1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/io.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <asm/unaligned.h> 21 22 #include "hw.h" 23 #include "hw-ops.h" 24 #include "rc.h" 25 #include "ar9003_mac.h" 26 #include "ar9003_mci.h" 27 #include "ar9003_phy.h" 28 #include "debug.h" 29 #include "ath9k.h" 30 31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); 32 33 MODULE_AUTHOR("Atheros Communications"); 34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); 35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); 36 MODULE_LICENSE("Dual BSD/GPL"); 37 38 static int __init ath9k_init(void) 39 { 40 return 0; 41 } 42 module_init(ath9k_init); 43 44 static void __exit ath9k_exit(void) 45 { 46 return; 47 } 48 module_exit(ath9k_exit); 49 50 /* Private hardware callbacks */ 51 52 static void ath9k_hw_init_cal_settings(struct ath_hw *ah) 53 { 54 ath9k_hw_private_ops(ah)->init_cal_settings(ah); 55 } 56 57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah, 58 struct ath9k_channel *chan) 59 { 60 return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan); 61 } 62 63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah) 64 { 65 if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs) 66 return; 67 68 ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah); 69 } 70 71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah) 72 { 73 /* You will not have this callback if using the old ANI */ 74 if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs) 75 return; 76 77 ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah); 78 } 79 80 /********************/ 81 /* Helper Functions */ 82 /********************/ 83 84 #ifdef CONFIG_ATH9K_DEBUGFS 85 86 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause) 87 { 88 struct ath_softc *sc = common->priv; 89 if (sync_cause) 90 sc->debug.stats.istats.sync_cause_all++; 91 if (sync_cause & AR_INTR_SYNC_RTC_IRQ) 92 sc->debug.stats.istats.sync_rtc_irq++; 93 if (sync_cause & AR_INTR_SYNC_MAC_IRQ) 94 sc->debug.stats.istats.sync_mac_irq++; 95 if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS) 96 sc->debug.stats.istats.eeprom_illegal_access++; 97 if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT) 98 sc->debug.stats.istats.apb_timeout++; 99 if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT) 100 sc->debug.stats.istats.pci_mode_conflict++; 101 if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) 102 sc->debug.stats.istats.host1_fatal++; 103 if (sync_cause & AR_INTR_SYNC_HOST1_PERR) 104 sc->debug.stats.istats.host1_perr++; 105 if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR) 106 sc->debug.stats.istats.trcv_fifo_perr++; 107 if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP) 108 sc->debug.stats.istats.radm_cpl_ep++; 109 if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT) 110 sc->debug.stats.istats.radm_cpl_dllp_abort++; 111 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT) 112 sc->debug.stats.istats.radm_cpl_tlp_abort++; 113 if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR) 114 sc->debug.stats.istats.radm_cpl_ecrc_err++; 115 if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) 116 sc->debug.stats.istats.radm_cpl_timeout++; 117 if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) 118 sc->debug.stats.istats.local_timeout++; 119 if (sync_cause & AR_INTR_SYNC_PM_ACCESS) 120 sc->debug.stats.istats.pm_access++; 121 if (sync_cause & AR_INTR_SYNC_MAC_AWAKE) 122 sc->debug.stats.istats.mac_awake++; 123 if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP) 124 sc->debug.stats.istats.mac_asleep++; 125 if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS) 126 sc->debug.stats.istats.mac_sleep_access++; 127 } 128 #endif 129 130 131 static void ath9k_hw_set_clockrate(struct ath_hw *ah) 132 { 133 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; 134 struct ath_common *common = ath9k_hw_common(ah); 135 unsigned int clockrate; 136 137 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */ 138 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) 139 clockrate = 117; 140 else if (!ah->curchan) /* should really check for CCK instead */ 141 clockrate = ATH9K_CLOCK_RATE_CCK; 142 else if (conf->chandef.chan->band == IEEE80211_BAND_2GHZ) 143 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM; 144 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK) 145 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM; 146 else 147 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM; 148 149 if (conf_is_ht40(conf)) 150 clockrate *= 2; 151 152 if (ah->curchan) { 153 if (IS_CHAN_HALF_RATE(ah->curchan)) 154 clockrate /= 2; 155 if (IS_CHAN_QUARTER_RATE(ah->curchan)) 156 clockrate /= 4; 157 } 158 159 common->clockrate = clockrate; 160 } 161 162 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) 163 { 164 struct ath_common *common = ath9k_hw_common(ah); 165 166 return usecs * common->clockrate; 167 } 168 169 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) 170 { 171 int i; 172 173 BUG_ON(timeout < AH_TIME_QUANTUM); 174 175 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { 176 if ((REG_READ(ah, reg) & mask) == val) 177 return true; 178 179 udelay(AH_TIME_QUANTUM); 180 } 181 182 ath_dbg(ath9k_hw_common(ah), ANY, 183 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", 184 timeout, reg, REG_READ(ah, reg), mask, val); 185 186 return false; 187 } 188 EXPORT_SYMBOL(ath9k_hw_wait); 189 190 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan, 191 int hw_delay) 192 { 193 if (IS_CHAN_B(chan)) 194 hw_delay = (4 * hw_delay) / 22; 195 else 196 hw_delay /= 10; 197 198 if (IS_CHAN_HALF_RATE(chan)) 199 hw_delay *= 2; 200 else if (IS_CHAN_QUARTER_RATE(chan)) 201 hw_delay *= 4; 202 203 udelay(hw_delay + BASE_ACTIVATE_DELAY); 204 } 205 206 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array, 207 int column, unsigned int *writecnt) 208 { 209 int r; 210 211 ENABLE_REGWRITE_BUFFER(ah); 212 for (r = 0; r < array->ia_rows; r++) { 213 REG_WRITE(ah, INI_RA(array, r, 0), 214 INI_RA(array, r, column)); 215 DO_DELAY(*writecnt); 216 } 217 REGWRITE_BUFFER_FLUSH(ah); 218 } 219 220 u32 ath9k_hw_reverse_bits(u32 val, u32 n) 221 { 222 u32 retval; 223 int i; 224 225 for (i = 0, retval = 0; i < n; i++) { 226 retval = (retval << 1) | (val & 1); 227 val >>= 1; 228 } 229 return retval; 230 } 231 232 u16 ath9k_hw_computetxtime(struct ath_hw *ah, 233 u8 phy, int kbps, 234 u32 frameLen, u16 rateix, 235 bool shortPreamble) 236 { 237 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; 238 239 if (kbps == 0) 240 return 0; 241 242 switch (phy) { 243 case WLAN_RC_PHY_CCK: 244 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; 245 if (shortPreamble) 246 phyTime >>= 1; 247 numBits = frameLen << 3; 248 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); 249 break; 250 case WLAN_RC_PHY_OFDM: 251 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { 252 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; 253 numBits = OFDM_PLCP_BITS + (frameLen << 3); 254 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 255 txTime = OFDM_SIFS_TIME_QUARTER 256 + OFDM_PREAMBLE_TIME_QUARTER 257 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); 258 } else if (ah->curchan && 259 IS_CHAN_HALF_RATE(ah->curchan)) { 260 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; 261 numBits = OFDM_PLCP_BITS + (frameLen << 3); 262 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 263 txTime = OFDM_SIFS_TIME_HALF + 264 OFDM_PREAMBLE_TIME_HALF 265 + (numSymbols * OFDM_SYMBOL_TIME_HALF); 266 } else { 267 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; 268 numBits = OFDM_PLCP_BITS + (frameLen << 3); 269 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 270 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME 271 + (numSymbols * OFDM_SYMBOL_TIME); 272 } 273 break; 274 default: 275 ath_err(ath9k_hw_common(ah), 276 "Unknown phy %u (rate ix %u)\n", phy, rateix); 277 txTime = 0; 278 break; 279 } 280 281 return txTime; 282 } 283 EXPORT_SYMBOL(ath9k_hw_computetxtime); 284 285 void ath9k_hw_get_channel_centers(struct ath_hw *ah, 286 struct ath9k_channel *chan, 287 struct chan_centers *centers) 288 { 289 int8_t extoff; 290 291 if (!IS_CHAN_HT40(chan)) { 292 centers->ctl_center = centers->ext_center = 293 centers->synth_center = chan->channel; 294 return; 295 } 296 297 if ((chan->chanmode == CHANNEL_A_HT40PLUS) || 298 (chan->chanmode == CHANNEL_G_HT40PLUS)) { 299 centers->synth_center = 300 chan->channel + HT40_CHANNEL_CENTER_SHIFT; 301 extoff = 1; 302 } else { 303 centers->synth_center = 304 chan->channel - HT40_CHANNEL_CENTER_SHIFT; 305 extoff = -1; 306 } 307 308 centers->ctl_center = 309 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); 310 /* 25 MHz spacing is supported by hw but not on upper layers */ 311 centers->ext_center = 312 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT); 313 } 314 315 /******************/ 316 /* Chip Revisions */ 317 /******************/ 318 319 static void ath9k_hw_read_revisions(struct ath_hw *ah) 320 { 321 u32 val; 322 323 switch (ah->hw_version.devid) { 324 case AR5416_AR9100_DEVID: 325 ah->hw_version.macVersion = AR_SREV_VERSION_9100; 326 break; 327 case AR9300_DEVID_AR9330: 328 ah->hw_version.macVersion = AR_SREV_VERSION_9330; 329 if (ah->get_mac_revision) { 330 ah->hw_version.macRev = ah->get_mac_revision(); 331 } else { 332 val = REG_READ(ah, AR_SREV); 333 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 334 } 335 return; 336 case AR9300_DEVID_AR9340: 337 ah->hw_version.macVersion = AR_SREV_VERSION_9340; 338 val = REG_READ(ah, AR_SREV); 339 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 340 return; 341 case AR9300_DEVID_QCA955X: 342 ah->hw_version.macVersion = AR_SREV_VERSION_9550; 343 return; 344 } 345 346 val = REG_READ(ah, AR_SREV) & AR_SREV_ID; 347 348 if (val == 0xFF) { 349 val = REG_READ(ah, AR_SREV); 350 ah->hw_version.macVersion = 351 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; 352 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 353 354 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 355 ah->is_pciexpress = true; 356 else 357 ah->is_pciexpress = (val & 358 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; 359 } else { 360 if (!AR_SREV_9100(ah)) 361 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); 362 363 ah->hw_version.macRev = val & AR_SREV_REVISION; 364 365 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) 366 ah->is_pciexpress = true; 367 } 368 } 369 370 /************************************/ 371 /* HW Attach, Detach, Init Routines */ 372 /************************************/ 373 374 static void ath9k_hw_disablepcie(struct ath_hw *ah) 375 { 376 if (!AR_SREV_5416(ah)) 377 return; 378 379 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); 380 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); 381 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); 382 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); 383 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); 384 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); 385 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); 386 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); 387 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); 388 389 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); 390 } 391 392 /* This should work for all families including legacy */ 393 static bool ath9k_hw_chip_test(struct ath_hw *ah) 394 { 395 struct ath_common *common = ath9k_hw_common(ah); 396 u32 regAddr[2] = { AR_STA_ID0 }; 397 u32 regHold[2]; 398 static const u32 patternData[4] = { 399 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 400 }; 401 int i, j, loop_max; 402 403 if (!AR_SREV_9300_20_OR_LATER(ah)) { 404 loop_max = 2; 405 regAddr[1] = AR_PHY_BASE + (8 << 2); 406 } else 407 loop_max = 1; 408 409 for (i = 0; i < loop_max; i++) { 410 u32 addr = regAddr[i]; 411 u32 wrData, rdData; 412 413 regHold[i] = REG_READ(ah, addr); 414 for (j = 0; j < 0x100; j++) { 415 wrData = (j << 16) | j; 416 REG_WRITE(ah, addr, wrData); 417 rdData = REG_READ(ah, addr); 418 if (rdData != wrData) { 419 ath_err(common, 420 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 421 addr, wrData, rdData); 422 return false; 423 } 424 } 425 for (j = 0; j < 4; j++) { 426 wrData = patternData[j]; 427 REG_WRITE(ah, addr, wrData); 428 rdData = REG_READ(ah, addr); 429 if (wrData != rdData) { 430 ath_err(common, 431 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 432 addr, wrData, rdData); 433 return false; 434 } 435 } 436 REG_WRITE(ah, regAddr[i], regHold[i]); 437 } 438 udelay(100); 439 440 return true; 441 } 442 443 static void ath9k_hw_init_config(struct ath_hw *ah) 444 { 445 int i; 446 447 ah->config.dma_beacon_response_time = 1; 448 ah->config.sw_beacon_response_time = 6; 449 ah->config.additional_swba_backoff = 0; 450 ah->config.ack_6mb = 0x0; 451 ah->config.cwm_ignore_extcca = 0; 452 ah->config.pcie_clock_req = 0; 453 ah->config.pcie_waen = 0; 454 ah->config.analog_shiftreg = 1; 455 ah->config.enable_ani = true; 456 457 for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) { 458 ah->config.spurchans[i][0] = AR_NO_SPUR; 459 ah->config.spurchans[i][1] = AR_NO_SPUR; 460 } 461 462 ah->config.rx_intr_mitigation = true; 463 ah->config.pcieSerDesWrite = true; 464 465 /* 466 * We need this for PCI devices only (Cardbus, PCI, miniPCI) 467 * _and_ if on non-uniprocessor systems (Multiprocessor/HT). 468 * This means we use it for all AR5416 devices, and the few 469 * minor PCI AR9280 devices out there. 470 * 471 * Serialization is required because these devices do not handle 472 * well the case of two concurrent reads/writes due to the latency 473 * involved. During one read/write another read/write can be issued 474 * on another CPU while the previous read/write may still be working 475 * on our hardware, if we hit this case the hardware poops in a loop. 476 * We prevent this by serializing reads and writes. 477 * 478 * This issue is not present on PCI-Express devices or pre-AR5416 479 * devices (legacy, 802.11abg). 480 */ 481 if (num_possible_cpus() > 1) 482 ah->config.serialize_regmode = SER_REG_MODE_AUTO; 483 } 484 485 static void ath9k_hw_init_defaults(struct ath_hw *ah) 486 { 487 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 488 489 regulatory->country_code = CTRY_DEFAULT; 490 regulatory->power_limit = MAX_RATE_POWER; 491 492 ah->hw_version.magic = AR5416_MAGIC; 493 ah->hw_version.subvendorid = 0; 494 495 ah->atim_window = 0; 496 ah->sta_id1_defaults = 497 AR_STA_ID1_CRPT_MIC_ENABLE | 498 AR_STA_ID1_MCAST_KSRCH; 499 if (AR_SREV_9100(ah)) 500 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX; 501 ah->slottime = ATH9K_SLOT_TIME_9; 502 ah->globaltxtimeout = (u32) -1; 503 ah->power_mode = ATH9K_PM_UNDEFINED; 504 ah->htc_reset_init = true; 505 } 506 507 static int ath9k_hw_init_macaddr(struct ath_hw *ah) 508 { 509 struct ath_common *common = ath9k_hw_common(ah); 510 u32 sum; 511 int i; 512 u16 eeval; 513 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW }; 514 515 sum = 0; 516 for (i = 0; i < 3; i++) { 517 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]); 518 sum += eeval; 519 common->macaddr[2 * i] = eeval >> 8; 520 common->macaddr[2 * i + 1] = eeval & 0xff; 521 } 522 if (sum == 0 || sum == 0xffff * 3) 523 return -EADDRNOTAVAIL; 524 525 return 0; 526 } 527 528 static int ath9k_hw_post_init(struct ath_hw *ah) 529 { 530 struct ath_common *common = ath9k_hw_common(ah); 531 int ecode; 532 533 if (common->bus_ops->ath_bus_type != ATH_USB) { 534 if (!ath9k_hw_chip_test(ah)) 535 return -ENODEV; 536 } 537 538 if (!AR_SREV_9300_20_OR_LATER(ah)) { 539 ecode = ar9002_hw_rf_claim(ah); 540 if (ecode != 0) 541 return ecode; 542 } 543 544 ecode = ath9k_hw_eeprom_init(ah); 545 if (ecode != 0) 546 return ecode; 547 548 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n", 549 ah->eep_ops->get_eeprom_ver(ah), 550 ah->eep_ops->get_eeprom_rev(ah)); 551 552 if (ah->config.enable_ani) 553 ath9k_hw_ani_init(ah); 554 555 return 0; 556 } 557 558 static int ath9k_hw_attach_ops(struct ath_hw *ah) 559 { 560 if (!AR_SREV_9300_20_OR_LATER(ah)) 561 return ar9002_hw_attach_ops(ah); 562 563 ar9003_hw_attach_ops(ah); 564 return 0; 565 } 566 567 /* Called for all hardware families */ 568 static int __ath9k_hw_init(struct ath_hw *ah) 569 { 570 struct ath_common *common = ath9k_hw_common(ah); 571 int r = 0; 572 573 ath9k_hw_read_revisions(ah); 574 575 /* 576 * Read back AR_WA into a permanent copy and set bits 14 and 17. 577 * We need to do this to avoid RMW of this register. We cannot 578 * read the reg when chip is asleep. 579 */ 580 ah->WARegVal = REG_READ(ah, AR_WA); 581 ah->WARegVal |= (AR_WA_D3_L1_DISABLE | 582 AR_WA_ASPM_TIMER_BASED_DISABLE); 583 584 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 585 ath_err(common, "Couldn't reset chip\n"); 586 return -EIO; 587 } 588 589 if (AR_SREV_9462(ah)) 590 ah->WARegVal &= ~AR_WA_D3_L1_DISABLE; 591 592 if (AR_SREV_9565(ah)) { 593 ah->WARegVal |= AR_WA_BIT22; 594 REG_WRITE(ah, AR_WA, ah->WARegVal); 595 } 596 597 ath9k_hw_init_defaults(ah); 598 ath9k_hw_init_config(ah); 599 600 r = ath9k_hw_attach_ops(ah); 601 if (r) 602 return r; 603 604 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { 605 ath_err(common, "Couldn't wakeup chip\n"); 606 return -EIO; 607 } 608 609 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) { 610 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || 611 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) && 612 !ah->is_pciexpress)) { 613 ah->config.serialize_regmode = 614 SER_REG_MODE_ON; 615 } else { 616 ah->config.serialize_regmode = 617 SER_REG_MODE_OFF; 618 } 619 } 620 621 ath_dbg(common, RESET, "serialize_regmode is %d\n", 622 ah->config.serialize_regmode); 623 624 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 625 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1; 626 else 627 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD; 628 629 switch (ah->hw_version.macVersion) { 630 case AR_SREV_VERSION_5416_PCI: 631 case AR_SREV_VERSION_5416_PCIE: 632 case AR_SREV_VERSION_9160: 633 case AR_SREV_VERSION_9100: 634 case AR_SREV_VERSION_9280: 635 case AR_SREV_VERSION_9285: 636 case AR_SREV_VERSION_9287: 637 case AR_SREV_VERSION_9271: 638 case AR_SREV_VERSION_9300: 639 case AR_SREV_VERSION_9330: 640 case AR_SREV_VERSION_9485: 641 case AR_SREV_VERSION_9340: 642 case AR_SREV_VERSION_9462: 643 case AR_SREV_VERSION_9550: 644 case AR_SREV_VERSION_9565: 645 break; 646 default: 647 ath_err(common, 648 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n", 649 ah->hw_version.macVersion, ah->hw_version.macRev); 650 return -EOPNOTSUPP; 651 } 652 653 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) || 654 AR_SREV_9330(ah) || AR_SREV_9550(ah)) 655 ah->is_pciexpress = false; 656 657 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); 658 ath9k_hw_init_cal_settings(ah); 659 660 ah->ani_function = ATH9K_ANI_ALL; 661 if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 662 ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL; 663 if (!AR_SREV_9300_20_OR_LATER(ah)) 664 ah->ani_function &= ~ATH9K_ANI_MRC_CCK; 665 666 if (!ah->is_pciexpress) 667 ath9k_hw_disablepcie(ah); 668 669 r = ath9k_hw_post_init(ah); 670 if (r) 671 return r; 672 673 ath9k_hw_init_mode_gain_regs(ah); 674 r = ath9k_hw_fill_cap_info(ah); 675 if (r) 676 return r; 677 678 r = ath9k_hw_init_macaddr(ah); 679 if (r) { 680 ath_err(common, "Failed to initialize MAC address\n"); 681 return r; 682 } 683 684 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 685 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); 686 else 687 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); 688 689 if (AR_SREV_9330(ah)) 690 ah->bb_watchdog_timeout_ms = 85; 691 else 692 ah->bb_watchdog_timeout_ms = 25; 693 694 common->state = ATH_HW_INITIALIZED; 695 696 return 0; 697 } 698 699 int ath9k_hw_init(struct ath_hw *ah) 700 { 701 int ret; 702 struct ath_common *common = ath9k_hw_common(ah); 703 704 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */ 705 switch (ah->hw_version.devid) { 706 case AR5416_DEVID_PCI: 707 case AR5416_DEVID_PCIE: 708 case AR5416_AR9100_DEVID: 709 case AR9160_DEVID_PCI: 710 case AR9280_DEVID_PCI: 711 case AR9280_DEVID_PCIE: 712 case AR9285_DEVID_PCIE: 713 case AR9287_DEVID_PCI: 714 case AR9287_DEVID_PCIE: 715 case AR2427_DEVID_PCIE: 716 case AR9300_DEVID_PCIE: 717 case AR9300_DEVID_AR9485_PCIE: 718 case AR9300_DEVID_AR9330: 719 case AR9300_DEVID_AR9340: 720 case AR9300_DEVID_QCA955X: 721 case AR9300_DEVID_AR9580: 722 case AR9300_DEVID_AR9462: 723 case AR9485_DEVID_AR1111: 724 case AR9300_DEVID_AR9565: 725 break; 726 default: 727 if (common->bus_ops->ath_bus_type == ATH_USB) 728 break; 729 ath_err(common, "Hardware device ID 0x%04x not supported\n", 730 ah->hw_version.devid); 731 return -EOPNOTSUPP; 732 } 733 734 ret = __ath9k_hw_init(ah); 735 if (ret) { 736 ath_err(common, 737 "Unable to initialize hardware; initialization status: %d\n", 738 ret); 739 return ret; 740 } 741 742 return 0; 743 } 744 EXPORT_SYMBOL(ath9k_hw_init); 745 746 static void ath9k_hw_init_qos(struct ath_hw *ah) 747 { 748 ENABLE_REGWRITE_BUFFER(ah); 749 750 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); 751 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); 752 753 REG_WRITE(ah, AR_QOS_NO_ACK, 754 SM(2, AR_QOS_NO_ACK_TWO_BIT) | 755 SM(5, AR_QOS_NO_ACK_BIT_OFF) | 756 SM(0, AR_QOS_NO_ACK_BYTE_OFF)); 757 758 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 759 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 760 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 761 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 762 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 763 764 REGWRITE_BUFFER_FLUSH(ah); 765 } 766 767 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah) 768 { 769 struct ath_common *common = ath9k_hw_common(ah); 770 int i = 0; 771 772 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 773 udelay(100); 774 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 775 776 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) { 777 778 udelay(100); 779 780 if (WARN_ON_ONCE(i >= 100)) { 781 ath_err(common, "PLL4 meaurement not done\n"); 782 break; 783 } 784 785 i++; 786 } 787 788 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3; 789 } 790 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc); 791 792 static void ath9k_hw_init_pll(struct ath_hw *ah, 793 struct ath9k_channel *chan) 794 { 795 u32 pll; 796 797 if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) { 798 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */ 799 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 800 AR_CH0_BB_DPLL2_PLL_PWD, 0x1); 801 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 802 AR_CH0_DPLL2_KD, 0x40); 803 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 804 AR_CH0_DPLL2_KI, 0x4); 805 806 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 807 AR_CH0_BB_DPLL1_REFDIV, 0x5); 808 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 809 AR_CH0_BB_DPLL1_NINI, 0x58); 810 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 811 AR_CH0_BB_DPLL1_NFRAC, 0x0); 812 813 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 814 AR_CH0_BB_DPLL2_OUTDIV, 0x1); 815 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 816 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1); 817 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 818 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1); 819 820 /* program BB PLL phase_shift to 0x6 */ 821 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 822 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6); 823 824 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 825 AR_CH0_BB_DPLL2_PLL_PWD, 0x0); 826 udelay(1000); 827 } else if (AR_SREV_9330(ah)) { 828 u32 ddr_dpll2, pll_control2, kd; 829 830 if (ah->is_clk_25mhz) { 831 ddr_dpll2 = 0x18e82f01; 832 pll_control2 = 0xe04a3d; 833 kd = 0x1d; 834 } else { 835 ddr_dpll2 = 0x19e82f01; 836 pll_control2 = 0x886666; 837 kd = 0x3d; 838 } 839 840 /* program DDR PLL ki and kd value */ 841 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2); 842 843 /* program DDR PLL phase_shift */ 844 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3, 845 AR_CH0_DPLL3_PHASE_SHIFT, 0x1); 846 847 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); 848 udelay(1000); 849 850 /* program refdiv, nint, frac to RTC register */ 851 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2); 852 853 /* program BB PLL kd and ki value */ 854 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd); 855 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06); 856 857 /* program BB PLL phase_shift */ 858 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 859 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1); 860 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) { 861 u32 regval, pll2_divint, pll2_divfrac, refdiv; 862 863 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); 864 udelay(1000); 865 866 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16); 867 udelay(100); 868 869 if (ah->is_clk_25mhz) { 870 pll2_divint = 0x54; 871 pll2_divfrac = 0x1eb85; 872 refdiv = 3; 873 } else { 874 if (AR_SREV_9340(ah)) { 875 pll2_divint = 88; 876 pll2_divfrac = 0; 877 refdiv = 5; 878 } else { 879 pll2_divint = 0x11; 880 pll2_divfrac = 0x26666; 881 refdiv = 1; 882 } 883 } 884 885 regval = REG_READ(ah, AR_PHY_PLL_MODE); 886 regval |= (0x1 << 16); 887 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 888 udelay(100); 889 890 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) | 891 (pll2_divint << 18) | pll2_divfrac); 892 udelay(100); 893 894 regval = REG_READ(ah, AR_PHY_PLL_MODE); 895 if (AR_SREV_9340(ah)) 896 regval = (regval & 0x80071fff) | (0x1 << 30) | 897 (0x1 << 13) | (0x4 << 26) | (0x18 << 19); 898 else 899 regval = (regval & 0x80071fff) | (0x3 << 30) | 900 (0x1 << 13) | (0x4 << 26) | (0x60 << 19); 901 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 902 REG_WRITE(ah, AR_PHY_PLL_MODE, 903 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff); 904 udelay(1000); 905 } 906 907 pll = ath9k_hw_compute_pll_control(ah, chan); 908 if (AR_SREV_9565(ah)) 909 pll |= 0x40000; 910 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 911 912 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) || 913 AR_SREV_9550(ah)) 914 udelay(1000); 915 916 /* Switch the core clock for ar9271 to 117Mhz */ 917 if (AR_SREV_9271(ah)) { 918 udelay(500); 919 REG_WRITE(ah, 0x50040, 0x304); 920 } 921 922 udelay(RTC_PLL_SETTLE_DELAY); 923 924 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); 925 926 if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) { 927 if (ah->is_clk_25mhz) { 928 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1); 929 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7); 930 REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae); 931 } else { 932 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1); 933 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400); 934 REG_WRITE(ah, AR_SLP32_INC, 0x0001e800); 935 } 936 udelay(100); 937 } 938 } 939 940 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, 941 enum nl80211_iftype opmode) 942 { 943 u32 sync_default = AR_INTR_SYNC_DEFAULT; 944 u32 imr_reg = AR_IMR_TXERR | 945 AR_IMR_TXURN | 946 AR_IMR_RXERR | 947 AR_IMR_RXORN | 948 AR_IMR_BCNMISC; 949 950 if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) 951 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL; 952 953 if (AR_SREV_9300_20_OR_LATER(ah)) { 954 imr_reg |= AR_IMR_RXOK_HP; 955 if (ah->config.rx_intr_mitigation) 956 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 957 else 958 imr_reg |= AR_IMR_RXOK_LP; 959 960 } else { 961 if (ah->config.rx_intr_mitigation) 962 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 963 else 964 imr_reg |= AR_IMR_RXOK; 965 } 966 967 if (ah->config.tx_intr_mitigation) 968 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR; 969 else 970 imr_reg |= AR_IMR_TXOK; 971 972 ENABLE_REGWRITE_BUFFER(ah); 973 974 REG_WRITE(ah, AR_IMR, imr_reg); 975 ah->imrs2_reg |= AR_IMR_S2_GTT; 976 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); 977 978 if (!AR_SREV_9100(ah)) { 979 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); 980 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default); 981 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); 982 } 983 984 REGWRITE_BUFFER_FLUSH(ah); 985 986 if (AR_SREV_9300_20_OR_LATER(ah)) { 987 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0); 988 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0); 989 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0); 990 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0); 991 } 992 } 993 994 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us) 995 { 996 u32 val = ath9k_hw_mac_to_clks(ah, us - 2); 997 val = min(val, (u32) 0xFFFF); 998 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val); 999 } 1000 1001 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us) 1002 { 1003 u32 val = ath9k_hw_mac_to_clks(ah, us); 1004 val = min(val, (u32) 0xFFFF); 1005 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val); 1006 } 1007 1008 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) 1009 { 1010 u32 val = ath9k_hw_mac_to_clks(ah, us); 1011 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK)); 1012 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val); 1013 } 1014 1015 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) 1016 { 1017 u32 val = ath9k_hw_mac_to_clks(ah, us); 1018 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS)); 1019 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val); 1020 } 1021 1022 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) 1023 { 1024 if (tu > 0xFFFF) { 1025 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n", 1026 tu); 1027 ah->globaltxtimeout = (u32) -1; 1028 return false; 1029 } else { 1030 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); 1031 ah->globaltxtimeout = tu; 1032 return true; 1033 } 1034 } 1035 1036 void ath9k_hw_init_global_settings(struct ath_hw *ah) 1037 { 1038 struct ath_common *common = ath9k_hw_common(ah); 1039 struct ieee80211_conf *conf = &common->hw->conf; 1040 const struct ath9k_channel *chan = ah->curchan; 1041 int acktimeout, ctstimeout, ack_offset = 0; 1042 int slottime; 1043 int sifstime; 1044 int rx_lat = 0, tx_lat = 0, eifs = 0; 1045 u32 reg; 1046 1047 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n", 1048 ah->misc_mode); 1049 1050 if (!chan) 1051 return; 1052 1053 if (ah->misc_mode != 0) 1054 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode); 1055 1056 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1057 rx_lat = 41; 1058 else 1059 rx_lat = 37; 1060 tx_lat = 54; 1061 1062 if (IS_CHAN_5GHZ(chan)) 1063 sifstime = 16; 1064 else 1065 sifstime = 10; 1066 1067 if (IS_CHAN_HALF_RATE(chan)) { 1068 eifs = 175; 1069 rx_lat *= 2; 1070 tx_lat *= 2; 1071 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1072 tx_lat += 11; 1073 1074 sifstime *= 2; 1075 ack_offset = 16; 1076 slottime = 13; 1077 } else if (IS_CHAN_QUARTER_RATE(chan)) { 1078 eifs = 340; 1079 rx_lat = (rx_lat * 4) - 1; 1080 tx_lat *= 4; 1081 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1082 tx_lat += 22; 1083 1084 sifstime *= 4; 1085 ack_offset = 32; 1086 slottime = 21; 1087 } else { 1088 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { 1089 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO; 1090 reg = AR_USEC_ASYNC_FIFO; 1091 } else { 1092 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/ 1093 common->clockrate; 1094 reg = REG_READ(ah, AR_USEC); 1095 } 1096 rx_lat = MS(reg, AR_USEC_RX_LAT); 1097 tx_lat = MS(reg, AR_USEC_TX_LAT); 1098 1099 slottime = ah->slottime; 1100 } 1101 1102 /* As defined by IEEE 802.11-2007 17.3.8.6 */ 1103 slottime += 3 * ah->coverage_class; 1104 acktimeout = slottime + sifstime + ack_offset; 1105 ctstimeout = acktimeout; 1106 1107 /* 1108 * Workaround for early ACK timeouts, add an offset to match the 1109 * initval's 64us ack timeout value. Use 48us for the CTS timeout. 1110 * This was initially only meant to work around an issue with delayed 1111 * BA frames in some implementations, but it has been found to fix ACK 1112 * timeout issues in other cases as well. 1113 */ 1114 if (conf->chandef.chan && 1115 conf->chandef.chan->band == IEEE80211_BAND_2GHZ && 1116 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) { 1117 acktimeout += 64 - sifstime - ah->slottime; 1118 ctstimeout += 48 - sifstime - ah->slottime; 1119 } 1120 1121 1122 ath9k_hw_set_sifs_time(ah, sifstime); 1123 ath9k_hw_setslottime(ah, slottime); 1124 ath9k_hw_set_ack_timeout(ah, acktimeout); 1125 ath9k_hw_set_cts_timeout(ah, ctstimeout); 1126 if (ah->globaltxtimeout != (u32) -1) 1127 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); 1128 1129 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs)); 1130 REG_RMW(ah, AR_USEC, 1131 (common->clockrate - 1) | 1132 SM(rx_lat, AR_USEC_RX_LAT) | 1133 SM(tx_lat, AR_USEC_TX_LAT), 1134 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC); 1135 1136 } 1137 EXPORT_SYMBOL(ath9k_hw_init_global_settings); 1138 1139 void ath9k_hw_deinit(struct ath_hw *ah) 1140 { 1141 struct ath_common *common = ath9k_hw_common(ah); 1142 1143 if (common->state < ATH_HW_INITIALIZED) 1144 return; 1145 1146 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); 1147 } 1148 EXPORT_SYMBOL(ath9k_hw_deinit); 1149 1150 /*******/ 1151 /* INI */ 1152 /*******/ 1153 1154 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan) 1155 { 1156 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); 1157 1158 if (IS_CHAN_B(chan)) 1159 ctl |= CTL_11B; 1160 else if (IS_CHAN_G(chan)) 1161 ctl |= CTL_11G; 1162 else 1163 ctl |= CTL_11A; 1164 1165 return ctl; 1166 } 1167 1168 /****************************************/ 1169 /* Reset and Channel Switching Routines */ 1170 /****************************************/ 1171 1172 static inline void ath9k_hw_set_dma(struct ath_hw *ah) 1173 { 1174 struct ath_common *common = ath9k_hw_common(ah); 1175 1176 ENABLE_REGWRITE_BUFFER(ah); 1177 1178 /* 1179 * set AHB_MODE not to do cacheline prefetches 1180 */ 1181 if (!AR_SREV_9300_20_OR_LATER(ah)) 1182 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); 1183 1184 /* 1185 * let mac dma reads be in 128 byte chunks 1186 */ 1187 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK); 1188 1189 REGWRITE_BUFFER_FLUSH(ah); 1190 1191 /* 1192 * Restore TX Trigger Level to its pre-reset value. 1193 * The initial value depends on whether aggregation is enabled, and is 1194 * adjusted whenever underruns are detected. 1195 */ 1196 if (!AR_SREV_9300_20_OR_LATER(ah)) 1197 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); 1198 1199 ENABLE_REGWRITE_BUFFER(ah); 1200 1201 /* 1202 * let mac dma writes be in 128 byte chunks 1203 */ 1204 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK); 1205 1206 /* 1207 * Setup receive FIFO threshold to hold off TX activities 1208 */ 1209 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 1210 1211 if (AR_SREV_9300_20_OR_LATER(ah)) { 1212 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1); 1213 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1); 1214 1215 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 1216 ah->caps.rx_status_len); 1217 } 1218 1219 /* 1220 * reduce the number of usable entries in PCU TXBUF to avoid 1221 * wrap around issues. 1222 */ 1223 if (AR_SREV_9285(ah)) { 1224 /* For AR9285 the number of Fifos are reduced to half. 1225 * So set the usable tx buf size also to half to 1226 * avoid data/delimiter underruns 1227 */ 1228 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, 1229 AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE); 1230 } else if (!AR_SREV_9271(ah)) { 1231 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, 1232 AR_PCU_TXBUF_CTRL_USABLE_SIZE); 1233 } 1234 1235 REGWRITE_BUFFER_FLUSH(ah); 1236 1237 if (AR_SREV_9300_20_OR_LATER(ah)) 1238 ath9k_hw_reset_txstatus_ring(ah); 1239 } 1240 1241 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) 1242 { 1243 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC; 1244 u32 set = AR_STA_ID1_KSRCH_MODE; 1245 1246 switch (opmode) { 1247 case NL80211_IFTYPE_ADHOC: 1248 case NL80211_IFTYPE_MESH_POINT: 1249 set |= AR_STA_ID1_ADHOC; 1250 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1251 break; 1252 case NL80211_IFTYPE_AP: 1253 set |= AR_STA_ID1_STA_AP; 1254 /* fall through */ 1255 case NL80211_IFTYPE_STATION: 1256 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1257 break; 1258 default: 1259 if (!ah->is_monitoring) 1260 set = 0; 1261 break; 1262 } 1263 REG_RMW(ah, AR_STA_ID1, set, mask); 1264 } 1265 1266 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled, 1267 u32 *coef_mantissa, u32 *coef_exponent) 1268 { 1269 u32 coef_exp, coef_man; 1270 1271 for (coef_exp = 31; coef_exp > 0; coef_exp--) 1272 if ((coef_scaled >> coef_exp) & 0x1) 1273 break; 1274 1275 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 1276 1277 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 1278 1279 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 1280 *coef_exponent = coef_exp - 16; 1281 } 1282 1283 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) 1284 { 1285 u32 rst_flags; 1286 u32 tmpReg; 1287 1288 if (AR_SREV_9100(ah)) { 1289 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK, 1290 AR_RTC_DERIVED_CLK_PERIOD, 1); 1291 (void)REG_READ(ah, AR_RTC_DERIVED_CLK); 1292 } 1293 1294 ENABLE_REGWRITE_BUFFER(ah); 1295 1296 if (AR_SREV_9300_20_OR_LATER(ah)) { 1297 REG_WRITE(ah, AR_WA, ah->WARegVal); 1298 udelay(10); 1299 } 1300 1301 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1302 AR_RTC_FORCE_WAKE_ON_INT); 1303 1304 if (AR_SREV_9100(ah)) { 1305 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | 1306 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; 1307 } else { 1308 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); 1309 if (tmpReg & 1310 (AR_INTR_SYNC_LOCAL_TIMEOUT | 1311 AR_INTR_SYNC_RADM_CPL_TIMEOUT)) { 1312 u32 val; 1313 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 1314 1315 val = AR_RC_HOSTIF; 1316 if (!AR_SREV_9300_20_OR_LATER(ah)) 1317 val |= AR_RC_AHB; 1318 REG_WRITE(ah, AR_RC, val); 1319 1320 } else if (!AR_SREV_9300_20_OR_LATER(ah)) 1321 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1322 1323 rst_flags = AR_RTC_RC_MAC_WARM; 1324 if (type == ATH9K_RESET_COLD) 1325 rst_flags |= AR_RTC_RC_MAC_COLD; 1326 } 1327 1328 if (AR_SREV_9330(ah)) { 1329 int npend = 0; 1330 int i; 1331 1332 /* AR9330 WAR: 1333 * call external reset function to reset WMAC if: 1334 * - doing a cold reset 1335 * - we have pending frames in the TX queues 1336 */ 1337 1338 for (i = 0; i < AR_NUM_QCU; i++) { 1339 npend = ath9k_hw_numtxpending(ah, i); 1340 if (npend) 1341 break; 1342 } 1343 1344 if (ah->external_reset && 1345 (npend || type == ATH9K_RESET_COLD)) { 1346 int reset_err = 0; 1347 1348 ath_dbg(ath9k_hw_common(ah), RESET, 1349 "reset MAC via external reset\n"); 1350 1351 reset_err = ah->external_reset(); 1352 if (reset_err) { 1353 ath_err(ath9k_hw_common(ah), 1354 "External reset failed, err=%d\n", 1355 reset_err); 1356 return false; 1357 } 1358 1359 REG_WRITE(ah, AR_RTC_RESET, 1); 1360 } 1361 } 1362 1363 if (ath9k_hw_mci_is_enabled(ah)) 1364 ar9003_mci_check_gpm_offset(ah); 1365 1366 REG_WRITE(ah, AR_RTC_RC, rst_flags); 1367 1368 REGWRITE_BUFFER_FLUSH(ah); 1369 1370 udelay(50); 1371 1372 REG_WRITE(ah, AR_RTC_RC, 0); 1373 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { 1374 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n"); 1375 return false; 1376 } 1377 1378 if (!AR_SREV_9100(ah)) 1379 REG_WRITE(ah, AR_RC, 0); 1380 1381 if (AR_SREV_9100(ah)) 1382 udelay(50); 1383 1384 return true; 1385 } 1386 1387 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) 1388 { 1389 ENABLE_REGWRITE_BUFFER(ah); 1390 1391 if (AR_SREV_9300_20_OR_LATER(ah)) { 1392 REG_WRITE(ah, AR_WA, ah->WARegVal); 1393 udelay(10); 1394 } 1395 1396 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1397 AR_RTC_FORCE_WAKE_ON_INT); 1398 1399 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1400 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1401 1402 REG_WRITE(ah, AR_RTC_RESET, 0); 1403 1404 REGWRITE_BUFFER_FLUSH(ah); 1405 1406 if (!AR_SREV_9300_20_OR_LATER(ah)) 1407 udelay(2); 1408 1409 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1410 REG_WRITE(ah, AR_RC, 0); 1411 1412 REG_WRITE(ah, AR_RTC_RESET, 1); 1413 1414 if (!ath9k_hw_wait(ah, 1415 AR_RTC_STATUS, 1416 AR_RTC_STATUS_M, 1417 AR_RTC_STATUS_ON, 1418 AH_WAIT_TIMEOUT)) { 1419 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n"); 1420 return false; 1421 } 1422 1423 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); 1424 } 1425 1426 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) 1427 { 1428 bool ret = false; 1429 1430 if (AR_SREV_9300_20_OR_LATER(ah)) { 1431 REG_WRITE(ah, AR_WA, ah->WARegVal); 1432 udelay(10); 1433 } 1434 1435 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1436 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1437 1438 if (!ah->reset_power_on) 1439 type = ATH9K_RESET_POWER_ON; 1440 1441 switch (type) { 1442 case ATH9K_RESET_POWER_ON: 1443 ret = ath9k_hw_set_reset_power_on(ah); 1444 if (ret) 1445 ah->reset_power_on = true; 1446 break; 1447 case ATH9K_RESET_WARM: 1448 case ATH9K_RESET_COLD: 1449 ret = ath9k_hw_set_reset(ah, type); 1450 break; 1451 default: 1452 break; 1453 } 1454 1455 return ret; 1456 } 1457 1458 static bool ath9k_hw_chip_reset(struct ath_hw *ah, 1459 struct ath9k_channel *chan) 1460 { 1461 int reset_type = ATH9K_RESET_WARM; 1462 1463 if (AR_SREV_9280(ah)) { 1464 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) 1465 reset_type = ATH9K_RESET_POWER_ON; 1466 else 1467 reset_type = ATH9K_RESET_COLD; 1468 } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) || 1469 (REG_READ(ah, AR_CR) & AR_CR_RXE)) 1470 reset_type = ATH9K_RESET_COLD; 1471 1472 if (!ath9k_hw_set_reset_reg(ah, reset_type)) 1473 return false; 1474 1475 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1476 return false; 1477 1478 ah->chip_fullsleep = false; 1479 1480 if (AR_SREV_9330(ah)) 1481 ar9003_hw_internal_regulator_apply(ah); 1482 ath9k_hw_init_pll(ah, chan); 1483 ath9k_hw_set_rfmode(ah, chan); 1484 1485 return true; 1486 } 1487 1488 static bool ath9k_hw_channel_change(struct ath_hw *ah, 1489 struct ath9k_channel *chan) 1490 { 1491 struct ath_common *common = ath9k_hw_common(ah); 1492 u32 qnum; 1493 int r; 1494 bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA); 1495 bool band_switch, mode_diff; 1496 u8 ini_reloaded; 1497 1498 band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) != 1499 (ah->curchan->channelFlags & (CHANNEL_2GHZ | 1500 CHANNEL_5GHZ)); 1501 mode_diff = (chan->chanmode != ah->curchan->chanmode); 1502 1503 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { 1504 if (ath9k_hw_numtxpending(ah, qnum)) { 1505 ath_dbg(common, QUEUE, 1506 "Transmit frames pending on queue %d\n", qnum); 1507 return false; 1508 } 1509 } 1510 1511 if (!ath9k_hw_rfbus_req(ah)) { 1512 ath_err(common, "Could not kill baseband RX\n"); 1513 return false; 1514 } 1515 1516 if (edma && (band_switch || mode_diff)) { 1517 ath9k_hw_mark_phy_inactive(ah); 1518 udelay(5); 1519 1520 ath9k_hw_init_pll(ah, NULL); 1521 1522 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) { 1523 ath_err(common, "Failed to do fast channel change\n"); 1524 return false; 1525 } 1526 } 1527 1528 ath9k_hw_set_channel_regs(ah, chan); 1529 1530 r = ath9k_hw_rf_set_freq(ah, chan); 1531 if (r) { 1532 ath_err(common, "Failed to set channel\n"); 1533 return false; 1534 } 1535 ath9k_hw_set_clockrate(ah); 1536 ath9k_hw_apply_txpower(ah, chan, false); 1537 ath9k_hw_rfbus_done(ah); 1538 1539 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) 1540 ath9k_hw_set_delta_slope(ah, chan); 1541 1542 ath9k_hw_spur_mitigate_freq(ah, chan); 1543 1544 if (edma && (band_switch || mode_diff)) { 1545 ah->ah_flags |= AH_FASTCC; 1546 if (band_switch || ini_reloaded) 1547 ah->eep_ops->set_board_values(ah, chan); 1548 1549 ath9k_hw_init_bb(ah, chan); 1550 1551 if (band_switch || ini_reloaded) 1552 ath9k_hw_init_cal(ah, chan); 1553 ah->ah_flags &= ~AH_FASTCC; 1554 } 1555 1556 return true; 1557 } 1558 1559 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah) 1560 { 1561 u32 gpio_mask = ah->gpio_mask; 1562 int i; 1563 1564 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) { 1565 if (!(gpio_mask & 1)) 1566 continue; 1567 1568 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); 1569 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i))); 1570 } 1571 } 1572 1573 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states, 1574 int *hang_state, int *hang_pos) 1575 { 1576 static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */ 1577 u32 chain_state, dcs_pos, i; 1578 1579 for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) { 1580 chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f; 1581 for (i = 0; i < 3; i++) { 1582 if (chain_state == dcu_chain_state[i]) { 1583 *hang_state = chain_state; 1584 *hang_pos = dcs_pos; 1585 return true; 1586 } 1587 } 1588 } 1589 return false; 1590 } 1591 1592 #define DCU_COMPLETE_STATE 1 1593 #define DCU_COMPLETE_STATE_MASK 0x3 1594 #define NUM_STATUS_READS 50 1595 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah) 1596 { 1597 u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4; 1598 u32 i, hang_pos, hang_state, num_state = 6; 1599 1600 comp_state = REG_READ(ah, AR_DMADBG_6); 1601 1602 if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) { 1603 ath_dbg(ath9k_hw_common(ah), RESET, 1604 "MAC Hang signature not found at DCU complete\n"); 1605 return false; 1606 } 1607 1608 chain_state = REG_READ(ah, dcs_reg); 1609 if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos)) 1610 goto hang_check_iter; 1611 1612 dcs_reg = AR_DMADBG_5; 1613 num_state = 4; 1614 chain_state = REG_READ(ah, dcs_reg); 1615 if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos)) 1616 goto hang_check_iter; 1617 1618 ath_dbg(ath9k_hw_common(ah), RESET, 1619 "MAC Hang signature 1 not found\n"); 1620 return false; 1621 1622 hang_check_iter: 1623 ath_dbg(ath9k_hw_common(ah), RESET, 1624 "DCU registers: chain %08x complete %08x Hang: state %d pos %d\n", 1625 chain_state, comp_state, hang_state, hang_pos); 1626 1627 for (i = 0; i < NUM_STATUS_READS; i++) { 1628 chain_state = REG_READ(ah, dcs_reg); 1629 chain_state = (chain_state >> (5 * hang_pos)) & 0x1f; 1630 comp_state = REG_READ(ah, AR_DMADBG_6); 1631 1632 if (((comp_state & DCU_COMPLETE_STATE_MASK) != 1633 DCU_COMPLETE_STATE) || 1634 (chain_state != hang_state)) 1635 return false; 1636 } 1637 1638 ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n"); 1639 1640 return true; 1641 } 1642 1643 bool ath9k_hw_check_alive(struct ath_hw *ah) 1644 { 1645 int count = 50; 1646 u32 reg; 1647 1648 if (AR_SREV_9300(ah)) 1649 return !ath9k_hw_detect_mac_hang(ah); 1650 1651 if (AR_SREV_9285_12_OR_LATER(ah)) 1652 return true; 1653 1654 do { 1655 reg = REG_READ(ah, AR_OBS_BUS_1); 1656 1657 if ((reg & 0x7E7FFFEF) == 0x00702400) 1658 continue; 1659 1660 switch (reg & 0x7E000B00) { 1661 case 0x1E000000: 1662 case 0x52000B00: 1663 case 0x18000B00: 1664 continue; 1665 default: 1666 return true; 1667 } 1668 } while (count-- > 0); 1669 1670 return false; 1671 } 1672 EXPORT_SYMBOL(ath9k_hw_check_alive); 1673 1674 static void ath9k_hw_init_mfp(struct ath_hw *ah) 1675 { 1676 /* Setup MFP options for CCMP */ 1677 if (AR_SREV_9280_20_OR_LATER(ah)) { 1678 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt 1679 * frames when constructing CCMP AAD. */ 1680 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, 1681 0xc7ff); 1682 ah->sw_mgmt_crypto = false; 1683 } else if (AR_SREV_9160_10_OR_LATER(ah)) { 1684 /* Disable hardware crypto for management frames */ 1685 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, 1686 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); 1687 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1688 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); 1689 ah->sw_mgmt_crypto = true; 1690 } else { 1691 ah->sw_mgmt_crypto = true; 1692 } 1693 } 1694 1695 static void ath9k_hw_reset_opmode(struct ath_hw *ah, 1696 u32 macStaId1, u32 saveDefAntenna) 1697 { 1698 struct ath_common *common = ath9k_hw_common(ah); 1699 1700 ENABLE_REGWRITE_BUFFER(ah); 1701 1702 REG_RMW(ah, AR_STA_ID1, macStaId1 1703 | AR_STA_ID1_RTS_USE_DEF 1704 | (ah->config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0) 1705 | ah->sta_id1_defaults, 1706 ~AR_STA_ID1_SADH_MASK); 1707 ath_hw_setbssidmask(common); 1708 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 1709 ath9k_hw_write_associd(ah); 1710 REG_WRITE(ah, AR_ISR, ~0); 1711 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); 1712 1713 REGWRITE_BUFFER_FLUSH(ah); 1714 1715 ath9k_hw_set_operating_mode(ah, ah->opmode); 1716 } 1717 1718 static void ath9k_hw_init_queues(struct ath_hw *ah) 1719 { 1720 int i; 1721 1722 ENABLE_REGWRITE_BUFFER(ah); 1723 1724 for (i = 0; i < AR_NUM_DCU; i++) 1725 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 1726 1727 REGWRITE_BUFFER_FLUSH(ah); 1728 1729 ah->intr_txqs = 0; 1730 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) 1731 ath9k_hw_resettxqueue(ah, i); 1732 } 1733 1734 /* 1735 * For big endian systems turn on swapping for descriptors 1736 */ 1737 static void ath9k_hw_init_desc(struct ath_hw *ah) 1738 { 1739 struct ath_common *common = ath9k_hw_common(ah); 1740 1741 if (AR_SREV_9100(ah)) { 1742 u32 mask; 1743 mask = REG_READ(ah, AR_CFG); 1744 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { 1745 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n", 1746 mask); 1747 } else { 1748 mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; 1749 REG_WRITE(ah, AR_CFG, mask); 1750 ath_dbg(common, RESET, "Setting CFG 0x%x\n", 1751 REG_READ(ah, AR_CFG)); 1752 } 1753 } else { 1754 if (common->bus_ops->ath_bus_type == ATH_USB) { 1755 /* Configure AR9271 target WLAN */ 1756 if (AR_SREV_9271(ah)) 1757 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); 1758 else 1759 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1760 } 1761 #ifdef __BIG_ENDIAN 1762 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) || 1763 AR_SREV_9550(ah)) 1764 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0); 1765 else 1766 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1767 #endif 1768 } 1769 } 1770 1771 /* 1772 * Fast channel change: 1773 * (Change synthesizer based on channel freq without resetting chip) 1774 * 1775 * Don't do FCC when 1776 * - Flag is not set 1777 * - Chip is just coming out of full sleep 1778 * - Channel to be set is same as current channel 1779 * - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel) 1780 */ 1781 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan) 1782 { 1783 struct ath_common *common = ath9k_hw_common(ah); 1784 int ret; 1785 1786 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI) 1787 goto fail; 1788 1789 if (ah->chip_fullsleep) 1790 goto fail; 1791 1792 if (!ah->curchan) 1793 goto fail; 1794 1795 if (chan->channel == ah->curchan->channel) 1796 goto fail; 1797 1798 if ((ah->curchan->channelFlags | chan->channelFlags) & 1799 (CHANNEL_HALF | CHANNEL_QUARTER)) 1800 goto fail; 1801 1802 if ((chan->channelFlags & CHANNEL_ALL) != 1803 (ah->curchan->channelFlags & CHANNEL_ALL)) 1804 goto fail; 1805 1806 if (!ath9k_hw_check_alive(ah)) 1807 goto fail; 1808 1809 /* 1810 * For AR9462, make sure that calibration data for 1811 * re-using are present. 1812 */ 1813 if (AR_SREV_9462(ah) && (ah->caldata && 1814 (!ah->caldata->done_txiqcal_once || 1815 !ah->caldata->done_txclcal_once || 1816 !ah->caldata->rtt_done))) 1817 goto fail; 1818 1819 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n", 1820 ah->curchan->channel, chan->channel); 1821 1822 ret = ath9k_hw_channel_change(ah, chan); 1823 if (!ret) 1824 goto fail; 1825 1826 if (ath9k_hw_mci_is_enabled(ah)) 1827 ar9003_mci_2g5g_switch(ah, false); 1828 1829 ath9k_hw_loadnf(ah, ah->curchan); 1830 ath9k_hw_start_nfcal(ah, true); 1831 1832 if (AR_SREV_9271(ah)) 1833 ar9002_hw_load_ani_reg(ah, chan); 1834 1835 return 0; 1836 fail: 1837 return -EINVAL; 1838 } 1839 1840 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, 1841 struct ath9k_hw_cal_data *caldata, bool fastcc) 1842 { 1843 struct ath_common *common = ath9k_hw_common(ah); 1844 u32 saveLedState; 1845 u32 saveDefAntenna; 1846 u32 macStaId1; 1847 u64 tsf = 0; 1848 int r; 1849 bool start_mci_reset = false; 1850 bool save_fullsleep = ah->chip_fullsleep; 1851 1852 if (ath9k_hw_mci_is_enabled(ah)) { 1853 start_mci_reset = ar9003_mci_start_reset(ah, chan); 1854 if (start_mci_reset) 1855 return 0; 1856 } 1857 1858 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1859 return -EIO; 1860 1861 if (ah->curchan && !ah->chip_fullsleep) 1862 ath9k_hw_getnf(ah, ah->curchan); 1863 1864 ah->caldata = caldata; 1865 if (caldata && (chan->channel != caldata->channel || 1866 chan->channelFlags != caldata->channelFlags)) { 1867 /* Operating channel changed, reset channel calibration data */ 1868 memset(caldata, 0, sizeof(*caldata)); 1869 ath9k_init_nfcal_hist_buffer(ah, chan); 1870 } else if (caldata) { 1871 caldata->paprd_packet_sent = false; 1872 } 1873 ah->noise = ath9k_hw_getchan_noise(ah, chan); 1874 1875 if (fastcc) { 1876 r = ath9k_hw_do_fastcc(ah, chan); 1877 if (!r) 1878 return r; 1879 } 1880 1881 if (ath9k_hw_mci_is_enabled(ah)) 1882 ar9003_mci_stop_bt(ah, save_fullsleep); 1883 1884 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); 1885 if (saveDefAntenna == 0) 1886 saveDefAntenna = 1; 1887 1888 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; 1889 1890 /* For chips on which RTC reset is done, save TSF before it gets cleared */ 1891 if (AR_SREV_9100(ah) || 1892 (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))) 1893 tsf = ath9k_hw_gettsf64(ah); 1894 1895 saveLedState = REG_READ(ah, AR_CFG_LED) & 1896 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | 1897 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); 1898 1899 ath9k_hw_mark_phy_inactive(ah); 1900 1901 ah->paprd_table_write_done = false; 1902 1903 /* Only required on the first reset */ 1904 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1905 REG_WRITE(ah, 1906 AR9271_RESET_POWER_DOWN_CONTROL, 1907 AR9271_RADIO_RF_RST); 1908 udelay(50); 1909 } 1910 1911 if (!ath9k_hw_chip_reset(ah, chan)) { 1912 ath_err(common, "Chip reset failed\n"); 1913 return -EINVAL; 1914 } 1915 1916 /* Only required on the first reset */ 1917 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1918 ah->htc_reset_init = false; 1919 REG_WRITE(ah, 1920 AR9271_RESET_POWER_DOWN_CONTROL, 1921 AR9271_GATE_MAC_CTL); 1922 udelay(50); 1923 } 1924 1925 /* Restore TSF */ 1926 if (tsf) 1927 ath9k_hw_settsf64(ah, tsf); 1928 1929 if (AR_SREV_9280_20_OR_LATER(ah)) 1930 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); 1931 1932 if (!AR_SREV_9300_20_OR_LATER(ah)) 1933 ar9002_hw_enable_async_fifo(ah); 1934 1935 r = ath9k_hw_process_ini(ah, chan); 1936 if (r) 1937 return r; 1938 1939 if (ath9k_hw_mci_is_enabled(ah)) 1940 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep); 1941 1942 /* 1943 * Some AR91xx SoC devices frequently fail to accept TSF writes 1944 * right after the chip reset. When that happens, write a new 1945 * value after the initvals have been applied, with an offset 1946 * based on measured time difference 1947 */ 1948 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) { 1949 tsf += 1500; 1950 ath9k_hw_settsf64(ah, tsf); 1951 } 1952 1953 ath9k_hw_init_mfp(ah); 1954 1955 if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan)) 1956 ath9k_hw_set_delta_slope(ah, chan); 1957 1958 ath9k_hw_spur_mitigate_freq(ah, chan); 1959 ah->eep_ops->set_board_values(ah, chan); 1960 1961 ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna); 1962 1963 r = ath9k_hw_rf_set_freq(ah, chan); 1964 if (r) 1965 return r; 1966 1967 ath9k_hw_set_clockrate(ah); 1968 1969 ath9k_hw_init_queues(ah); 1970 ath9k_hw_init_interrupt_masks(ah, ah->opmode); 1971 ath9k_hw_ani_cache_ini_regs(ah); 1972 ath9k_hw_init_qos(ah); 1973 1974 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) 1975 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio); 1976 1977 ath9k_hw_init_global_settings(ah); 1978 1979 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { 1980 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, 1981 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); 1982 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, 1983 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); 1984 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1985 AR_PCU_MISC_MODE2_ENABLE_AGGWEP); 1986 } 1987 1988 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM); 1989 1990 ath9k_hw_set_dma(ah); 1991 1992 if (!ath9k_hw_mci_is_enabled(ah)) 1993 REG_WRITE(ah, AR_OBS, 8); 1994 1995 if (ah->config.rx_intr_mitigation) { 1996 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500); 1997 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000); 1998 } 1999 2000 if (ah->config.tx_intr_mitigation) { 2001 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300); 2002 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750); 2003 } 2004 2005 ath9k_hw_init_bb(ah, chan); 2006 2007 if (caldata) { 2008 caldata->done_txiqcal_once = false; 2009 caldata->done_txclcal_once = false; 2010 } 2011 if (!ath9k_hw_init_cal(ah, chan)) 2012 return -EIO; 2013 2014 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata)) 2015 return -EIO; 2016 2017 ENABLE_REGWRITE_BUFFER(ah); 2018 2019 ath9k_hw_restore_chainmask(ah); 2020 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); 2021 2022 REGWRITE_BUFFER_FLUSH(ah); 2023 2024 ath9k_hw_init_desc(ah); 2025 2026 if (ath9k_hw_btcoex_is_enabled(ah)) 2027 ath9k_hw_btcoex_enable(ah); 2028 2029 if (ath9k_hw_mci_is_enabled(ah)) 2030 ar9003_mci_check_bt(ah); 2031 2032 ath9k_hw_loadnf(ah, chan); 2033 ath9k_hw_start_nfcal(ah, true); 2034 2035 if (AR_SREV_9300_20_OR_LATER(ah)) { 2036 ar9003_hw_bb_watchdog_config(ah); 2037 ar9003_hw_disable_phy_restart(ah); 2038 } 2039 2040 ath9k_hw_apply_gpio_override(ah); 2041 2042 if (AR_SREV_9565(ah) && ah->shared_chain_lnadiv) 2043 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON); 2044 2045 return 0; 2046 } 2047 EXPORT_SYMBOL(ath9k_hw_reset); 2048 2049 /******************************/ 2050 /* Power Management (Chipset) */ 2051 /******************************/ 2052 2053 /* 2054 * Notify Power Mgt is disabled in self-generated frames. 2055 * If requested, force chip to sleep. 2056 */ 2057 static void ath9k_set_power_sleep(struct ath_hw *ah) 2058 { 2059 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2060 2061 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 2062 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff); 2063 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff); 2064 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff); 2065 /* xxx Required for WLAN only case ? */ 2066 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0); 2067 udelay(100); 2068 } 2069 2070 /* 2071 * Clear the RTC force wake bit to allow the 2072 * mac to go to sleep. 2073 */ 2074 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); 2075 2076 if (ath9k_hw_mci_is_enabled(ah)) 2077 udelay(100); 2078 2079 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 2080 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); 2081 2082 /* Shutdown chip. Active low */ 2083 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) { 2084 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN); 2085 udelay(2); 2086 } 2087 2088 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */ 2089 if (AR_SREV_9300_20_OR_LATER(ah)) 2090 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 2091 } 2092 2093 /* 2094 * Notify Power Management is enabled in self-generating 2095 * frames. If request, set power mode of chip to 2096 * auto/normal. Duration in units of 128us (1/8 TU). 2097 */ 2098 static void ath9k_set_power_network_sleep(struct ath_hw *ah) 2099 { 2100 struct ath9k_hw_capabilities *pCap = &ah->caps; 2101 2102 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2103 2104 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { 2105 /* Set WakeOnInterrupt bit; clear ForceWake bit */ 2106 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 2107 AR_RTC_FORCE_WAKE_ON_INT); 2108 } else { 2109 2110 /* When chip goes into network sleep, it could be waken 2111 * up by MCI_INT interrupt caused by BT's HW messages 2112 * (LNA_xxx, CONT_xxx) which chould be in a very fast 2113 * rate (~100us). This will cause chip to leave and 2114 * re-enter network sleep mode frequently, which in 2115 * consequence will have WLAN MCI HW to generate lots of 2116 * SYS_WAKING and SYS_SLEEPING messages which will make 2117 * BT CPU to busy to process. 2118 */ 2119 if (ath9k_hw_mci_is_enabled(ah)) 2120 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 2121 AR_MCI_INTERRUPT_RX_HW_MSG_MASK); 2122 /* 2123 * Clear the RTC force wake bit to allow the 2124 * mac to go to sleep. 2125 */ 2126 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); 2127 2128 if (ath9k_hw_mci_is_enabled(ah)) 2129 udelay(30); 2130 } 2131 2132 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */ 2133 if (AR_SREV_9300_20_OR_LATER(ah)) 2134 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 2135 } 2136 2137 static bool ath9k_hw_set_power_awake(struct ath_hw *ah) 2138 { 2139 u32 val; 2140 int i; 2141 2142 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */ 2143 if (AR_SREV_9300_20_OR_LATER(ah)) { 2144 REG_WRITE(ah, AR_WA, ah->WARegVal); 2145 udelay(10); 2146 } 2147 2148 if ((REG_READ(ah, AR_RTC_STATUS) & 2149 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { 2150 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 2151 return false; 2152 } 2153 if (!AR_SREV_9300_20_OR_LATER(ah)) 2154 ath9k_hw_init_pll(ah, NULL); 2155 } 2156 if (AR_SREV_9100(ah)) 2157 REG_SET_BIT(ah, AR_RTC_RESET, 2158 AR_RTC_RESET_EN); 2159 2160 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 2161 AR_RTC_FORCE_WAKE_EN); 2162 udelay(50); 2163 2164 for (i = POWER_UP_TIME / 50; i > 0; i--) { 2165 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; 2166 if (val == AR_RTC_STATUS_ON) 2167 break; 2168 udelay(50); 2169 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 2170 AR_RTC_FORCE_WAKE_EN); 2171 } 2172 if (i == 0) { 2173 ath_err(ath9k_hw_common(ah), 2174 "Failed to wakeup in %uus\n", 2175 POWER_UP_TIME / 20); 2176 return false; 2177 } 2178 2179 if (ath9k_hw_mci_is_enabled(ah)) 2180 ar9003_mci_set_power_awake(ah); 2181 2182 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2183 2184 return true; 2185 } 2186 2187 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) 2188 { 2189 struct ath_common *common = ath9k_hw_common(ah); 2190 int status = true; 2191 static const char *modes[] = { 2192 "AWAKE", 2193 "FULL-SLEEP", 2194 "NETWORK SLEEP", 2195 "UNDEFINED" 2196 }; 2197 2198 if (ah->power_mode == mode) 2199 return status; 2200 2201 ath_dbg(common, RESET, "%s -> %s\n", 2202 modes[ah->power_mode], modes[mode]); 2203 2204 switch (mode) { 2205 case ATH9K_PM_AWAKE: 2206 status = ath9k_hw_set_power_awake(ah); 2207 break; 2208 case ATH9K_PM_FULL_SLEEP: 2209 if (ath9k_hw_mci_is_enabled(ah)) 2210 ar9003_mci_set_full_sleep(ah); 2211 2212 ath9k_set_power_sleep(ah); 2213 ah->chip_fullsleep = true; 2214 break; 2215 case ATH9K_PM_NETWORK_SLEEP: 2216 ath9k_set_power_network_sleep(ah); 2217 break; 2218 default: 2219 ath_err(common, "Unknown power mode %u\n", mode); 2220 return false; 2221 } 2222 ah->power_mode = mode; 2223 2224 /* 2225 * XXX: If this warning never comes up after a while then 2226 * simply keep the ATH_DBG_WARN_ON_ONCE() but make 2227 * ath9k_hw_setpower() return type void. 2228 */ 2229 2230 if (!(ah->ah_flags & AH_UNPLUGGED)) 2231 ATH_DBG_WARN_ON_ONCE(!status); 2232 2233 return status; 2234 } 2235 EXPORT_SYMBOL(ath9k_hw_setpower); 2236 2237 /*******************/ 2238 /* Beacon Handling */ 2239 /*******************/ 2240 2241 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) 2242 { 2243 int flags = 0; 2244 2245 ENABLE_REGWRITE_BUFFER(ah); 2246 2247 switch (ah->opmode) { 2248 case NL80211_IFTYPE_ADHOC: 2249 case NL80211_IFTYPE_MESH_POINT: 2250 REG_SET_BIT(ah, AR_TXCFG, 2251 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); 2252 REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon + 2253 TU_TO_USEC(ah->atim_window ? ah->atim_window : 1)); 2254 flags |= AR_NDP_TIMER_EN; 2255 case NL80211_IFTYPE_AP: 2256 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon); 2257 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon - 2258 TU_TO_USEC(ah->config.dma_beacon_response_time)); 2259 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon - 2260 TU_TO_USEC(ah->config.sw_beacon_response_time)); 2261 flags |= 2262 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; 2263 break; 2264 default: 2265 ath_dbg(ath9k_hw_common(ah), BEACON, 2266 "%s: unsupported opmode: %d\n", __func__, ah->opmode); 2267 return; 2268 break; 2269 } 2270 2271 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period); 2272 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period); 2273 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period); 2274 REG_WRITE(ah, AR_NDP_PERIOD, beacon_period); 2275 2276 REGWRITE_BUFFER_FLUSH(ah); 2277 2278 REG_SET_BIT(ah, AR_TIMER_MODE, flags); 2279 } 2280 EXPORT_SYMBOL(ath9k_hw_beaconinit); 2281 2282 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, 2283 const struct ath9k_beacon_state *bs) 2284 { 2285 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; 2286 struct ath9k_hw_capabilities *pCap = &ah->caps; 2287 struct ath_common *common = ath9k_hw_common(ah); 2288 2289 ENABLE_REGWRITE_BUFFER(ah); 2290 2291 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt)); 2292 2293 REG_WRITE(ah, AR_BEACON_PERIOD, 2294 TU_TO_USEC(bs->bs_intval)); 2295 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, 2296 TU_TO_USEC(bs->bs_intval)); 2297 2298 REGWRITE_BUFFER_FLUSH(ah); 2299 2300 REG_RMW_FIELD(ah, AR_RSSI_THR, 2301 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); 2302 2303 beaconintval = bs->bs_intval; 2304 2305 if (bs->bs_sleepduration > beaconintval) 2306 beaconintval = bs->bs_sleepduration; 2307 2308 dtimperiod = bs->bs_dtimperiod; 2309 if (bs->bs_sleepduration > dtimperiod) 2310 dtimperiod = bs->bs_sleepduration; 2311 2312 if (beaconintval == dtimperiod) 2313 nextTbtt = bs->bs_nextdtim; 2314 else 2315 nextTbtt = bs->bs_nexttbtt; 2316 2317 ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim); 2318 ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt); 2319 ath_dbg(common, BEACON, "beacon period %d\n", beaconintval); 2320 ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod); 2321 2322 ENABLE_REGWRITE_BUFFER(ah); 2323 2324 REG_WRITE(ah, AR_NEXT_DTIM, 2325 TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP)); 2326 REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP)); 2327 2328 REG_WRITE(ah, AR_SLEEP1, 2329 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) 2330 | AR_SLEEP1_ASSUME_DTIM); 2331 2332 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) 2333 beacontimeout = (BEACON_TIMEOUT_VAL << 3); 2334 else 2335 beacontimeout = MIN_BEACON_TIMEOUT_VAL; 2336 2337 REG_WRITE(ah, AR_SLEEP2, 2338 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); 2339 2340 REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval)); 2341 REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod)); 2342 2343 REGWRITE_BUFFER_FLUSH(ah); 2344 2345 REG_SET_BIT(ah, AR_TIMER_MODE, 2346 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | 2347 AR_DTIM_TIMER_EN); 2348 2349 /* TSF Out of Range Threshold */ 2350 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); 2351 } 2352 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers); 2353 2354 /*******************/ 2355 /* HW Capabilities */ 2356 /*******************/ 2357 2358 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask) 2359 { 2360 eeprom_chainmask &= chip_chainmask; 2361 if (eeprom_chainmask) 2362 return eeprom_chainmask; 2363 else 2364 return chip_chainmask; 2365 } 2366 2367 /** 2368 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset 2369 * @ah: the atheros hardware data structure 2370 * 2371 * We enable DFS support upstream on chipsets which have passed a series 2372 * of tests. The testing requirements are going to be documented. Desired 2373 * test requirements are documented at: 2374 * 2375 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs 2376 * 2377 * Once a new chipset gets properly tested an individual commit can be used 2378 * to document the testing for DFS for that chipset. 2379 */ 2380 static bool ath9k_hw_dfs_tested(struct ath_hw *ah) 2381 { 2382 2383 switch (ah->hw_version.macVersion) { 2384 /* for temporary testing DFS with 9280 */ 2385 case AR_SREV_VERSION_9280: 2386 /* AR9580 will likely be our first target to get testing on */ 2387 case AR_SREV_VERSION_9580: 2388 return true; 2389 default: 2390 return false; 2391 } 2392 } 2393 2394 int ath9k_hw_fill_cap_info(struct ath_hw *ah) 2395 { 2396 struct ath9k_hw_capabilities *pCap = &ah->caps; 2397 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 2398 struct ath_common *common = ath9k_hw_common(ah); 2399 unsigned int chip_chainmask; 2400 2401 u16 eeval; 2402 u8 ant_div_ctl1, tx_chainmask, rx_chainmask; 2403 2404 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 2405 regulatory->current_rd = eeval; 2406 2407 if (ah->opmode != NL80211_IFTYPE_AP && 2408 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { 2409 if (regulatory->current_rd == 0x64 || 2410 regulatory->current_rd == 0x65) 2411 regulatory->current_rd += 5; 2412 else if (regulatory->current_rd == 0x41) 2413 regulatory->current_rd = 0x43; 2414 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n", 2415 regulatory->current_rd); 2416 } 2417 2418 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); 2419 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) { 2420 ath_err(common, 2421 "no band has been marked as supported in EEPROM\n"); 2422 return -EINVAL; 2423 } 2424 2425 if (eeval & AR5416_OPFLAGS_11A) 2426 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ; 2427 2428 if (eeval & AR5416_OPFLAGS_11G) 2429 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ; 2430 2431 if (AR_SREV_9485(ah) || 2432 AR_SREV_9285(ah) || 2433 AR_SREV_9330(ah) || 2434 AR_SREV_9565(ah)) 2435 chip_chainmask = 1; 2436 else if (AR_SREV_9462(ah)) 2437 chip_chainmask = 3; 2438 else if (!AR_SREV_9280_20_OR_LATER(ah)) 2439 chip_chainmask = 7; 2440 else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah)) 2441 chip_chainmask = 3; 2442 else 2443 chip_chainmask = 7; 2444 2445 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); 2446 /* 2447 * For AR9271 we will temporarilly uses the rx chainmax as read from 2448 * the EEPROM. 2449 */ 2450 if ((ah->hw_version.devid == AR5416_DEVID_PCI) && 2451 !(eeval & AR5416_OPFLAGS_11A) && 2452 !(AR_SREV_9271(ah))) 2453 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */ 2454 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; 2455 else if (AR_SREV_9100(ah)) 2456 pCap->rx_chainmask = 0x7; 2457 else 2458 /* Use rx_chainmask from EEPROM. */ 2459 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); 2460 2461 pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask); 2462 pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask); 2463 ah->txchainmask = pCap->tx_chainmask; 2464 ah->rxchainmask = pCap->rx_chainmask; 2465 2466 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; 2467 2468 /* enable key search for every frame in an aggregate */ 2469 if (AR_SREV_9300_20_OR_LATER(ah)) 2470 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH; 2471 2472 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM; 2473 2474 if (ah->hw_version.devid != AR2427_DEVID_PCIE) 2475 pCap->hw_caps |= ATH9K_HW_CAP_HT; 2476 else 2477 pCap->hw_caps &= ~ATH9K_HW_CAP_HT; 2478 2479 if (AR_SREV_9271(ah)) 2480 pCap->num_gpio_pins = AR9271_NUM_GPIO; 2481 else if (AR_DEVID_7010(ah)) 2482 pCap->num_gpio_pins = AR7010_NUM_GPIO; 2483 else if (AR_SREV_9300_20_OR_LATER(ah)) 2484 pCap->num_gpio_pins = AR9300_NUM_GPIO; 2485 else if (AR_SREV_9287_11_OR_LATER(ah)) 2486 pCap->num_gpio_pins = AR9287_NUM_GPIO; 2487 else if (AR_SREV_9285_12_OR_LATER(ah)) 2488 pCap->num_gpio_pins = AR9285_NUM_GPIO; 2489 else if (AR_SREV_9280_20_OR_LATER(ah)) 2490 pCap->num_gpio_pins = AR928X_NUM_GPIO; 2491 else 2492 pCap->num_gpio_pins = AR_NUM_GPIO; 2493 2494 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) 2495 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; 2496 else 2497 pCap->rts_aggr_limit = (8 * 1024); 2498 2499 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE) 2500 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); 2501 if (ah->rfsilent & EEP_RFSILENT_ENABLED) { 2502 ah->rfkill_gpio = 2503 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); 2504 ah->rfkill_polarity = 2505 MS(ah->rfsilent, EEP_RFSILENT_POLARITY); 2506 2507 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; 2508 } 2509 #endif 2510 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah)) 2511 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; 2512 else 2513 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; 2514 2515 if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) 2516 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; 2517 else 2518 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; 2519 2520 if (AR_SREV_9300_20_OR_LATER(ah)) { 2521 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK; 2522 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah)) 2523 pCap->hw_caps |= ATH9K_HW_CAP_LDPC; 2524 2525 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH; 2526 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH; 2527 pCap->rx_status_len = sizeof(struct ar9003_rxs); 2528 pCap->tx_desc_len = sizeof(struct ar9003_txc); 2529 pCap->txs_len = sizeof(struct ar9003_txs); 2530 } else { 2531 pCap->tx_desc_len = sizeof(struct ath_desc); 2532 if (AR_SREV_9280_20(ah)) 2533 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK; 2534 } 2535 2536 if (AR_SREV_9300_20_OR_LATER(ah)) 2537 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED; 2538 2539 if (AR_SREV_9300_20_OR_LATER(ah)) 2540 ah->ent_mode = REG_READ(ah, AR_ENT_OTP); 2541 2542 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah)) 2543 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20; 2544 2545 if (AR_SREV_9285(ah)) 2546 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) { 2547 ant_div_ctl1 = 2548 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2549 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) 2550 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2551 } 2552 if (AR_SREV_9300_20_OR_LATER(ah)) { 2553 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE)) 2554 pCap->hw_caps |= ATH9K_HW_CAP_APM; 2555 } 2556 2557 2558 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) { 2559 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2560 /* 2561 * enable the diversity-combining algorithm only when 2562 * both enable_lna_div and enable_fast_div are set 2563 * Table for Diversity 2564 * ant_div_alt_lnaconf bit 0-1 2565 * ant_div_main_lnaconf bit 2-3 2566 * ant_div_alt_gaintb bit 4 2567 * ant_div_main_gaintb bit 5 2568 * enable_ant_div_lnadiv bit 6 2569 * enable_ant_fast_div bit 7 2570 */ 2571 if ((ant_div_ctl1 >> 0x6) == 0x3) 2572 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2573 } 2574 2575 if (ath9k_hw_dfs_tested(ah)) 2576 pCap->hw_caps |= ATH9K_HW_CAP_DFS; 2577 2578 tx_chainmask = pCap->tx_chainmask; 2579 rx_chainmask = pCap->rx_chainmask; 2580 while (tx_chainmask || rx_chainmask) { 2581 if (tx_chainmask & BIT(0)) 2582 pCap->max_txchains++; 2583 if (rx_chainmask & BIT(0)) 2584 pCap->max_rxchains++; 2585 2586 tx_chainmask >>= 1; 2587 rx_chainmask >>= 1; 2588 } 2589 2590 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 2591 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE)) 2592 pCap->hw_caps |= ATH9K_HW_CAP_MCI; 2593 2594 if (AR_SREV_9462_20(ah)) 2595 pCap->hw_caps |= ATH9K_HW_CAP_RTT; 2596 } 2597 2598 if (AR_SREV_9280_20_OR_LATER(ah)) { 2599 pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE | 2600 ATH9K_HW_WOW_PATTERN_MATCH_EXACT; 2601 2602 if (AR_SREV_9280(ah)) 2603 pCap->hw_caps |= ATH9K_HW_WOW_PATTERN_MATCH_DWORD; 2604 } 2605 2606 if (AR_SREV_9300_20_OR_LATER(ah) && 2607 ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) 2608 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD; 2609 2610 return 0; 2611 } 2612 2613 /****************************/ 2614 /* GPIO / RFKILL / Antennae */ 2615 /****************************/ 2616 2617 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, 2618 u32 gpio, u32 type) 2619 { 2620 int addr; 2621 u32 gpio_shift, tmp; 2622 2623 if (gpio > 11) 2624 addr = AR_GPIO_OUTPUT_MUX3; 2625 else if (gpio > 5) 2626 addr = AR_GPIO_OUTPUT_MUX2; 2627 else 2628 addr = AR_GPIO_OUTPUT_MUX1; 2629 2630 gpio_shift = (gpio % 6) * 5; 2631 2632 if (AR_SREV_9280_20_OR_LATER(ah) 2633 || (addr != AR_GPIO_OUTPUT_MUX1)) { 2634 REG_RMW(ah, addr, (type << gpio_shift), 2635 (0x1f << gpio_shift)); 2636 } else { 2637 tmp = REG_READ(ah, addr); 2638 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); 2639 tmp &= ~(0x1f << gpio_shift); 2640 tmp |= (type << gpio_shift); 2641 REG_WRITE(ah, addr, tmp); 2642 } 2643 } 2644 2645 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio) 2646 { 2647 u32 gpio_shift; 2648 2649 BUG_ON(gpio >= ah->caps.num_gpio_pins); 2650 2651 if (AR_DEVID_7010(ah)) { 2652 gpio_shift = gpio; 2653 REG_RMW(ah, AR7010_GPIO_OE, 2654 (AR7010_GPIO_OE_AS_INPUT << gpio_shift), 2655 (AR7010_GPIO_OE_MASK << gpio_shift)); 2656 return; 2657 } 2658 2659 gpio_shift = gpio << 1; 2660 REG_RMW(ah, 2661 AR_GPIO_OE_OUT, 2662 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), 2663 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2664 } 2665 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input); 2666 2667 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) 2668 { 2669 #define MS_REG_READ(x, y) \ 2670 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y))) 2671 2672 if (gpio >= ah->caps.num_gpio_pins) 2673 return 0xffffffff; 2674 2675 if (AR_DEVID_7010(ah)) { 2676 u32 val; 2677 val = REG_READ(ah, AR7010_GPIO_IN); 2678 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0; 2679 } else if (AR_SREV_9300_20_OR_LATER(ah)) 2680 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) & 2681 AR_GPIO_BIT(gpio)) != 0; 2682 else if (AR_SREV_9271(ah)) 2683 return MS_REG_READ(AR9271, gpio) != 0; 2684 else if (AR_SREV_9287_11_OR_LATER(ah)) 2685 return MS_REG_READ(AR9287, gpio) != 0; 2686 else if (AR_SREV_9285_12_OR_LATER(ah)) 2687 return MS_REG_READ(AR9285, gpio) != 0; 2688 else if (AR_SREV_9280_20_OR_LATER(ah)) 2689 return MS_REG_READ(AR928X, gpio) != 0; 2690 else 2691 return MS_REG_READ(AR, gpio) != 0; 2692 } 2693 EXPORT_SYMBOL(ath9k_hw_gpio_get); 2694 2695 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio, 2696 u32 ah_signal_type) 2697 { 2698 u32 gpio_shift; 2699 2700 if (AR_DEVID_7010(ah)) { 2701 gpio_shift = gpio; 2702 REG_RMW(ah, AR7010_GPIO_OE, 2703 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift), 2704 (AR7010_GPIO_OE_MASK << gpio_shift)); 2705 return; 2706 } 2707 2708 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); 2709 gpio_shift = 2 * gpio; 2710 REG_RMW(ah, 2711 AR_GPIO_OE_OUT, 2712 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), 2713 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2714 } 2715 EXPORT_SYMBOL(ath9k_hw_cfg_output); 2716 2717 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) 2718 { 2719 if (AR_DEVID_7010(ah)) { 2720 val = val ? 0 : 1; 2721 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio), 2722 AR_GPIO_BIT(gpio)); 2723 return; 2724 } 2725 2726 if (AR_SREV_9271(ah)) 2727 val = ~val; 2728 2729 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), 2730 AR_GPIO_BIT(gpio)); 2731 } 2732 EXPORT_SYMBOL(ath9k_hw_set_gpio); 2733 2734 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) 2735 { 2736 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); 2737 } 2738 EXPORT_SYMBOL(ath9k_hw_setantenna); 2739 2740 /*********************/ 2741 /* General Operation */ 2742 /*********************/ 2743 2744 u32 ath9k_hw_getrxfilter(struct ath_hw *ah) 2745 { 2746 u32 bits = REG_READ(ah, AR_RX_FILTER); 2747 u32 phybits = REG_READ(ah, AR_PHY_ERR); 2748 2749 if (phybits & AR_PHY_ERR_RADAR) 2750 bits |= ATH9K_RX_FILTER_PHYRADAR; 2751 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) 2752 bits |= ATH9K_RX_FILTER_PHYERR; 2753 2754 return bits; 2755 } 2756 EXPORT_SYMBOL(ath9k_hw_getrxfilter); 2757 2758 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) 2759 { 2760 u32 phybits; 2761 2762 ENABLE_REGWRITE_BUFFER(ah); 2763 2764 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 2765 bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER; 2766 2767 REG_WRITE(ah, AR_RX_FILTER, bits); 2768 2769 phybits = 0; 2770 if (bits & ATH9K_RX_FILTER_PHYRADAR) 2771 phybits |= AR_PHY_ERR_RADAR; 2772 if (bits & ATH9K_RX_FILTER_PHYERR) 2773 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; 2774 REG_WRITE(ah, AR_PHY_ERR, phybits); 2775 2776 if (phybits) 2777 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2778 else 2779 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2780 2781 REGWRITE_BUFFER_FLUSH(ah); 2782 } 2783 EXPORT_SYMBOL(ath9k_hw_setrxfilter); 2784 2785 bool ath9k_hw_phy_disable(struct ath_hw *ah) 2786 { 2787 if (ath9k_hw_mci_is_enabled(ah)) 2788 ar9003_mci_bt_gain_ctrl(ah); 2789 2790 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) 2791 return false; 2792 2793 ath9k_hw_init_pll(ah, NULL); 2794 ah->htc_reset_init = true; 2795 return true; 2796 } 2797 EXPORT_SYMBOL(ath9k_hw_phy_disable); 2798 2799 bool ath9k_hw_disable(struct ath_hw *ah) 2800 { 2801 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 2802 return false; 2803 2804 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD)) 2805 return false; 2806 2807 ath9k_hw_init_pll(ah, NULL); 2808 return true; 2809 } 2810 EXPORT_SYMBOL(ath9k_hw_disable); 2811 2812 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan) 2813 { 2814 enum eeprom_param gain_param; 2815 2816 if (IS_CHAN_2GHZ(chan)) 2817 gain_param = EEP_ANTENNA_GAIN_2G; 2818 else 2819 gain_param = EEP_ANTENNA_GAIN_5G; 2820 2821 return ah->eep_ops->get_eeprom(ah, gain_param); 2822 } 2823 2824 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan, 2825 bool test) 2826 { 2827 struct ath_regulatory *reg = ath9k_hw_regulatory(ah); 2828 struct ieee80211_channel *channel; 2829 int chan_pwr, new_pwr, max_gain; 2830 int ant_gain, ant_reduction = 0; 2831 2832 if (!chan) 2833 return; 2834 2835 channel = chan->chan; 2836 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER); 2837 new_pwr = min_t(int, chan_pwr, reg->power_limit); 2838 max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2; 2839 2840 ant_gain = get_antenna_gain(ah, chan); 2841 if (ant_gain > max_gain) 2842 ant_reduction = ant_gain - max_gain; 2843 2844 ah->eep_ops->set_txpower(ah, chan, 2845 ath9k_regd_get_ctl(reg, chan), 2846 ant_reduction, new_pwr, test); 2847 } 2848 2849 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test) 2850 { 2851 struct ath_regulatory *reg = ath9k_hw_regulatory(ah); 2852 struct ath9k_channel *chan = ah->curchan; 2853 struct ieee80211_channel *channel = chan->chan; 2854 2855 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER); 2856 if (test) 2857 channel->max_power = MAX_RATE_POWER / 2; 2858 2859 ath9k_hw_apply_txpower(ah, chan, test); 2860 2861 if (test) 2862 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2); 2863 } 2864 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit); 2865 2866 void ath9k_hw_setopmode(struct ath_hw *ah) 2867 { 2868 ath9k_hw_set_operating_mode(ah, ah->opmode); 2869 } 2870 EXPORT_SYMBOL(ath9k_hw_setopmode); 2871 2872 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) 2873 { 2874 REG_WRITE(ah, AR_MCAST_FIL0, filter0); 2875 REG_WRITE(ah, AR_MCAST_FIL1, filter1); 2876 } 2877 EXPORT_SYMBOL(ath9k_hw_setmcastfilter); 2878 2879 void ath9k_hw_write_associd(struct ath_hw *ah) 2880 { 2881 struct ath_common *common = ath9k_hw_common(ah); 2882 2883 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid)); 2884 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) | 2885 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); 2886 } 2887 EXPORT_SYMBOL(ath9k_hw_write_associd); 2888 2889 #define ATH9K_MAX_TSF_READ 10 2890 2891 u64 ath9k_hw_gettsf64(struct ath_hw *ah) 2892 { 2893 u32 tsf_lower, tsf_upper1, tsf_upper2; 2894 int i; 2895 2896 tsf_upper1 = REG_READ(ah, AR_TSF_U32); 2897 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) { 2898 tsf_lower = REG_READ(ah, AR_TSF_L32); 2899 tsf_upper2 = REG_READ(ah, AR_TSF_U32); 2900 if (tsf_upper2 == tsf_upper1) 2901 break; 2902 tsf_upper1 = tsf_upper2; 2903 } 2904 2905 WARN_ON( i == ATH9K_MAX_TSF_READ ); 2906 2907 return (((u64)tsf_upper1 << 32) | tsf_lower); 2908 } 2909 EXPORT_SYMBOL(ath9k_hw_gettsf64); 2910 2911 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) 2912 { 2913 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); 2914 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); 2915 } 2916 EXPORT_SYMBOL(ath9k_hw_settsf64); 2917 2918 void ath9k_hw_reset_tsf(struct ath_hw *ah) 2919 { 2920 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0, 2921 AH_TSF_WRITE_TIMEOUT)) 2922 ath_dbg(ath9k_hw_common(ah), RESET, 2923 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); 2924 2925 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); 2926 } 2927 EXPORT_SYMBOL(ath9k_hw_reset_tsf); 2928 2929 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set) 2930 { 2931 if (set) 2932 ah->misc_mode |= AR_PCU_TX_ADD_TSF; 2933 else 2934 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; 2935 } 2936 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust); 2937 2938 void ath9k_hw_set11nmac2040(struct ath_hw *ah) 2939 { 2940 struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf; 2941 u32 macmode; 2942 2943 if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca) 2944 macmode = AR_2040_JOINED_RX_CLEAR; 2945 else 2946 macmode = 0; 2947 2948 REG_WRITE(ah, AR_2040_MODE, macmode); 2949 } 2950 2951 /* HW Generic timers configuration */ 2952 2953 static const struct ath_gen_timer_configuration gen_tmr_configuration[] = 2954 { 2955 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2956 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2957 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2958 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2959 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2960 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2961 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2962 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2963 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001}, 2964 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4, 2965 AR_NDP2_TIMER_MODE, 0x0002}, 2966 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4, 2967 AR_NDP2_TIMER_MODE, 0x0004}, 2968 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4, 2969 AR_NDP2_TIMER_MODE, 0x0008}, 2970 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4, 2971 AR_NDP2_TIMER_MODE, 0x0010}, 2972 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4, 2973 AR_NDP2_TIMER_MODE, 0x0020}, 2974 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4, 2975 AR_NDP2_TIMER_MODE, 0x0040}, 2976 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4, 2977 AR_NDP2_TIMER_MODE, 0x0080} 2978 }; 2979 2980 /* HW generic timer primitives */ 2981 2982 /* compute and clear index of rightmost 1 */ 2983 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask) 2984 { 2985 u32 b; 2986 2987 b = *mask; 2988 b &= (0-b); 2989 *mask &= ~b; 2990 b *= debruijn32; 2991 b >>= 27; 2992 2993 return timer_table->gen_timer_index[b]; 2994 } 2995 2996 u32 ath9k_hw_gettsf32(struct ath_hw *ah) 2997 { 2998 return REG_READ(ah, AR_TSF_L32); 2999 } 3000 EXPORT_SYMBOL(ath9k_hw_gettsf32); 3001 3002 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah, 3003 void (*trigger)(void *), 3004 void (*overflow)(void *), 3005 void *arg, 3006 u8 timer_index) 3007 { 3008 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3009 struct ath_gen_timer *timer; 3010 3011 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL); 3012 if (timer == NULL) 3013 return NULL; 3014 3015 /* allocate a hardware generic timer slot */ 3016 timer_table->timers[timer_index] = timer; 3017 timer->index = timer_index; 3018 timer->trigger = trigger; 3019 timer->overflow = overflow; 3020 timer->arg = arg; 3021 3022 return timer; 3023 } 3024 EXPORT_SYMBOL(ath_gen_timer_alloc); 3025 3026 void ath9k_hw_gen_timer_start(struct ath_hw *ah, 3027 struct ath_gen_timer *timer, 3028 u32 trig_timeout, 3029 u32 timer_period) 3030 { 3031 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3032 u32 tsf, timer_next; 3033 3034 BUG_ON(!timer_period); 3035 3036 set_bit(timer->index, &timer_table->timer_mask.timer_bits); 3037 3038 tsf = ath9k_hw_gettsf32(ah); 3039 3040 timer_next = tsf + trig_timeout; 3041 3042 ath_dbg(ath9k_hw_common(ah), HWTIMER, 3043 "current tsf %x period %x timer_next %x\n", 3044 tsf, timer_period, timer_next); 3045 3046 /* 3047 * Program generic timer registers 3048 */ 3049 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr, 3050 timer_next); 3051 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr, 3052 timer_period); 3053 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 3054 gen_tmr_configuration[timer->index].mode_mask); 3055 3056 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 3057 /* 3058 * Starting from AR9462, each generic timer can select which tsf 3059 * to use. But we still follow the old rule, 0 - 7 use tsf and 3060 * 8 - 15 use tsf2. 3061 */ 3062 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN)) 3063 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 3064 (1 << timer->index)); 3065 else 3066 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 3067 (1 << timer->index)); 3068 } 3069 3070 /* Enable both trigger and thresh interrupt masks */ 3071 REG_SET_BIT(ah, AR_IMR_S5, 3072 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 3073 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 3074 } 3075 EXPORT_SYMBOL(ath9k_hw_gen_timer_start); 3076 3077 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) 3078 { 3079 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3080 3081 if ((timer->index < AR_FIRST_NDP_TIMER) || 3082 (timer->index >= ATH_MAX_GEN_TIMER)) { 3083 return; 3084 } 3085 3086 /* Clear generic timer enable bits. */ 3087 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 3088 gen_tmr_configuration[timer->index].mode_mask); 3089 3090 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 3091 /* 3092 * Need to switch back to TSF if it was using TSF2. 3093 */ 3094 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) { 3095 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 3096 (1 << timer->index)); 3097 } 3098 } 3099 3100 /* Disable both trigger and thresh interrupt masks */ 3101 REG_CLR_BIT(ah, AR_IMR_S5, 3102 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 3103 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 3104 3105 clear_bit(timer->index, &timer_table->timer_mask.timer_bits); 3106 } 3107 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop); 3108 3109 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer) 3110 { 3111 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3112 3113 /* free the hardware generic timer slot */ 3114 timer_table->timers[timer->index] = NULL; 3115 kfree(timer); 3116 } 3117 EXPORT_SYMBOL(ath_gen_timer_free); 3118 3119 /* 3120 * Generic Timer Interrupts handling 3121 */ 3122 void ath_gen_timer_isr(struct ath_hw *ah) 3123 { 3124 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3125 struct ath_gen_timer *timer; 3126 struct ath_common *common = ath9k_hw_common(ah); 3127 u32 trigger_mask, thresh_mask, index; 3128 3129 /* get hardware generic timer interrupt status */ 3130 trigger_mask = ah->intr_gen_timer_trigger; 3131 thresh_mask = ah->intr_gen_timer_thresh; 3132 trigger_mask &= timer_table->timer_mask.val; 3133 thresh_mask &= timer_table->timer_mask.val; 3134 3135 trigger_mask &= ~thresh_mask; 3136 3137 while (thresh_mask) { 3138 index = rightmost_index(timer_table, &thresh_mask); 3139 timer = timer_table->timers[index]; 3140 BUG_ON(!timer); 3141 ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n", 3142 index); 3143 timer->overflow(timer->arg); 3144 } 3145 3146 while (trigger_mask) { 3147 index = rightmost_index(timer_table, &trigger_mask); 3148 timer = timer_table->timers[index]; 3149 BUG_ON(!timer); 3150 ath_dbg(common, HWTIMER, 3151 "Gen timer[%d] trigger\n", index); 3152 timer->trigger(timer->arg); 3153 } 3154 } 3155 EXPORT_SYMBOL(ath_gen_timer_isr); 3156 3157 /********/ 3158 /* HTC */ 3159 /********/ 3160 3161 static struct { 3162 u32 version; 3163 const char * name; 3164 } ath_mac_bb_names[] = { 3165 /* Devices with external radios */ 3166 { AR_SREV_VERSION_5416_PCI, "5416" }, 3167 { AR_SREV_VERSION_5416_PCIE, "5418" }, 3168 { AR_SREV_VERSION_9100, "9100" }, 3169 { AR_SREV_VERSION_9160, "9160" }, 3170 /* Single-chip solutions */ 3171 { AR_SREV_VERSION_9280, "9280" }, 3172 { AR_SREV_VERSION_9285, "9285" }, 3173 { AR_SREV_VERSION_9287, "9287" }, 3174 { AR_SREV_VERSION_9271, "9271" }, 3175 { AR_SREV_VERSION_9300, "9300" }, 3176 { AR_SREV_VERSION_9330, "9330" }, 3177 { AR_SREV_VERSION_9340, "9340" }, 3178 { AR_SREV_VERSION_9485, "9485" }, 3179 { AR_SREV_VERSION_9462, "9462" }, 3180 { AR_SREV_VERSION_9550, "9550" }, 3181 { AR_SREV_VERSION_9565, "9565" }, 3182 }; 3183 3184 /* For devices with external radios */ 3185 static struct { 3186 u16 version; 3187 const char * name; 3188 } ath_rf_names[] = { 3189 { 0, "5133" }, 3190 { AR_RAD5133_SREV_MAJOR, "5133" }, 3191 { AR_RAD5122_SREV_MAJOR, "5122" }, 3192 { AR_RAD2133_SREV_MAJOR, "2133" }, 3193 { AR_RAD2122_SREV_MAJOR, "2122" } 3194 }; 3195 3196 /* 3197 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. 3198 */ 3199 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version) 3200 { 3201 int i; 3202 3203 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) { 3204 if (ath_mac_bb_names[i].version == mac_bb_version) { 3205 return ath_mac_bb_names[i].name; 3206 } 3207 } 3208 3209 return "????"; 3210 } 3211 3212 /* 3213 * Return the RF name. "????" is returned if the RF is unknown. 3214 * Used for devices with external radios. 3215 */ 3216 static const char *ath9k_hw_rf_name(u16 rf_version) 3217 { 3218 int i; 3219 3220 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) { 3221 if (ath_rf_names[i].version == rf_version) { 3222 return ath_rf_names[i].name; 3223 } 3224 } 3225 3226 return "????"; 3227 } 3228 3229 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len) 3230 { 3231 int used; 3232 3233 /* chipsets >= AR9280 are single-chip */ 3234 if (AR_SREV_9280_20_OR_LATER(ah)) { 3235 used = snprintf(hw_name, len, 3236 "Atheros AR%s Rev:%x", 3237 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 3238 ah->hw_version.macRev); 3239 } 3240 else { 3241 used = snprintf(hw_name, len, 3242 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x", 3243 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 3244 ah->hw_version.macRev, 3245 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev & 3246 AR_RADIO_SREV_MAJOR)), 3247 ah->hw_version.phyRev); 3248 } 3249 3250 hw_name[used] = '\0'; 3251 } 3252 EXPORT_SYMBOL(ath9k_hw_name); 3253