 	struct ieee80211_hw *hw = wiphy_to_ieee80211_hw(wiphy);
323 	struct ath_softc *sc = hw->priv;
324 	struct ath_hw *ah = sc->sc_ah;
325 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
326 
327 	ath_reg_notifier_apply(wiphy, request, reg);
328 
329 	/* Set tx power */
330 	if (ah->curchan) {
331 		sc->config.txpowlimit = 2 * ah->curchan->chan->max_power;
332 		ath9k_ps_wakeup(sc);
333 		ath9k_hw_set_txpowerlimit(ah, sc->config.txpowlimit, false);
334 		sc->curtxpow = ath9k_hw_regulatory(ah)->power_limit;
335 		/* synchronize DFS detector if regulatory domain changed */
336 		if (sc->dfs_detector != NULL)
337 			sc->dfs_detector->set_dfs_domain(sc->dfs_detector,
338 							 request->dfs_region);
339 		ath9k_ps_restore(sc);
340 	}
341 }
342 
343 /*
344  *  This function will allocate both the DMA descriptor structure, and the
345  *  buffers it contains.  These are used to contain the descriptors used
346  *  by the system.
347 */
348 int ath_descdma_setup(struct ath_softc *sc, struct ath_descdma *dd,
349 		      struct list_head *head, const char *name,
350 		      int nbuf, int ndesc, bool is_tx)
351 {
352 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
353 	u8 *ds;
354 	int i, bsize, desc_len;
355 
356 	ath_dbg(common, CONFIG, "%s DMA: %u buffers %u desc/buf\n",
357 		name, nbuf, ndesc);
358 
359 	INIT_LIST_HEAD(head);
360 
361 	if (is_tx)
362 		desc_len = sc->sc_ah->caps.tx_desc_len;
363 	else
364 		desc_len = sizeof(struct ath_desc);
365 
366 	/* ath_desc must be a multiple of DWORDs */
367 	if ((desc_len % 4) != 0) {
368 		ath_err(common, "ath_desc not DWORD aligned\n");
369 		BUG_ON((desc_len % 4) != 0);
370 		return -ENOMEM;
371 	}
372 
373 	dd->dd_desc_len = desc_len * nbuf * ndesc;
374 
375 	/*
376 	 * Need additional DMA memory because we can't use
377 	 * descriptors that cross the 4K page boundary. Assume
378 	 * one skipped descriptor per 4K page.
379 	 */
380 	if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_4KB_SPLITTRANS)) {
381 		u32 ndesc_skipped =
382 			ATH_DESC_4KB_BOUND_NUM_SKIPPED(dd->dd_desc_len);
383 		u32 dma_len;
384 
385 		while (ndesc_skipped) {
386 			dma_len = ndesc_skipped * desc_len;
387 			dd->dd_desc_len += dma_len;
388 
389 			ndesc_skipped = ATH_DESC_4KB_BOUND_NUM_SKIPPED(dma_len);
390 		}
391 	}
392 
393 	/* allocate descriptors */
394 	dd->dd_desc = dmam_alloc_coherent(sc->dev, dd->dd_desc_len,
395 					  &dd->dd_desc_paddr, GFP_KERNEL);
396 	if (!dd->dd_desc)
397 		return -ENOMEM;
398 
399 	ds = (u8 *) dd->dd_desc;
400 	ath_dbg(common, CONFIG, "%s DMA map: %p (%u) -> %llx (%u)\n",
401 		name, ds, (u32) dd->dd_desc_len,
402 		ito64(dd->dd_desc_paddr), /*XXX*/(u32) dd->dd_desc_len);
403 
404 	/* allocate buffers */
405 	if (is_tx) {
406 		struct ath_buf *bf;
407 
408 		bsize = sizeof(struct ath_buf) * nbuf;
409 		bf = devm_kzalloc(sc->dev, bsize, GFP_KERNEL);
410 		if (!bf)
411 			return -ENOMEM;
412 
413 		for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
414 			bf->bf_desc = ds;
415 			bf->bf_daddr = DS2PHYS(dd, ds);
416 
417 			if (!(sc->sc_ah->caps.hw_caps &
418 				  ATH9K_HW_CAP_4KB_SPLITTRANS)) {
419 				/*
420 				 * Skip descriptor addresses which can cause 4KB
421 				 * boundary crossing (addr + length) with a 32 dword
422 				 * descriptor fetch.
423 				 */
424 				while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
425 					BUG_ON((caddr_t) bf->bf_desc >=
426 						   ((caddr_t) dd->dd_desc +
427 						dd->dd_desc_len));
428 
429 					ds += (desc_len * ndesc);
430 					bf->bf_desc = ds;
431 					bf->bf_daddr = DS2PHYS(dd, ds);
432 				}
433 			}
434 			list_add_tail(&bf->list, head);
435 		}
436 	} else {
437 		struct ath_rxbuf *bf;
438 
439 		bsize = sizeof(struct ath_rxbuf) * nbuf;
440 		bf = devm_kzalloc(sc->dev, bsize, GFP_KERNEL);
441 		if (!bf)
442 			return -ENOMEM;
443 
444 		for (i = 0; i < nbuf; i++, bf++, ds += (desc_len * ndesc)) {
445 			bf->bf_desc = ds;
446 			bf->bf_daddr = DS2PHYS(dd, ds);
447 
448 			if (!(sc->sc_ah->caps.hw_caps &
449 				  ATH9K_HW_CAP_4KB_SPLITTRANS)) {
450 				/*
451 				 * Skip descriptor addresses which can cause 4KB
452 				 * boundary crossing (addr + length) with a 32 dword
453 				 * descriptor fetch.
454 				 */
455 				while (ATH_DESC_4KB_BOUND_CHECK(bf->bf_daddr)) {
456 					BUG_ON((caddr_t) bf->bf_desc >=
457 						   ((caddr_t) dd->dd_desc +
458 						dd->dd_desc_len));
459 
460 					ds += (desc_len * ndesc);
461 					bf->bf_desc = ds;
462 					bf->bf_daddr = DS2PHYS(dd, ds);
463 				}
464 			}
465 			list_add_tail(&bf->list, head);
466 		}
467 	}
468 	return 0;
469 }
470 
471 static int ath9k_init_queues(struct ath_softc *sc)
472 {
473 	int i = 0;
474 
475 	sc->beacon.beaconq = ath9k_hw_beaconq_setup(sc->sc_ah);
476 	sc->beacon.cabq = ath_txq_setup(sc, ATH9K_TX_QUEUE_CAB, 0);
477 	ath_cabq_update(sc);
478 
479 	sc->tx.uapsdq = ath_txq_setup(sc, ATH9K_TX_QUEUE_UAPSD, 0);
480 
481 	for (i = 0; i < IEEE80211_NUM_ACS; i++) {
482 		sc->tx.txq_map[i] = ath_txq_setup(sc, ATH9K_TX_QUEUE_DATA, i);
483 		sc->tx.txq_map[i]->mac80211_qnum = i;
484 		sc->tx.txq_max_pending[i] = ATH_MAX_QDEPTH;
485 	}
486 	return 0;
487 }
488 
489 static int ath9k_init_channels_rates(struct ath_softc *sc)
490 {
491 	void *channels;
492 
493 	BUILD_BUG_ON(ARRAY_SIZE(ath9k_2ghz_chantable) +
494 		     ARRAY_SIZE(ath9k_5ghz_chantable) !=
495 		     ATH9K_NUM_CHANNELS);
496 
497 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ) {
498 		channels = devm_kzalloc(sc->dev,
499 			sizeof(ath9k_2ghz_chantable), GFP_KERNEL);
500 		if (!channels)
501 		    return -ENOMEM;
502 
503 		memcpy(channels, ath9k_2ghz_chantable,
504 		       sizeof(ath9k_2ghz_chantable));
505 		sc->sbands[IEEE80211_BAND_2GHZ].channels = channels;
506 		sc->sbands[IEEE80211_BAND_2GHZ].band = IEEE80211_BAND_2GHZ;
507 		sc->sbands[IEEE80211_BAND_2GHZ].n_channels =
508 			ARRAY_SIZE(ath9k_2ghz_chantable);
509 		sc->sbands[IEEE80211_BAND_2GHZ].bitrates = ath9k_legacy_rates;
510 		sc->sbands[IEEE80211_BAND_2GHZ].n_bitrates =
511 			ARRAY_SIZE(ath9k_legacy_rates);
512 	}
513 
514 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ) {
515 		channels = devm_kzalloc(sc->dev,
516 			sizeof(ath9k_5ghz_chantable), GFP_KERNEL);
517 		if (!channels)
518 			return -ENOMEM;
519 
520 		memcpy(channels, ath9k_5ghz_chantable,
521 		       sizeof(ath9k_5ghz_chantable));
522 		sc->sbands[IEEE80211_BAND_5GHZ].channels = channels;
523 		sc->sbands[IEEE80211_BAND_5GHZ].band = IEEE80211_BAND_5GHZ;
524 		sc->sbands[IEEE80211_BAND_5GHZ].n_channels =
525 			ARRAY_SIZE(ath9k_5ghz_chantable);
526 		sc->sbands[IEEE80211_BAND_5GHZ].bitrates =
527 			ath9k_legacy_rates + 4;
528 		sc->sbands[IEEE80211_BAND_5GHZ].n_bitrates =
529 			ARRAY_SIZE(ath9k_legacy_rates) - 4;
530 	}
531 	return 0;
532 }
533 
534 static void ath9k_init_misc(struct ath_softc *sc)
535 {
536 	struct ath_common *common = ath9k_hw_common(sc->sc_ah);
537 	int i = 0;
538 
539 	setup_timer(&common->ani.timer, ath_ani_calibrate, (unsigned long)sc);
540 
541 	sc->last_rssi = ATH_RSSI_DUMMY_MARKER;
542 	sc->config.txpowlimit = ATH_TXPOWER_MAX;
543 	memcpy(common->bssidmask, ath_bcast_mac, ETH_ALEN);
544 	sc->beacon.slottime = ATH9K_SLOT_TIME_9;
545 
546 	for (i = 0; i < ARRAY_SIZE(sc->beacon.bslot); i++)
547 		sc->beacon.bslot[i] = NULL;
548 
549 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)
550 		sc->ant_comb.count = ATH_ANT_DIV_COMB_INIT_COUNT;
551 
552 	sc->spec_config.enabled = 0;
553 	sc->spec_config.short_repeat = true;
554 	sc->spec_config.count = 8;
555 	sc->spec_config.endless = false;
556 	sc->spec_config.period = 0xFF;
557 	sc->spec_config.fft_period = 0xF;
558 }
559 
560 static void ath9k_init_pcoem_platform(struct ath_softc *sc)
561 {
562 	struct ath_hw *ah = sc->sc_ah;
563 	struct ath9k_hw_capabilities *pCap = &ah->caps;
564 	struct ath_common *common = ath9k_hw_common(ah);
565 
566 	if (common->bus_ops->ath_bus_type != ATH_PCI)
567 		return;
568 
569 	if (sc->driver_data & (ATH9K_PCI_CUS198 |
570 			       ATH9K_PCI_CUS230)) {
571 		ah->config.xlna_gpio = 9;
572 		ah->config.xatten_margin_cfg = true;
573 		ah->config.alt_mingainidx = true;
574 		ah->config.ant_ctrl_comm2g_switch_enable = 0x000BBB88;
575 		sc->ant_comb.low_rssi_thresh = 20;
576 		sc->ant_comb.fast_div_bias = 3;
577 
578 		ath_info(common, "Set parameters for %s\n",
579 			 (sc->driver_data & ATH9K_PCI_CUS198) ?
580 			 "CUS198" : "CUS230");
581 	}
582 
583 	if (sc->driver_data & ATH9K_PCI_CUS217)
584 		ath_info(common, "CUS217 card detected\n");
585 
586 	if (sc->driver_data & ATH9K_PCI_CUS252)
587 		ath_info(common, "CUS252 card detected\n");
588 
589 	if (sc->driver_data & ATH9K_PCI_AR9565_1ANT)
590 		ath_info(common, "WB335 1-ANT card detected\n");
591 
592 	if (sc->driver_data & ATH9K_PCI_AR9565_2ANT)
593 		ath_info(common, "WB335 2-ANT card detected\n");
594 
595 	if (sc->driver_data & ATH9K_PCI_KILLER)
596 		ath_info(common, "Killer Wireless card detected\n");
597 
598 	/*
599 	 * Some WB335 cards do not support antenna diversity. Since
600 	 * we use a hardcoded value for AR9565 instead of using the
601 	 * EEPROM/OTP data, remove the combining feature from
602 	 * the HW capabilities bitmap.
603 	 */
604 	if (sc->driver_data & (ATH9K_PCI_AR9565_1ANT | ATH9K_PCI_AR9565_2ANT)) {
605 		if (!(sc->driver_data & ATH9K_PCI_BT_ANT_DIV))
606 			pCap->hw_caps &= ~ATH9K_HW_CAP_ANT_DIV_COMB;
607 	}
608 
609 	if (sc->driver_data & ATH9K_PCI_BT_ANT_DIV) {
610 		pCap->hw_caps |= ATH9K_HW_CAP_BT_ANT_DIV;
611 		ath_info(common, "Set BT/WLAN RX diversity capability\n");
612 	}
613 
614 	if (sc->driver_data & ATH9K_PCI_D3_L1_WAR) {
615 		ah->config.pcie_waen = 0x0040473b;
616 		ath_info(common, "Enable WAR for ASPM D3/L1\n");
617 	}
618 
619 	if (sc->driver_data & ATH9K_PCI_NO_PLL_PWRSAVE) {
620 		ah->config.no_pll_pwrsave = true;
621 		ath_info(common, "Disable PLL PowerSave\n");
622 	}
623 }
624 
625 static void ath9k_eeprom_request_cb(const struct firmware *eeprom_blob,
626 				    void *ctx)
627 {
628 	struct ath9k_eeprom_ctx *ec = ctx;
629 
630 	if (eeprom_blob)
631 		ec->ah->eeprom_blob = eeprom_blob;
632 
633 	complete(&ec->complete);
634 }
635 
636 static int ath9k_eeprom_request(struct ath_softc *sc, const char *name)
637 {
638 	struct ath9k_eeprom_ctx ec;
639 	struct ath_hw *ah = ah = sc->sc_ah;
640 	int err;
641 
642 	/* try to load the EEPROM content asynchronously */
643 	init_completion(&ec.complete);
644 	ec.ah = sc->sc_ah;
645 
646 	err = request_firmware_nowait(THIS_MODULE, 1, name, sc->dev, GFP_KERNEL,
647 				      &ec, ath9k_eeprom_request_cb);
648 	if (err < 0) {
649 		ath_err(ath9k_hw_common(ah),
650 			"EEPROM request failed\n");
651 		return err;
652 	}
653 
654 	wait_for_completion(&ec.complete);
655 
656 	if (!ah->eeprom_blob) {
657 		ath_err(ath9k_hw_common(ah),
658 			"Unable to load EEPROM file %s\n", name);
659 		return -EINVAL;
660 	}
661 
662 	return 0;
663 }
664 
665 static void ath9k_eeprom_release(struct ath_softc *sc)
666 {
667 	release_firmware(sc->sc_ah->eeprom_blob);
668 }
669 
670 static int ath9k_init_soc_platform(struct ath_softc *sc)
671 {
672 	struct ath9k_platform_data *pdata = sc->dev->platform_data;
673 	struct ath_hw *ah = sc->sc_ah;
674 	int ret = 0;
675 
676 	if (!pdata)
677 		return 0;
678 
679 	if (pdata->eeprom_name) {
680 		ret = ath9k_eeprom_request(sc, pdata->eeprom_name);
681 		if (ret)
682 			return ret;
683 	}
684 
685 	if (pdata->tx_gain_buffalo)
686 		ah->config.tx_gain_buffalo = true;
687 
688 	return ret;
689 }
690 
691 static int ath9k_init_softc(u16 devid, struct ath_softc *sc,
692 			    const struct ath_bus_ops *bus_ops)
693 {
694 	struct ath9k_platform_data *pdata = sc->dev->platform_data;
695 	struct ath_hw *ah = NULL;
696 	struct ath9k_hw_capabilities *pCap;
697 	struct ath_common *common;
698 	int ret = 0, i;
699 	int csz = 0;
700 
701 	ah = devm_kzalloc(sc->dev, sizeof(struct ath_hw), GFP_KERNEL);
702 	if (!ah)
703 		return -ENOMEM;
704 
705 	ah->dev = sc->dev;
706 	ah->hw = sc->hw;
707 	ah->hw_version.devid = devid;
708 	ah->reg_ops.read = ath9k_ioread32;
709 	ah->reg_ops.write = ath9k_iowrite32;
710 	ah->reg_ops.rmw = ath9k_reg_rmw;
711 	sc->sc_ah = ah;
712 	pCap = &ah->caps;
713 
714 	common = ath9k_hw_common(ah);
715 	sc->dfs_detector = dfs_pattern_detector_init(common, NL80211_DFS_UNSET);
716 	sc->tx99_power = MAX_RATE_POWER + 1;
717 	init_waitqueue_head(&sc->tx_wait);
718 
719 	if (!pdata) {
720 		ah->ah_flags |= AH_USE_EEPROM;
721 		sc->sc_ah->led_pin = -1;
722 	} else {
723 		sc->sc_ah->gpio_mask = pdata->gpio_mask;
724 		sc->sc_ah->gpio_val = pdata->gpio_val;
725 		sc->sc_ah->led_pin = pdata->led_pin;
726 		ah->is_clk_25mhz = pdata->is_clk_25mhz;
727 		ah->get_mac_revision = pdata->get_mac_revision;
728 		ah->external_reset = pdata->external_reset;
729 	}
730 
731 	common->ops = &ah->reg_ops;
732 	common->bus_ops = bus_ops;
733 	common->ah = ah;
734 	common->hw = sc->hw;
735 	common->priv = sc;
736 	common->debug_mask = ath9k_debug;
737 	common->btcoex_enabled = ath9k_btcoex_enable == 1;
738 	common->disable_ani = false;
739 
740 	/*
741 	 * Platform quirks.
742 	 */
743 	ath9k_init_pcoem_platform(sc);
744 
745 	ret = ath9k_init_soc_platform(sc);
746 	if (ret)
747 		return ret;
748 
749 	/*
750 	 * Enable WLAN/BT RX Antenna diversity only when:
751 	 *
752 	 * - BTCOEX is disabled.
753 	 * - the user manually requests the feature.
754 	 * - the HW cap is set using the platform data.
755 	 */
756 	if (!common->btcoex_enabled && ath9k_bt_ant_diversity &&
757 	    (pCap->hw_caps & ATH9K_HW_CAP_BT_ANT_DIV))
758 		common->bt_ant_diversity = 1;
759 
760 	spin_lock_init(&common->cc_lock);
761 	spin_lock_init(&sc->sc_serial_rw);
762 	spin_lock_init(&sc->sc_pm_lock);
763 	mutex_init(&sc->mutex);
764 	tasklet_init(&sc->intr_tq, ath9k_tasklet, (unsigned long)sc);
765 	tasklet_init(&sc->bcon_tasklet, ath9k_beacon_tasklet,
766 		     (unsigned long)sc);
767 
768 	setup_timer(&sc->sleep_timer, ath_ps_full_sleep, (unsigned long)sc);
769 	INIT_WORK(&sc->hw_reset_work, ath_reset_work);
770 	INIT_WORK(&sc->paprd_work, ath_paprd_calibrate);
771 	INIT_DELAYED_WORK(&sc->hw_pll_work, ath_hw_pll_work);
772 
773 	/*
774 	 * Cache line size is used to size and align various
775 	 * structures used to communicate with the hardware.
776 	 */
777 	ath_read_cachesize(common, &csz);
778 	common->cachelsz = csz << 2; /* convert to bytes */
779 
780 	/* Initializes the hardware for all supported chipsets */
781 	ret = ath9k_hw_init(ah);
782 	if (ret)
783 		goto err_hw;
784 
785 	if (pdata && pdata->macaddr)
786 		memcpy(common->macaddr, pdata->macaddr, ETH_ALEN);
787 
788 	ret = ath9k_init_queues(sc);
789 	if (ret)
790 		goto err_queues;
791 
792 	ret =  ath9k_init_btcoex(sc);
793 	if (ret)
794 		goto err_btcoex;
795 
796 	ret = ath9k_init_channels_rates(sc);
797 	if (ret)
798 		goto err_btcoex;
799 
800 	ath9k_cmn_init_crypto(sc->sc_ah);
801 	ath9k_init_misc(sc);
802 	ath_fill_led_pin(sc);
803 
804 	if (common->bus_ops->aspm_init)
805 		common->bus_ops->aspm_init(common);
806 
807 	return 0;
808 
809 err_btcoex:
810 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
811 		if (ATH_TXQ_SETUP(sc, i))
812 			ath_tx_cleanupq(sc, &sc->tx.txq[i]);
813 err_queues:
814 	ath9k_hw_deinit(ah);
815 err_hw:
816 	ath9k_eeprom_release(sc);
817 	dev_kfree_skb_any(sc->tx99_skb);
818 	return ret;
819 }
820 
821 static void ath9k_init_band_txpower(struct ath_softc *sc, int band)
822 {
823 	struct ieee80211_supported_band *sband;
824 	struct ieee80211_channel *chan;
825 	struct ath_hw *ah = sc->sc_ah;
826 	struct cfg80211_chan_def chandef;
827 	int i;
828 
829 	sband = &sc->sbands[band];
830 	for (i = 0; i < sband->n_channels; i++) {
831 		chan = &sband->channels[i];
832 		ah->curchan = &ah->channels[chan->hw_value];
833 		cfg80211_chandef_create(&chandef, chan, NL80211_CHAN_HT20);
834 		ath9k_cmn_get_channel(sc->hw, ah, &chandef);
835 		ath9k_hw_set_txpowerlimit(ah, MAX_RATE_POWER, true);
836 	}
837 }
838 
839 static void ath9k_init_txpower_limits(struct ath_softc *sc)
840 {
841 	struct ath_hw *ah = sc->sc_ah;
842 	struct ath9k_channel *curchan = ah->curchan;
843 
844 	if (ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
845 		ath9k_init_band_txpower(sc, IEEE80211_BAND_2GHZ);
846 	if (ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
847 		ath9k_init_band_txpower(sc, IEEE80211_BAND_5GHZ);
848 
849 	ah->curchan = curchan;
850 }
851 
852 void ath9k_reload_chainmask_settings(struct ath_softc *sc)
853 {
854 	if (!(sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT))
855 		return;
856 
857 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
858 		setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_2GHZ].ht_cap);
859 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
860 		setup_ht_cap(sc, &sc->sbands[IEEE80211_BAND_5GHZ].ht_cap);
861 }
862 
863 static const struct ieee80211_iface_limit if_limits[] = {
864 	{ .max = 2048,	.types = BIT(NL80211_IFTYPE_STATION) |
865 				 BIT(NL80211_IFTYPE_P2P_CLIENT) |
866 				 BIT(NL80211_IFTYPE_WDS) },
867 	{ .max = 8,	.types =
868 #ifdef CONFIG_MAC80211_MESH
869 				 BIT(NL80211_IFTYPE_MESH_POINT) |
870 #endif
871 				 BIT(NL80211_IFTYPE_AP) |
872 				 BIT(NL80211_IFTYPE_P2P_GO) },
873 };
874 
875 static const struct ieee80211_iface_limit if_dfs_limits[] = {
876 	{ .max = 1,	.types = BIT(NL80211_IFTYPE_AP) |
877 #ifdef CONFIG_MAC80211_MESH
878 				 BIT(NL80211_IFTYPE_MESH_POINT) |
879 #endif
880 				 BIT(NL80211_IFTYPE_ADHOC) },
881 };
882 
883 static const struct ieee80211_iface_combination if_comb[] = {
884 	{
885 		.limits = if_limits,
886 		.n_limits = ARRAY_SIZE(if_limits),
887 		.max_interfaces = 2048,
888 		.num_different_channels = 1,
889 		.beacon_int_infra_match = true,
890 	},
891 	{
892 		.limits = if_dfs_limits,
893 		.n_limits = ARRAY_SIZE(if_dfs_limits),
894 		.max_interfaces = 1,
895 		.num_different_channels = 1,
896 		.beacon_int_infra_match = true,
897 		.radar_detect_widths =	BIT(NL80211_CHAN_WIDTH_20_NOHT) |
898 					BIT(NL80211_CHAN_WIDTH_20),
899 	}
900 };
901 
902 static void ath9k_set_hw_capab(struct ath_softc *sc, struct ieee80211_hw *hw)
903 {
904 	struct ath_hw *ah = sc->sc_ah;
905 	struct ath_common *common = ath9k_hw_common(ah);
906 
907 	hw->flags = IEEE80211_HW_RX_INCLUDES_FCS |
908 		IEEE80211_HW_HOST_BROADCAST_PS_BUFFERING |
909 		IEEE80211_HW_SIGNAL_DBM |
910 		IEEE80211_HW_PS_NULLFUNC_STACK |
911 		IEEE80211_HW_SPECTRUM_MGMT |
912 		IEEE80211_HW_REPORTS_TX_ACK_STATUS |
913 		IEEE80211_HW_SUPPORTS_RC_TABLE |
914 		IEEE80211_HW_SUPPORTS_HT_CCK_RATES;
915 
916 	if (ath9k_ps_enable)
917 		hw->flags |= IEEE80211_HW_SUPPORTS_PS;
918 
919 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_HT) {
920 		hw->flags |= IEEE80211_HW_AMPDU_AGGREGATION;
921 
922 		if (AR_SREV_9280_20_OR_LATER(ah))
923 			hw->radiotap_mcs_details |=
924 				IEEE80211_RADIOTAP_MCS_HAVE_STBC;
925 	}
926 
927 	if (AR_SREV_9160_10_OR_LATER(sc->sc_ah) || ath9k_modparam_nohwcrypt)
928 		hw->flags |= IEEE80211_HW_MFP_CAPABLE;
929 
930 	hw->wiphy->features |= NL80211_FEATURE_ACTIVE_MONITOR;
931 
932 	if (!config_enabled(CONFIG_ATH9K_TX99)) {
933 		hw->wiphy->interface_modes =
934 			BIT(NL80211_IFTYPE_P2P_GO) |
935 			BIT(NL80211_IFTYPE_P2P_CLIENT) |
936 			BIT(NL80211_IFTYPE_AP) |
937 			BIT(NL80211_IFTYPE_WDS) |
938 			BIT(NL80211_IFTYPE_STATION) |
939 			BIT(NL80211_IFTYPE_ADHOC) |
940 			BIT(NL80211_IFTYPE_MESH_POINT);
941 		hw->wiphy->iface_combinations = if_comb;
942 		hw->wiphy->n_iface_combinations = ARRAY_SIZE(if_comb);
943 	}
944 
945 	hw->wiphy->flags &= ~WIPHY_FLAG_PS_ON_BY_DEFAULT;
946 
947 	hw->wiphy->flags |= WIPHY_FLAG_IBSS_RSN;
948 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_TDLS;
949 	hw->wiphy->flags |= WIPHY_FLAG_HAS_REMAIN_ON_CHANNEL;
950 	hw->wiphy->flags |= WIPHY_FLAG_SUPPORTS_5_10_MHZ;
951 	hw->wiphy->flags |= WIPHY_FLAG_HAS_CHANNEL_SWITCH;
952 
953 	hw->queues = 4;
954 	hw->max_rates = 4;
955 	hw->max_listen_interval = 1;
956 	hw->max_rate_tries = 10;
957 	hw->sta_data_size = sizeof(struct ath_node);
958 	hw->vif_data_size = sizeof(struct ath_vif);
959 
960 	hw->wiphy->available_antennas_rx = BIT(ah->caps.max_rxchains) - 1;
961 	hw->wiphy->available_antennas_tx = BIT(ah->caps.max_txchains) - 1;
962 
963 	/* single chain devices with rx diversity */
964 	if (ah->caps.hw_caps & ATH9K_HW_CAP_ANT_DIV_COMB)
965 		hw->wiphy->available_antennas_rx = BIT(0) | BIT(1);
966 
967 	sc->ant_rx = hw->wiphy->available_antennas_rx;
968 	sc->ant_tx = hw->wiphy->available_antennas_tx;
969 
970 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_2GHZ)
971 		hw->wiphy->bands[IEEE80211_BAND_2GHZ] =
972 			&sc->sbands[IEEE80211_BAND_2GHZ];
973 	if (sc->sc_ah->caps.hw_caps & ATH9K_HW_CAP_5GHZ)
974 		hw->wiphy->bands[IEEE80211_BAND_5GHZ] =
975 			&sc->sbands[IEEE80211_BAND_5GHZ];
976 
977 	ath9k_init_wow(hw);
978 	ath9k_reload_chainmask_settings(sc);
979 
980 	SET_IEEE80211_PERM_ADDR(hw, common->macaddr);
981 }
982 
983 int ath9k_init_device(u16 devid, struct ath_softc *sc,
984 		    const struct ath_bus_ops *bus_ops)
985 {
986 	struct ieee80211_hw *hw = sc->hw;
987 	struct ath_common *common;
988 	struct ath_hw *ah;
989 	int error = 0;
990 	struct ath_regulatory *reg;
991 
992 	/* Bring up device */
993 	error = ath9k_init_softc(devid, sc, bus_ops);
994 	if (error)
995 		return error;
996 
997 	ah = sc->sc_ah;
998 	common = ath9k_hw_common(ah);
999 	ath9k_set_hw_capab(sc, hw);
1000 
1001 	/* Initialize regulatory */
1002 	error = ath_regd_init(&common->regulatory, sc->hw->wiphy,
1003 			      ath9k_reg_notifier);
1004 	if (error)
1005 		goto deinit;
1006 
1007 	reg = &common->regulatory;
1008 
1009 	/* Setup TX DMA */
1010 	error = ath_tx_init(sc, ATH_TXBUF);
1011 	if (error != 0)
1012 		goto deinit;
1013 
1014 	/* Setup RX DMA */
1015 	error = ath_rx_init(sc, ATH_RXBUF);
1016 	if (error != 0)
1017 		goto deinit;
1018 
1019 	ath9k_init_txpower_limits(sc);
1020 
1021 #ifdef CONFIG_MAC80211_LEDS
1022 	/* must be initialized before ieee80211_register_hw */
1023 	sc->led_cdev.default_trigger = ieee80211_create_tpt_led_trigger(sc->hw,
1024 		IEEE80211_TPT_LEDTRIG_FL_RADIO, ath9k_tpt_blink,
1025 		ARRAY_SIZE(ath9k_tpt_blink));
1026 #endif
1027 
1028 	/* Register with mac80211 */
1029 	error = ieee80211_register_hw(hw);
1030 	if (error)
1031 		goto rx_cleanup;
1032 
1033 	error = ath9k_init_debug(ah);
1034 	if (error) {
1035 		ath_err(common, "Unable to create debugfs files\n");
1036 		goto unregister;
1037 	}
1038 
1039 	/* Handle world regulatory */
1040 	if (!ath_is_world_regd(reg)) {
1041 		error = regulatory_hint(hw->wiphy, reg->alpha2);
1042 		if (error)
1043 			goto debug_cleanup;
1044 	}
1045 
1046 	ath_init_leds(sc);
1047 	ath_start_rfkill_poll(sc);
1048 
1049 	return 0;
1050 
1051 debug_cleanup:
1052 	ath9k_deinit_debug(sc);
1053 unregister:
1054 	ieee80211_unregister_hw(hw);
1055 rx_cleanup:
1056 	ath_rx_cleanup(sc);
1057 deinit:
1058 	ath9k_deinit_softc(sc);
1059 	return error;
1060 }
1061 
1062 /*****************************/
1063 /*     De-Initialization     */
1064 /*****************************/
1065 
1066 static void ath9k_deinit_softc(struct ath_softc *sc)
1067 {
1068 	int i = 0;
1069 
1070 	ath9k_deinit_btcoex(sc);
1071 
1072 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1073 		if (ATH_TXQ_SETUP(sc, i))
1074 			ath_tx_cleanupq(sc, &sc->tx.txq[i]);
1075 
1076 	del_timer_sync(&sc->sleep_timer);
1077 	ath9k_hw_deinit(sc->sc_ah);
1078 	if (sc->dfs_detector != NULL)
1079 		sc->dfs_detector->exit(sc->dfs_detector);
1080 
1081 	ath9k_eeprom_release(sc);
1082 }
1083 
1084 void ath9k_deinit_device(struct ath_softc *sc)
1085 {
1086 	struct ieee80211_hw *hw = sc->hw;
1087 
1088 	ath9k_ps_wakeup(sc);
1089 
1090 	wiphy_rfkill_stop_polling(sc->hw->wiphy);
1091 	ath_deinit_leds(sc);
1092 
1093 	ath9k_ps_restore(sc);
1094 
1095 	ath9k_deinit_debug(sc);
1096 	ieee80211_unregister_hw(hw);
1097 	ath_rx_cleanup(sc);
1098 	ath9k_deinit_softc(sc);
1099 }
1100 
1101 /************************/
1102 /*     Module Hooks     */
1103 /************************/
1104 
1105 static int __init ath9k_init(void)
1106 {
1107 	int error;
1108 
1109 	/* Register rate control algorithm */
1110 	error = ath_rate_control_register();
1111 	if (error != 0) {
1112 		pr_err("Unable to register rate control algorithm: %d\n",
1113 		       error);
1114 		goto err_out;
1115 	}
1116 
1117 	error = ath_pci_init();
1118 	if (error < 0) {
1119 		pr_err("No PCI devices found, driver not installed\n");
1120 		error = -ENODEV;
1121 		goto err_rate_unregister;
1122 	}
1123 
1124 	error = ath_ahb_init();
1125 	if (error < 0) {
1126 		error = -ENODEV;
1127 		goto err_pci_exit;
1128 	}
1129 
1130 	return 0;
1131 
1132  err_pci_exit:
1133 	ath_pci_exit();
1134 
1135  err_rate_unregister:
1136 	ath_rate_control_unregister();
1137  err_out:
1138 	return error;
1139 }
1140 module_init(ath9k_init);
1141 
1142 static void __exit ath9k_exit(void)
1143 {
1144 	is_ath9k_unloaded = true;
1145 	ath_ahb_exit();
1146 	ath_pci_exit();
1147 	ath_rate_control_unregister();
1148 	pr_info("%s: Driver unloaded\n", dev_info);
1149 }
1150 module_exit(ath9k_exit);
1151