xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision d2168146)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <asm/unaligned.h>
23 
24 #include "hw.h"
25 #include "hw-ops.h"
26 #include "ar9003_mac.h"
27 #include "ar9003_mci.h"
28 #include "ar9003_phy.h"
29 #include "ath9k.h"
30 
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37 
38 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
39 {
40 	struct ath_common *common = ath9k_hw_common(ah);
41 	struct ath9k_channel *chan = ah->curchan;
42 	unsigned int clockrate;
43 
44 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
45 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
46 		clockrate = 117;
47 	else if (!chan) /* should really check for CCK instead */
48 		clockrate = ATH9K_CLOCK_RATE_CCK;
49 	else if (IS_CHAN_2GHZ(chan))
50 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
51 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
52 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
53 	else
54 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
55 
56 	if (chan) {
57 		if (IS_CHAN_HT40(chan))
58 			clockrate *= 2;
59 		if (IS_CHAN_HALF_RATE(chan))
60 			clockrate /= 2;
61 		if (IS_CHAN_QUARTER_RATE(chan))
62 			clockrate /= 4;
63 	}
64 
65 	common->clockrate = clockrate;
66 }
67 
68 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
69 {
70 	struct ath_common *common = ath9k_hw_common(ah);
71 
72 	return usecs * common->clockrate;
73 }
74 
75 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
76 {
77 	int i;
78 
79 	BUG_ON(timeout < AH_TIME_QUANTUM);
80 
81 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
82 		if ((REG_READ(ah, reg) & mask) == val)
83 			return true;
84 
85 		udelay(AH_TIME_QUANTUM);
86 	}
87 
88 	ath_dbg(ath9k_hw_common(ah), ANY,
89 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
90 		timeout, reg, REG_READ(ah, reg), mask, val);
91 
92 	return false;
93 }
94 EXPORT_SYMBOL(ath9k_hw_wait);
95 
96 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
97 			  int hw_delay)
98 {
99 	hw_delay /= 10;
100 
101 	if (IS_CHAN_HALF_RATE(chan))
102 		hw_delay *= 2;
103 	else if (IS_CHAN_QUARTER_RATE(chan))
104 		hw_delay *= 4;
105 
106 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
107 }
108 
109 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
110 			  int column, unsigned int *writecnt)
111 {
112 	int r;
113 
114 	ENABLE_REGWRITE_BUFFER(ah);
115 	for (r = 0; r < array->ia_rows; r++) {
116 		REG_WRITE(ah, INI_RA(array, r, 0),
117 			  INI_RA(array, r, column));
118 		DO_DELAY(*writecnt);
119 	}
120 	REGWRITE_BUFFER_FLUSH(ah);
121 }
122 
123 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
124 {
125 	u32 retval;
126 	int i;
127 
128 	for (i = 0, retval = 0; i < n; i++) {
129 		retval = (retval << 1) | (val & 1);
130 		val >>= 1;
131 	}
132 	return retval;
133 }
134 
135 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
136 			   u8 phy, int kbps,
137 			   u32 frameLen, u16 rateix,
138 			   bool shortPreamble)
139 {
140 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
141 
142 	if (kbps == 0)
143 		return 0;
144 
145 	switch (phy) {
146 	case WLAN_RC_PHY_CCK:
147 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
148 		if (shortPreamble)
149 			phyTime >>= 1;
150 		numBits = frameLen << 3;
151 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
152 		break;
153 	case WLAN_RC_PHY_OFDM:
154 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
155 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
156 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
157 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
158 			txTime = OFDM_SIFS_TIME_QUARTER
159 				+ OFDM_PREAMBLE_TIME_QUARTER
160 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
161 		} else if (ah->curchan &&
162 			   IS_CHAN_HALF_RATE(ah->curchan)) {
163 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
164 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
165 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
166 			txTime = OFDM_SIFS_TIME_HALF +
167 				OFDM_PREAMBLE_TIME_HALF
168 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
169 		} else {
170 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
171 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
172 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
173 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
174 				+ (numSymbols * OFDM_SYMBOL_TIME);
175 		}
176 		break;
177 	default:
178 		ath_err(ath9k_hw_common(ah),
179 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
180 		txTime = 0;
181 		break;
182 	}
183 
184 	return txTime;
185 }
186 EXPORT_SYMBOL(ath9k_hw_computetxtime);
187 
188 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
189 				  struct ath9k_channel *chan,
190 				  struct chan_centers *centers)
191 {
192 	int8_t extoff;
193 
194 	if (!IS_CHAN_HT40(chan)) {
195 		centers->ctl_center = centers->ext_center =
196 			centers->synth_center = chan->channel;
197 		return;
198 	}
199 
200 	if (IS_CHAN_HT40PLUS(chan)) {
201 		centers->synth_center =
202 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
203 		extoff = 1;
204 	} else {
205 		centers->synth_center =
206 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
207 		extoff = -1;
208 	}
209 
210 	centers->ctl_center =
211 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
212 	/* 25 MHz spacing is supported by hw but not on upper layers */
213 	centers->ext_center =
214 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
215 }
216 
217 /******************/
218 /* Chip Revisions */
219 /******************/
220 
221 static void ath9k_hw_read_revisions(struct ath_hw *ah)
222 {
223 	u32 val;
224 
225 	switch (ah->hw_version.devid) {
226 	case AR5416_AR9100_DEVID:
227 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
228 		break;
229 	case AR9300_DEVID_AR9330:
230 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
231 		if (ah->get_mac_revision) {
232 			ah->hw_version.macRev = ah->get_mac_revision();
233 		} else {
234 			val = REG_READ(ah, AR_SREV);
235 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
236 		}
237 		return;
238 	case AR9300_DEVID_AR9340:
239 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
240 		val = REG_READ(ah, AR_SREV);
241 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
242 		return;
243 	case AR9300_DEVID_QCA955X:
244 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
245 		return;
246 	case AR9300_DEVID_AR953X:
247 		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
248 		if (ah->get_mac_revision)
249 			ah->hw_version.macRev = ah->get_mac_revision();
250 		return;
251 	}
252 
253 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
254 
255 	if (val == 0xFF) {
256 		val = REG_READ(ah, AR_SREV);
257 		ah->hw_version.macVersion =
258 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
259 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
260 
261 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
262 			ah->is_pciexpress = true;
263 		else
264 			ah->is_pciexpress = (val &
265 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
266 	} else {
267 		if (!AR_SREV_9100(ah))
268 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
269 
270 		ah->hw_version.macRev = val & AR_SREV_REVISION;
271 
272 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
273 			ah->is_pciexpress = true;
274 	}
275 }
276 
277 /************************************/
278 /* HW Attach, Detach, Init Routines */
279 /************************************/
280 
281 static void ath9k_hw_disablepcie(struct ath_hw *ah)
282 {
283 	if (!AR_SREV_5416(ah))
284 		return;
285 
286 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
287 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
288 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
289 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
290 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
291 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
292 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
293 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
294 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
295 
296 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
297 }
298 
299 /* This should work for all families including legacy */
300 static bool ath9k_hw_chip_test(struct ath_hw *ah)
301 {
302 	struct ath_common *common = ath9k_hw_common(ah);
303 	u32 regAddr[2] = { AR_STA_ID0 };
304 	u32 regHold[2];
305 	static const u32 patternData[4] = {
306 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
307 	};
308 	int i, j, loop_max;
309 
310 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
311 		loop_max = 2;
312 		regAddr[1] = AR_PHY_BASE + (8 << 2);
313 	} else
314 		loop_max = 1;
315 
316 	for (i = 0; i < loop_max; i++) {
317 		u32 addr = regAddr[i];
318 		u32 wrData, rdData;
319 
320 		regHold[i] = REG_READ(ah, addr);
321 		for (j = 0; j < 0x100; j++) {
322 			wrData = (j << 16) | j;
323 			REG_WRITE(ah, addr, wrData);
324 			rdData = REG_READ(ah, addr);
325 			if (rdData != wrData) {
326 				ath_err(common,
327 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
328 					addr, wrData, rdData);
329 				return false;
330 			}
331 		}
332 		for (j = 0; j < 4; j++) {
333 			wrData = patternData[j];
334 			REG_WRITE(ah, addr, wrData);
335 			rdData = REG_READ(ah, addr);
336 			if (wrData != rdData) {
337 				ath_err(common,
338 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
339 					addr, wrData, rdData);
340 				return false;
341 			}
342 		}
343 		REG_WRITE(ah, regAddr[i], regHold[i]);
344 	}
345 	udelay(100);
346 
347 	return true;
348 }
349 
350 static void ath9k_hw_init_config(struct ath_hw *ah)
351 {
352 	struct ath_common *common = ath9k_hw_common(ah);
353 
354 	ah->config.dma_beacon_response_time = 1;
355 	ah->config.sw_beacon_response_time = 6;
356 	ah->config.cwm_ignore_extcca = 0;
357 	ah->config.analog_shiftreg = 1;
358 
359 	ah->config.rx_intr_mitigation = true;
360 
361 	if (AR_SREV_9300_20_OR_LATER(ah)) {
362 		ah->config.rimt_last = 500;
363 		ah->config.rimt_first = 2000;
364 	} else {
365 		ah->config.rimt_last = 250;
366 		ah->config.rimt_first = 700;
367 	}
368 
369 	/*
370 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
371 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
372 	 * This means we use it for all AR5416 devices, and the few
373 	 * minor PCI AR9280 devices out there.
374 	 *
375 	 * Serialization is required because these devices do not handle
376 	 * well the case of two concurrent reads/writes due to the latency
377 	 * involved. During one read/write another read/write can be issued
378 	 * on another CPU while the previous read/write may still be working
379 	 * on our hardware, if we hit this case the hardware poops in a loop.
380 	 * We prevent this by serializing reads and writes.
381 	 *
382 	 * This issue is not present on PCI-Express devices or pre-AR5416
383 	 * devices (legacy, 802.11abg).
384 	 */
385 	if (num_possible_cpus() > 1)
386 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
387 
388 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
389 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
390 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
391 		     !ah->is_pciexpress)) {
392 			ah->config.serialize_regmode = SER_REG_MODE_ON;
393 		} else {
394 			ah->config.serialize_regmode = SER_REG_MODE_OFF;
395 		}
396 	}
397 
398 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
399 		ah->config.serialize_regmode);
400 
401 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
402 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
403 	else
404 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
405 }
406 
407 static void ath9k_hw_init_defaults(struct ath_hw *ah)
408 {
409 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
410 
411 	regulatory->country_code = CTRY_DEFAULT;
412 	regulatory->power_limit = MAX_RATE_POWER;
413 
414 	ah->hw_version.magic = AR5416_MAGIC;
415 	ah->hw_version.subvendorid = 0;
416 
417 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
418 			       AR_STA_ID1_MCAST_KSRCH;
419 	if (AR_SREV_9100(ah))
420 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
421 
422 	ah->slottime = ATH9K_SLOT_TIME_9;
423 	ah->globaltxtimeout = (u32) -1;
424 	ah->power_mode = ATH9K_PM_UNDEFINED;
425 	ah->htc_reset_init = true;
426 
427 	ah->ani_function = ATH9K_ANI_ALL;
428 	if (!AR_SREV_9300_20_OR_LATER(ah))
429 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
430 
431 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
432 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
433 	else
434 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
435 }
436 
437 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
438 {
439 	struct ath_common *common = ath9k_hw_common(ah);
440 	u32 sum;
441 	int i;
442 	u16 eeval;
443 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
444 
445 	sum = 0;
446 	for (i = 0; i < 3; i++) {
447 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
448 		sum += eeval;
449 		common->macaddr[2 * i] = eeval >> 8;
450 		common->macaddr[2 * i + 1] = eeval & 0xff;
451 	}
452 	if (sum == 0 || sum == 0xffff * 3)
453 		return -EADDRNOTAVAIL;
454 
455 	return 0;
456 }
457 
458 static int ath9k_hw_post_init(struct ath_hw *ah)
459 {
460 	struct ath_common *common = ath9k_hw_common(ah);
461 	int ecode;
462 
463 	if (common->bus_ops->ath_bus_type != ATH_USB) {
464 		if (!ath9k_hw_chip_test(ah))
465 			return -ENODEV;
466 	}
467 
468 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
469 		ecode = ar9002_hw_rf_claim(ah);
470 		if (ecode != 0)
471 			return ecode;
472 	}
473 
474 	ecode = ath9k_hw_eeprom_init(ah);
475 	if (ecode != 0)
476 		return ecode;
477 
478 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
479 		ah->eep_ops->get_eeprom_ver(ah),
480 		ah->eep_ops->get_eeprom_rev(ah));
481 
482 	ath9k_hw_ani_init(ah);
483 
484 	/*
485 	 * EEPROM needs to be initialized before we do this.
486 	 * This is required for regulatory compliance.
487 	 */
488 	if (AR_SREV_9300_20_OR_LATER(ah)) {
489 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
490 		if ((regdmn & 0xF0) == CTL_FCC) {
491 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
492 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
493 		}
494 	}
495 
496 	return 0;
497 }
498 
499 static int ath9k_hw_attach_ops(struct ath_hw *ah)
500 {
501 	if (!AR_SREV_9300_20_OR_LATER(ah))
502 		return ar9002_hw_attach_ops(ah);
503 
504 	ar9003_hw_attach_ops(ah);
505 	return 0;
506 }
507 
508 /* Called for all hardware families */
509 static int __ath9k_hw_init(struct ath_hw *ah)
510 {
511 	struct ath_common *common = ath9k_hw_common(ah);
512 	int r = 0;
513 
514 	ath9k_hw_read_revisions(ah);
515 
516 	switch (ah->hw_version.macVersion) {
517 	case AR_SREV_VERSION_5416_PCI:
518 	case AR_SREV_VERSION_5416_PCIE:
519 	case AR_SREV_VERSION_9160:
520 	case AR_SREV_VERSION_9100:
521 	case AR_SREV_VERSION_9280:
522 	case AR_SREV_VERSION_9285:
523 	case AR_SREV_VERSION_9287:
524 	case AR_SREV_VERSION_9271:
525 	case AR_SREV_VERSION_9300:
526 	case AR_SREV_VERSION_9330:
527 	case AR_SREV_VERSION_9485:
528 	case AR_SREV_VERSION_9340:
529 	case AR_SREV_VERSION_9462:
530 	case AR_SREV_VERSION_9550:
531 	case AR_SREV_VERSION_9565:
532 	case AR_SREV_VERSION_9531:
533 		break;
534 	default:
535 		ath_err(common,
536 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
537 			ah->hw_version.macVersion, ah->hw_version.macRev);
538 		return -EOPNOTSUPP;
539 	}
540 
541 	/*
542 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
543 	 * We need to do this to avoid RMW of this register. We cannot
544 	 * read the reg when chip is asleep.
545 	 */
546 	if (AR_SREV_9300_20_OR_LATER(ah)) {
547 		ah->WARegVal = REG_READ(ah, AR_WA);
548 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
549 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
550 	}
551 
552 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
553 		ath_err(common, "Couldn't reset chip\n");
554 		return -EIO;
555 	}
556 
557 	if (AR_SREV_9565(ah)) {
558 		ah->WARegVal |= AR_WA_BIT22;
559 		REG_WRITE(ah, AR_WA, ah->WARegVal);
560 	}
561 
562 	ath9k_hw_init_defaults(ah);
563 	ath9k_hw_init_config(ah);
564 
565 	r = ath9k_hw_attach_ops(ah);
566 	if (r)
567 		return r;
568 
569 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
570 		ath_err(common, "Couldn't wakeup chip\n");
571 		return -EIO;
572 	}
573 
574 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
575 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
576 		ah->is_pciexpress = false;
577 
578 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
579 	ath9k_hw_init_cal_settings(ah);
580 
581 	if (!ah->is_pciexpress)
582 		ath9k_hw_disablepcie(ah);
583 
584 	r = ath9k_hw_post_init(ah);
585 	if (r)
586 		return r;
587 
588 	ath9k_hw_init_mode_gain_regs(ah);
589 	r = ath9k_hw_fill_cap_info(ah);
590 	if (r)
591 		return r;
592 
593 	r = ath9k_hw_init_macaddr(ah);
594 	if (r) {
595 		ath_err(common, "Failed to initialize MAC address\n");
596 		return r;
597 	}
598 
599 	ath9k_hw_init_hang_checks(ah);
600 
601 	common->state = ATH_HW_INITIALIZED;
602 
603 	return 0;
604 }
605 
606 int ath9k_hw_init(struct ath_hw *ah)
607 {
608 	int ret;
609 	struct ath_common *common = ath9k_hw_common(ah);
610 
611 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
612 	switch (ah->hw_version.devid) {
613 	case AR5416_DEVID_PCI:
614 	case AR5416_DEVID_PCIE:
615 	case AR5416_AR9100_DEVID:
616 	case AR9160_DEVID_PCI:
617 	case AR9280_DEVID_PCI:
618 	case AR9280_DEVID_PCIE:
619 	case AR9285_DEVID_PCIE:
620 	case AR9287_DEVID_PCI:
621 	case AR9287_DEVID_PCIE:
622 	case AR2427_DEVID_PCIE:
623 	case AR9300_DEVID_PCIE:
624 	case AR9300_DEVID_AR9485_PCIE:
625 	case AR9300_DEVID_AR9330:
626 	case AR9300_DEVID_AR9340:
627 	case AR9300_DEVID_QCA955X:
628 	case AR9300_DEVID_AR9580:
629 	case AR9300_DEVID_AR9462:
630 	case AR9485_DEVID_AR1111:
631 	case AR9300_DEVID_AR9565:
632 	case AR9300_DEVID_AR953X:
633 		break;
634 	default:
635 		if (common->bus_ops->ath_bus_type == ATH_USB)
636 			break;
637 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
638 			ah->hw_version.devid);
639 		return -EOPNOTSUPP;
640 	}
641 
642 	ret = __ath9k_hw_init(ah);
643 	if (ret) {
644 		ath_err(common,
645 			"Unable to initialize hardware; initialization status: %d\n",
646 			ret);
647 		return ret;
648 	}
649 
650 	return 0;
651 }
652 EXPORT_SYMBOL(ath9k_hw_init);
653 
654 static void ath9k_hw_init_qos(struct ath_hw *ah)
655 {
656 	ENABLE_REGWRITE_BUFFER(ah);
657 
658 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
659 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
660 
661 	REG_WRITE(ah, AR_QOS_NO_ACK,
662 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
663 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
664 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
665 
666 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
667 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
668 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
669 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
670 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
671 
672 	REGWRITE_BUFFER_FLUSH(ah);
673 }
674 
675 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
676 {
677 	struct ath_common *common = ath9k_hw_common(ah);
678 	int i = 0;
679 
680 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
681 	udelay(100);
682 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
683 
684 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
685 
686 		udelay(100);
687 
688 		if (WARN_ON_ONCE(i >= 100)) {
689 			ath_err(common, "PLL4 meaurement not done\n");
690 			break;
691 		}
692 
693 		i++;
694 	}
695 
696 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
697 }
698 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
699 
700 static void ath9k_hw_init_pll(struct ath_hw *ah,
701 			      struct ath9k_channel *chan)
702 {
703 	u32 pll;
704 
705 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
706 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
707 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
708 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
709 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
710 			      AR_CH0_DPLL2_KD, 0x40);
711 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
712 			      AR_CH0_DPLL2_KI, 0x4);
713 
714 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
715 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
716 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
717 			      AR_CH0_BB_DPLL1_NINI, 0x58);
718 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
719 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
720 
721 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
722 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
723 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
724 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
725 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
726 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
727 
728 		/* program BB PLL phase_shift to 0x6 */
729 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
730 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
731 
732 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
733 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
734 		udelay(1000);
735 	} else if (AR_SREV_9330(ah)) {
736 		u32 ddr_dpll2, pll_control2, kd;
737 
738 		if (ah->is_clk_25mhz) {
739 			ddr_dpll2 = 0x18e82f01;
740 			pll_control2 = 0xe04a3d;
741 			kd = 0x1d;
742 		} else {
743 			ddr_dpll2 = 0x19e82f01;
744 			pll_control2 = 0x886666;
745 			kd = 0x3d;
746 		}
747 
748 		/* program DDR PLL ki and kd value */
749 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
750 
751 		/* program DDR PLL phase_shift */
752 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
753 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
754 
755 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
756 		udelay(1000);
757 
758 		/* program refdiv, nint, frac to RTC register */
759 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
760 
761 		/* program BB PLL kd and ki value */
762 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
763 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
764 
765 		/* program BB PLL phase_shift */
766 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
767 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
768 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
769 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
770 
771 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
772 		udelay(1000);
773 
774 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
775 		udelay(100);
776 
777 		if (ah->is_clk_25mhz) {
778 			if (AR_SREV_9531(ah)) {
779 				pll2_divint = 0x1c;
780 				pll2_divfrac = 0xa3d2;
781 				refdiv = 1;
782 			} else {
783 				pll2_divint = 0x54;
784 				pll2_divfrac = 0x1eb85;
785 				refdiv = 3;
786 			}
787 		} else {
788 			if (AR_SREV_9340(ah)) {
789 				pll2_divint = 88;
790 				pll2_divfrac = 0;
791 				refdiv = 5;
792 			} else {
793 				pll2_divint = 0x11;
794 				pll2_divfrac = 0x26666;
795 				refdiv = 1;
796 			}
797 		}
798 
799 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
800 		if (AR_SREV_9531(ah))
801 			regval |= (0x1 << 22);
802 		else
803 			regval |= (0x1 << 16);
804 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
805 		udelay(100);
806 
807 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
808 			  (pll2_divint << 18) | pll2_divfrac);
809 		udelay(100);
810 
811 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
812 		if (AR_SREV_9340(ah))
813 			regval = (regval & 0x80071fff) |
814 				(0x1 << 30) |
815 				(0x1 << 13) |
816 				(0x4 << 26) |
817 				(0x18 << 19);
818 		else if (AR_SREV_9531(ah))
819 			regval = (regval & 0x01c00fff) |
820 				(0x1 << 31) |
821 				(0x2 << 29) |
822 				(0xa << 25) |
823 				(0x1 << 19) |
824 				(0x6 << 12);
825 		else
826 			regval = (regval & 0x80071fff) |
827 				(0x3 << 30) |
828 				(0x1 << 13) |
829 				(0x4 << 26) |
830 				(0x60 << 19);
831 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
832 
833 		if (AR_SREV_9531(ah))
834 			REG_WRITE(ah, AR_PHY_PLL_MODE,
835 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
836 		else
837 			REG_WRITE(ah, AR_PHY_PLL_MODE,
838 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
839 
840 		udelay(1000);
841 	}
842 
843 	pll = ath9k_hw_compute_pll_control(ah, chan);
844 	if (AR_SREV_9565(ah))
845 		pll |= 0x40000;
846 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
847 
848 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
849 	    AR_SREV_9550(ah))
850 		udelay(1000);
851 
852 	/* Switch the core clock for ar9271 to 117Mhz */
853 	if (AR_SREV_9271(ah)) {
854 		udelay(500);
855 		REG_WRITE(ah, 0x50040, 0x304);
856 	}
857 
858 	udelay(RTC_PLL_SETTLE_DELAY);
859 
860 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
861 
862 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
863 		if (ah->is_clk_25mhz) {
864 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
865 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
866 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
867 		} else {
868 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
869 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
870 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
871 		}
872 		udelay(100);
873 	}
874 }
875 
876 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
877 					  enum nl80211_iftype opmode)
878 {
879 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
880 	u32 imr_reg = AR_IMR_TXERR |
881 		AR_IMR_TXURN |
882 		AR_IMR_RXERR |
883 		AR_IMR_RXORN |
884 		AR_IMR_BCNMISC;
885 
886 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah))
887 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
888 
889 	if (AR_SREV_9300_20_OR_LATER(ah)) {
890 		imr_reg |= AR_IMR_RXOK_HP;
891 		if (ah->config.rx_intr_mitigation)
892 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
893 		else
894 			imr_reg |= AR_IMR_RXOK_LP;
895 
896 	} else {
897 		if (ah->config.rx_intr_mitigation)
898 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
899 		else
900 			imr_reg |= AR_IMR_RXOK;
901 	}
902 
903 	if (ah->config.tx_intr_mitigation)
904 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
905 	else
906 		imr_reg |= AR_IMR_TXOK;
907 
908 	ENABLE_REGWRITE_BUFFER(ah);
909 
910 	REG_WRITE(ah, AR_IMR, imr_reg);
911 	ah->imrs2_reg |= AR_IMR_S2_GTT;
912 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
913 
914 	if (!AR_SREV_9100(ah)) {
915 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
916 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
917 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
918 	}
919 
920 	REGWRITE_BUFFER_FLUSH(ah);
921 
922 	if (AR_SREV_9300_20_OR_LATER(ah)) {
923 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
924 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
925 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
926 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
927 	}
928 }
929 
930 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
931 {
932 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
933 	val = min(val, (u32) 0xFFFF);
934 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
935 }
936 
937 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
938 {
939 	u32 val = ath9k_hw_mac_to_clks(ah, us);
940 	val = min(val, (u32) 0xFFFF);
941 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
942 }
943 
944 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
945 {
946 	u32 val = ath9k_hw_mac_to_clks(ah, us);
947 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
948 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
949 }
950 
951 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
952 {
953 	u32 val = ath9k_hw_mac_to_clks(ah, us);
954 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
955 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
956 }
957 
958 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
959 {
960 	if (tu > 0xFFFF) {
961 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
962 			tu);
963 		ah->globaltxtimeout = (u32) -1;
964 		return false;
965 	} else {
966 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
967 		ah->globaltxtimeout = tu;
968 		return true;
969 	}
970 }
971 
972 void ath9k_hw_init_global_settings(struct ath_hw *ah)
973 {
974 	struct ath_common *common = ath9k_hw_common(ah);
975 	const struct ath9k_channel *chan = ah->curchan;
976 	int acktimeout, ctstimeout, ack_offset = 0;
977 	int slottime;
978 	int sifstime;
979 	int rx_lat = 0, tx_lat = 0, eifs = 0;
980 	u32 reg;
981 
982 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
983 		ah->misc_mode);
984 
985 	if (!chan)
986 		return;
987 
988 	if (ah->misc_mode != 0)
989 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
990 
991 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
992 		rx_lat = 41;
993 	else
994 		rx_lat = 37;
995 	tx_lat = 54;
996 
997 	if (IS_CHAN_5GHZ(chan))
998 		sifstime = 16;
999 	else
1000 		sifstime = 10;
1001 
1002 	if (IS_CHAN_HALF_RATE(chan)) {
1003 		eifs = 175;
1004 		rx_lat *= 2;
1005 		tx_lat *= 2;
1006 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1007 		    tx_lat += 11;
1008 
1009 		sifstime = 32;
1010 		ack_offset = 16;
1011 		slottime = 13;
1012 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1013 		eifs = 340;
1014 		rx_lat = (rx_lat * 4) - 1;
1015 		tx_lat *= 4;
1016 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1017 		    tx_lat += 22;
1018 
1019 		sifstime = 64;
1020 		ack_offset = 32;
1021 		slottime = 21;
1022 	} else {
1023 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1024 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1025 			reg = AR_USEC_ASYNC_FIFO;
1026 		} else {
1027 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1028 				common->clockrate;
1029 			reg = REG_READ(ah, AR_USEC);
1030 		}
1031 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1032 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1033 
1034 		slottime = ah->slottime;
1035 	}
1036 
1037 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1038 	slottime += 3 * ah->coverage_class;
1039 	acktimeout = slottime + sifstime + ack_offset;
1040 	ctstimeout = acktimeout;
1041 
1042 	/*
1043 	 * Workaround for early ACK timeouts, add an offset to match the
1044 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1045 	 * This was initially only meant to work around an issue with delayed
1046 	 * BA frames in some implementations, but it has been found to fix ACK
1047 	 * timeout issues in other cases as well.
1048 	 */
1049 	if (IS_CHAN_2GHZ(chan) &&
1050 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1051 		acktimeout += 64 - sifstime - ah->slottime;
1052 		ctstimeout += 48 - sifstime - ah->slottime;
1053 	}
1054 
1055 	ath9k_hw_set_sifs_time(ah, sifstime);
1056 	ath9k_hw_setslottime(ah, slottime);
1057 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1058 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1059 	if (ah->globaltxtimeout != (u32) -1)
1060 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1061 
1062 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1063 	REG_RMW(ah, AR_USEC,
1064 		(common->clockrate - 1) |
1065 		SM(rx_lat, AR_USEC_RX_LAT) |
1066 		SM(tx_lat, AR_USEC_TX_LAT),
1067 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1068 
1069 }
1070 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1071 
1072 void ath9k_hw_deinit(struct ath_hw *ah)
1073 {
1074 	struct ath_common *common = ath9k_hw_common(ah);
1075 
1076 	if (common->state < ATH_HW_INITIALIZED)
1077 		return;
1078 
1079 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1080 }
1081 EXPORT_SYMBOL(ath9k_hw_deinit);
1082 
1083 /*******/
1084 /* INI */
1085 /*******/
1086 
1087 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1088 {
1089 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1090 
1091 	if (IS_CHAN_2GHZ(chan))
1092 		ctl |= CTL_11G;
1093 	else
1094 		ctl |= CTL_11A;
1095 
1096 	return ctl;
1097 }
1098 
1099 /****************************************/
1100 /* Reset and Channel Switching Routines */
1101 /****************************************/
1102 
1103 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1104 {
1105 	struct ath_common *common = ath9k_hw_common(ah);
1106 	int txbuf_size;
1107 
1108 	ENABLE_REGWRITE_BUFFER(ah);
1109 
1110 	/*
1111 	 * set AHB_MODE not to do cacheline prefetches
1112 	*/
1113 	if (!AR_SREV_9300_20_OR_LATER(ah))
1114 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1115 
1116 	/*
1117 	 * let mac dma reads be in 128 byte chunks
1118 	 */
1119 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1120 
1121 	REGWRITE_BUFFER_FLUSH(ah);
1122 
1123 	/*
1124 	 * Restore TX Trigger Level to its pre-reset value.
1125 	 * The initial value depends on whether aggregation is enabled, and is
1126 	 * adjusted whenever underruns are detected.
1127 	 */
1128 	if (!AR_SREV_9300_20_OR_LATER(ah))
1129 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1130 
1131 	ENABLE_REGWRITE_BUFFER(ah);
1132 
1133 	/*
1134 	 * let mac dma writes be in 128 byte chunks
1135 	 */
1136 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1137 
1138 	/*
1139 	 * Setup receive FIFO threshold to hold off TX activities
1140 	 */
1141 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1142 
1143 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1144 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1145 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1146 
1147 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1148 			ah->caps.rx_status_len);
1149 	}
1150 
1151 	/*
1152 	 * reduce the number of usable entries in PCU TXBUF to avoid
1153 	 * wrap around issues.
1154 	 */
1155 	if (AR_SREV_9285(ah)) {
1156 		/* For AR9285 the number of Fifos are reduced to half.
1157 		 * So set the usable tx buf size also to half to
1158 		 * avoid data/delimiter underruns
1159 		 */
1160 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1161 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1162 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1163 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1164 	} else {
1165 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1166 	}
1167 
1168 	if (!AR_SREV_9271(ah))
1169 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1170 
1171 	REGWRITE_BUFFER_FLUSH(ah);
1172 
1173 	if (AR_SREV_9300_20_OR_LATER(ah))
1174 		ath9k_hw_reset_txstatus_ring(ah);
1175 }
1176 
1177 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1178 {
1179 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1180 	u32 set = AR_STA_ID1_KSRCH_MODE;
1181 
1182 	switch (opmode) {
1183 	case NL80211_IFTYPE_ADHOC:
1184 		set |= AR_STA_ID1_ADHOC;
1185 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1186 		break;
1187 	case NL80211_IFTYPE_MESH_POINT:
1188 	case NL80211_IFTYPE_AP:
1189 		set |= AR_STA_ID1_STA_AP;
1190 		/* fall through */
1191 	case NL80211_IFTYPE_STATION:
1192 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1193 		break;
1194 	default:
1195 		if (!ah->is_monitoring)
1196 			set = 0;
1197 		break;
1198 	}
1199 	REG_RMW(ah, AR_STA_ID1, set, mask);
1200 }
1201 
1202 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1203 				   u32 *coef_mantissa, u32 *coef_exponent)
1204 {
1205 	u32 coef_exp, coef_man;
1206 
1207 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1208 		if ((coef_scaled >> coef_exp) & 0x1)
1209 			break;
1210 
1211 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1212 
1213 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1214 
1215 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1216 	*coef_exponent = coef_exp - 16;
1217 }
1218 
1219 /* AR9330 WAR:
1220  * call external reset function to reset WMAC if:
1221  * - doing a cold reset
1222  * - we have pending frames in the TX queues.
1223  */
1224 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1225 {
1226 	int i, npend = 0;
1227 
1228 	for (i = 0; i < AR_NUM_QCU; i++) {
1229 		npend = ath9k_hw_numtxpending(ah, i);
1230 		if (npend)
1231 			break;
1232 	}
1233 
1234 	if (ah->external_reset &&
1235 	    (npend || type == ATH9K_RESET_COLD)) {
1236 		int reset_err = 0;
1237 
1238 		ath_dbg(ath9k_hw_common(ah), RESET,
1239 			"reset MAC via external reset\n");
1240 
1241 		reset_err = ah->external_reset();
1242 		if (reset_err) {
1243 			ath_err(ath9k_hw_common(ah),
1244 				"External reset failed, err=%d\n",
1245 				reset_err);
1246 			return false;
1247 		}
1248 
1249 		REG_WRITE(ah, AR_RTC_RESET, 1);
1250 	}
1251 
1252 	return true;
1253 }
1254 
1255 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1256 {
1257 	u32 rst_flags;
1258 	u32 tmpReg;
1259 
1260 	if (AR_SREV_9100(ah)) {
1261 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1262 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1263 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1264 	}
1265 
1266 	ENABLE_REGWRITE_BUFFER(ah);
1267 
1268 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1269 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1270 		udelay(10);
1271 	}
1272 
1273 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1274 		  AR_RTC_FORCE_WAKE_ON_INT);
1275 
1276 	if (AR_SREV_9100(ah)) {
1277 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1278 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1279 	} else {
1280 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1281 		if (AR_SREV_9340(ah))
1282 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1283 		else
1284 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1285 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1286 
1287 		if (tmpReg) {
1288 			u32 val;
1289 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1290 
1291 			val = AR_RC_HOSTIF;
1292 			if (!AR_SREV_9300_20_OR_LATER(ah))
1293 				val |= AR_RC_AHB;
1294 			REG_WRITE(ah, AR_RC, val);
1295 
1296 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1297 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1298 
1299 		rst_flags = AR_RTC_RC_MAC_WARM;
1300 		if (type == ATH9K_RESET_COLD)
1301 			rst_flags |= AR_RTC_RC_MAC_COLD;
1302 	}
1303 
1304 	if (AR_SREV_9330(ah)) {
1305 		if (!ath9k_hw_ar9330_reset_war(ah, type))
1306 			return false;
1307 	}
1308 
1309 	if (ath9k_hw_mci_is_enabled(ah))
1310 		ar9003_mci_check_gpm_offset(ah);
1311 
1312 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1313 
1314 	REGWRITE_BUFFER_FLUSH(ah);
1315 
1316 	if (AR_SREV_9300_20_OR_LATER(ah))
1317 		udelay(50);
1318 	else if (AR_SREV_9100(ah))
1319 		mdelay(10);
1320 	else
1321 		udelay(100);
1322 
1323 	REG_WRITE(ah, AR_RTC_RC, 0);
1324 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1325 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1326 		return false;
1327 	}
1328 
1329 	if (!AR_SREV_9100(ah))
1330 		REG_WRITE(ah, AR_RC, 0);
1331 
1332 	if (AR_SREV_9100(ah))
1333 		udelay(50);
1334 
1335 	return true;
1336 }
1337 
1338 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1339 {
1340 	ENABLE_REGWRITE_BUFFER(ah);
1341 
1342 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1343 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1344 		udelay(10);
1345 	}
1346 
1347 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1348 		  AR_RTC_FORCE_WAKE_ON_INT);
1349 
1350 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1351 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1352 
1353 	REG_WRITE(ah, AR_RTC_RESET, 0);
1354 
1355 	REGWRITE_BUFFER_FLUSH(ah);
1356 
1357 	udelay(2);
1358 
1359 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1360 		REG_WRITE(ah, AR_RC, 0);
1361 
1362 	REG_WRITE(ah, AR_RTC_RESET, 1);
1363 
1364 	if (!ath9k_hw_wait(ah,
1365 			   AR_RTC_STATUS,
1366 			   AR_RTC_STATUS_M,
1367 			   AR_RTC_STATUS_ON,
1368 			   AH_WAIT_TIMEOUT)) {
1369 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1370 		return false;
1371 	}
1372 
1373 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1374 }
1375 
1376 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1377 {
1378 	bool ret = false;
1379 
1380 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1381 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1382 		udelay(10);
1383 	}
1384 
1385 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1386 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1387 
1388 	if (!ah->reset_power_on)
1389 		type = ATH9K_RESET_POWER_ON;
1390 
1391 	switch (type) {
1392 	case ATH9K_RESET_POWER_ON:
1393 		ret = ath9k_hw_set_reset_power_on(ah);
1394 		if (ret)
1395 			ah->reset_power_on = true;
1396 		break;
1397 	case ATH9K_RESET_WARM:
1398 	case ATH9K_RESET_COLD:
1399 		ret = ath9k_hw_set_reset(ah, type);
1400 		break;
1401 	default:
1402 		break;
1403 	}
1404 
1405 	return ret;
1406 }
1407 
1408 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1409 				struct ath9k_channel *chan)
1410 {
1411 	int reset_type = ATH9K_RESET_WARM;
1412 
1413 	if (AR_SREV_9280(ah)) {
1414 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1415 			reset_type = ATH9K_RESET_POWER_ON;
1416 		else
1417 			reset_type = ATH9K_RESET_COLD;
1418 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1419 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1420 		reset_type = ATH9K_RESET_COLD;
1421 
1422 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1423 		return false;
1424 
1425 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1426 		return false;
1427 
1428 	ah->chip_fullsleep = false;
1429 
1430 	if (AR_SREV_9330(ah))
1431 		ar9003_hw_internal_regulator_apply(ah);
1432 	ath9k_hw_init_pll(ah, chan);
1433 
1434 	return true;
1435 }
1436 
1437 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1438 				    struct ath9k_channel *chan)
1439 {
1440 	struct ath_common *common = ath9k_hw_common(ah);
1441 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1442 	bool band_switch = false, mode_diff = false;
1443 	u8 ini_reloaded = 0;
1444 	u32 qnum;
1445 	int r;
1446 
1447 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1448 		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1449 		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1450 		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1451 	}
1452 
1453 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1454 		if (ath9k_hw_numtxpending(ah, qnum)) {
1455 			ath_dbg(common, QUEUE,
1456 				"Transmit frames pending on queue %d\n", qnum);
1457 			return false;
1458 		}
1459 	}
1460 
1461 	if (!ath9k_hw_rfbus_req(ah)) {
1462 		ath_err(common, "Could not kill baseband RX\n");
1463 		return false;
1464 	}
1465 
1466 	if (band_switch || mode_diff) {
1467 		ath9k_hw_mark_phy_inactive(ah);
1468 		udelay(5);
1469 
1470 		if (band_switch)
1471 			ath9k_hw_init_pll(ah, chan);
1472 
1473 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1474 			ath_err(common, "Failed to do fast channel change\n");
1475 			return false;
1476 		}
1477 	}
1478 
1479 	ath9k_hw_set_channel_regs(ah, chan);
1480 
1481 	r = ath9k_hw_rf_set_freq(ah, chan);
1482 	if (r) {
1483 		ath_err(common, "Failed to set channel\n");
1484 		return false;
1485 	}
1486 	ath9k_hw_set_clockrate(ah);
1487 	ath9k_hw_apply_txpower(ah, chan, false);
1488 
1489 	ath9k_hw_set_delta_slope(ah, chan);
1490 	ath9k_hw_spur_mitigate_freq(ah, chan);
1491 
1492 	if (band_switch || ini_reloaded)
1493 		ah->eep_ops->set_board_values(ah, chan);
1494 
1495 	ath9k_hw_init_bb(ah, chan);
1496 	ath9k_hw_rfbus_done(ah);
1497 
1498 	if (band_switch || ini_reloaded) {
1499 		ah->ah_flags |= AH_FASTCC;
1500 		ath9k_hw_init_cal(ah, chan);
1501 		ah->ah_flags &= ~AH_FASTCC;
1502 	}
1503 
1504 	return true;
1505 }
1506 
1507 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1508 {
1509 	u32 gpio_mask = ah->gpio_mask;
1510 	int i;
1511 
1512 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1513 		if (!(gpio_mask & 1))
1514 			continue;
1515 
1516 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1517 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1518 	}
1519 }
1520 
1521 void ath9k_hw_check_nav(struct ath_hw *ah)
1522 {
1523 	struct ath_common *common = ath9k_hw_common(ah);
1524 	u32 val;
1525 
1526 	val = REG_READ(ah, AR_NAV);
1527 	if (val != 0xdeadbeef && val > 0x7fff) {
1528 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1529 		REG_WRITE(ah, AR_NAV, 0);
1530 	}
1531 }
1532 EXPORT_SYMBOL(ath9k_hw_check_nav);
1533 
1534 bool ath9k_hw_check_alive(struct ath_hw *ah)
1535 {
1536 	int count = 50;
1537 	u32 reg, last_val;
1538 
1539 	if (AR_SREV_9300(ah))
1540 		return !ath9k_hw_detect_mac_hang(ah);
1541 
1542 	if (AR_SREV_9285_12_OR_LATER(ah))
1543 		return true;
1544 
1545 	last_val = REG_READ(ah, AR_OBS_BUS_1);
1546 	do {
1547 		reg = REG_READ(ah, AR_OBS_BUS_1);
1548 		if (reg != last_val)
1549 			return true;
1550 
1551 		udelay(1);
1552 		last_val = reg;
1553 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1554 			continue;
1555 
1556 		switch (reg & 0x7E000B00) {
1557 		case 0x1E000000:
1558 		case 0x52000B00:
1559 		case 0x18000B00:
1560 			continue;
1561 		default:
1562 			return true;
1563 		}
1564 	} while (count-- > 0);
1565 
1566 	return false;
1567 }
1568 EXPORT_SYMBOL(ath9k_hw_check_alive);
1569 
1570 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1571 {
1572 	/* Setup MFP options for CCMP */
1573 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1574 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1575 		 * frames when constructing CCMP AAD. */
1576 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1577 			      0xc7ff);
1578 		ah->sw_mgmt_crypto = false;
1579 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1580 		/* Disable hardware crypto for management frames */
1581 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1582 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1583 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1584 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1585 		ah->sw_mgmt_crypto = true;
1586 	} else {
1587 		ah->sw_mgmt_crypto = true;
1588 	}
1589 }
1590 
1591 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1592 				  u32 macStaId1, u32 saveDefAntenna)
1593 {
1594 	struct ath_common *common = ath9k_hw_common(ah);
1595 
1596 	ENABLE_REGWRITE_BUFFER(ah);
1597 
1598 	REG_RMW(ah, AR_STA_ID1, macStaId1
1599 		  | AR_STA_ID1_RTS_USE_DEF
1600 		  | ah->sta_id1_defaults,
1601 		  ~AR_STA_ID1_SADH_MASK);
1602 	ath_hw_setbssidmask(common);
1603 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1604 	ath9k_hw_write_associd(ah);
1605 	REG_WRITE(ah, AR_ISR, ~0);
1606 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1607 
1608 	REGWRITE_BUFFER_FLUSH(ah);
1609 
1610 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1611 }
1612 
1613 static void ath9k_hw_init_queues(struct ath_hw *ah)
1614 {
1615 	int i;
1616 
1617 	ENABLE_REGWRITE_BUFFER(ah);
1618 
1619 	for (i = 0; i < AR_NUM_DCU; i++)
1620 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1621 
1622 	REGWRITE_BUFFER_FLUSH(ah);
1623 
1624 	ah->intr_txqs = 0;
1625 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1626 		ath9k_hw_resettxqueue(ah, i);
1627 }
1628 
1629 /*
1630  * For big endian systems turn on swapping for descriptors
1631  */
1632 static void ath9k_hw_init_desc(struct ath_hw *ah)
1633 {
1634 	struct ath_common *common = ath9k_hw_common(ah);
1635 
1636 	if (AR_SREV_9100(ah)) {
1637 		u32 mask;
1638 		mask = REG_READ(ah, AR_CFG);
1639 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1640 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1641 				mask);
1642 		} else {
1643 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1644 			REG_WRITE(ah, AR_CFG, mask);
1645 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1646 				REG_READ(ah, AR_CFG));
1647 		}
1648 	} else {
1649 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1650 			/* Configure AR9271 target WLAN */
1651 			if (AR_SREV_9271(ah))
1652 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1653 			else
1654 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1655 		}
1656 #ifdef __BIG_ENDIAN
1657 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1658 			 AR_SREV_9550(ah) || AR_SREV_9531(ah))
1659 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1660 		else
1661 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1662 #endif
1663 	}
1664 }
1665 
1666 /*
1667  * Fast channel change:
1668  * (Change synthesizer based on channel freq without resetting chip)
1669  */
1670 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1671 {
1672 	struct ath_common *common = ath9k_hw_common(ah);
1673 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1674 	int ret;
1675 
1676 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1677 		goto fail;
1678 
1679 	if (ah->chip_fullsleep)
1680 		goto fail;
1681 
1682 	if (!ah->curchan)
1683 		goto fail;
1684 
1685 	if (chan->channel == ah->curchan->channel)
1686 		goto fail;
1687 
1688 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1689 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1690 		goto fail;
1691 
1692 	/*
1693 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1694 	 */
1695 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1696 	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1697 		goto fail;
1698 
1699 	if (!ath9k_hw_check_alive(ah))
1700 		goto fail;
1701 
1702 	/*
1703 	 * For AR9462, make sure that calibration data for
1704 	 * re-using are present.
1705 	 */
1706 	if (AR_SREV_9462(ah) && (ah->caldata &&
1707 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1708 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1709 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1710 		goto fail;
1711 
1712 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1713 		ah->curchan->channel, chan->channel);
1714 
1715 	ret = ath9k_hw_channel_change(ah, chan);
1716 	if (!ret)
1717 		goto fail;
1718 
1719 	if (ath9k_hw_mci_is_enabled(ah))
1720 		ar9003_mci_2g5g_switch(ah, false);
1721 
1722 	ath9k_hw_loadnf(ah, ah->curchan);
1723 	ath9k_hw_start_nfcal(ah, true);
1724 
1725 	if (AR_SREV_9271(ah))
1726 		ar9002_hw_load_ani_reg(ah, chan);
1727 
1728 	return 0;
1729 fail:
1730 	return -EINVAL;
1731 }
1732 
1733 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1734 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1735 {
1736 	struct ath_common *common = ath9k_hw_common(ah);
1737 	struct timespec ts;
1738 	u32 saveLedState;
1739 	u32 saveDefAntenna;
1740 	u32 macStaId1;
1741 	u64 tsf = 0;
1742 	s64 usec = 0;
1743 	int r;
1744 	bool start_mci_reset = false;
1745 	bool save_fullsleep = ah->chip_fullsleep;
1746 
1747 	if (ath9k_hw_mci_is_enabled(ah)) {
1748 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1749 		if (start_mci_reset)
1750 			return 0;
1751 	}
1752 
1753 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1754 		return -EIO;
1755 
1756 	if (ah->curchan && !ah->chip_fullsleep)
1757 		ath9k_hw_getnf(ah, ah->curchan);
1758 
1759 	ah->caldata = caldata;
1760 	if (caldata && (chan->channel != caldata->channel ||
1761 			chan->channelFlags != caldata->channelFlags)) {
1762 		/* Operating channel changed, reset channel calibration data */
1763 		memset(caldata, 0, sizeof(*caldata));
1764 		ath9k_init_nfcal_hist_buffer(ah, chan);
1765 	} else if (caldata) {
1766 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1767 	}
1768 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1769 
1770 	if (fastcc) {
1771 		r = ath9k_hw_do_fastcc(ah, chan);
1772 		if (!r)
1773 			return r;
1774 	}
1775 
1776 	if (ath9k_hw_mci_is_enabled(ah))
1777 		ar9003_mci_stop_bt(ah, save_fullsleep);
1778 
1779 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1780 	if (saveDefAntenna == 0)
1781 		saveDefAntenna = 1;
1782 
1783 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1784 
1785 	/* Save TSF before chip reset, a cold reset clears it */
1786 	tsf = ath9k_hw_gettsf64(ah);
1787 	getrawmonotonic(&ts);
1788 	usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000;
1789 
1790 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1791 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1792 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1793 
1794 	ath9k_hw_mark_phy_inactive(ah);
1795 
1796 	ah->paprd_table_write_done = false;
1797 
1798 	/* Only required on the first reset */
1799 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1800 		REG_WRITE(ah,
1801 			  AR9271_RESET_POWER_DOWN_CONTROL,
1802 			  AR9271_RADIO_RF_RST);
1803 		udelay(50);
1804 	}
1805 
1806 	if (!ath9k_hw_chip_reset(ah, chan)) {
1807 		ath_err(common, "Chip reset failed\n");
1808 		return -EINVAL;
1809 	}
1810 
1811 	/* Only required on the first reset */
1812 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1813 		ah->htc_reset_init = false;
1814 		REG_WRITE(ah,
1815 			  AR9271_RESET_POWER_DOWN_CONTROL,
1816 			  AR9271_GATE_MAC_CTL);
1817 		udelay(50);
1818 	}
1819 
1820 	/* Restore TSF */
1821 	getrawmonotonic(&ts);
1822 	usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000 - usec;
1823 	ath9k_hw_settsf64(ah, tsf + usec);
1824 
1825 	if (AR_SREV_9280_20_OR_LATER(ah))
1826 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1827 
1828 	if (!AR_SREV_9300_20_OR_LATER(ah))
1829 		ar9002_hw_enable_async_fifo(ah);
1830 
1831 	r = ath9k_hw_process_ini(ah, chan);
1832 	if (r)
1833 		return r;
1834 
1835 	ath9k_hw_set_rfmode(ah, chan);
1836 
1837 	if (ath9k_hw_mci_is_enabled(ah))
1838 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1839 
1840 	/*
1841 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1842 	 * right after the chip reset. When that happens, write a new
1843 	 * value after the initvals have been applied, with an offset
1844 	 * based on measured time difference
1845 	 */
1846 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1847 		tsf += 1500;
1848 		ath9k_hw_settsf64(ah, tsf);
1849 	}
1850 
1851 	ath9k_hw_init_mfp(ah);
1852 
1853 	ath9k_hw_set_delta_slope(ah, chan);
1854 	ath9k_hw_spur_mitigate_freq(ah, chan);
1855 	ah->eep_ops->set_board_values(ah, chan);
1856 
1857 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1858 
1859 	r = ath9k_hw_rf_set_freq(ah, chan);
1860 	if (r)
1861 		return r;
1862 
1863 	ath9k_hw_set_clockrate(ah);
1864 
1865 	ath9k_hw_init_queues(ah);
1866 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1867 	ath9k_hw_ani_cache_ini_regs(ah);
1868 	ath9k_hw_init_qos(ah);
1869 
1870 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1871 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1872 
1873 	ath9k_hw_init_global_settings(ah);
1874 
1875 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1876 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1877 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1878 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1879 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1880 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1881 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1882 	}
1883 
1884 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1885 
1886 	ath9k_hw_set_dma(ah);
1887 
1888 	if (!ath9k_hw_mci_is_enabled(ah))
1889 		REG_WRITE(ah, AR_OBS, 8);
1890 
1891 	if (ah->config.rx_intr_mitigation) {
1892 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1893 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1894 	}
1895 
1896 	if (ah->config.tx_intr_mitigation) {
1897 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1898 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1899 	}
1900 
1901 	ath9k_hw_init_bb(ah, chan);
1902 
1903 	if (caldata) {
1904 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1905 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1906 	}
1907 	if (!ath9k_hw_init_cal(ah, chan))
1908 		return -EIO;
1909 
1910 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1911 		return -EIO;
1912 
1913 	ENABLE_REGWRITE_BUFFER(ah);
1914 
1915 	ath9k_hw_restore_chainmask(ah);
1916 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1917 
1918 	REGWRITE_BUFFER_FLUSH(ah);
1919 
1920 	ath9k_hw_init_desc(ah);
1921 
1922 	if (ath9k_hw_btcoex_is_enabled(ah))
1923 		ath9k_hw_btcoex_enable(ah);
1924 
1925 	if (ath9k_hw_mci_is_enabled(ah))
1926 		ar9003_mci_check_bt(ah);
1927 
1928 	ath9k_hw_loadnf(ah, chan);
1929 	ath9k_hw_start_nfcal(ah, true);
1930 
1931 	if (AR_SREV_9300_20_OR_LATER(ah))
1932 		ar9003_hw_bb_watchdog_config(ah);
1933 
1934 	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
1935 		ar9003_hw_disable_phy_restart(ah);
1936 
1937 	ath9k_hw_apply_gpio_override(ah);
1938 
1939 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1940 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1941 
1942 	return 0;
1943 }
1944 EXPORT_SYMBOL(ath9k_hw_reset);
1945 
1946 /******************************/
1947 /* Power Management (Chipset) */
1948 /******************************/
1949 
1950 /*
1951  * Notify Power Mgt is disabled in self-generated frames.
1952  * If requested, force chip to sleep.
1953  */
1954 static void ath9k_set_power_sleep(struct ath_hw *ah)
1955 {
1956 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1957 
1958 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
1959 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
1960 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
1961 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
1962 		/* xxx Required for WLAN only case ? */
1963 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1964 		udelay(100);
1965 	}
1966 
1967 	/*
1968 	 * Clear the RTC force wake bit to allow the
1969 	 * mac to go to sleep.
1970 	 */
1971 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1972 
1973 	if (ath9k_hw_mci_is_enabled(ah))
1974 		udelay(100);
1975 
1976 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1977 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1978 
1979 	/* Shutdown chip. Active low */
1980 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
1981 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1982 		udelay(2);
1983 	}
1984 
1985 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1986 	if (AR_SREV_9300_20_OR_LATER(ah))
1987 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1988 }
1989 
1990 /*
1991  * Notify Power Management is enabled in self-generating
1992  * frames. If request, set power mode of chip to
1993  * auto/normal.  Duration in units of 128us (1/8 TU).
1994  */
1995 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
1996 {
1997 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1998 
1999 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2000 
2001 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2002 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2003 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2004 			  AR_RTC_FORCE_WAKE_ON_INT);
2005 	} else {
2006 
2007 		/* When chip goes into network sleep, it could be waken
2008 		 * up by MCI_INT interrupt caused by BT's HW messages
2009 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2010 		 * rate (~100us). This will cause chip to leave and
2011 		 * re-enter network sleep mode frequently, which in
2012 		 * consequence will have WLAN MCI HW to generate lots of
2013 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2014 		 * BT CPU to busy to process.
2015 		 */
2016 		if (ath9k_hw_mci_is_enabled(ah))
2017 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2018 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2019 		/*
2020 		 * Clear the RTC force wake bit to allow the
2021 		 * mac to go to sleep.
2022 		 */
2023 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2024 
2025 		if (ath9k_hw_mci_is_enabled(ah))
2026 			udelay(30);
2027 	}
2028 
2029 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2030 	if (AR_SREV_9300_20_OR_LATER(ah))
2031 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2032 }
2033 
2034 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2035 {
2036 	u32 val;
2037 	int i;
2038 
2039 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2040 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2041 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2042 		udelay(10);
2043 	}
2044 
2045 	if ((REG_READ(ah, AR_RTC_STATUS) &
2046 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2047 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2048 			return false;
2049 		}
2050 		if (!AR_SREV_9300_20_OR_LATER(ah))
2051 			ath9k_hw_init_pll(ah, NULL);
2052 	}
2053 	if (AR_SREV_9100(ah))
2054 		REG_SET_BIT(ah, AR_RTC_RESET,
2055 			    AR_RTC_RESET_EN);
2056 
2057 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2058 		    AR_RTC_FORCE_WAKE_EN);
2059 	if (AR_SREV_9100(ah))
2060 		mdelay(10);
2061 	else
2062 		udelay(50);
2063 
2064 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2065 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2066 		if (val == AR_RTC_STATUS_ON)
2067 			break;
2068 		udelay(50);
2069 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2070 			    AR_RTC_FORCE_WAKE_EN);
2071 	}
2072 	if (i == 0) {
2073 		ath_err(ath9k_hw_common(ah),
2074 			"Failed to wakeup in %uus\n",
2075 			POWER_UP_TIME / 20);
2076 		return false;
2077 	}
2078 
2079 	if (ath9k_hw_mci_is_enabled(ah))
2080 		ar9003_mci_set_power_awake(ah);
2081 
2082 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2083 
2084 	return true;
2085 }
2086 
2087 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2088 {
2089 	struct ath_common *common = ath9k_hw_common(ah);
2090 	int status = true;
2091 	static const char *modes[] = {
2092 		"AWAKE",
2093 		"FULL-SLEEP",
2094 		"NETWORK SLEEP",
2095 		"UNDEFINED"
2096 	};
2097 
2098 	if (ah->power_mode == mode)
2099 		return status;
2100 
2101 	ath_dbg(common, RESET, "%s -> %s\n",
2102 		modes[ah->power_mode], modes[mode]);
2103 
2104 	switch (mode) {
2105 	case ATH9K_PM_AWAKE:
2106 		status = ath9k_hw_set_power_awake(ah);
2107 		break;
2108 	case ATH9K_PM_FULL_SLEEP:
2109 		if (ath9k_hw_mci_is_enabled(ah))
2110 			ar9003_mci_set_full_sleep(ah);
2111 
2112 		ath9k_set_power_sleep(ah);
2113 		ah->chip_fullsleep = true;
2114 		break;
2115 	case ATH9K_PM_NETWORK_SLEEP:
2116 		ath9k_set_power_network_sleep(ah);
2117 		break;
2118 	default:
2119 		ath_err(common, "Unknown power mode %u\n", mode);
2120 		return false;
2121 	}
2122 	ah->power_mode = mode;
2123 
2124 	/*
2125 	 * XXX: If this warning never comes up after a while then
2126 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2127 	 * ath9k_hw_setpower() return type void.
2128 	 */
2129 
2130 	if (!(ah->ah_flags & AH_UNPLUGGED))
2131 		ATH_DBG_WARN_ON_ONCE(!status);
2132 
2133 	return status;
2134 }
2135 EXPORT_SYMBOL(ath9k_hw_setpower);
2136 
2137 /*******************/
2138 /* Beacon Handling */
2139 /*******************/
2140 
2141 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2142 {
2143 	int flags = 0;
2144 
2145 	ENABLE_REGWRITE_BUFFER(ah);
2146 
2147 	switch (ah->opmode) {
2148 	case NL80211_IFTYPE_ADHOC:
2149 		REG_SET_BIT(ah, AR_TXCFG,
2150 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2151 	case NL80211_IFTYPE_MESH_POINT:
2152 	case NL80211_IFTYPE_AP:
2153 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2154 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2155 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2156 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2157 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2158 		flags |=
2159 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2160 		break;
2161 	default:
2162 		ath_dbg(ath9k_hw_common(ah), BEACON,
2163 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2164 		return;
2165 		break;
2166 	}
2167 
2168 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2169 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2170 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2171 
2172 	REGWRITE_BUFFER_FLUSH(ah);
2173 
2174 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2175 }
2176 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2177 
2178 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2179 				    const struct ath9k_beacon_state *bs)
2180 {
2181 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2182 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2183 	struct ath_common *common = ath9k_hw_common(ah);
2184 
2185 	ENABLE_REGWRITE_BUFFER(ah);
2186 
2187 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2188 	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2189 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2190 
2191 	REGWRITE_BUFFER_FLUSH(ah);
2192 
2193 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2194 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2195 
2196 	beaconintval = bs->bs_intval;
2197 
2198 	if (bs->bs_sleepduration > beaconintval)
2199 		beaconintval = bs->bs_sleepduration;
2200 
2201 	dtimperiod = bs->bs_dtimperiod;
2202 	if (bs->bs_sleepduration > dtimperiod)
2203 		dtimperiod = bs->bs_sleepduration;
2204 
2205 	if (beaconintval == dtimperiod)
2206 		nextTbtt = bs->bs_nextdtim;
2207 	else
2208 		nextTbtt = bs->bs_nexttbtt;
2209 
2210 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2211 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2212 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2213 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2214 
2215 	ENABLE_REGWRITE_BUFFER(ah);
2216 
2217 	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2218 	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2219 
2220 	REG_WRITE(ah, AR_SLEEP1,
2221 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2222 		  | AR_SLEEP1_ASSUME_DTIM);
2223 
2224 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2225 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2226 	else
2227 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2228 
2229 	REG_WRITE(ah, AR_SLEEP2,
2230 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2231 
2232 	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2233 	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2234 
2235 	REGWRITE_BUFFER_FLUSH(ah);
2236 
2237 	REG_SET_BIT(ah, AR_TIMER_MODE,
2238 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2239 		    AR_DTIM_TIMER_EN);
2240 
2241 	/* TSF Out of Range Threshold */
2242 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2243 }
2244 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2245 
2246 /*******************/
2247 /* HW Capabilities */
2248 /*******************/
2249 
2250 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2251 {
2252 	eeprom_chainmask &= chip_chainmask;
2253 	if (eeprom_chainmask)
2254 		return eeprom_chainmask;
2255 	else
2256 		return chip_chainmask;
2257 }
2258 
2259 /**
2260  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2261  * @ah: the atheros hardware data structure
2262  *
2263  * We enable DFS support upstream on chipsets which have passed a series
2264  * of tests. The testing requirements are going to be documented. Desired
2265  * test requirements are documented at:
2266  *
2267  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2268  *
2269  * Once a new chipset gets properly tested an individual commit can be used
2270  * to document the testing for DFS for that chipset.
2271  */
2272 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2273 {
2274 
2275 	switch (ah->hw_version.macVersion) {
2276 	/* for temporary testing DFS with 9280 */
2277 	case AR_SREV_VERSION_9280:
2278 	/* AR9580 will likely be our first target to get testing on */
2279 	case AR_SREV_VERSION_9580:
2280 		return true;
2281 	default:
2282 		return false;
2283 	}
2284 }
2285 
2286 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2287 {
2288 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2289 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2290 	struct ath_common *common = ath9k_hw_common(ah);
2291 	unsigned int chip_chainmask;
2292 
2293 	u16 eeval;
2294 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2295 
2296 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2297 	regulatory->current_rd = eeval;
2298 
2299 	if (ah->opmode != NL80211_IFTYPE_AP &&
2300 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2301 		if (regulatory->current_rd == 0x64 ||
2302 		    regulatory->current_rd == 0x65)
2303 			regulatory->current_rd += 5;
2304 		else if (regulatory->current_rd == 0x41)
2305 			regulatory->current_rd = 0x43;
2306 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2307 			regulatory->current_rd);
2308 	}
2309 
2310 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2311 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2312 		ath_err(common,
2313 			"no band has been marked as supported in EEPROM\n");
2314 		return -EINVAL;
2315 	}
2316 
2317 	if (eeval & AR5416_OPFLAGS_11A)
2318 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2319 
2320 	if (eeval & AR5416_OPFLAGS_11G)
2321 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2322 
2323 	if (AR_SREV_9485(ah) ||
2324 	    AR_SREV_9285(ah) ||
2325 	    AR_SREV_9330(ah) ||
2326 	    AR_SREV_9565(ah))
2327 		chip_chainmask = 1;
2328 	else if (AR_SREV_9462(ah))
2329 		chip_chainmask = 3;
2330 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2331 		chip_chainmask = 7;
2332 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2333 		chip_chainmask = 3;
2334 	else
2335 		chip_chainmask = 7;
2336 
2337 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2338 	/*
2339 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2340 	 * the EEPROM.
2341 	 */
2342 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2343 	    !(eeval & AR5416_OPFLAGS_11A) &&
2344 	    !(AR_SREV_9271(ah)))
2345 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2346 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2347 	else if (AR_SREV_9100(ah))
2348 		pCap->rx_chainmask = 0x7;
2349 	else
2350 		/* Use rx_chainmask from EEPROM. */
2351 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2352 
2353 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2354 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2355 	ah->txchainmask = pCap->tx_chainmask;
2356 	ah->rxchainmask = pCap->rx_chainmask;
2357 
2358 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2359 
2360 	/* enable key search for every frame in an aggregate */
2361 	if (AR_SREV_9300_20_OR_LATER(ah))
2362 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2363 
2364 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2365 
2366 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2367 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2368 	else
2369 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2370 
2371 	if (AR_SREV_9271(ah))
2372 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2373 	else if (AR_DEVID_7010(ah))
2374 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2375 	else if (AR_SREV_9300_20_OR_LATER(ah))
2376 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2377 	else if (AR_SREV_9287_11_OR_LATER(ah))
2378 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2379 	else if (AR_SREV_9285_12_OR_LATER(ah))
2380 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2381 	else if (AR_SREV_9280_20_OR_LATER(ah))
2382 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2383 	else
2384 		pCap->num_gpio_pins = AR_NUM_GPIO;
2385 
2386 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2387 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2388 	else
2389 		pCap->rts_aggr_limit = (8 * 1024);
2390 
2391 #ifdef CONFIG_ATH9K_RFKILL
2392 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2393 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2394 		ah->rfkill_gpio =
2395 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2396 		ah->rfkill_polarity =
2397 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2398 
2399 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2400 	}
2401 #endif
2402 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2403 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2404 	else
2405 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2406 
2407 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2408 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2409 	else
2410 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2411 
2412 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2413 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2414 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2415 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2416 
2417 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2418 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2419 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2420 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2421 		pCap->txs_len = sizeof(struct ar9003_txs);
2422 	} else {
2423 		pCap->tx_desc_len = sizeof(struct ath_desc);
2424 		if (AR_SREV_9280_20(ah))
2425 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2426 	}
2427 
2428 	if (AR_SREV_9300_20_OR_LATER(ah))
2429 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2430 
2431 	if (AR_SREV_9300_20_OR_LATER(ah))
2432 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2433 
2434 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2435 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2436 
2437 	if (AR_SREV_9285(ah)) {
2438 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2439 			ant_div_ctl1 =
2440 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2441 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2442 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2443 				ath_info(common, "Enable LNA combining\n");
2444 			}
2445 		}
2446 	}
2447 
2448 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2449 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2450 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2451 	}
2452 
2453 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2454 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2455 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2456 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2457 			ath_info(common, "Enable LNA combining\n");
2458 		}
2459 	}
2460 
2461 	if (ath9k_hw_dfs_tested(ah))
2462 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2463 
2464 	tx_chainmask = pCap->tx_chainmask;
2465 	rx_chainmask = pCap->rx_chainmask;
2466 	while (tx_chainmask || rx_chainmask) {
2467 		if (tx_chainmask & BIT(0))
2468 			pCap->max_txchains++;
2469 		if (rx_chainmask & BIT(0))
2470 			pCap->max_rxchains++;
2471 
2472 		tx_chainmask >>= 1;
2473 		rx_chainmask >>= 1;
2474 	}
2475 
2476 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2477 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2478 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2479 
2480 		if (AR_SREV_9462_20_OR_LATER(ah))
2481 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2482 	}
2483 
2484 	if (AR_SREV_9462(ah))
2485 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2486 
2487 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2488 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2489 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2490 
2491 	return 0;
2492 }
2493 
2494 /****************************/
2495 /* GPIO / RFKILL / Antennae */
2496 /****************************/
2497 
2498 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2499 					 u32 gpio, u32 type)
2500 {
2501 	int addr;
2502 	u32 gpio_shift, tmp;
2503 
2504 	if (gpio > 11)
2505 		addr = AR_GPIO_OUTPUT_MUX3;
2506 	else if (gpio > 5)
2507 		addr = AR_GPIO_OUTPUT_MUX2;
2508 	else
2509 		addr = AR_GPIO_OUTPUT_MUX1;
2510 
2511 	gpio_shift = (gpio % 6) * 5;
2512 
2513 	if (AR_SREV_9280_20_OR_LATER(ah)
2514 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2515 		REG_RMW(ah, addr, (type << gpio_shift),
2516 			(0x1f << gpio_shift));
2517 	} else {
2518 		tmp = REG_READ(ah, addr);
2519 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2520 		tmp &= ~(0x1f << gpio_shift);
2521 		tmp |= (type << gpio_shift);
2522 		REG_WRITE(ah, addr, tmp);
2523 	}
2524 }
2525 
2526 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2527 {
2528 	u32 gpio_shift;
2529 
2530 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2531 
2532 	if (AR_DEVID_7010(ah)) {
2533 		gpio_shift = gpio;
2534 		REG_RMW(ah, AR7010_GPIO_OE,
2535 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2536 			(AR7010_GPIO_OE_MASK << gpio_shift));
2537 		return;
2538 	}
2539 
2540 	gpio_shift = gpio << 1;
2541 	REG_RMW(ah,
2542 		AR_GPIO_OE_OUT,
2543 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2544 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2545 }
2546 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2547 
2548 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2549 {
2550 #define MS_REG_READ(x, y) \
2551 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2552 
2553 	if (gpio >= ah->caps.num_gpio_pins)
2554 		return 0xffffffff;
2555 
2556 	if (AR_DEVID_7010(ah)) {
2557 		u32 val;
2558 		val = REG_READ(ah, AR7010_GPIO_IN);
2559 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2560 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2561 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2562 			AR_GPIO_BIT(gpio)) != 0;
2563 	else if (AR_SREV_9271(ah))
2564 		return MS_REG_READ(AR9271, gpio) != 0;
2565 	else if (AR_SREV_9287_11_OR_LATER(ah))
2566 		return MS_REG_READ(AR9287, gpio) != 0;
2567 	else if (AR_SREV_9285_12_OR_LATER(ah))
2568 		return MS_REG_READ(AR9285, gpio) != 0;
2569 	else if (AR_SREV_9280_20_OR_LATER(ah))
2570 		return MS_REG_READ(AR928X, gpio) != 0;
2571 	else
2572 		return MS_REG_READ(AR, gpio) != 0;
2573 }
2574 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2575 
2576 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2577 			 u32 ah_signal_type)
2578 {
2579 	u32 gpio_shift;
2580 
2581 	if (AR_DEVID_7010(ah)) {
2582 		gpio_shift = gpio;
2583 		REG_RMW(ah, AR7010_GPIO_OE,
2584 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2585 			(AR7010_GPIO_OE_MASK << gpio_shift));
2586 		return;
2587 	}
2588 
2589 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2590 	gpio_shift = 2 * gpio;
2591 	REG_RMW(ah,
2592 		AR_GPIO_OE_OUT,
2593 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2594 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2595 }
2596 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2597 
2598 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2599 {
2600 	if (AR_DEVID_7010(ah)) {
2601 		val = val ? 0 : 1;
2602 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2603 			AR_GPIO_BIT(gpio));
2604 		return;
2605 	}
2606 
2607 	if (AR_SREV_9271(ah))
2608 		val = ~val;
2609 
2610 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2611 		AR_GPIO_BIT(gpio));
2612 }
2613 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2614 
2615 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2616 {
2617 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2618 }
2619 EXPORT_SYMBOL(ath9k_hw_setantenna);
2620 
2621 /*********************/
2622 /* General Operation */
2623 /*********************/
2624 
2625 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2626 {
2627 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2628 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2629 
2630 	if (phybits & AR_PHY_ERR_RADAR)
2631 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2632 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2633 		bits |= ATH9K_RX_FILTER_PHYERR;
2634 
2635 	return bits;
2636 }
2637 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2638 
2639 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2640 {
2641 	u32 phybits;
2642 
2643 	ENABLE_REGWRITE_BUFFER(ah);
2644 
2645 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2646 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2647 
2648 	REG_WRITE(ah, AR_RX_FILTER, bits);
2649 
2650 	phybits = 0;
2651 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2652 		phybits |= AR_PHY_ERR_RADAR;
2653 	if (bits & ATH9K_RX_FILTER_PHYERR)
2654 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2655 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2656 
2657 	if (phybits)
2658 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2659 	else
2660 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2661 
2662 	REGWRITE_BUFFER_FLUSH(ah);
2663 }
2664 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2665 
2666 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2667 {
2668 	if (ath9k_hw_mci_is_enabled(ah))
2669 		ar9003_mci_bt_gain_ctrl(ah);
2670 
2671 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2672 		return false;
2673 
2674 	ath9k_hw_init_pll(ah, NULL);
2675 	ah->htc_reset_init = true;
2676 	return true;
2677 }
2678 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2679 
2680 bool ath9k_hw_disable(struct ath_hw *ah)
2681 {
2682 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2683 		return false;
2684 
2685 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2686 		return false;
2687 
2688 	ath9k_hw_init_pll(ah, NULL);
2689 	return true;
2690 }
2691 EXPORT_SYMBOL(ath9k_hw_disable);
2692 
2693 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2694 {
2695 	enum eeprom_param gain_param;
2696 
2697 	if (IS_CHAN_2GHZ(chan))
2698 		gain_param = EEP_ANTENNA_GAIN_2G;
2699 	else
2700 		gain_param = EEP_ANTENNA_GAIN_5G;
2701 
2702 	return ah->eep_ops->get_eeprom(ah, gain_param);
2703 }
2704 
2705 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2706 			    bool test)
2707 {
2708 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2709 	struct ieee80211_channel *channel;
2710 	int chan_pwr, new_pwr, max_gain;
2711 	int ant_gain, ant_reduction = 0;
2712 
2713 	if (!chan)
2714 		return;
2715 
2716 	channel = chan->chan;
2717 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2718 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2719 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2720 
2721 	ant_gain = get_antenna_gain(ah, chan);
2722 	if (ant_gain > max_gain)
2723 		ant_reduction = ant_gain - max_gain;
2724 
2725 	ah->eep_ops->set_txpower(ah, chan,
2726 				 ath9k_regd_get_ctl(reg, chan),
2727 				 ant_reduction, new_pwr, test);
2728 }
2729 
2730 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2731 {
2732 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2733 	struct ath9k_channel *chan = ah->curchan;
2734 	struct ieee80211_channel *channel = chan->chan;
2735 
2736 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2737 	if (test)
2738 		channel->max_power = MAX_RATE_POWER / 2;
2739 
2740 	ath9k_hw_apply_txpower(ah, chan, test);
2741 
2742 	if (test)
2743 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2744 }
2745 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2746 
2747 void ath9k_hw_setopmode(struct ath_hw *ah)
2748 {
2749 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2750 }
2751 EXPORT_SYMBOL(ath9k_hw_setopmode);
2752 
2753 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2754 {
2755 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2756 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2757 }
2758 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2759 
2760 void ath9k_hw_write_associd(struct ath_hw *ah)
2761 {
2762 	struct ath_common *common = ath9k_hw_common(ah);
2763 
2764 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2765 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2766 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2767 }
2768 EXPORT_SYMBOL(ath9k_hw_write_associd);
2769 
2770 #define ATH9K_MAX_TSF_READ 10
2771 
2772 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2773 {
2774 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2775 	int i;
2776 
2777 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2778 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2779 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2780 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2781 		if (tsf_upper2 == tsf_upper1)
2782 			break;
2783 		tsf_upper1 = tsf_upper2;
2784 	}
2785 
2786 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2787 
2788 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2789 }
2790 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2791 
2792 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2793 {
2794 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2795 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2796 }
2797 EXPORT_SYMBOL(ath9k_hw_settsf64);
2798 
2799 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2800 {
2801 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2802 			   AH_TSF_WRITE_TIMEOUT))
2803 		ath_dbg(ath9k_hw_common(ah), RESET,
2804 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2805 
2806 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2807 }
2808 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2809 
2810 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2811 {
2812 	if (set)
2813 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2814 	else
2815 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2816 }
2817 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2818 
2819 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2820 {
2821 	u32 macmode;
2822 
2823 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2824 		macmode = AR_2040_JOINED_RX_CLEAR;
2825 	else
2826 		macmode = 0;
2827 
2828 	REG_WRITE(ah, AR_2040_MODE, macmode);
2829 }
2830 
2831 /* HW Generic timers configuration */
2832 
2833 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2834 {
2835 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2836 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2837 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2838 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2839 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2840 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2841 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2842 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2843 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2844 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2845 				AR_NDP2_TIMER_MODE, 0x0002},
2846 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2847 				AR_NDP2_TIMER_MODE, 0x0004},
2848 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2849 				AR_NDP2_TIMER_MODE, 0x0008},
2850 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2851 				AR_NDP2_TIMER_MODE, 0x0010},
2852 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2853 				AR_NDP2_TIMER_MODE, 0x0020},
2854 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2855 				AR_NDP2_TIMER_MODE, 0x0040},
2856 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2857 				AR_NDP2_TIMER_MODE, 0x0080}
2858 };
2859 
2860 /* HW generic timer primitives */
2861 
2862 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2863 {
2864 	return REG_READ(ah, AR_TSF_L32);
2865 }
2866 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2867 
2868 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2869 					  void (*trigger)(void *),
2870 					  void (*overflow)(void *),
2871 					  void *arg,
2872 					  u8 timer_index)
2873 {
2874 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2875 	struct ath_gen_timer *timer;
2876 
2877 	if ((timer_index < AR_FIRST_NDP_TIMER) ||
2878 		(timer_index >= ATH_MAX_GEN_TIMER))
2879 		return NULL;
2880 
2881 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2882 	if (timer == NULL)
2883 		return NULL;
2884 
2885 	/* allocate a hardware generic timer slot */
2886 	timer_table->timers[timer_index] = timer;
2887 	timer->index = timer_index;
2888 	timer->trigger = trigger;
2889 	timer->overflow = overflow;
2890 	timer->arg = arg;
2891 
2892 	return timer;
2893 }
2894 EXPORT_SYMBOL(ath_gen_timer_alloc);
2895 
2896 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2897 			      struct ath_gen_timer *timer,
2898 			      u32 timer_next,
2899 			      u32 timer_period)
2900 {
2901 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2902 	u32 mask = 0;
2903 
2904 	timer_table->timer_mask |= BIT(timer->index);
2905 
2906 	/*
2907 	 * Program generic timer registers
2908 	 */
2909 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2910 		 timer_next);
2911 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2912 		  timer_period);
2913 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2914 		    gen_tmr_configuration[timer->index].mode_mask);
2915 
2916 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2917 		/*
2918 		 * Starting from AR9462, each generic timer can select which tsf
2919 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2920 		 * 8 - 15  use tsf2.
2921 		 */
2922 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2923 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2924 				       (1 << timer->index));
2925 		else
2926 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2927 				       (1 << timer->index));
2928 	}
2929 
2930 	if (timer->trigger)
2931 		mask |= SM(AR_GENTMR_BIT(timer->index),
2932 			   AR_IMR_S5_GENTIMER_TRIG);
2933 	if (timer->overflow)
2934 		mask |= SM(AR_GENTMR_BIT(timer->index),
2935 			   AR_IMR_S5_GENTIMER_THRESH);
2936 
2937 	REG_SET_BIT(ah, AR_IMR_S5, mask);
2938 
2939 	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
2940 		ah->imask |= ATH9K_INT_GENTIMER;
2941 		ath9k_hw_set_interrupts(ah);
2942 	}
2943 }
2944 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2945 
2946 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2947 {
2948 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2949 
2950 	/* Clear generic timer enable bits. */
2951 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2952 			gen_tmr_configuration[timer->index].mode_mask);
2953 
2954 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2955 		/*
2956 		 * Need to switch back to TSF if it was using TSF2.
2957 		 */
2958 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
2959 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2960 				    (1 << timer->index));
2961 		}
2962 	}
2963 
2964 	/* Disable both trigger and thresh interrupt masks */
2965 	REG_CLR_BIT(ah, AR_IMR_S5,
2966 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2967 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2968 
2969 	timer_table->timer_mask &= ~BIT(timer->index);
2970 
2971 	if (timer_table->timer_mask == 0) {
2972 		ah->imask &= ~ATH9K_INT_GENTIMER;
2973 		ath9k_hw_set_interrupts(ah);
2974 	}
2975 }
2976 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2977 
2978 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2979 {
2980 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2981 
2982 	/* free the hardware generic timer slot */
2983 	timer_table->timers[timer->index] = NULL;
2984 	kfree(timer);
2985 }
2986 EXPORT_SYMBOL(ath_gen_timer_free);
2987 
2988 /*
2989  * Generic Timer Interrupts handling
2990  */
2991 void ath_gen_timer_isr(struct ath_hw *ah)
2992 {
2993 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2994 	struct ath_gen_timer *timer;
2995 	unsigned long trigger_mask, thresh_mask;
2996 	unsigned int index;
2997 
2998 	/* get hardware generic timer interrupt status */
2999 	trigger_mask = ah->intr_gen_timer_trigger;
3000 	thresh_mask = ah->intr_gen_timer_thresh;
3001 	trigger_mask &= timer_table->timer_mask;
3002 	thresh_mask &= timer_table->timer_mask;
3003 
3004 	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3005 		timer = timer_table->timers[index];
3006 		if (!timer)
3007 		    continue;
3008 		if (!timer->overflow)
3009 		    continue;
3010 
3011 		trigger_mask &= ~BIT(index);
3012 		timer->overflow(timer->arg);
3013 	}
3014 
3015 	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3016 		timer = timer_table->timers[index];
3017 		if (!timer)
3018 		    continue;
3019 		if (!timer->trigger)
3020 		    continue;
3021 		timer->trigger(timer->arg);
3022 	}
3023 }
3024 EXPORT_SYMBOL(ath_gen_timer_isr);
3025 
3026 /********/
3027 /* HTC  */
3028 /********/
3029 
3030 static struct {
3031 	u32 version;
3032 	const char * name;
3033 } ath_mac_bb_names[] = {
3034 	/* Devices with external radios */
3035 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3036 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3037 	{ AR_SREV_VERSION_9100,		"9100" },
3038 	{ AR_SREV_VERSION_9160,		"9160" },
3039 	/* Single-chip solutions */
3040 	{ AR_SREV_VERSION_9280,		"9280" },
3041 	{ AR_SREV_VERSION_9285,		"9285" },
3042 	{ AR_SREV_VERSION_9287,         "9287" },
3043 	{ AR_SREV_VERSION_9271,         "9271" },
3044 	{ AR_SREV_VERSION_9300,         "9300" },
3045 	{ AR_SREV_VERSION_9330,         "9330" },
3046 	{ AR_SREV_VERSION_9340,		"9340" },
3047 	{ AR_SREV_VERSION_9485,         "9485" },
3048 	{ AR_SREV_VERSION_9462,         "9462" },
3049 	{ AR_SREV_VERSION_9550,         "9550" },
3050 	{ AR_SREV_VERSION_9565,         "9565" },
3051 	{ AR_SREV_VERSION_9531,         "9531" },
3052 };
3053 
3054 /* For devices with external radios */
3055 static struct {
3056 	u16 version;
3057 	const char * name;
3058 } ath_rf_names[] = {
3059 	{ 0,				"5133" },
3060 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3061 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3062 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3063 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3064 };
3065 
3066 /*
3067  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3068  */
3069 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3070 {
3071 	int i;
3072 
3073 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3074 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3075 			return ath_mac_bb_names[i].name;
3076 		}
3077 	}
3078 
3079 	return "????";
3080 }
3081 
3082 /*
3083  * Return the RF name. "????" is returned if the RF is unknown.
3084  * Used for devices with external radios.
3085  */
3086 static const char *ath9k_hw_rf_name(u16 rf_version)
3087 {
3088 	int i;
3089 
3090 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3091 		if (ath_rf_names[i].version == rf_version) {
3092 			return ath_rf_names[i].name;
3093 		}
3094 	}
3095 
3096 	return "????";
3097 }
3098 
3099 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3100 {
3101 	int used;
3102 
3103 	/* chipsets >= AR9280 are single-chip */
3104 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3105 		used = scnprintf(hw_name, len,
3106 				 "Atheros AR%s Rev:%x",
3107 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3108 				 ah->hw_version.macRev);
3109 	}
3110 	else {
3111 		used = scnprintf(hw_name, len,
3112 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3113 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3114 				 ah->hw_version.macRev,
3115 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3116 						  & AR_RADIO_SREV_MAJOR)),
3117 				 ah->hw_version.phyRev);
3118 	}
3119 
3120 	hw_name[used] = '\0';
3121 }
3122 EXPORT_SYMBOL(ath9k_hw_name);
3123