xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision f35e839a)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 #include "ar9003_phy.h"
28 #include "debug.h"
29 #include "ath9k.h"
30 
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37 
38 static int __init ath9k_init(void)
39 {
40 	return 0;
41 }
42 module_init(ath9k_init);
43 
44 static void __exit ath9k_exit(void)
45 {
46 	return;
47 }
48 module_exit(ath9k_exit);
49 
50 /* Private hardware callbacks */
51 
52 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
55 }
56 
57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 					struct ath9k_channel *chan)
59 {
60 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62 
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 		return;
67 
68 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70 
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 	/* You will not have this callback if using the old ANI */
74 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 		return;
76 
77 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79 
80 /********************/
81 /* Helper Functions */
82 /********************/
83 
84 #ifdef CONFIG_ATH9K_DEBUGFS
85 
86 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
87 {
88 	struct ath_softc *sc = common->priv;
89 	if (sync_cause)
90 		sc->debug.stats.istats.sync_cause_all++;
91 	if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
92 		sc->debug.stats.istats.sync_rtc_irq++;
93 	if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
94 		sc->debug.stats.istats.sync_mac_irq++;
95 	if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
96 		sc->debug.stats.istats.eeprom_illegal_access++;
97 	if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
98 		sc->debug.stats.istats.apb_timeout++;
99 	if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
100 		sc->debug.stats.istats.pci_mode_conflict++;
101 	if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
102 		sc->debug.stats.istats.host1_fatal++;
103 	if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
104 		sc->debug.stats.istats.host1_perr++;
105 	if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
106 		sc->debug.stats.istats.trcv_fifo_perr++;
107 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
108 		sc->debug.stats.istats.radm_cpl_ep++;
109 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
110 		sc->debug.stats.istats.radm_cpl_dllp_abort++;
111 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
112 		sc->debug.stats.istats.radm_cpl_tlp_abort++;
113 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
114 		sc->debug.stats.istats.radm_cpl_ecrc_err++;
115 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
116 		sc->debug.stats.istats.radm_cpl_timeout++;
117 	if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
118 		sc->debug.stats.istats.local_timeout++;
119 	if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
120 		sc->debug.stats.istats.pm_access++;
121 	if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
122 		sc->debug.stats.istats.mac_awake++;
123 	if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
124 		sc->debug.stats.istats.mac_asleep++;
125 	if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
126 		sc->debug.stats.istats.mac_sleep_access++;
127 }
128 #endif
129 
130 
131 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
132 {
133 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
134 	struct ath_common *common = ath9k_hw_common(ah);
135 	unsigned int clockrate;
136 
137 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
138 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
139 		clockrate = 117;
140 	else if (!ah->curchan) /* should really check for CCK instead */
141 		clockrate = ATH9K_CLOCK_RATE_CCK;
142 	else if (conf->chandef.chan->band == IEEE80211_BAND_2GHZ)
143 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
144 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
145 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
146 	else
147 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
148 
149 	if (conf_is_ht40(conf))
150 		clockrate *= 2;
151 
152 	if (ah->curchan) {
153 		if (IS_CHAN_HALF_RATE(ah->curchan))
154 			clockrate /= 2;
155 		if (IS_CHAN_QUARTER_RATE(ah->curchan))
156 			clockrate /= 4;
157 	}
158 
159 	common->clockrate = clockrate;
160 }
161 
162 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
163 {
164 	struct ath_common *common = ath9k_hw_common(ah);
165 
166 	return usecs * common->clockrate;
167 }
168 
169 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
170 {
171 	int i;
172 
173 	BUG_ON(timeout < AH_TIME_QUANTUM);
174 
175 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
176 		if ((REG_READ(ah, reg) & mask) == val)
177 			return true;
178 
179 		udelay(AH_TIME_QUANTUM);
180 	}
181 
182 	ath_dbg(ath9k_hw_common(ah), ANY,
183 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
184 		timeout, reg, REG_READ(ah, reg), mask, val);
185 
186 	return false;
187 }
188 EXPORT_SYMBOL(ath9k_hw_wait);
189 
190 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
191 			  int hw_delay)
192 {
193 	if (IS_CHAN_B(chan))
194 		hw_delay = (4 * hw_delay) / 22;
195 	else
196 		hw_delay /= 10;
197 
198 	if (IS_CHAN_HALF_RATE(chan))
199 		hw_delay *= 2;
200 	else if (IS_CHAN_QUARTER_RATE(chan))
201 		hw_delay *= 4;
202 
203 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
204 }
205 
206 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
207 			  int column, unsigned int *writecnt)
208 {
209 	int r;
210 
211 	ENABLE_REGWRITE_BUFFER(ah);
212 	for (r = 0; r < array->ia_rows; r++) {
213 		REG_WRITE(ah, INI_RA(array, r, 0),
214 			  INI_RA(array, r, column));
215 		DO_DELAY(*writecnt);
216 	}
217 	REGWRITE_BUFFER_FLUSH(ah);
218 }
219 
220 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
221 {
222 	u32 retval;
223 	int i;
224 
225 	for (i = 0, retval = 0; i < n; i++) {
226 		retval = (retval << 1) | (val & 1);
227 		val >>= 1;
228 	}
229 	return retval;
230 }
231 
232 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
233 			   u8 phy, int kbps,
234 			   u32 frameLen, u16 rateix,
235 			   bool shortPreamble)
236 {
237 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
238 
239 	if (kbps == 0)
240 		return 0;
241 
242 	switch (phy) {
243 	case WLAN_RC_PHY_CCK:
244 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
245 		if (shortPreamble)
246 			phyTime >>= 1;
247 		numBits = frameLen << 3;
248 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
249 		break;
250 	case WLAN_RC_PHY_OFDM:
251 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
252 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
253 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
254 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
255 			txTime = OFDM_SIFS_TIME_QUARTER
256 				+ OFDM_PREAMBLE_TIME_QUARTER
257 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
258 		} else if (ah->curchan &&
259 			   IS_CHAN_HALF_RATE(ah->curchan)) {
260 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
261 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
262 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
263 			txTime = OFDM_SIFS_TIME_HALF +
264 				OFDM_PREAMBLE_TIME_HALF
265 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
266 		} else {
267 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
268 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
269 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
270 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
271 				+ (numSymbols * OFDM_SYMBOL_TIME);
272 		}
273 		break;
274 	default:
275 		ath_err(ath9k_hw_common(ah),
276 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
277 		txTime = 0;
278 		break;
279 	}
280 
281 	return txTime;
282 }
283 EXPORT_SYMBOL(ath9k_hw_computetxtime);
284 
285 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
286 				  struct ath9k_channel *chan,
287 				  struct chan_centers *centers)
288 {
289 	int8_t extoff;
290 
291 	if (!IS_CHAN_HT40(chan)) {
292 		centers->ctl_center = centers->ext_center =
293 			centers->synth_center = chan->channel;
294 		return;
295 	}
296 
297 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
298 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
299 		centers->synth_center =
300 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
301 		extoff = 1;
302 	} else {
303 		centers->synth_center =
304 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
305 		extoff = -1;
306 	}
307 
308 	centers->ctl_center =
309 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
310 	/* 25 MHz spacing is supported by hw but not on upper layers */
311 	centers->ext_center =
312 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
313 }
314 
315 /******************/
316 /* Chip Revisions */
317 /******************/
318 
319 static void ath9k_hw_read_revisions(struct ath_hw *ah)
320 {
321 	u32 val;
322 
323 	switch (ah->hw_version.devid) {
324 	case AR5416_AR9100_DEVID:
325 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
326 		break;
327 	case AR9300_DEVID_AR9330:
328 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
329 		if (ah->get_mac_revision) {
330 			ah->hw_version.macRev = ah->get_mac_revision();
331 		} else {
332 			val = REG_READ(ah, AR_SREV);
333 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
334 		}
335 		return;
336 	case AR9300_DEVID_AR9340:
337 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
338 		val = REG_READ(ah, AR_SREV);
339 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
340 		return;
341 	case AR9300_DEVID_QCA955X:
342 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
343 		return;
344 	}
345 
346 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
347 
348 	if (val == 0xFF) {
349 		val = REG_READ(ah, AR_SREV);
350 		ah->hw_version.macVersion =
351 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
352 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
353 
354 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
355 			ah->is_pciexpress = true;
356 		else
357 			ah->is_pciexpress = (val &
358 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
359 	} else {
360 		if (!AR_SREV_9100(ah))
361 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
362 
363 		ah->hw_version.macRev = val & AR_SREV_REVISION;
364 
365 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
366 			ah->is_pciexpress = true;
367 	}
368 }
369 
370 /************************************/
371 /* HW Attach, Detach, Init Routines */
372 /************************************/
373 
374 static void ath9k_hw_disablepcie(struct ath_hw *ah)
375 {
376 	if (!AR_SREV_5416(ah))
377 		return;
378 
379 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
380 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
381 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
382 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
383 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
384 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
385 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
386 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
387 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
388 
389 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
390 }
391 
392 /* This should work for all families including legacy */
393 static bool ath9k_hw_chip_test(struct ath_hw *ah)
394 {
395 	struct ath_common *common = ath9k_hw_common(ah);
396 	u32 regAddr[2] = { AR_STA_ID0 };
397 	u32 regHold[2];
398 	static const u32 patternData[4] = {
399 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
400 	};
401 	int i, j, loop_max;
402 
403 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
404 		loop_max = 2;
405 		regAddr[1] = AR_PHY_BASE + (8 << 2);
406 	} else
407 		loop_max = 1;
408 
409 	for (i = 0; i < loop_max; i++) {
410 		u32 addr = regAddr[i];
411 		u32 wrData, rdData;
412 
413 		regHold[i] = REG_READ(ah, addr);
414 		for (j = 0; j < 0x100; j++) {
415 			wrData = (j << 16) | j;
416 			REG_WRITE(ah, addr, wrData);
417 			rdData = REG_READ(ah, addr);
418 			if (rdData != wrData) {
419 				ath_err(common,
420 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
421 					addr, wrData, rdData);
422 				return false;
423 			}
424 		}
425 		for (j = 0; j < 4; j++) {
426 			wrData = patternData[j];
427 			REG_WRITE(ah, addr, wrData);
428 			rdData = REG_READ(ah, addr);
429 			if (wrData != rdData) {
430 				ath_err(common,
431 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
432 					addr, wrData, rdData);
433 				return false;
434 			}
435 		}
436 		REG_WRITE(ah, regAddr[i], regHold[i]);
437 	}
438 	udelay(100);
439 
440 	return true;
441 }
442 
443 static void ath9k_hw_init_config(struct ath_hw *ah)
444 {
445 	int i;
446 
447 	ah->config.dma_beacon_response_time = 1;
448 	ah->config.sw_beacon_response_time = 6;
449 	ah->config.additional_swba_backoff = 0;
450 	ah->config.ack_6mb = 0x0;
451 	ah->config.cwm_ignore_extcca = 0;
452 	ah->config.pcie_clock_req = 0;
453 	ah->config.pcie_waen = 0;
454 	ah->config.analog_shiftreg = 1;
455 	ah->config.enable_ani = true;
456 
457 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
458 		ah->config.spurchans[i][0] = AR_NO_SPUR;
459 		ah->config.spurchans[i][1] = AR_NO_SPUR;
460 	}
461 
462 	ah->config.rx_intr_mitigation = true;
463 	ah->config.pcieSerDesWrite = true;
464 
465 	/*
466 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
467 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
468 	 * This means we use it for all AR5416 devices, and the few
469 	 * minor PCI AR9280 devices out there.
470 	 *
471 	 * Serialization is required because these devices do not handle
472 	 * well the case of two concurrent reads/writes due to the latency
473 	 * involved. During one read/write another read/write can be issued
474 	 * on another CPU while the previous read/write may still be working
475 	 * on our hardware, if we hit this case the hardware poops in a loop.
476 	 * We prevent this by serializing reads and writes.
477 	 *
478 	 * This issue is not present on PCI-Express devices or pre-AR5416
479 	 * devices (legacy, 802.11abg).
480 	 */
481 	if (num_possible_cpus() > 1)
482 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
483 }
484 
485 static void ath9k_hw_init_defaults(struct ath_hw *ah)
486 {
487 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
488 
489 	regulatory->country_code = CTRY_DEFAULT;
490 	regulatory->power_limit = MAX_RATE_POWER;
491 
492 	ah->hw_version.magic = AR5416_MAGIC;
493 	ah->hw_version.subvendorid = 0;
494 
495 	ah->atim_window = 0;
496 	ah->sta_id1_defaults =
497 		AR_STA_ID1_CRPT_MIC_ENABLE |
498 		AR_STA_ID1_MCAST_KSRCH;
499 	if (AR_SREV_9100(ah))
500 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
501 	ah->slottime = ATH9K_SLOT_TIME_9;
502 	ah->globaltxtimeout = (u32) -1;
503 	ah->power_mode = ATH9K_PM_UNDEFINED;
504 	ah->htc_reset_init = true;
505 }
506 
507 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
508 {
509 	struct ath_common *common = ath9k_hw_common(ah);
510 	u32 sum;
511 	int i;
512 	u16 eeval;
513 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
514 
515 	sum = 0;
516 	for (i = 0; i < 3; i++) {
517 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
518 		sum += eeval;
519 		common->macaddr[2 * i] = eeval >> 8;
520 		common->macaddr[2 * i + 1] = eeval & 0xff;
521 	}
522 	if (sum == 0 || sum == 0xffff * 3)
523 		return -EADDRNOTAVAIL;
524 
525 	return 0;
526 }
527 
528 static int ath9k_hw_post_init(struct ath_hw *ah)
529 {
530 	struct ath_common *common = ath9k_hw_common(ah);
531 	int ecode;
532 
533 	if (common->bus_ops->ath_bus_type != ATH_USB) {
534 		if (!ath9k_hw_chip_test(ah))
535 			return -ENODEV;
536 	}
537 
538 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
539 		ecode = ar9002_hw_rf_claim(ah);
540 		if (ecode != 0)
541 			return ecode;
542 	}
543 
544 	ecode = ath9k_hw_eeprom_init(ah);
545 	if (ecode != 0)
546 		return ecode;
547 
548 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
549 		ah->eep_ops->get_eeprom_ver(ah),
550 		ah->eep_ops->get_eeprom_rev(ah));
551 
552 	if (ah->config.enable_ani)
553 		ath9k_hw_ani_init(ah);
554 
555 	return 0;
556 }
557 
558 static int ath9k_hw_attach_ops(struct ath_hw *ah)
559 {
560 	if (!AR_SREV_9300_20_OR_LATER(ah))
561 		return ar9002_hw_attach_ops(ah);
562 
563 	ar9003_hw_attach_ops(ah);
564 	return 0;
565 }
566 
567 /* Called for all hardware families */
568 static int __ath9k_hw_init(struct ath_hw *ah)
569 {
570 	struct ath_common *common = ath9k_hw_common(ah);
571 	int r = 0;
572 
573 	ath9k_hw_read_revisions(ah);
574 
575 	/*
576 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
577 	 * We need to do this to avoid RMW of this register. We cannot
578 	 * read the reg when chip is asleep.
579 	 */
580 	ah->WARegVal = REG_READ(ah, AR_WA);
581 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
582 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
583 
584 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
585 		ath_err(common, "Couldn't reset chip\n");
586 		return -EIO;
587 	}
588 
589 	if (AR_SREV_9462(ah))
590 		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
591 
592 	if (AR_SREV_9565(ah)) {
593 		ah->WARegVal |= AR_WA_BIT22;
594 		REG_WRITE(ah, AR_WA, ah->WARegVal);
595 	}
596 
597 	ath9k_hw_init_defaults(ah);
598 	ath9k_hw_init_config(ah);
599 
600 	r = ath9k_hw_attach_ops(ah);
601 	if (r)
602 		return r;
603 
604 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
605 		ath_err(common, "Couldn't wakeup chip\n");
606 		return -EIO;
607 	}
608 
609 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
610 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
611 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
612 		     !ah->is_pciexpress)) {
613 			ah->config.serialize_regmode =
614 				SER_REG_MODE_ON;
615 		} else {
616 			ah->config.serialize_regmode =
617 				SER_REG_MODE_OFF;
618 		}
619 	}
620 
621 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
622 		ah->config.serialize_regmode);
623 
624 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
625 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
626 	else
627 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
628 
629 	switch (ah->hw_version.macVersion) {
630 	case AR_SREV_VERSION_5416_PCI:
631 	case AR_SREV_VERSION_5416_PCIE:
632 	case AR_SREV_VERSION_9160:
633 	case AR_SREV_VERSION_9100:
634 	case AR_SREV_VERSION_9280:
635 	case AR_SREV_VERSION_9285:
636 	case AR_SREV_VERSION_9287:
637 	case AR_SREV_VERSION_9271:
638 	case AR_SREV_VERSION_9300:
639 	case AR_SREV_VERSION_9330:
640 	case AR_SREV_VERSION_9485:
641 	case AR_SREV_VERSION_9340:
642 	case AR_SREV_VERSION_9462:
643 	case AR_SREV_VERSION_9550:
644 	case AR_SREV_VERSION_9565:
645 		break;
646 	default:
647 		ath_err(common,
648 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
649 			ah->hw_version.macVersion, ah->hw_version.macRev);
650 		return -EOPNOTSUPP;
651 	}
652 
653 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
654 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
655 		ah->is_pciexpress = false;
656 
657 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
658 	ath9k_hw_init_cal_settings(ah);
659 
660 	ah->ani_function = ATH9K_ANI_ALL;
661 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
662 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
663 	if (!AR_SREV_9300_20_OR_LATER(ah))
664 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
665 
666 	if (!ah->is_pciexpress)
667 		ath9k_hw_disablepcie(ah);
668 
669 	r = ath9k_hw_post_init(ah);
670 	if (r)
671 		return r;
672 
673 	ath9k_hw_init_mode_gain_regs(ah);
674 	r = ath9k_hw_fill_cap_info(ah);
675 	if (r)
676 		return r;
677 
678 	r = ath9k_hw_init_macaddr(ah);
679 	if (r) {
680 		ath_err(common, "Failed to initialize MAC address\n");
681 		return r;
682 	}
683 
684 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
685 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
686 	else
687 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
688 
689 	if (AR_SREV_9330(ah))
690 		ah->bb_watchdog_timeout_ms = 85;
691 	else
692 		ah->bb_watchdog_timeout_ms = 25;
693 
694 	common->state = ATH_HW_INITIALIZED;
695 
696 	return 0;
697 }
698 
699 int ath9k_hw_init(struct ath_hw *ah)
700 {
701 	int ret;
702 	struct ath_common *common = ath9k_hw_common(ah);
703 
704 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
705 	switch (ah->hw_version.devid) {
706 	case AR5416_DEVID_PCI:
707 	case AR5416_DEVID_PCIE:
708 	case AR5416_AR9100_DEVID:
709 	case AR9160_DEVID_PCI:
710 	case AR9280_DEVID_PCI:
711 	case AR9280_DEVID_PCIE:
712 	case AR9285_DEVID_PCIE:
713 	case AR9287_DEVID_PCI:
714 	case AR9287_DEVID_PCIE:
715 	case AR2427_DEVID_PCIE:
716 	case AR9300_DEVID_PCIE:
717 	case AR9300_DEVID_AR9485_PCIE:
718 	case AR9300_DEVID_AR9330:
719 	case AR9300_DEVID_AR9340:
720 	case AR9300_DEVID_QCA955X:
721 	case AR9300_DEVID_AR9580:
722 	case AR9300_DEVID_AR9462:
723 	case AR9485_DEVID_AR1111:
724 	case AR9300_DEVID_AR9565:
725 		break;
726 	default:
727 		if (common->bus_ops->ath_bus_type == ATH_USB)
728 			break;
729 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
730 			ah->hw_version.devid);
731 		return -EOPNOTSUPP;
732 	}
733 
734 	ret = __ath9k_hw_init(ah);
735 	if (ret) {
736 		ath_err(common,
737 			"Unable to initialize hardware; initialization status: %d\n",
738 			ret);
739 		return ret;
740 	}
741 
742 	return 0;
743 }
744 EXPORT_SYMBOL(ath9k_hw_init);
745 
746 static void ath9k_hw_init_qos(struct ath_hw *ah)
747 {
748 	ENABLE_REGWRITE_BUFFER(ah);
749 
750 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
751 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
752 
753 	REG_WRITE(ah, AR_QOS_NO_ACK,
754 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
755 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
756 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
757 
758 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
759 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
760 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
761 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
762 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
763 
764 	REGWRITE_BUFFER_FLUSH(ah);
765 }
766 
767 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
768 {
769 	struct ath_common *common = ath9k_hw_common(ah);
770 	int i = 0;
771 
772 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
773 	udelay(100);
774 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
775 
776 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
777 
778 		udelay(100);
779 
780 		if (WARN_ON_ONCE(i >= 100)) {
781 			ath_err(common, "PLL4 meaurement not done\n");
782 			break;
783 		}
784 
785 		i++;
786 	}
787 
788 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
789 }
790 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
791 
792 static void ath9k_hw_init_pll(struct ath_hw *ah,
793 			      struct ath9k_channel *chan)
794 {
795 	u32 pll;
796 
797 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
798 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
799 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
800 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
801 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
802 			      AR_CH0_DPLL2_KD, 0x40);
803 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
804 			      AR_CH0_DPLL2_KI, 0x4);
805 
806 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
807 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
808 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
809 			      AR_CH0_BB_DPLL1_NINI, 0x58);
810 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
811 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
812 
813 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
814 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
815 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
816 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
817 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
818 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
819 
820 		/* program BB PLL phase_shift to 0x6 */
821 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
822 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
823 
824 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
825 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
826 		udelay(1000);
827 	} else if (AR_SREV_9330(ah)) {
828 		u32 ddr_dpll2, pll_control2, kd;
829 
830 		if (ah->is_clk_25mhz) {
831 			ddr_dpll2 = 0x18e82f01;
832 			pll_control2 = 0xe04a3d;
833 			kd = 0x1d;
834 		} else {
835 			ddr_dpll2 = 0x19e82f01;
836 			pll_control2 = 0x886666;
837 			kd = 0x3d;
838 		}
839 
840 		/* program DDR PLL ki and kd value */
841 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
842 
843 		/* program DDR PLL phase_shift */
844 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
845 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
846 
847 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
848 		udelay(1000);
849 
850 		/* program refdiv, nint, frac to RTC register */
851 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
852 
853 		/* program BB PLL kd and ki value */
854 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
855 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
856 
857 		/* program BB PLL phase_shift */
858 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
859 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
860 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
861 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
862 
863 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
864 		udelay(1000);
865 
866 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
867 		udelay(100);
868 
869 		if (ah->is_clk_25mhz) {
870 			pll2_divint = 0x54;
871 			pll2_divfrac = 0x1eb85;
872 			refdiv = 3;
873 		} else {
874 			if (AR_SREV_9340(ah)) {
875 				pll2_divint = 88;
876 				pll2_divfrac = 0;
877 				refdiv = 5;
878 			} else {
879 				pll2_divint = 0x11;
880 				pll2_divfrac = 0x26666;
881 				refdiv = 1;
882 			}
883 		}
884 
885 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
886 		regval |= (0x1 << 16);
887 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
888 		udelay(100);
889 
890 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
891 			  (pll2_divint << 18) | pll2_divfrac);
892 		udelay(100);
893 
894 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
895 		if (AR_SREV_9340(ah))
896 			regval = (regval & 0x80071fff) | (0x1 << 30) |
897 				 (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
898 		else
899 			regval = (regval & 0x80071fff) | (0x3 << 30) |
900 				 (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
901 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
902 		REG_WRITE(ah, AR_PHY_PLL_MODE,
903 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
904 		udelay(1000);
905 	}
906 
907 	pll = ath9k_hw_compute_pll_control(ah, chan);
908 	if (AR_SREV_9565(ah))
909 		pll |= 0x40000;
910 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
911 
912 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
913 	    AR_SREV_9550(ah))
914 		udelay(1000);
915 
916 	/* Switch the core clock for ar9271 to 117Mhz */
917 	if (AR_SREV_9271(ah)) {
918 		udelay(500);
919 		REG_WRITE(ah, 0x50040, 0x304);
920 	}
921 
922 	udelay(RTC_PLL_SETTLE_DELAY);
923 
924 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
925 
926 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
927 		if (ah->is_clk_25mhz) {
928 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
929 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
930 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
931 		} else {
932 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
933 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
934 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
935 		}
936 		udelay(100);
937 	}
938 }
939 
940 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
941 					  enum nl80211_iftype opmode)
942 {
943 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
944 	u32 imr_reg = AR_IMR_TXERR |
945 		AR_IMR_TXURN |
946 		AR_IMR_RXERR |
947 		AR_IMR_RXORN |
948 		AR_IMR_BCNMISC;
949 
950 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
951 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
952 
953 	if (AR_SREV_9300_20_OR_LATER(ah)) {
954 		imr_reg |= AR_IMR_RXOK_HP;
955 		if (ah->config.rx_intr_mitigation)
956 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
957 		else
958 			imr_reg |= AR_IMR_RXOK_LP;
959 
960 	} else {
961 		if (ah->config.rx_intr_mitigation)
962 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
963 		else
964 			imr_reg |= AR_IMR_RXOK;
965 	}
966 
967 	if (ah->config.tx_intr_mitigation)
968 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
969 	else
970 		imr_reg |= AR_IMR_TXOK;
971 
972 	ENABLE_REGWRITE_BUFFER(ah);
973 
974 	REG_WRITE(ah, AR_IMR, imr_reg);
975 	ah->imrs2_reg |= AR_IMR_S2_GTT;
976 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
977 
978 	if (!AR_SREV_9100(ah)) {
979 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
980 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
981 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
982 	}
983 
984 	REGWRITE_BUFFER_FLUSH(ah);
985 
986 	if (AR_SREV_9300_20_OR_LATER(ah)) {
987 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
988 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
989 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
990 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
991 	}
992 }
993 
994 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
995 {
996 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
997 	val = min(val, (u32) 0xFFFF);
998 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
999 }
1000 
1001 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1002 {
1003 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1004 	val = min(val, (u32) 0xFFFF);
1005 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1006 }
1007 
1008 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1009 {
1010 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1011 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1012 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1013 }
1014 
1015 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1016 {
1017 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1018 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1019 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1020 }
1021 
1022 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1023 {
1024 	if (tu > 0xFFFF) {
1025 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1026 			tu);
1027 		ah->globaltxtimeout = (u32) -1;
1028 		return false;
1029 	} else {
1030 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1031 		ah->globaltxtimeout = tu;
1032 		return true;
1033 	}
1034 }
1035 
1036 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1037 {
1038 	struct ath_common *common = ath9k_hw_common(ah);
1039 	struct ieee80211_conf *conf = &common->hw->conf;
1040 	const struct ath9k_channel *chan = ah->curchan;
1041 	int acktimeout, ctstimeout, ack_offset = 0;
1042 	int slottime;
1043 	int sifstime;
1044 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1045 	u32 reg;
1046 
1047 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1048 		ah->misc_mode);
1049 
1050 	if (!chan)
1051 		return;
1052 
1053 	if (ah->misc_mode != 0)
1054 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1055 
1056 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1057 		rx_lat = 41;
1058 	else
1059 		rx_lat = 37;
1060 	tx_lat = 54;
1061 
1062 	if (IS_CHAN_5GHZ(chan))
1063 		sifstime = 16;
1064 	else
1065 		sifstime = 10;
1066 
1067 	if (IS_CHAN_HALF_RATE(chan)) {
1068 		eifs = 175;
1069 		rx_lat *= 2;
1070 		tx_lat *= 2;
1071 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1072 		    tx_lat += 11;
1073 
1074 		sifstime *= 2;
1075 		ack_offset = 16;
1076 		slottime = 13;
1077 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1078 		eifs = 340;
1079 		rx_lat = (rx_lat * 4) - 1;
1080 		tx_lat *= 4;
1081 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1082 		    tx_lat += 22;
1083 
1084 		sifstime *= 4;
1085 		ack_offset = 32;
1086 		slottime = 21;
1087 	} else {
1088 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1089 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1090 			reg = AR_USEC_ASYNC_FIFO;
1091 		} else {
1092 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1093 				common->clockrate;
1094 			reg = REG_READ(ah, AR_USEC);
1095 		}
1096 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1097 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1098 
1099 		slottime = ah->slottime;
1100 	}
1101 
1102 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1103 	slottime += 3 * ah->coverage_class;
1104 	acktimeout = slottime + sifstime + ack_offset;
1105 	ctstimeout = acktimeout;
1106 
1107 	/*
1108 	 * Workaround for early ACK timeouts, add an offset to match the
1109 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1110 	 * This was initially only meant to work around an issue with delayed
1111 	 * BA frames in some implementations, but it has been found to fix ACK
1112 	 * timeout issues in other cases as well.
1113 	 */
1114 	if (conf->chandef.chan &&
1115 	    conf->chandef.chan->band == IEEE80211_BAND_2GHZ &&
1116 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1117 		acktimeout += 64 - sifstime - ah->slottime;
1118 		ctstimeout += 48 - sifstime - ah->slottime;
1119 	}
1120 
1121 
1122 	ath9k_hw_set_sifs_time(ah, sifstime);
1123 	ath9k_hw_setslottime(ah, slottime);
1124 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1125 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1126 	if (ah->globaltxtimeout != (u32) -1)
1127 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1128 
1129 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1130 	REG_RMW(ah, AR_USEC,
1131 		(common->clockrate - 1) |
1132 		SM(rx_lat, AR_USEC_RX_LAT) |
1133 		SM(tx_lat, AR_USEC_TX_LAT),
1134 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1135 
1136 }
1137 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1138 
1139 void ath9k_hw_deinit(struct ath_hw *ah)
1140 {
1141 	struct ath_common *common = ath9k_hw_common(ah);
1142 
1143 	if (common->state < ATH_HW_INITIALIZED)
1144 		return;
1145 
1146 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1147 }
1148 EXPORT_SYMBOL(ath9k_hw_deinit);
1149 
1150 /*******/
1151 /* INI */
1152 /*******/
1153 
1154 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1155 {
1156 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1157 
1158 	if (IS_CHAN_B(chan))
1159 		ctl |= CTL_11B;
1160 	else if (IS_CHAN_G(chan))
1161 		ctl |= CTL_11G;
1162 	else
1163 		ctl |= CTL_11A;
1164 
1165 	return ctl;
1166 }
1167 
1168 /****************************************/
1169 /* Reset and Channel Switching Routines */
1170 /****************************************/
1171 
1172 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1173 {
1174 	struct ath_common *common = ath9k_hw_common(ah);
1175 
1176 	ENABLE_REGWRITE_BUFFER(ah);
1177 
1178 	/*
1179 	 * set AHB_MODE not to do cacheline prefetches
1180 	*/
1181 	if (!AR_SREV_9300_20_OR_LATER(ah))
1182 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1183 
1184 	/*
1185 	 * let mac dma reads be in 128 byte chunks
1186 	 */
1187 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1188 
1189 	REGWRITE_BUFFER_FLUSH(ah);
1190 
1191 	/*
1192 	 * Restore TX Trigger Level to its pre-reset value.
1193 	 * The initial value depends on whether aggregation is enabled, and is
1194 	 * adjusted whenever underruns are detected.
1195 	 */
1196 	if (!AR_SREV_9300_20_OR_LATER(ah))
1197 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1198 
1199 	ENABLE_REGWRITE_BUFFER(ah);
1200 
1201 	/*
1202 	 * let mac dma writes be in 128 byte chunks
1203 	 */
1204 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1205 
1206 	/*
1207 	 * Setup receive FIFO threshold to hold off TX activities
1208 	 */
1209 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1210 
1211 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1212 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1213 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1214 
1215 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1216 			ah->caps.rx_status_len);
1217 	}
1218 
1219 	/*
1220 	 * reduce the number of usable entries in PCU TXBUF to avoid
1221 	 * wrap around issues.
1222 	 */
1223 	if (AR_SREV_9285(ah)) {
1224 		/* For AR9285 the number of Fifos are reduced to half.
1225 		 * So set the usable tx buf size also to half to
1226 		 * avoid data/delimiter underruns
1227 		 */
1228 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1229 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1230 	} else if (!AR_SREV_9271(ah)) {
1231 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1232 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1233 	}
1234 
1235 	REGWRITE_BUFFER_FLUSH(ah);
1236 
1237 	if (AR_SREV_9300_20_OR_LATER(ah))
1238 		ath9k_hw_reset_txstatus_ring(ah);
1239 }
1240 
1241 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1242 {
1243 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1244 	u32 set = AR_STA_ID1_KSRCH_MODE;
1245 
1246 	switch (opmode) {
1247 	case NL80211_IFTYPE_ADHOC:
1248 	case NL80211_IFTYPE_MESH_POINT:
1249 		set |= AR_STA_ID1_ADHOC;
1250 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1251 		break;
1252 	case NL80211_IFTYPE_AP:
1253 		set |= AR_STA_ID1_STA_AP;
1254 		/* fall through */
1255 	case NL80211_IFTYPE_STATION:
1256 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1257 		break;
1258 	default:
1259 		if (!ah->is_monitoring)
1260 			set = 0;
1261 		break;
1262 	}
1263 	REG_RMW(ah, AR_STA_ID1, set, mask);
1264 }
1265 
1266 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1267 				   u32 *coef_mantissa, u32 *coef_exponent)
1268 {
1269 	u32 coef_exp, coef_man;
1270 
1271 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1272 		if ((coef_scaled >> coef_exp) & 0x1)
1273 			break;
1274 
1275 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1276 
1277 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1278 
1279 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1280 	*coef_exponent = coef_exp - 16;
1281 }
1282 
1283 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1284 {
1285 	u32 rst_flags;
1286 	u32 tmpReg;
1287 
1288 	if (AR_SREV_9100(ah)) {
1289 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1290 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1291 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1292 	}
1293 
1294 	ENABLE_REGWRITE_BUFFER(ah);
1295 
1296 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1297 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1298 		udelay(10);
1299 	}
1300 
1301 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1302 		  AR_RTC_FORCE_WAKE_ON_INT);
1303 
1304 	if (AR_SREV_9100(ah)) {
1305 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1306 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1307 	} else {
1308 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1309 		if (tmpReg &
1310 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1311 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1312 			u32 val;
1313 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1314 
1315 			val = AR_RC_HOSTIF;
1316 			if (!AR_SREV_9300_20_OR_LATER(ah))
1317 				val |= AR_RC_AHB;
1318 			REG_WRITE(ah, AR_RC, val);
1319 
1320 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1321 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1322 
1323 		rst_flags = AR_RTC_RC_MAC_WARM;
1324 		if (type == ATH9K_RESET_COLD)
1325 			rst_flags |= AR_RTC_RC_MAC_COLD;
1326 	}
1327 
1328 	if (AR_SREV_9330(ah)) {
1329 		int npend = 0;
1330 		int i;
1331 
1332 		/* AR9330 WAR:
1333 		 * call external reset function to reset WMAC if:
1334 		 * - doing a cold reset
1335 		 * - we have pending frames in the TX queues
1336 		 */
1337 
1338 		for (i = 0; i < AR_NUM_QCU; i++) {
1339 			npend = ath9k_hw_numtxpending(ah, i);
1340 			if (npend)
1341 				break;
1342 		}
1343 
1344 		if (ah->external_reset &&
1345 		    (npend || type == ATH9K_RESET_COLD)) {
1346 			int reset_err = 0;
1347 
1348 			ath_dbg(ath9k_hw_common(ah), RESET,
1349 				"reset MAC via external reset\n");
1350 
1351 			reset_err = ah->external_reset();
1352 			if (reset_err) {
1353 				ath_err(ath9k_hw_common(ah),
1354 					"External reset failed, err=%d\n",
1355 					reset_err);
1356 				return false;
1357 			}
1358 
1359 			REG_WRITE(ah, AR_RTC_RESET, 1);
1360 		}
1361 	}
1362 
1363 	if (ath9k_hw_mci_is_enabled(ah))
1364 		ar9003_mci_check_gpm_offset(ah);
1365 
1366 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1367 
1368 	REGWRITE_BUFFER_FLUSH(ah);
1369 
1370 	udelay(50);
1371 
1372 	REG_WRITE(ah, AR_RTC_RC, 0);
1373 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1374 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1375 		return false;
1376 	}
1377 
1378 	if (!AR_SREV_9100(ah))
1379 		REG_WRITE(ah, AR_RC, 0);
1380 
1381 	if (AR_SREV_9100(ah))
1382 		udelay(50);
1383 
1384 	return true;
1385 }
1386 
1387 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1388 {
1389 	ENABLE_REGWRITE_BUFFER(ah);
1390 
1391 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1392 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1393 		udelay(10);
1394 	}
1395 
1396 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1397 		  AR_RTC_FORCE_WAKE_ON_INT);
1398 
1399 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1400 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1401 
1402 	REG_WRITE(ah, AR_RTC_RESET, 0);
1403 
1404 	REGWRITE_BUFFER_FLUSH(ah);
1405 
1406 	if (!AR_SREV_9300_20_OR_LATER(ah))
1407 		udelay(2);
1408 
1409 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1410 		REG_WRITE(ah, AR_RC, 0);
1411 
1412 	REG_WRITE(ah, AR_RTC_RESET, 1);
1413 
1414 	if (!ath9k_hw_wait(ah,
1415 			   AR_RTC_STATUS,
1416 			   AR_RTC_STATUS_M,
1417 			   AR_RTC_STATUS_ON,
1418 			   AH_WAIT_TIMEOUT)) {
1419 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1420 		return false;
1421 	}
1422 
1423 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1424 }
1425 
1426 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1427 {
1428 	bool ret = false;
1429 
1430 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1431 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1432 		udelay(10);
1433 	}
1434 
1435 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1436 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1437 
1438 	if (!ah->reset_power_on)
1439 		type = ATH9K_RESET_POWER_ON;
1440 
1441 	switch (type) {
1442 	case ATH9K_RESET_POWER_ON:
1443 		ret = ath9k_hw_set_reset_power_on(ah);
1444 		if (ret)
1445 			ah->reset_power_on = true;
1446 		break;
1447 	case ATH9K_RESET_WARM:
1448 	case ATH9K_RESET_COLD:
1449 		ret = ath9k_hw_set_reset(ah, type);
1450 		break;
1451 	default:
1452 		break;
1453 	}
1454 
1455 	return ret;
1456 }
1457 
1458 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1459 				struct ath9k_channel *chan)
1460 {
1461 	int reset_type = ATH9K_RESET_WARM;
1462 
1463 	if (AR_SREV_9280(ah)) {
1464 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1465 			reset_type = ATH9K_RESET_POWER_ON;
1466 		else
1467 			reset_type = ATH9K_RESET_COLD;
1468 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1469 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1470 		reset_type = ATH9K_RESET_COLD;
1471 
1472 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1473 		return false;
1474 
1475 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1476 		return false;
1477 
1478 	ah->chip_fullsleep = false;
1479 
1480 	if (AR_SREV_9330(ah))
1481 		ar9003_hw_internal_regulator_apply(ah);
1482 	ath9k_hw_init_pll(ah, chan);
1483 	ath9k_hw_set_rfmode(ah, chan);
1484 
1485 	return true;
1486 }
1487 
1488 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1489 				    struct ath9k_channel *chan)
1490 {
1491 	struct ath_common *common = ath9k_hw_common(ah);
1492 	u32 qnum;
1493 	int r;
1494 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1495 	bool band_switch, mode_diff;
1496 	u8 ini_reloaded;
1497 
1498 	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1499 		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1500 						    CHANNEL_5GHZ));
1501 	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1502 
1503 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1504 		if (ath9k_hw_numtxpending(ah, qnum)) {
1505 			ath_dbg(common, QUEUE,
1506 				"Transmit frames pending on queue %d\n", qnum);
1507 			return false;
1508 		}
1509 	}
1510 
1511 	if (!ath9k_hw_rfbus_req(ah)) {
1512 		ath_err(common, "Could not kill baseband RX\n");
1513 		return false;
1514 	}
1515 
1516 	if (edma && (band_switch || mode_diff)) {
1517 		ath9k_hw_mark_phy_inactive(ah);
1518 		udelay(5);
1519 
1520 		ath9k_hw_init_pll(ah, NULL);
1521 
1522 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1523 			ath_err(common, "Failed to do fast channel change\n");
1524 			return false;
1525 		}
1526 	}
1527 
1528 	ath9k_hw_set_channel_regs(ah, chan);
1529 
1530 	r = ath9k_hw_rf_set_freq(ah, chan);
1531 	if (r) {
1532 		ath_err(common, "Failed to set channel\n");
1533 		return false;
1534 	}
1535 	ath9k_hw_set_clockrate(ah);
1536 	ath9k_hw_apply_txpower(ah, chan, false);
1537 	ath9k_hw_rfbus_done(ah);
1538 
1539 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1540 		ath9k_hw_set_delta_slope(ah, chan);
1541 
1542 	ath9k_hw_spur_mitigate_freq(ah, chan);
1543 
1544 	if (edma && (band_switch || mode_diff)) {
1545 		ah->ah_flags |= AH_FASTCC;
1546 		if (band_switch || ini_reloaded)
1547 			ah->eep_ops->set_board_values(ah, chan);
1548 
1549 		ath9k_hw_init_bb(ah, chan);
1550 
1551 		if (band_switch || ini_reloaded)
1552 			ath9k_hw_init_cal(ah, chan);
1553 		ah->ah_flags &= ~AH_FASTCC;
1554 	}
1555 
1556 	return true;
1557 }
1558 
1559 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1560 {
1561 	u32 gpio_mask = ah->gpio_mask;
1562 	int i;
1563 
1564 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1565 		if (!(gpio_mask & 1))
1566 			continue;
1567 
1568 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1569 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1570 	}
1571 }
1572 
1573 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1574 			       int *hang_state, int *hang_pos)
1575 {
1576 	static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1577 	u32 chain_state, dcs_pos, i;
1578 
1579 	for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1580 		chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1581 		for (i = 0; i < 3; i++) {
1582 			if (chain_state == dcu_chain_state[i]) {
1583 				*hang_state = chain_state;
1584 				*hang_pos = dcs_pos;
1585 				return true;
1586 			}
1587 		}
1588 	}
1589 	return false;
1590 }
1591 
1592 #define DCU_COMPLETE_STATE        1
1593 #define DCU_COMPLETE_STATE_MASK 0x3
1594 #define NUM_STATUS_READS         50
1595 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1596 {
1597 	u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1598 	u32 i, hang_pos, hang_state, num_state = 6;
1599 
1600 	comp_state = REG_READ(ah, AR_DMADBG_6);
1601 
1602 	if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1603 		ath_dbg(ath9k_hw_common(ah), RESET,
1604 			"MAC Hang signature not found at DCU complete\n");
1605 		return false;
1606 	}
1607 
1608 	chain_state = REG_READ(ah, dcs_reg);
1609 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1610 		goto hang_check_iter;
1611 
1612 	dcs_reg = AR_DMADBG_5;
1613 	num_state = 4;
1614 	chain_state = REG_READ(ah, dcs_reg);
1615 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1616 		goto hang_check_iter;
1617 
1618 	ath_dbg(ath9k_hw_common(ah), RESET,
1619 		"MAC Hang signature 1 not found\n");
1620 	return false;
1621 
1622 hang_check_iter:
1623 	ath_dbg(ath9k_hw_common(ah), RESET,
1624 		"DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1625 		chain_state, comp_state, hang_state, hang_pos);
1626 
1627 	for (i = 0; i < NUM_STATUS_READS; i++) {
1628 		chain_state = REG_READ(ah, dcs_reg);
1629 		chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1630 		comp_state = REG_READ(ah, AR_DMADBG_6);
1631 
1632 		if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1633 					DCU_COMPLETE_STATE) ||
1634 		    (chain_state != hang_state))
1635 			return false;
1636 	}
1637 
1638 	ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1639 
1640 	return true;
1641 }
1642 
1643 bool ath9k_hw_check_alive(struct ath_hw *ah)
1644 {
1645 	int count = 50;
1646 	u32 reg;
1647 
1648 	if (AR_SREV_9300(ah))
1649 		return !ath9k_hw_detect_mac_hang(ah);
1650 
1651 	if (AR_SREV_9285_12_OR_LATER(ah))
1652 		return true;
1653 
1654 	do {
1655 		reg = REG_READ(ah, AR_OBS_BUS_1);
1656 
1657 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1658 			continue;
1659 
1660 		switch (reg & 0x7E000B00) {
1661 		case 0x1E000000:
1662 		case 0x52000B00:
1663 		case 0x18000B00:
1664 			continue;
1665 		default:
1666 			return true;
1667 		}
1668 	} while (count-- > 0);
1669 
1670 	return false;
1671 }
1672 EXPORT_SYMBOL(ath9k_hw_check_alive);
1673 
1674 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1675 {
1676 	/* Setup MFP options for CCMP */
1677 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1678 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1679 		 * frames when constructing CCMP AAD. */
1680 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1681 			      0xc7ff);
1682 		ah->sw_mgmt_crypto = false;
1683 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1684 		/* Disable hardware crypto for management frames */
1685 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1686 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1687 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1688 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1689 		ah->sw_mgmt_crypto = true;
1690 	} else {
1691 		ah->sw_mgmt_crypto = true;
1692 	}
1693 }
1694 
1695 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1696 				  u32 macStaId1, u32 saveDefAntenna)
1697 {
1698 	struct ath_common *common = ath9k_hw_common(ah);
1699 
1700 	ENABLE_REGWRITE_BUFFER(ah);
1701 
1702 	REG_RMW(ah, AR_STA_ID1, macStaId1
1703 		  | AR_STA_ID1_RTS_USE_DEF
1704 		  | (ah->config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1705 		  | ah->sta_id1_defaults,
1706 		  ~AR_STA_ID1_SADH_MASK);
1707 	ath_hw_setbssidmask(common);
1708 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1709 	ath9k_hw_write_associd(ah);
1710 	REG_WRITE(ah, AR_ISR, ~0);
1711 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1712 
1713 	REGWRITE_BUFFER_FLUSH(ah);
1714 
1715 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1716 }
1717 
1718 static void ath9k_hw_init_queues(struct ath_hw *ah)
1719 {
1720 	int i;
1721 
1722 	ENABLE_REGWRITE_BUFFER(ah);
1723 
1724 	for (i = 0; i < AR_NUM_DCU; i++)
1725 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1726 
1727 	REGWRITE_BUFFER_FLUSH(ah);
1728 
1729 	ah->intr_txqs = 0;
1730 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1731 		ath9k_hw_resettxqueue(ah, i);
1732 }
1733 
1734 /*
1735  * For big endian systems turn on swapping for descriptors
1736  */
1737 static void ath9k_hw_init_desc(struct ath_hw *ah)
1738 {
1739 	struct ath_common *common = ath9k_hw_common(ah);
1740 
1741 	if (AR_SREV_9100(ah)) {
1742 		u32 mask;
1743 		mask = REG_READ(ah, AR_CFG);
1744 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1745 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1746 				mask);
1747 		} else {
1748 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1749 			REG_WRITE(ah, AR_CFG, mask);
1750 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1751 				REG_READ(ah, AR_CFG));
1752 		}
1753 	} else {
1754 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1755 			/* Configure AR9271 target WLAN */
1756 			if (AR_SREV_9271(ah))
1757 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1758 			else
1759 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1760 		}
1761 #ifdef __BIG_ENDIAN
1762 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1763 			 AR_SREV_9550(ah))
1764 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1765 		else
1766 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1767 #endif
1768 	}
1769 }
1770 
1771 /*
1772  * Fast channel change:
1773  * (Change synthesizer based on channel freq without resetting chip)
1774  *
1775  * Don't do FCC when
1776  *   - Flag is not set
1777  *   - Chip is just coming out of full sleep
1778  *   - Channel to be set is same as current channel
1779  *   - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
1780  */
1781 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1782 {
1783 	struct ath_common *common = ath9k_hw_common(ah);
1784 	int ret;
1785 
1786 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1787 		goto fail;
1788 
1789 	if (ah->chip_fullsleep)
1790 		goto fail;
1791 
1792 	if (!ah->curchan)
1793 		goto fail;
1794 
1795 	if (chan->channel == ah->curchan->channel)
1796 		goto fail;
1797 
1798 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1799 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1800 		goto fail;
1801 
1802 	if ((chan->channelFlags & CHANNEL_ALL) !=
1803 	    (ah->curchan->channelFlags & CHANNEL_ALL))
1804 		goto fail;
1805 
1806 	if (!ath9k_hw_check_alive(ah))
1807 		goto fail;
1808 
1809 	/*
1810 	 * For AR9462, make sure that calibration data for
1811 	 * re-using are present.
1812 	 */
1813 	if (AR_SREV_9462(ah) && (ah->caldata &&
1814 				 (!ah->caldata->done_txiqcal_once ||
1815 				  !ah->caldata->done_txclcal_once ||
1816 				  !ah->caldata->rtt_done)))
1817 		goto fail;
1818 
1819 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1820 		ah->curchan->channel, chan->channel);
1821 
1822 	ret = ath9k_hw_channel_change(ah, chan);
1823 	if (!ret)
1824 		goto fail;
1825 
1826 	if (ath9k_hw_mci_is_enabled(ah))
1827 		ar9003_mci_2g5g_switch(ah, false);
1828 
1829 	ath9k_hw_loadnf(ah, ah->curchan);
1830 	ath9k_hw_start_nfcal(ah, true);
1831 
1832 	if (AR_SREV_9271(ah))
1833 		ar9002_hw_load_ani_reg(ah, chan);
1834 
1835 	return 0;
1836 fail:
1837 	return -EINVAL;
1838 }
1839 
1840 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1841 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1842 {
1843 	struct ath_common *common = ath9k_hw_common(ah);
1844 	u32 saveLedState;
1845 	u32 saveDefAntenna;
1846 	u32 macStaId1;
1847 	u64 tsf = 0;
1848 	int r;
1849 	bool start_mci_reset = false;
1850 	bool save_fullsleep = ah->chip_fullsleep;
1851 
1852 	if (ath9k_hw_mci_is_enabled(ah)) {
1853 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1854 		if (start_mci_reset)
1855 			return 0;
1856 	}
1857 
1858 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1859 		return -EIO;
1860 
1861 	if (ah->curchan && !ah->chip_fullsleep)
1862 		ath9k_hw_getnf(ah, ah->curchan);
1863 
1864 	ah->caldata = caldata;
1865 	if (caldata && (chan->channel != caldata->channel ||
1866 			chan->channelFlags != caldata->channelFlags)) {
1867 		/* Operating channel changed, reset channel calibration data */
1868 		memset(caldata, 0, sizeof(*caldata));
1869 		ath9k_init_nfcal_hist_buffer(ah, chan);
1870 	} else if (caldata) {
1871 		caldata->paprd_packet_sent = false;
1872 	}
1873 	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1874 
1875 	if (fastcc) {
1876 		r = ath9k_hw_do_fastcc(ah, chan);
1877 		if (!r)
1878 			return r;
1879 	}
1880 
1881 	if (ath9k_hw_mci_is_enabled(ah))
1882 		ar9003_mci_stop_bt(ah, save_fullsleep);
1883 
1884 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1885 	if (saveDefAntenna == 0)
1886 		saveDefAntenna = 1;
1887 
1888 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1889 
1890 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1891 	if (AR_SREV_9100(ah) ||
1892 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1893 		tsf = ath9k_hw_gettsf64(ah);
1894 
1895 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1896 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1897 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1898 
1899 	ath9k_hw_mark_phy_inactive(ah);
1900 
1901 	ah->paprd_table_write_done = false;
1902 
1903 	/* Only required on the first reset */
1904 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1905 		REG_WRITE(ah,
1906 			  AR9271_RESET_POWER_DOWN_CONTROL,
1907 			  AR9271_RADIO_RF_RST);
1908 		udelay(50);
1909 	}
1910 
1911 	if (!ath9k_hw_chip_reset(ah, chan)) {
1912 		ath_err(common, "Chip reset failed\n");
1913 		return -EINVAL;
1914 	}
1915 
1916 	/* Only required on the first reset */
1917 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1918 		ah->htc_reset_init = false;
1919 		REG_WRITE(ah,
1920 			  AR9271_RESET_POWER_DOWN_CONTROL,
1921 			  AR9271_GATE_MAC_CTL);
1922 		udelay(50);
1923 	}
1924 
1925 	/* Restore TSF */
1926 	if (tsf)
1927 		ath9k_hw_settsf64(ah, tsf);
1928 
1929 	if (AR_SREV_9280_20_OR_LATER(ah))
1930 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1931 
1932 	if (!AR_SREV_9300_20_OR_LATER(ah))
1933 		ar9002_hw_enable_async_fifo(ah);
1934 
1935 	r = ath9k_hw_process_ini(ah, chan);
1936 	if (r)
1937 		return r;
1938 
1939 	if (ath9k_hw_mci_is_enabled(ah))
1940 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1941 
1942 	/*
1943 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1944 	 * right after the chip reset. When that happens, write a new
1945 	 * value after the initvals have been applied, with an offset
1946 	 * based on measured time difference
1947 	 */
1948 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1949 		tsf += 1500;
1950 		ath9k_hw_settsf64(ah, tsf);
1951 	}
1952 
1953 	ath9k_hw_init_mfp(ah);
1954 
1955 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1956 		ath9k_hw_set_delta_slope(ah, chan);
1957 
1958 	ath9k_hw_spur_mitigate_freq(ah, chan);
1959 	ah->eep_ops->set_board_values(ah, chan);
1960 
1961 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1962 
1963 	r = ath9k_hw_rf_set_freq(ah, chan);
1964 	if (r)
1965 		return r;
1966 
1967 	ath9k_hw_set_clockrate(ah);
1968 
1969 	ath9k_hw_init_queues(ah);
1970 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1971 	ath9k_hw_ani_cache_ini_regs(ah);
1972 	ath9k_hw_init_qos(ah);
1973 
1974 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1975 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1976 
1977 	ath9k_hw_init_global_settings(ah);
1978 
1979 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1980 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1981 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1982 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1983 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1984 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1985 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1986 	}
1987 
1988 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1989 
1990 	ath9k_hw_set_dma(ah);
1991 
1992 	if (!ath9k_hw_mci_is_enabled(ah))
1993 		REG_WRITE(ah, AR_OBS, 8);
1994 
1995 	if (ah->config.rx_intr_mitigation) {
1996 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1997 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1998 	}
1999 
2000 	if (ah->config.tx_intr_mitigation) {
2001 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2002 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2003 	}
2004 
2005 	ath9k_hw_init_bb(ah, chan);
2006 
2007 	if (caldata) {
2008 		caldata->done_txiqcal_once = false;
2009 		caldata->done_txclcal_once = false;
2010 	}
2011 	if (!ath9k_hw_init_cal(ah, chan))
2012 		return -EIO;
2013 
2014 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2015 		return -EIO;
2016 
2017 	ENABLE_REGWRITE_BUFFER(ah);
2018 
2019 	ath9k_hw_restore_chainmask(ah);
2020 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2021 
2022 	REGWRITE_BUFFER_FLUSH(ah);
2023 
2024 	ath9k_hw_init_desc(ah);
2025 
2026 	if (ath9k_hw_btcoex_is_enabled(ah))
2027 		ath9k_hw_btcoex_enable(ah);
2028 
2029 	if (ath9k_hw_mci_is_enabled(ah))
2030 		ar9003_mci_check_bt(ah);
2031 
2032 	ath9k_hw_loadnf(ah, chan);
2033 	ath9k_hw_start_nfcal(ah, true);
2034 
2035 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2036 		ar9003_hw_bb_watchdog_config(ah);
2037 		ar9003_hw_disable_phy_restart(ah);
2038 	}
2039 
2040 	ath9k_hw_apply_gpio_override(ah);
2041 
2042 	if (AR_SREV_9565(ah) && ah->shared_chain_lnadiv)
2043 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2044 
2045 	return 0;
2046 }
2047 EXPORT_SYMBOL(ath9k_hw_reset);
2048 
2049 /******************************/
2050 /* Power Management (Chipset) */
2051 /******************************/
2052 
2053 /*
2054  * Notify Power Mgt is disabled in self-generated frames.
2055  * If requested, force chip to sleep.
2056  */
2057 static void ath9k_set_power_sleep(struct ath_hw *ah)
2058 {
2059 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2060 
2061 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2062 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2063 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2064 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2065 		/* xxx Required for WLAN only case ? */
2066 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2067 		udelay(100);
2068 	}
2069 
2070 	/*
2071 	 * Clear the RTC force wake bit to allow the
2072 	 * mac to go to sleep.
2073 	 */
2074 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2075 
2076 	if (ath9k_hw_mci_is_enabled(ah))
2077 		udelay(100);
2078 
2079 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2080 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2081 
2082 	/* Shutdown chip. Active low */
2083 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2084 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2085 		udelay(2);
2086 	}
2087 
2088 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2089 	if (AR_SREV_9300_20_OR_LATER(ah))
2090 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2091 }
2092 
2093 /*
2094  * Notify Power Management is enabled in self-generating
2095  * frames. If request, set power mode of chip to
2096  * auto/normal.  Duration in units of 128us (1/8 TU).
2097  */
2098 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2099 {
2100 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2101 
2102 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2103 
2104 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2105 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2106 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2107 			  AR_RTC_FORCE_WAKE_ON_INT);
2108 	} else {
2109 
2110 		/* When chip goes into network sleep, it could be waken
2111 		 * up by MCI_INT interrupt caused by BT's HW messages
2112 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2113 		 * rate (~100us). This will cause chip to leave and
2114 		 * re-enter network sleep mode frequently, which in
2115 		 * consequence will have WLAN MCI HW to generate lots of
2116 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2117 		 * BT CPU to busy to process.
2118 		 */
2119 		if (ath9k_hw_mci_is_enabled(ah))
2120 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2121 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2122 		/*
2123 		 * Clear the RTC force wake bit to allow the
2124 		 * mac to go to sleep.
2125 		 */
2126 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2127 
2128 		if (ath9k_hw_mci_is_enabled(ah))
2129 			udelay(30);
2130 	}
2131 
2132 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2133 	if (AR_SREV_9300_20_OR_LATER(ah))
2134 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2135 }
2136 
2137 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2138 {
2139 	u32 val;
2140 	int i;
2141 
2142 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2143 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2144 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2145 		udelay(10);
2146 	}
2147 
2148 	if ((REG_READ(ah, AR_RTC_STATUS) &
2149 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2150 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2151 			return false;
2152 		}
2153 		if (!AR_SREV_9300_20_OR_LATER(ah))
2154 			ath9k_hw_init_pll(ah, NULL);
2155 	}
2156 	if (AR_SREV_9100(ah))
2157 		REG_SET_BIT(ah, AR_RTC_RESET,
2158 			    AR_RTC_RESET_EN);
2159 
2160 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2161 		    AR_RTC_FORCE_WAKE_EN);
2162 	udelay(50);
2163 
2164 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2165 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2166 		if (val == AR_RTC_STATUS_ON)
2167 			break;
2168 		udelay(50);
2169 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2170 			    AR_RTC_FORCE_WAKE_EN);
2171 	}
2172 	if (i == 0) {
2173 		ath_err(ath9k_hw_common(ah),
2174 			"Failed to wakeup in %uus\n",
2175 			POWER_UP_TIME / 20);
2176 		return false;
2177 	}
2178 
2179 	if (ath9k_hw_mci_is_enabled(ah))
2180 		ar9003_mci_set_power_awake(ah);
2181 
2182 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2183 
2184 	return true;
2185 }
2186 
2187 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2188 {
2189 	struct ath_common *common = ath9k_hw_common(ah);
2190 	int status = true;
2191 	static const char *modes[] = {
2192 		"AWAKE",
2193 		"FULL-SLEEP",
2194 		"NETWORK SLEEP",
2195 		"UNDEFINED"
2196 	};
2197 
2198 	if (ah->power_mode == mode)
2199 		return status;
2200 
2201 	ath_dbg(common, RESET, "%s -> %s\n",
2202 		modes[ah->power_mode], modes[mode]);
2203 
2204 	switch (mode) {
2205 	case ATH9K_PM_AWAKE:
2206 		status = ath9k_hw_set_power_awake(ah);
2207 		break;
2208 	case ATH9K_PM_FULL_SLEEP:
2209 		if (ath9k_hw_mci_is_enabled(ah))
2210 			ar9003_mci_set_full_sleep(ah);
2211 
2212 		ath9k_set_power_sleep(ah);
2213 		ah->chip_fullsleep = true;
2214 		break;
2215 	case ATH9K_PM_NETWORK_SLEEP:
2216 		ath9k_set_power_network_sleep(ah);
2217 		break;
2218 	default:
2219 		ath_err(common, "Unknown power mode %u\n", mode);
2220 		return false;
2221 	}
2222 	ah->power_mode = mode;
2223 
2224 	/*
2225 	 * XXX: If this warning never comes up after a while then
2226 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2227 	 * ath9k_hw_setpower() return type void.
2228 	 */
2229 
2230 	if (!(ah->ah_flags & AH_UNPLUGGED))
2231 		ATH_DBG_WARN_ON_ONCE(!status);
2232 
2233 	return status;
2234 }
2235 EXPORT_SYMBOL(ath9k_hw_setpower);
2236 
2237 /*******************/
2238 /* Beacon Handling */
2239 /*******************/
2240 
2241 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2242 {
2243 	int flags = 0;
2244 
2245 	ENABLE_REGWRITE_BUFFER(ah);
2246 
2247 	switch (ah->opmode) {
2248 	case NL80211_IFTYPE_ADHOC:
2249 	case NL80211_IFTYPE_MESH_POINT:
2250 		REG_SET_BIT(ah, AR_TXCFG,
2251 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2252 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2253 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2254 		flags |= AR_NDP_TIMER_EN;
2255 	case NL80211_IFTYPE_AP:
2256 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2257 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2258 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2259 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2260 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2261 		flags |=
2262 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2263 		break;
2264 	default:
2265 		ath_dbg(ath9k_hw_common(ah), BEACON,
2266 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2267 		return;
2268 		break;
2269 	}
2270 
2271 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2272 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2273 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2274 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2275 
2276 	REGWRITE_BUFFER_FLUSH(ah);
2277 
2278 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2279 }
2280 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2281 
2282 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2283 				    const struct ath9k_beacon_state *bs)
2284 {
2285 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2286 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2287 	struct ath_common *common = ath9k_hw_common(ah);
2288 
2289 	ENABLE_REGWRITE_BUFFER(ah);
2290 
2291 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2292 
2293 	REG_WRITE(ah, AR_BEACON_PERIOD,
2294 		  TU_TO_USEC(bs->bs_intval));
2295 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2296 		  TU_TO_USEC(bs->bs_intval));
2297 
2298 	REGWRITE_BUFFER_FLUSH(ah);
2299 
2300 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2301 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2302 
2303 	beaconintval = bs->bs_intval;
2304 
2305 	if (bs->bs_sleepduration > beaconintval)
2306 		beaconintval = bs->bs_sleepduration;
2307 
2308 	dtimperiod = bs->bs_dtimperiod;
2309 	if (bs->bs_sleepduration > dtimperiod)
2310 		dtimperiod = bs->bs_sleepduration;
2311 
2312 	if (beaconintval == dtimperiod)
2313 		nextTbtt = bs->bs_nextdtim;
2314 	else
2315 		nextTbtt = bs->bs_nexttbtt;
2316 
2317 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2318 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2319 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2320 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2321 
2322 	ENABLE_REGWRITE_BUFFER(ah);
2323 
2324 	REG_WRITE(ah, AR_NEXT_DTIM,
2325 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2326 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2327 
2328 	REG_WRITE(ah, AR_SLEEP1,
2329 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2330 		  | AR_SLEEP1_ASSUME_DTIM);
2331 
2332 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2333 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2334 	else
2335 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2336 
2337 	REG_WRITE(ah, AR_SLEEP2,
2338 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2339 
2340 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2341 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2342 
2343 	REGWRITE_BUFFER_FLUSH(ah);
2344 
2345 	REG_SET_BIT(ah, AR_TIMER_MODE,
2346 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2347 		    AR_DTIM_TIMER_EN);
2348 
2349 	/* TSF Out of Range Threshold */
2350 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2351 }
2352 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2353 
2354 /*******************/
2355 /* HW Capabilities */
2356 /*******************/
2357 
2358 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2359 {
2360 	eeprom_chainmask &= chip_chainmask;
2361 	if (eeprom_chainmask)
2362 		return eeprom_chainmask;
2363 	else
2364 		return chip_chainmask;
2365 }
2366 
2367 /**
2368  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2369  * @ah: the atheros hardware data structure
2370  *
2371  * We enable DFS support upstream on chipsets which have passed a series
2372  * of tests. The testing requirements are going to be documented. Desired
2373  * test requirements are documented at:
2374  *
2375  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2376  *
2377  * Once a new chipset gets properly tested an individual commit can be used
2378  * to document the testing for DFS for that chipset.
2379  */
2380 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2381 {
2382 
2383 	switch (ah->hw_version.macVersion) {
2384 	/* for temporary testing DFS with 9280 */
2385 	case AR_SREV_VERSION_9280:
2386 	/* AR9580 will likely be our first target to get testing on */
2387 	case AR_SREV_VERSION_9580:
2388 		return true;
2389 	default:
2390 		return false;
2391 	}
2392 }
2393 
2394 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2395 {
2396 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2397 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2398 	struct ath_common *common = ath9k_hw_common(ah);
2399 	unsigned int chip_chainmask;
2400 
2401 	u16 eeval;
2402 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2403 
2404 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2405 	regulatory->current_rd = eeval;
2406 
2407 	if (ah->opmode != NL80211_IFTYPE_AP &&
2408 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2409 		if (regulatory->current_rd == 0x64 ||
2410 		    regulatory->current_rd == 0x65)
2411 			regulatory->current_rd += 5;
2412 		else if (regulatory->current_rd == 0x41)
2413 			regulatory->current_rd = 0x43;
2414 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2415 			regulatory->current_rd);
2416 	}
2417 
2418 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2419 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2420 		ath_err(common,
2421 			"no band has been marked as supported in EEPROM\n");
2422 		return -EINVAL;
2423 	}
2424 
2425 	if (eeval & AR5416_OPFLAGS_11A)
2426 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2427 
2428 	if (eeval & AR5416_OPFLAGS_11G)
2429 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2430 
2431 	if (AR_SREV_9485(ah) ||
2432 	    AR_SREV_9285(ah) ||
2433 	    AR_SREV_9330(ah) ||
2434 	    AR_SREV_9565(ah))
2435 		chip_chainmask = 1;
2436 	else if (AR_SREV_9462(ah))
2437 		chip_chainmask = 3;
2438 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2439 		chip_chainmask = 7;
2440 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2441 		chip_chainmask = 3;
2442 	else
2443 		chip_chainmask = 7;
2444 
2445 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2446 	/*
2447 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2448 	 * the EEPROM.
2449 	 */
2450 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2451 	    !(eeval & AR5416_OPFLAGS_11A) &&
2452 	    !(AR_SREV_9271(ah)))
2453 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2454 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2455 	else if (AR_SREV_9100(ah))
2456 		pCap->rx_chainmask = 0x7;
2457 	else
2458 		/* Use rx_chainmask from EEPROM. */
2459 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2460 
2461 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2462 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2463 	ah->txchainmask = pCap->tx_chainmask;
2464 	ah->rxchainmask = pCap->rx_chainmask;
2465 
2466 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2467 
2468 	/* enable key search for every frame in an aggregate */
2469 	if (AR_SREV_9300_20_OR_LATER(ah))
2470 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2471 
2472 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2473 
2474 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2475 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2476 	else
2477 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2478 
2479 	if (AR_SREV_9271(ah))
2480 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2481 	else if (AR_DEVID_7010(ah))
2482 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2483 	else if (AR_SREV_9300_20_OR_LATER(ah))
2484 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2485 	else if (AR_SREV_9287_11_OR_LATER(ah))
2486 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2487 	else if (AR_SREV_9285_12_OR_LATER(ah))
2488 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2489 	else if (AR_SREV_9280_20_OR_LATER(ah))
2490 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2491 	else
2492 		pCap->num_gpio_pins = AR_NUM_GPIO;
2493 
2494 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2495 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2496 	else
2497 		pCap->rts_aggr_limit = (8 * 1024);
2498 
2499 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2500 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2501 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2502 		ah->rfkill_gpio =
2503 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2504 		ah->rfkill_polarity =
2505 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2506 
2507 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2508 	}
2509 #endif
2510 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2511 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2512 	else
2513 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2514 
2515 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2516 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2517 	else
2518 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2519 
2520 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2521 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2522 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2523 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2524 
2525 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2526 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2527 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2528 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2529 		pCap->txs_len = sizeof(struct ar9003_txs);
2530 	} else {
2531 		pCap->tx_desc_len = sizeof(struct ath_desc);
2532 		if (AR_SREV_9280_20(ah))
2533 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2534 	}
2535 
2536 	if (AR_SREV_9300_20_OR_LATER(ah))
2537 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2538 
2539 	if (AR_SREV_9300_20_OR_LATER(ah))
2540 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2541 
2542 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2543 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2544 
2545 	if (AR_SREV_9285(ah))
2546 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2547 			ant_div_ctl1 =
2548 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2549 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2550 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2551 		}
2552 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2553 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2554 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2555 	}
2556 
2557 
2558 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2559 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2560 		/*
2561 		 * enable the diversity-combining algorithm only when
2562 		 * both enable_lna_div and enable_fast_div are set
2563 		 *		Table for Diversity
2564 		 * ant_div_alt_lnaconf		bit 0-1
2565 		 * ant_div_main_lnaconf		bit 2-3
2566 		 * ant_div_alt_gaintb		bit 4
2567 		 * ant_div_main_gaintb		bit 5
2568 		 * enable_ant_div_lnadiv	bit 6
2569 		 * enable_ant_fast_div		bit 7
2570 		 */
2571 		if ((ant_div_ctl1 >> 0x6) == 0x3)
2572 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2573 	}
2574 
2575 	if (ath9k_hw_dfs_tested(ah))
2576 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2577 
2578 	tx_chainmask = pCap->tx_chainmask;
2579 	rx_chainmask = pCap->rx_chainmask;
2580 	while (tx_chainmask || rx_chainmask) {
2581 		if (tx_chainmask & BIT(0))
2582 			pCap->max_txchains++;
2583 		if (rx_chainmask & BIT(0))
2584 			pCap->max_rxchains++;
2585 
2586 		tx_chainmask >>= 1;
2587 		rx_chainmask >>= 1;
2588 	}
2589 
2590 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2591 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2592 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2593 
2594 		if (AR_SREV_9462_20(ah))
2595 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2596 	}
2597 
2598 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2599 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE |
2600 				 ATH9K_HW_WOW_PATTERN_MATCH_EXACT;
2601 
2602 		if (AR_SREV_9280(ah))
2603 			pCap->hw_caps |= ATH9K_HW_WOW_PATTERN_MATCH_DWORD;
2604 	}
2605 
2606 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2607 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2608 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2609 
2610 	return 0;
2611 }
2612 
2613 /****************************/
2614 /* GPIO / RFKILL / Antennae */
2615 /****************************/
2616 
2617 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2618 					 u32 gpio, u32 type)
2619 {
2620 	int addr;
2621 	u32 gpio_shift, tmp;
2622 
2623 	if (gpio > 11)
2624 		addr = AR_GPIO_OUTPUT_MUX3;
2625 	else if (gpio > 5)
2626 		addr = AR_GPIO_OUTPUT_MUX2;
2627 	else
2628 		addr = AR_GPIO_OUTPUT_MUX1;
2629 
2630 	gpio_shift = (gpio % 6) * 5;
2631 
2632 	if (AR_SREV_9280_20_OR_LATER(ah)
2633 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2634 		REG_RMW(ah, addr, (type << gpio_shift),
2635 			(0x1f << gpio_shift));
2636 	} else {
2637 		tmp = REG_READ(ah, addr);
2638 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2639 		tmp &= ~(0x1f << gpio_shift);
2640 		tmp |= (type << gpio_shift);
2641 		REG_WRITE(ah, addr, tmp);
2642 	}
2643 }
2644 
2645 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2646 {
2647 	u32 gpio_shift;
2648 
2649 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2650 
2651 	if (AR_DEVID_7010(ah)) {
2652 		gpio_shift = gpio;
2653 		REG_RMW(ah, AR7010_GPIO_OE,
2654 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2655 			(AR7010_GPIO_OE_MASK << gpio_shift));
2656 		return;
2657 	}
2658 
2659 	gpio_shift = gpio << 1;
2660 	REG_RMW(ah,
2661 		AR_GPIO_OE_OUT,
2662 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2663 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2664 }
2665 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2666 
2667 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2668 {
2669 #define MS_REG_READ(x, y) \
2670 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2671 
2672 	if (gpio >= ah->caps.num_gpio_pins)
2673 		return 0xffffffff;
2674 
2675 	if (AR_DEVID_7010(ah)) {
2676 		u32 val;
2677 		val = REG_READ(ah, AR7010_GPIO_IN);
2678 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2679 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2680 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2681 			AR_GPIO_BIT(gpio)) != 0;
2682 	else if (AR_SREV_9271(ah))
2683 		return MS_REG_READ(AR9271, gpio) != 0;
2684 	else if (AR_SREV_9287_11_OR_LATER(ah))
2685 		return MS_REG_READ(AR9287, gpio) != 0;
2686 	else if (AR_SREV_9285_12_OR_LATER(ah))
2687 		return MS_REG_READ(AR9285, gpio) != 0;
2688 	else if (AR_SREV_9280_20_OR_LATER(ah))
2689 		return MS_REG_READ(AR928X, gpio) != 0;
2690 	else
2691 		return MS_REG_READ(AR, gpio) != 0;
2692 }
2693 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2694 
2695 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2696 			 u32 ah_signal_type)
2697 {
2698 	u32 gpio_shift;
2699 
2700 	if (AR_DEVID_7010(ah)) {
2701 		gpio_shift = gpio;
2702 		REG_RMW(ah, AR7010_GPIO_OE,
2703 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2704 			(AR7010_GPIO_OE_MASK << gpio_shift));
2705 		return;
2706 	}
2707 
2708 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2709 	gpio_shift = 2 * gpio;
2710 	REG_RMW(ah,
2711 		AR_GPIO_OE_OUT,
2712 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2713 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2714 }
2715 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2716 
2717 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2718 {
2719 	if (AR_DEVID_7010(ah)) {
2720 		val = val ? 0 : 1;
2721 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2722 			AR_GPIO_BIT(gpio));
2723 		return;
2724 	}
2725 
2726 	if (AR_SREV_9271(ah))
2727 		val = ~val;
2728 
2729 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2730 		AR_GPIO_BIT(gpio));
2731 }
2732 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2733 
2734 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2735 {
2736 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2737 }
2738 EXPORT_SYMBOL(ath9k_hw_setantenna);
2739 
2740 /*********************/
2741 /* General Operation */
2742 /*********************/
2743 
2744 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2745 {
2746 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2747 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2748 
2749 	if (phybits & AR_PHY_ERR_RADAR)
2750 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2751 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2752 		bits |= ATH9K_RX_FILTER_PHYERR;
2753 
2754 	return bits;
2755 }
2756 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2757 
2758 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2759 {
2760 	u32 phybits;
2761 
2762 	ENABLE_REGWRITE_BUFFER(ah);
2763 
2764 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2765 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2766 
2767 	REG_WRITE(ah, AR_RX_FILTER, bits);
2768 
2769 	phybits = 0;
2770 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2771 		phybits |= AR_PHY_ERR_RADAR;
2772 	if (bits & ATH9K_RX_FILTER_PHYERR)
2773 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2774 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2775 
2776 	if (phybits)
2777 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2778 	else
2779 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2780 
2781 	REGWRITE_BUFFER_FLUSH(ah);
2782 }
2783 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2784 
2785 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2786 {
2787 	if (ath9k_hw_mci_is_enabled(ah))
2788 		ar9003_mci_bt_gain_ctrl(ah);
2789 
2790 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2791 		return false;
2792 
2793 	ath9k_hw_init_pll(ah, NULL);
2794 	ah->htc_reset_init = true;
2795 	return true;
2796 }
2797 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2798 
2799 bool ath9k_hw_disable(struct ath_hw *ah)
2800 {
2801 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2802 		return false;
2803 
2804 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2805 		return false;
2806 
2807 	ath9k_hw_init_pll(ah, NULL);
2808 	return true;
2809 }
2810 EXPORT_SYMBOL(ath9k_hw_disable);
2811 
2812 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2813 {
2814 	enum eeprom_param gain_param;
2815 
2816 	if (IS_CHAN_2GHZ(chan))
2817 		gain_param = EEP_ANTENNA_GAIN_2G;
2818 	else
2819 		gain_param = EEP_ANTENNA_GAIN_5G;
2820 
2821 	return ah->eep_ops->get_eeprom(ah, gain_param);
2822 }
2823 
2824 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2825 			    bool test)
2826 {
2827 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2828 	struct ieee80211_channel *channel;
2829 	int chan_pwr, new_pwr, max_gain;
2830 	int ant_gain, ant_reduction = 0;
2831 
2832 	if (!chan)
2833 		return;
2834 
2835 	channel = chan->chan;
2836 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2837 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2838 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2839 
2840 	ant_gain = get_antenna_gain(ah, chan);
2841 	if (ant_gain > max_gain)
2842 		ant_reduction = ant_gain - max_gain;
2843 
2844 	ah->eep_ops->set_txpower(ah, chan,
2845 				 ath9k_regd_get_ctl(reg, chan),
2846 				 ant_reduction, new_pwr, test);
2847 }
2848 
2849 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2850 {
2851 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2852 	struct ath9k_channel *chan = ah->curchan;
2853 	struct ieee80211_channel *channel = chan->chan;
2854 
2855 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2856 	if (test)
2857 		channel->max_power = MAX_RATE_POWER / 2;
2858 
2859 	ath9k_hw_apply_txpower(ah, chan, test);
2860 
2861 	if (test)
2862 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2863 }
2864 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2865 
2866 void ath9k_hw_setopmode(struct ath_hw *ah)
2867 {
2868 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2869 }
2870 EXPORT_SYMBOL(ath9k_hw_setopmode);
2871 
2872 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2873 {
2874 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2875 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2876 }
2877 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2878 
2879 void ath9k_hw_write_associd(struct ath_hw *ah)
2880 {
2881 	struct ath_common *common = ath9k_hw_common(ah);
2882 
2883 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2884 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2885 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2886 }
2887 EXPORT_SYMBOL(ath9k_hw_write_associd);
2888 
2889 #define ATH9K_MAX_TSF_READ 10
2890 
2891 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2892 {
2893 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2894 	int i;
2895 
2896 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2897 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2898 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2899 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2900 		if (tsf_upper2 == tsf_upper1)
2901 			break;
2902 		tsf_upper1 = tsf_upper2;
2903 	}
2904 
2905 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2906 
2907 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2908 }
2909 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2910 
2911 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2912 {
2913 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2914 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2915 }
2916 EXPORT_SYMBOL(ath9k_hw_settsf64);
2917 
2918 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2919 {
2920 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2921 			   AH_TSF_WRITE_TIMEOUT))
2922 		ath_dbg(ath9k_hw_common(ah), RESET,
2923 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2924 
2925 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2926 }
2927 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2928 
2929 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2930 {
2931 	if (set)
2932 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2933 	else
2934 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2935 }
2936 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2937 
2938 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2939 {
2940 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2941 	u32 macmode;
2942 
2943 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2944 		macmode = AR_2040_JOINED_RX_CLEAR;
2945 	else
2946 		macmode = 0;
2947 
2948 	REG_WRITE(ah, AR_2040_MODE, macmode);
2949 }
2950 
2951 /* HW Generic timers configuration */
2952 
2953 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2954 {
2955 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2956 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2957 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2958 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2959 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2960 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2961 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2962 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2963 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2964 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2965 				AR_NDP2_TIMER_MODE, 0x0002},
2966 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2967 				AR_NDP2_TIMER_MODE, 0x0004},
2968 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2969 				AR_NDP2_TIMER_MODE, 0x0008},
2970 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2971 				AR_NDP2_TIMER_MODE, 0x0010},
2972 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2973 				AR_NDP2_TIMER_MODE, 0x0020},
2974 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2975 				AR_NDP2_TIMER_MODE, 0x0040},
2976 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2977 				AR_NDP2_TIMER_MODE, 0x0080}
2978 };
2979 
2980 /* HW generic timer primitives */
2981 
2982 /* compute and clear index of rightmost 1 */
2983 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2984 {
2985 	u32 b;
2986 
2987 	b = *mask;
2988 	b &= (0-b);
2989 	*mask &= ~b;
2990 	b *= debruijn32;
2991 	b >>= 27;
2992 
2993 	return timer_table->gen_timer_index[b];
2994 }
2995 
2996 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2997 {
2998 	return REG_READ(ah, AR_TSF_L32);
2999 }
3000 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3001 
3002 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3003 					  void (*trigger)(void *),
3004 					  void (*overflow)(void *),
3005 					  void *arg,
3006 					  u8 timer_index)
3007 {
3008 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3009 	struct ath_gen_timer *timer;
3010 
3011 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3012 	if (timer == NULL)
3013 		return NULL;
3014 
3015 	/* allocate a hardware generic timer slot */
3016 	timer_table->timers[timer_index] = timer;
3017 	timer->index = timer_index;
3018 	timer->trigger = trigger;
3019 	timer->overflow = overflow;
3020 	timer->arg = arg;
3021 
3022 	return timer;
3023 }
3024 EXPORT_SYMBOL(ath_gen_timer_alloc);
3025 
3026 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3027 			      struct ath_gen_timer *timer,
3028 			      u32 trig_timeout,
3029 			      u32 timer_period)
3030 {
3031 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3032 	u32 tsf, timer_next;
3033 
3034 	BUG_ON(!timer_period);
3035 
3036 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3037 
3038 	tsf = ath9k_hw_gettsf32(ah);
3039 
3040 	timer_next = tsf + trig_timeout;
3041 
3042 	ath_dbg(ath9k_hw_common(ah), HWTIMER,
3043 		"current tsf %x period %x timer_next %x\n",
3044 		tsf, timer_period, timer_next);
3045 
3046 	/*
3047 	 * Program generic timer registers
3048 	 */
3049 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3050 		 timer_next);
3051 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3052 		  timer_period);
3053 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3054 		    gen_tmr_configuration[timer->index].mode_mask);
3055 
3056 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3057 		/*
3058 		 * Starting from AR9462, each generic timer can select which tsf
3059 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3060 		 * 8 - 15  use tsf2.
3061 		 */
3062 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3063 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3064 				       (1 << timer->index));
3065 		else
3066 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3067 				       (1 << timer->index));
3068 	}
3069 
3070 	/* Enable both trigger and thresh interrupt masks */
3071 	REG_SET_BIT(ah, AR_IMR_S5,
3072 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3073 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3074 }
3075 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3076 
3077 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3078 {
3079 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3080 
3081 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3082 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3083 		return;
3084 	}
3085 
3086 	/* Clear generic timer enable bits. */
3087 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3088 			gen_tmr_configuration[timer->index].mode_mask);
3089 
3090 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3091 		/*
3092 		 * Need to switch back to TSF if it was using TSF2.
3093 		 */
3094 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3095 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3096 				    (1 << timer->index));
3097 		}
3098 	}
3099 
3100 	/* Disable both trigger and thresh interrupt masks */
3101 	REG_CLR_BIT(ah, AR_IMR_S5,
3102 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3103 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3104 
3105 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3106 }
3107 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3108 
3109 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3110 {
3111 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3112 
3113 	/* free the hardware generic timer slot */
3114 	timer_table->timers[timer->index] = NULL;
3115 	kfree(timer);
3116 }
3117 EXPORT_SYMBOL(ath_gen_timer_free);
3118 
3119 /*
3120  * Generic Timer Interrupts handling
3121  */
3122 void ath_gen_timer_isr(struct ath_hw *ah)
3123 {
3124 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3125 	struct ath_gen_timer *timer;
3126 	struct ath_common *common = ath9k_hw_common(ah);
3127 	u32 trigger_mask, thresh_mask, index;
3128 
3129 	/* get hardware generic timer interrupt status */
3130 	trigger_mask = ah->intr_gen_timer_trigger;
3131 	thresh_mask = ah->intr_gen_timer_thresh;
3132 	trigger_mask &= timer_table->timer_mask.val;
3133 	thresh_mask &= timer_table->timer_mask.val;
3134 
3135 	trigger_mask &= ~thresh_mask;
3136 
3137 	while (thresh_mask) {
3138 		index = rightmost_index(timer_table, &thresh_mask);
3139 		timer = timer_table->timers[index];
3140 		BUG_ON(!timer);
3141 		ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3142 			index);
3143 		timer->overflow(timer->arg);
3144 	}
3145 
3146 	while (trigger_mask) {
3147 		index = rightmost_index(timer_table, &trigger_mask);
3148 		timer = timer_table->timers[index];
3149 		BUG_ON(!timer);
3150 		ath_dbg(common, HWTIMER,
3151 			"Gen timer[%d] trigger\n", index);
3152 		timer->trigger(timer->arg);
3153 	}
3154 }
3155 EXPORT_SYMBOL(ath_gen_timer_isr);
3156 
3157 /********/
3158 /* HTC  */
3159 /********/
3160 
3161 static struct {
3162 	u32 version;
3163 	const char * name;
3164 } ath_mac_bb_names[] = {
3165 	/* Devices with external radios */
3166 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3167 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3168 	{ AR_SREV_VERSION_9100,		"9100" },
3169 	{ AR_SREV_VERSION_9160,		"9160" },
3170 	/* Single-chip solutions */
3171 	{ AR_SREV_VERSION_9280,		"9280" },
3172 	{ AR_SREV_VERSION_9285,		"9285" },
3173 	{ AR_SREV_VERSION_9287,         "9287" },
3174 	{ AR_SREV_VERSION_9271,         "9271" },
3175 	{ AR_SREV_VERSION_9300,         "9300" },
3176 	{ AR_SREV_VERSION_9330,         "9330" },
3177 	{ AR_SREV_VERSION_9340,		"9340" },
3178 	{ AR_SREV_VERSION_9485,         "9485" },
3179 	{ AR_SREV_VERSION_9462,         "9462" },
3180 	{ AR_SREV_VERSION_9550,         "9550" },
3181 	{ AR_SREV_VERSION_9565,         "9565" },
3182 };
3183 
3184 /* For devices with external radios */
3185 static struct {
3186 	u16 version;
3187 	const char * name;
3188 } ath_rf_names[] = {
3189 	{ 0,				"5133" },
3190 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3191 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3192 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3193 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3194 };
3195 
3196 /*
3197  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3198  */
3199 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3200 {
3201 	int i;
3202 
3203 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3204 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3205 			return ath_mac_bb_names[i].name;
3206 		}
3207 	}
3208 
3209 	return "????";
3210 }
3211 
3212 /*
3213  * Return the RF name. "????" is returned if the RF is unknown.
3214  * Used for devices with external radios.
3215  */
3216 static const char *ath9k_hw_rf_name(u16 rf_version)
3217 {
3218 	int i;
3219 
3220 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3221 		if (ath_rf_names[i].version == rf_version) {
3222 			return ath_rf_names[i].name;
3223 		}
3224 	}
3225 
3226 	return "????";
3227 }
3228 
3229 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3230 {
3231 	int used;
3232 
3233 	/* chipsets >= AR9280 are single-chip */
3234 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3235 		used = snprintf(hw_name, len,
3236 			       "Atheros AR%s Rev:%x",
3237 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3238 			       ah->hw_version.macRev);
3239 	}
3240 	else {
3241 		used = snprintf(hw_name, len,
3242 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3243 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3244 			       ah->hw_version.macRev,
3245 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3246 						AR_RADIO_SREV_MAJOR)),
3247 			       ah->hw_version.phyRev);
3248 	}
3249 
3250 	hw_name[used] = '\0';
3251 }
3252 EXPORT_SYMBOL(ath9k_hw_name);
3253