xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision cfbb9be8)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <linux/gpio.h>
24 #include <asm/unaligned.h>
25 
26 #include "hw.h"
27 #include "hw-ops.h"
28 #include "ar9003_mac.h"
29 #include "ar9003_mci.h"
30 #include "ar9003_phy.h"
31 #include "ath9k.h"
32 
33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
34 
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
39 
40 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
41 {
42 	struct ath_common *common = ath9k_hw_common(ah);
43 	struct ath9k_channel *chan = ah->curchan;
44 	unsigned int clockrate;
45 
46 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
48 		clockrate = 117;
49 	else if (!chan) /* should really check for CCK instead */
50 		clockrate = ATH9K_CLOCK_RATE_CCK;
51 	else if (IS_CHAN_2GHZ(chan))
52 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
53 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
54 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
55 	else
56 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
57 
58 	if (chan) {
59 		if (IS_CHAN_HT40(chan))
60 			clockrate *= 2;
61 		if (IS_CHAN_HALF_RATE(chan))
62 			clockrate /= 2;
63 		if (IS_CHAN_QUARTER_RATE(chan))
64 			clockrate /= 4;
65 	}
66 
67 	common->clockrate = clockrate;
68 }
69 
70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
71 {
72 	struct ath_common *common = ath9k_hw_common(ah);
73 
74 	return usecs * common->clockrate;
75 }
76 
77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
78 {
79 	int i;
80 
81 	BUG_ON(timeout < AH_TIME_QUANTUM);
82 
83 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
84 		if ((REG_READ(ah, reg) & mask) == val)
85 			return true;
86 
87 		udelay(AH_TIME_QUANTUM);
88 	}
89 
90 	ath_dbg(ath9k_hw_common(ah), ANY,
91 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 		timeout, reg, REG_READ(ah, reg), mask, val);
93 
94 	return false;
95 }
96 EXPORT_SYMBOL(ath9k_hw_wait);
97 
98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
99 			  int hw_delay)
100 {
101 	hw_delay /= 10;
102 
103 	if (IS_CHAN_HALF_RATE(chan))
104 		hw_delay *= 2;
105 	else if (IS_CHAN_QUARTER_RATE(chan))
106 		hw_delay *= 4;
107 
108 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
109 }
110 
111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
112 			  int column, unsigned int *writecnt)
113 {
114 	int r;
115 
116 	ENABLE_REGWRITE_BUFFER(ah);
117 	for (r = 0; r < array->ia_rows; r++) {
118 		REG_WRITE(ah, INI_RA(array, r, 0),
119 			  INI_RA(array, r, column));
120 		DO_DELAY(*writecnt);
121 	}
122 	REGWRITE_BUFFER_FLUSH(ah);
123 }
124 
125 void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
126 {
127 	u32 *tmp_reg_list, *tmp_data;
128 	int i;
129 
130 	tmp_reg_list = kmalloc(size * sizeof(u32), GFP_KERNEL);
131 	if (!tmp_reg_list) {
132 		dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
133 		return;
134 	}
135 
136 	tmp_data = kmalloc(size * sizeof(u32), GFP_KERNEL);
137 	if (!tmp_data) {
138 		dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
139 		goto error_tmp_data;
140 	}
141 
142 	for (i = 0; i < size; i++)
143 		tmp_reg_list[i] = array[i][0];
144 
145 	REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
146 
147 	for (i = 0; i < size; i++)
148 		array[i][1] = tmp_data[i];
149 
150 	kfree(tmp_data);
151 error_tmp_data:
152 	kfree(tmp_reg_list);
153 }
154 
155 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
156 {
157 	u32 retval;
158 	int i;
159 
160 	for (i = 0, retval = 0; i < n; i++) {
161 		retval = (retval << 1) | (val & 1);
162 		val >>= 1;
163 	}
164 	return retval;
165 }
166 
167 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
168 			   u8 phy, int kbps,
169 			   u32 frameLen, u16 rateix,
170 			   bool shortPreamble)
171 {
172 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
173 
174 	if (kbps == 0)
175 		return 0;
176 
177 	switch (phy) {
178 	case WLAN_RC_PHY_CCK:
179 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
180 		if (shortPreamble)
181 			phyTime >>= 1;
182 		numBits = frameLen << 3;
183 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
184 		break;
185 	case WLAN_RC_PHY_OFDM:
186 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
187 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
188 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
189 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
190 			txTime = OFDM_SIFS_TIME_QUARTER
191 				+ OFDM_PREAMBLE_TIME_QUARTER
192 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
193 		} else if (ah->curchan &&
194 			   IS_CHAN_HALF_RATE(ah->curchan)) {
195 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
196 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
197 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
198 			txTime = OFDM_SIFS_TIME_HALF +
199 				OFDM_PREAMBLE_TIME_HALF
200 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
201 		} else {
202 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
203 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
204 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
205 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
206 				+ (numSymbols * OFDM_SYMBOL_TIME);
207 		}
208 		break;
209 	default:
210 		ath_err(ath9k_hw_common(ah),
211 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
212 		txTime = 0;
213 		break;
214 	}
215 
216 	return txTime;
217 }
218 EXPORT_SYMBOL(ath9k_hw_computetxtime);
219 
220 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
221 				  struct ath9k_channel *chan,
222 				  struct chan_centers *centers)
223 {
224 	int8_t extoff;
225 
226 	if (!IS_CHAN_HT40(chan)) {
227 		centers->ctl_center = centers->ext_center =
228 			centers->synth_center = chan->channel;
229 		return;
230 	}
231 
232 	if (IS_CHAN_HT40PLUS(chan)) {
233 		centers->synth_center =
234 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
235 		extoff = 1;
236 	} else {
237 		centers->synth_center =
238 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
239 		extoff = -1;
240 	}
241 
242 	centers->ctl_center =
243 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
244 	/* 25 MHz spacing is supported by hw but not on upper layers */
245 	centers->ext_center =
246 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
247 }
248 
249 /******************/
250 /* Chip Revisions */
251 /******************/
252 
253 static void ath9k_hw_read_revisions(struct ath_hw *ah)
254 {
255 	u32 val;
256 
257 	if (ah->get_mac_revision)
258 		ah->hw_version.macRev = ah->get_mac_revision();
259 
260 	switch (ah->hw_version.devid) {
261 	case AR5416_AR9100_DEVID:
262 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
263 		break;
264 	case AR9300_DEVID_AR9330:
265 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
266 		if (!ah->get_mac_revision) {
267 			val = REG_READ(ah, AR_SREV);
268 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
269 		}
270 		return;
271 	case AR9300_DEVID_AR9340:
272 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
273 		return;
274 	case AR9300_DEVID_QCA955X:
275 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
276 		return;
277 	case AR9300_DEVID_AR953X:
278 		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
279 		return;
280 	case AR9300_DEVID_QCA956X:
281 		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
282 		return;
283 	}
284 
285 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
286 
287 	if (val == 0xFF) {
288 		val = REG_READ(ah, AR_SREV);
289 		ah->hw_version.macVersion =
290 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
291 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
292 
293 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
294 			ah->is_pciexpress = true;
295 		else
296 			ah->is_pciexpress = (val &
297 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
298 	} else {
299 		if (!AR_SREV_9100(ah))
300 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
301 
302 		ah->hw_version.macRev = val & AR_SREV_REVISION;
303 
304 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
305 			ah->is_pciexpress = true;
306 	}
307 }
308 
309 /************************************/
310 /* HW Attach, Detach, Init Routines */
311 /************************************/
312 
313 static void ath9k_hw_disablepcie(struct ath_hw *ah)
314 {
315 	if (!AR_SREV_5416(ah))
316 		return;
317 
318 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
319 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
320 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
321 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
322 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
323 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
324 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
325 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
326 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
327 
328 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
329 }
330 
331 /* This should work for all families including legacy */
332 static bool ath9k_hw_chip_test(struct ath_hw *ah)
333 {
334 	struct ath_common *common = ath9k_hw_common(ah);
335 	u32 regAddr[2] = { AR_STA_ID0 };
336 	u32 regHold[2];
337 	static const u32 patternData[4] = {
338 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
339 	};
340 	int i, j, loop_max;
341 
342 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
343 		loop_max = 2;
344 		regAddr[1] = AR_PHY_BASE + (8 << 2);
345 	} else
346 		loop_max = 1;
347 
348 	for (i = 0; i < loop_max; i++) {
349 		u32 addr = regAddr[i];
350 		u32 wrData, rdData;
351 
352 		regHold[i] = REG_READ(ah, addr);
353 		for (j = 0; j < 0x100; j++) {
354 			wrData = (j << 16) | j;
355 			REG_WRITE(ah, addr, wrData);
356 			rdData = REG_READ(ah, addr);
357 			if (rdData != wrData) {
358 				ath_err(common,
359 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
360 					addr, wrData, rdData);
361 				return false;
362 			}
363 		}
364 		for (j = 0; j < 4; j++) {
365 			wrData = patternData[j];
366 			REG_WRITE(ah, addr, wrData);
367 			rdData = REG_READ(ah, addr);
368 			if (wrData != rdData) {
369 				ath_err(common,
370 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
371 					addr, wrData, rdData);
372 				return false;
373 			}
374 		}
375 		REG_WRITE(ah, regAddr[i], regHold[i]);
376 	}
377 	udelay(100);
378 
379 	return true;
380 }
381 
382 static void ath9k_hw_init_config(struct ath_hw *ah)
383 {
384 	struct ath_common *common = ath9k_hw_common(ah);
385 
386 	ah->config.dma_beacon_response_time = 1;
387 	ah->config.sw_beacon_response_time = 6;
388 	ah->config.cwm_ignore_extcca = false;
389 	ah->config.analog_shiftreg = 1;
390 
391 	ah->config.rx_intr_mitigation = true;
392 
393 	if (AR_SREV_9300_20_OR_LATER(ah)) {
394 		ah->config.rimt_last = 500;
395 		ah->config.rimt_first = 2000;
396 	} else {
397 		ah->config.rimt_last = 250;
398 		ah->config.rimt_first = 700;
399 	}
400 
401 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
402 		ah->config.pll_pwrsave = 7;
403 
404 	/*
405 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
406 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
407 	 * This means we use it for all AR5416 devices, and the few
408 	 * minor PCI AR9280 devices out there.
409 	 *
410 	 * Serialization is required because these devices do not handle
411 	 * well the case of two concurrent reads/writes due to the latency
412 	 * involved. During one read/write another read/write can be issued
413 	 * on another CPU while the previous read/write may still be working
414 	 * on our hardware, if we hit this case the hardware poops in a loop.
415 	 * We prevent this by serializing reads and writes.
416 	 *
417 	 * This issue is not present on PCI-Express devices or pre-AR5416
418 	 * devices (legacy, 802.11abg).
419 	 */
420 	if (num_possible_cpus() > 1)
421 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
422 
423 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
424 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
425 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
426 		     !ah->is_pciexpress)) {
427 			ah->config.serialize_regmode = SER_REG_MODE_ON;
428 		} else {
429 			ah->config.serialize_regmode = SER_REG_MODE_OFF;
430 		}
431 	}
432 
433 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
434 		ah->config.serialize_regmode);
435 
436 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
437 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
438 	else
439 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
440 }
441 
442 static void ath9k_hw_init_defaults(struct ath_hw *ah)
443 {
444 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
445 
446 	regulatory->country_code = CTRY_DEFAULT;
447 	regulatory->power_limit = MAX_RATE_POWER;
448 
449 	ah->hw_version.magic = AR5416_MAGIC;
450 	ah->hw_version.subvendorid = 0;
451 
452 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
453 			       AR_STA_ID1_MCAST_KSRCH;
454 	if (AR_SREV_9100(ah))
455 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
456 
457 	ah->slottime = 9;
458 	ah->globaltxtimeout = (u32) -1;
459 	ah->power_mode = ATH9K_PM_UNDEFINED;
460 	ah->htc_reset_init = true;
461 
462 	ah->tpc_enabled = false;
463 
464 	ah->ani_function = ATH9K_ANI_ALL;
465 	if (!AR_SREV_9300_20_OR_LATER(ah))
466 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
467 
468 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
469 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
470 	else
471 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
472 }
473 
474 static void ath9k_hw_init_macaddr(struct ath_hw *ah)
475 {
476 	struct ath_common *common = ath9k_hw_common(ah);
477 	int i;
478 	u16 eeval;
479 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
480 
481 	/* MAC address may already be loaded via ath9k_platform_data */
482 	if (is_valid_ether_addr(common->macaddr))
483 		return;
484 
485 	for (i = 0; i < 3; i++) {
486 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
487 		common->macaddr[2 * i] = eeval >> 8;
488 		common->macaddr[2 * i + 1] = eeval & 0xff;
489 	}
490 
491 	if (is_valid_ether_addr(common->macaddr))
492 		return;
493 
494 	ath_err(common, "eeprom contains invalid mac address: %pM\n",
495 		common->macaddr);
496 
497 	random_ether_addr(common->macaddr);
498 	ath_err(common, "random mac address will be used: %pM\n",
499 		common->macaddr);
500 
501 	return;
502 }
503 
504 static int ath9k_hw_post_init(struct ath_hw *ah)
505 {
506 	struct ath_common *common = ath9k_hw_common(ah);
507 	int ecode;
508 
509 	if (common->bus_ops->ath_bus_type != ATH_USB) {
510 		if (!ath9k_hw_chip_test(ah))
511 			return -ENODEV;
512 	}
513 
514 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
515 		ecode = ar9002_hw_rf_claim(ah);
516 		if (ecode != 0)
517 			return ecode;
518 	}
519 
520 	ecode = ath9k_hw_eeprom_init(ah);
521 	if (ecode != 0)
522 		return ecode;
523 
524 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
525 		ah->eep_ops->get_eeprom_ver(ah),
526 		ah->eep_ops->get_eeprom_rev(ah));
527 
528 	ath9k_hw_ani_init(ah);
529 
530 	/*
531 	 * EEPROM needs to be initialized before we do this.
532 	 * This is required for regulatory compliance.
533 	 */
534 	if (AR_SREV_9300_20_OR_LATER(ah)) {
535 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
536 		if ((regdmn & 0xF0) == CTL_FCC) {
537 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
538 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
539 		}
540 	}
541 
542 	return 0;
543 }
544 
545 static int ath9k_hw_attach_ops(struct ath_hw *ah)
546 {
547 	if (!AR_SREV_9300_20_OR_LATER(ah))
548 		return ar9002_hw_attach_ops(ah);
549 
550 	ar9003_hw_attach_ops(ah);
551 	return 0;
552 }
553 
554 /* Called for all hardware families */
555 static int __ath9k_hw_init(struct ath_hw *ah)
556 {
557 	struct ath_common *common = ath9k_hw_common(ah);
558 	int r = 0;
559 
560 	ath9k_hw_read_revisions(ah);
561 
562 	switch (ah->hw_version.macVersion) {
563 	case AR_SREV_VERSION_5416_PCI:
564 	case AR_SREV_VERSION_5416_PCIE:
565 	case AR_SREV_VERSION_9160:
566 	case AR_SREV_VERSION_9100:
567 	case AR_SREV_VERSION_9280:
568 	case AR_SREV_VERSION_9285:
569 	case AR_SREV_VERSION_9287:
570 	case AR_SREV_VERSION_9271:
571 	case AR_SREV_VERSION_9300:
572 	case AR_SREV_VERSION_9330:
573 	case AR_SREV_VERSION_9485:
574 	case AR_SREV_VERSION_9340:
575 	case AR_SREV_VERSION_9462:
576 	case AR_SREV_VERSION_9550:
577 	case AR_SREV_VERSION_9565:
578 	case AR_SREV_VERSION_9531:
579 	case AR_SREV_VERSION_9561:
580 		break;
581 	default:
582 		ath_err(common,
583 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
584 			ah->hw_version.macVersion, ah->hw_version.macRev);
585 		return -EOPNOTSUPP;
586 	}
587 
588 	/*
589 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
590 	 * We need to do this to avoid RMW of this register. We cannot
591 	 * read the reg when chip is asleep.
592 	 */
593 	if (AR_SREV_9300_20_OR_LATER(ah)) {
594 		ah->WARegVal = REG_READ(ah, AR_WA);
595 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
596 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
597 	}
598 
599 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
600 		ath_err(common, "Couldn't reset chip\n");
601 		return -EIO;
602 	}
603 
604 	if (AR_SREV_9565(ah)) {
605 		ah->WARegVal |= AR_WA_BIT22;
606 		REG_WRITE(ah, AR_WA, ah->WARegVal);
607 	}
608 
609 	ath9k_hw_init_defaults(ah);
610 	ath9k_hw_init_config(ah);
611 
612 	r = ath9k_hw_attach_ops(ah);
613 	if (r)
614 		return r;
615 
616 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
617 		ath_err(common, "Couldn't wakeup chip\n");
618 		return -EIO;
619 	}
620 
621 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
622 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
623 		ah->is_pciexpress = false;
624 
625 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
626 	ath9k_hw_init_cal_settings(ah);
627 
628 	if (!ah->is_pciexpress)
629 		ath9k_hw_disablepcie(ah);
630 
631 	r = ath9k_hw_post_init(ah);
632 	if (r)
633 		return r;
634 
635 	ath9k_hw_init_mode_gain_regs(ah);
636 	r = ath9k_hw_fill_cap_info(ah);
637 	if (r)
638 		return r;
639 
640 	ath9k_hw_init_macaddr(ah);
641 	ath9k_hw_init_hang_checks(ah);
642 
643 	common->state = ATH_HW_INITIALIZED;
644 
645 	return 0;
646 }
647 
648 int ath9k_hw_init(struct ath_hw *ah)
649 {
650 	int ret;
651 	struct ath_common *common = ath9k_hw_common(ah);
652 
653 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
654 	switch (ah->hw_version.devid) {
655 	case AR5416_DEVID_PCI:
656 	case AR5416_DEVID_PCIE:
657 	case AR5416_AR9100_DEVID:
658 	case AR9160_DEVID_PCI:
659 	case AR9280_DEVID_PCI:
660 	case AR9280_DEVID_PCIE:
661 	case AR9285_DEVID_PCIE:
662 	case AR9287_DEVID_PCI:
663 	case AR9287_DEVID_PCIE:
664 	case AR2427_DEVID_PCIE:
665 	case AR9300_DEVID_PCIE:
666 	case AR9300_DEVID_AR9485_PCIE:
667 	case AR9300_DEVID_AR9330:
668 	case AR9300_DEVID_AR9340:
669 	case AR9300_DEVID_QCA955X:
670 	case AR9300_DEVID_AR9580:
671 	case AR9300_DEVID_AR9462:
672 	case AR9485_DEVID_AR1111:
673 	case AR9300_DEVID_AR9565:
674 	case AR9300_DEVID_AR953X:
675 	case AR9300_DEVID_QCA956X:
676 		break;
677 	default:
678 		if (common->bus_ops->ath_bus_type == ATH_USB)
679 			break;
680 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
681 			ah->hw_version.devid);
682 		return -EOPNOTSUPP;
683 	}
684 
685 	ret = __ath9k_hw_init(ah);
686 	if (ret) {
687 		ath_err(common,
688 			"Unable to initialize hardware; initialization status: %d\n",
689 			ret);
690 		return ret;
691 	}
692 
693 	ath_dynack_init(ah);
694 
695 	return 0;
696 }
697 EXPORT_SYMBOL(ath9k_hw_init);
698 
699 static void ath9k_hw_init_qos(struct ath_hw *ah)
700 {
701 	ENABLE_REGWRITE_BUFFER(ah);
702 
703 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
704 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
705 
706 	REG_WRITE(ah, AR_QOS_NO_ACK,
707 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
708 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
709 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
710 
711 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
712 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
713 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
714 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
715 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
716 
717 	REGWRITE_BUFFER_FLUSH(ah);
718 }
719 
720 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
721 {
722 	struct ath_common *common = ath9k_hw_common(ah);
723 	int i = 0;
724 
725 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
726 	udelay(100);
727 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
728 
729 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
730 
731 		udelay(100);
732 
733 		if (WARN_ON_ONCE(i >= 100)) {
734 			ath_err(common, "PLL4 measurement not done\n");
735 			break;
736 		}
737 
738 		i++;
739 	}
740 
741 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
742 }
743 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
744 
745 static void ath9k_hw_init_pll(struct ath_hw *ah,
746 			      struct ath9k_channel *chan)
747 {
748 	u32 pll;
749 
750 	pll = ath9k_hw_compute_pll_control(ah, chan);
751 
752 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
753 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
754 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
755 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
756 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
757 			      AR_CH0_DPLL2_KD, 0x40);
758 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
759 			      AR_CH0_DPLL2_KI, 0x4);
760 
761 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
762 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
763 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
764 			      AR_CH0_BB_DPLL1_NINI, 0x58);
765 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
766 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
767 
768 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
769 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
770 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
771 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
772 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
773 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
774 
775 		/* program BB PLL phase_shift to 0x6 */
776 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
777 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
778 
779 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
780 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
781 		udelay(1000);
782 	} else if (AR_SREV_9330(ah)) {
783 		u32 ddr_dpll2, pll_control2, kd;
784 
785 		if (ah->is_clk_25mhz) {
786 			ddr_dpll2 = 0x18e82f01;
787 			pll_control2 = 0xe04a3d;
788 			kd = 0x1d;
789 		} else {
790 			ddr_dpll2 = 0x19e82f01;
791 			pll_control2 = 0x886666;
792 			kd = 0x3d;
793 		}
794 
795 		/* program DDR PLL ki and kd value */
796 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
797 
798 		/* program DDR PLL phase_shift */
799 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
800 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
801 
802 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
803 			  pll | AR_RTC_9300_PLL_BYPASS);
804 		udelay(1000);
805 
806 		/* program refdiv, nint, frac to RTC register */
807 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
808 
809 		/* program BB PLL kd and ki value */
810 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
811 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
812 
813 		/* program BB PLL phase_shift */
814 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
815 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
816 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
817 		   AR_SREV_9561(ah)) {
818 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
819 
820 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
821 			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
822 		udelay(1000);
823 
824 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
825 		udelay(100);
826 
827 		if (ah->is_clk_25mhz) {
828 			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
829 				pll2_divint = 0x1c;
830 				pll2_divfrac = 0xa3d2;
831 				refdiv = 1;
832 			} else {
833 				pll2_divint = 0x54;
834 				pll2_divfrac = 0x1eb85;
835 				refdiv = 3;
836 			}
837 		} else {
838 			if (AR_SREV_9340(ah)) {
839 				pll2_divint = 88;
840 				pll2_divfrac = 0;
841 				refdiv = 5;
842 			} else {
843 				pll2_divint = 0x11;
844 				pll2_divfrac = (AR_SREV_9531(ah) ||
845 						AR_SREV_9561(ah)) ?
846 						0x26665 : 0x26666;
847 				refdiv = 1;
848 			}
849 		}
850 
851 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
852 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
853 			regval |= (0x1 << 22);
854 		else
855 			regval |= (0x1 << 16);
856 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
857 		udelay(100);
858 
859 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
860 			  (pll2_divint << 18) | pll2_divfrac);
861 		udelay(100);
862 
863 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
864 		if (AR_SREV_9340(ah))
865 			regval = (regval & 0x80071fff) |
866 				(0x1 << 30) |
867 				(0x1 << 13) |
868 				(0x4 << 26) |
869 				(0x18 << 19);
870 		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
871 			regval = (regval & 0x01c00fff) |
872 				(0x1 << 31) |
873 				(0x2 << 29) |
874 				(0xa << 25) |
875 				(0x1 << 19);
876 
877 			if (AR_SREV_9531(ah))
878 				regval |= (0x6 << 12);
879 		} else
880 			regval = (regval & 0x80071fff) |
881 				(0x3 << 30) |
882 				(0x1 << 13) |
883 				(0x4 << 26) |
884 				(0x60 << 19);
885 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
886 
887 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
888 			REG_WRITE(ah, AR_PHY_PLL_MODE,
889 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
890 		else
891 			REG_WRITE(ah, AR_PHY_PLL_MODE,
892 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
893 
894 		udelay(1000);
895 	}
896 
897 	if (AR_SREV_9565(ah))
898 		pll |= 0x40000;
899 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
900 
901 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
902 	    AR_SREV_9550(ah))
903 		udelay(1000);
904 
905 	/* Switch the core clock for ar9271 to 117Mhz */
906 	if (AR_SREV_9271(ah)) {
907 		udelay(500);
908 		REG_WRITE(ah, 0x50040, 0x304);
909 	}
910 
911 	udelay(RTC_PLL_SETTLE_DELAY);
912 
913 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
914 }
915 
916 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
917 					  enum nl80211_iftype opmode)
918 {
919 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
920 	u32 imr_reg = AR_IMR_TXERR |
921 		AR_IMR_TXURN |
922 		AR_IMR_RXERR |
923 		AR_IMR_RXORN |
924 		AR_IMR_BCNMISC;
925 	u32 msi_cfg = 0;
926 
927 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
928 	    AR_SREV_9561(ah))
929 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
930 
931 	if (AR_SREV_9300_20_OR_LATER(ah)) {
932 		imr_reg |= AR_IMR_RXOK_HP;
933 		if (ah->config.rx_intr_mitigation) {
934 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
935 			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
936 		} else {
937 			imr_reg |= AR_IMR_RXOK_LP;
938 			msi_cfg |= AR_INTCFG_MSI_RXOK;
939 		}
940 	} else {
941 		if (ah->config.rx_intr_mitigation) {
942 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
943 			msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR;
944 		} else {
945 			imr_reg |= AR_IMR_RXOK;
946 			msi_cfg |= AR_INTCFG_MSI_RXOK;
947 		}
948 	}
949 
950 	if (ah->config.tx_intr_mitigation) {
951 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
952 		msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR;
953 	} else {
954 		imr_reg |= AR_IMR_TXOK;
955 		msi_cfg |= AR_INTCFG_MSI_TXOK;
956 	}
957 
958 	ENABLE_REGWRITE_BUFFER(ah);
959 
960 	REG_WRITE(ah, AR_IMR, imr_reg);
961 	ah->imrs2_reg |= AR_IMR_S2_GTT;
962 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
963 
964 	if (ah->msi_enabled) {
965 		ah->msi_reg = REG_READ(ah, AR_PCIE_MSI);
966 		ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN;
967 		ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64;
968 		REG_WRITE(ah, AR_INTCFG, msi_cfg);
969 		ath_dbg(ath9k_hw_common(ah), ANY,
970 			"value of AR_INTCFG=0x%X, msi_cfg=0x%X\n",
971 			REG_READ(ah, AR_INTCFG), msi_cfg);
972 	}
973 
974 	if (!AR_SREV_9100(ah)) {
975 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
976 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
977 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
978 	}
979 
980 	REGWRITE_BUFFER_FLUSH(ah);
981 
982 	if (AR_SREV_9300_20_OR_LATER(ah)) {
983 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
984 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
985 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
986 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
987 	}
988 }
989 
990 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
991 {
992 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
993 	val = min(val, (u32) 0xFFFF);
994 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
995 }
996 
997 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
998 {
999 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1000 	val = min(val, (u32) 0xFFFF);
1001 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1002 }
1003 
1004 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1005 {
1006 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1007 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1008 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1009 }
1010 
1011 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1012 {
1013 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1014 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1015 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1016 }
1017 
1018 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1019 {
1020 	if (tu > 0xFFFF) {
1021 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1022 			tu);
1023 		ah->globaltxtimeout = (u32) -1;
1024 		return false;
1025 	} else {
1026 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1027 		ah->globaltxtimeout = tu;
1028 		return true;
1029 	}
1030 }
1031 
1032 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1033 {
1034 	struct ath_common *common = ath9k_hw_common(ah);
1035 	const struct ath9k_channel *chan = ah->curchan;
1036 	int acktimeout, ctstimeout, ack_offset = 0;
1037 	int slottime;
1038 	int sifstime;
1039 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1040 	u32 reg;
1041 
1042 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1043 		ah->misc_mode);
1044 
1045 	if (!chan)
1046 		return;
1047 
1048 	if (ah->misc_mode != 0)
1049 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1050 
1051 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1052 		rx_lat = 41;
1053 	else
1054 		rx_lat = 37;
1055 	tx_lat = 54;
1056 
1057 	if (IS_CHAN_5GHZ(chan))
1058 		sifstime = 16;
1059 	else
1060 		sifstime = 10;
1061 
1062 	if (IS_CHAN_HALF_RATE(chan)) {
1063 		eifs = 175;
1064 		rx_lat *= 2;
1065 		tx_lat *= 2;
1066 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1067 		    tx_lat += 11;
1068 
1069 		sifstime = 32;
1070 		ack_offset = 16;
1071 		slottime = 13;
1072 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1073 		eifs = 340;
1074 		rx_lat = (rx_lat * 4) - 1;
1075 		tx_lat *= 4;
1076 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1077 		    tx_lat += 22;
1078 
1079 		sifstime = 64;
1080 		ack_offset = 32;
1081 		slottime = 21;
1082 	} else {
1083 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1084 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1085 			reg = AR_USEC_ASYNC_FIFO;
1086 		} else {
1087 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1088 				common->clockrate;
1089 			reg = REG_READ(ah, AR_USEC);
1090 		}
1091 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1092 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1093 
1094 		slottime = ah->slottime;
1095 	}
1096 
1097 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1098 	slottime += 3 * ah->coverage_class;
1099 	acktimeout = slottime + sifstime + ack_offset;
1100 	ctstimeout = acktimeout;
1101 
1102 	/*
1103 	 * Workaround for early ACK timeouts, add an offset to match the
1104 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1105 	 * This was initially only meant to work around an issue with delayed
1106 	 * BA frames in some implementations, but it has been found to fix ACK
1107 	 * timeout issues in other cases as well.
1108 	 */
1109 	if (IS_CHAN_2GHZ(chan) &&
1110 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1111 		acktimeout += 64 - sifstime - ah->slottime;
1112 		ctstimeout += 48 - sifstime - ah->slottime;
1113 	}
1114 
1115 	if (ah->dynack.enabled) {
1116 		acktimeout = ah->dynack.ackto;
1117 		ctstimeout = acktimeout;
1118 		slottime = (acktimeout - 3) / 2;
1119 	} else {
1120 		ah->dynack.ackto = acktimeout;
1121 	}
1122 
1123 	ath9k_hw_set_sifs_time(ah, sifstime);
1124 	ath9k_hw_setslottime(ah, slottime);
1125 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1126 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1127 	if (ah->globaltxtimeout != (u32) -1)
1128 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1129 
1130 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1131 	REG_RMW(ah, AR_USEC,
1132 		(common->clockrate - 1) |
1133 		SM(rx_lat, AR_USEC_RX_LAT) |
1134 		SM(tx_lat, AR_USEC_TX_LAT),
1135 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1136 
1137 }
1138 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1139 
1140 void ath9k_hw_deinit(struct ath_hw *ah)
1141 {
1142 	struct ath_common *common = ath9k_hw_common(ah);
1143 
1144 	if (common->state < ATH_HW_INITIALIZED)
1145 		return;
1146 
1147 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1148 }
1149 EXPORT_SYMBOL(ath9k_hw_deinit);
1150 
1151 /*******/
1152 /* INI */
1153 /*******/
1154 
1155 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1156 {
1157 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1158 
1159 	if (IS_CHAN_2GHZ(chan))
1160 		ctl |= CTL_11G;
1161 	else
1162 		ctl |= CTL_11A;
1163 
1164 	return ctl;
1165 }
1166 
1167 /****************************************/
1168 /* Reset and Channel Switching Routines */
1169 /****************************************/
1170 
1171 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1172 {
1173 	struct ath_common *common = ath9k_hw_common(ah);
1174 	int txbuf_size;
1175 
1176 	ENABLE_REGWRITE_BUFFER(ah);
1177 
1178 	/*
1179 	 * set AHB_MODE not to do cacheline prefetches
1180 	*/
1181 	if (!AR_SREV_9300_20_OR_LATER(ah))
1182 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1183 
1184 	/*
1185 	 * let mac dma reads be in 128 byte chunks
1186 	 */
1187 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1188 
1189 	REGWRITE_BUFFER_FLUSH(ah);
1190 
1191 	/*
1192 	 * Restore TX Trigger Level to its pre-reset value.
1193 	 * The initial value depends on whether aggregation is enabled, and is
1194 	 * adjusted whenever underruns are detected.
1195 	 */
1196 	if (!AR_SREV_9300_20_OR_LATER(ah))
1197 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1198 
1199 	ENABLE_REGWRITE_BUFFER(ah);
1200 
1201 	/*
1202 	 * let mac dma writes be in 128 byte chunks
1203 	 */
1204 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1205 
1206 	/*
1207 	 * Setup receive FIFO threshold to hold off TX activities
1208 	 */
1209 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1210 
1211 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1212 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1213 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1214 
1215 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1216 			ah->caps.rx_status_len);
1217 	}
1218 
1219 	/*
1220 	 * reduce the number of usable entries in PCU TXBUF to avoid
1221 	 * wrap around issues.
1222 	 */
1223 	if (AR_SREV_9285(ah)) {
1224 		/* For AR9285 the number of Fifos are reduced to half.
1225 		 * So set the usable tx buf size also to half to
1226 		 * avoid data/delimiter underruns
1227 		 */
1228 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1229 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1230 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1231 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1232 	} else {
1233 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1234 	}
1235 
1236 	if (!AR_SREV_9271(ah))
1237 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1238 
1239 	REGWRITE_BUFFER_FLUSH(ah);
1240 
1241 	if (AR_SREV_9300_20_OR_LATER(ah))
1242 		ath9k_hw_reset_txstatus_ring(ah);
1243 }
1244 
1245 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1246 {
1247 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1248 	u32 set = AR_STA_ID1_KSRCH_MODE;
1249 
1250 	ENABLE_REG_RMW_BUFFER(ah);
1251 	switch (opmode) {
1252 	case NL80211_IFTYPE_ADHOC:
1253 		if (!AR_SREV_9340_13(ah)) {
1254 			set |= AR_STA_ID1_ADHOC;
1255 			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1256 			break;
1257 		}
1258 		/* fall through */
1259 	case NL80211_IFTYPE_OCB:
1260 	case NL80211_IFTYPE_MESH_POINT:
1261 	case NL80211_IFTYPE_AP:
1262 		set |= AR_STA_ID1_STA_AP;
1263 		/* fall through */
1264 	case NL80211_IFTYPE_STATION:
1265 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1266 		break;
1267 	default:
1268 		if (!ah->is_monitoring)
1269 			set = 0;
1270 		break;
1271 	}
1272 	REG_RMW(ah, AR_STA_ID1, set, mask);
1273 	REG_RMW_BUFFER_FLUSH(ah);
1274 }
1275 
1276 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1277 				   u32 *coef_mantissa, u32 *coef_exponent)
1278 {
1279 	u32 coef_exp, coef_man;
1280 
1281 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1282 		if ((coef_scaled >> coef_exp) & 0x1)
1283 			break;
1284 
1285 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1286 
1287 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1288 
1289 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1290 	*coef_exponent = coef_exp - 16;
1291 }
1292 
1293 /* AR9330 WAR:
1294  * call external reset function to reset WMAC if:
1295  * - doing a cold reset
1296  * - we have pending frames in the TX queues.
1297  */
1298 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1299 {
1300 	int i, npend = 0;
1301 
1302 	for (i = 0; i < AR_NUM_QCU; i++) {
1303 		npend = ath9k_hw_numtxpending(ah, i);
1304 		if (npend)
1305 			break;
1306 	}
1307 
1308 	if (ah->external_reset &&
1309 	    (npend || type == ATH9K_RESET_COLD)) {
1310 		int reset_err = 0;
1311 
1312 		ath_dbg(ath9k_hw_common(ah), RESET,
1313 			"reset MAC via external reset\n");
1314 
1315 		reset_err = ah->external_reset();
1316 		if (reset_err) {
1317 			ath_err(ath9k_hw_common(ah),
1318 				"External reset failed, err=%d\n",
1319 				reset_err);
1320 			return false;
1321 		}
1322 
1323 		REG_WRITE(ah, AR_RTC_RESET, 1);
1324 	}
1325 
1326 	return true;
1327 }
1328 
1329 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1330 {
1331 	u32 rst_flags;
1332 	u32 tmpReg;
1333 
1334 	if (AR_SREV_9100(ah)) {
1335 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1336 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1337 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1338 	}
1339 
1340 	ENABLE_REGWRITE_BUFFER(ah);
1341 
1342 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1343 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1344 		udelay(10);
1345 	}
1346 
1347 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1348 		  AR_RTC_FORCE_WAKE_ON_INT);
1349 
1350 	if (AR_SREV_9100(ah)) {
1351 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1352 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1353 	} else {
1354 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1355 		if (AR_SREV_9340(ah))
1356 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1357 		else
1358 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1359 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1360 
1361 		if (tmpReg) {
1362 			u32 val;
1363 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1364 
1365 			val = AR_RC_HOSTIF;
1366 			if (!AR_SREV_9300_20_OR_LATER(ah))
1367 				val |= AR_RC_AHB;
1368 			REG_WRITE(ah, AR_RC, val);
1369 
1370 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1371 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1372 
1373 		rst_flags = AR_RTC_RC_MAC_WARM;
1374 		if (type == ATH9K_RESET_COLD)
1375 			rst_flags |= AR_RTC_RC_MAC_COLD;
1376 	}
1377 
1378 	if (AR_SREV_9330(ah)) {
1379 		if (!ath9k_hw_ar9330_reset_war(ah, type))
1380 			return false;
1381 	}
1382 
1383 	if (ath9k_hw_mci_is_enabled(ah))
1384 		ar9003_mci_check_gpm_offset(ah);
1385 
1386 	/* DMA HALT added to resolve ar9300 and ar9580 bus error during
1387 	 * RTC_RC reg read
1388 	 */
1389 	if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1390 		REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1391 		ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1392 			      20 * AH_WAIT_TIMEOUT);
1393 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1394 	}
1395 
1396 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1397 
1398 	REGWRITE_BUFFER_FLUSH(ah);
1399 
1400 	if (AR_SREV_9300_20_OR_LATER(ah))
1401 		udelay(50);
1402 	else if (AR_SREV_9100(ah))
1403 		mdelay(10);
1404 	else
1405 		udelay(100);
1406 
1407 	REG_WRITE(ah, AR_RTC_RC, 0);
1408 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1409 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1410 		return false;
1411 	}
1412 
1413 	if (!AR_SREV_9100(ah))
1414 		REG_WRITE(ah, AR_RC, 0);
1415 
1416 	if (AR_SREV_9100(ah))
1417 		udelay(50);
1418 
1419 	return true;
1420 }
1421 
1422 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1423 {
1424 	ENABLE_REGWRITE_BUFFER(ah);
1425 
1426 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1427 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1428 		udelay(10);
1429 	}
1430 
1431 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1432 		  AR_RTC_FORCE_WAKE_ON_INT);
1433 
1434 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1435 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1436 
1437 	REG_WRITE(ah, AR_RTC_RESET, 0);
1438 
1439 	REGWRITE_BUFFER_FLUSH(ah);
1440 
1441 	udelay(2);
1442 
1443 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1444 		REG_WRITE(ah, AR_RC, 0);
1445 
1446 	REG_WRITE(ah, AR_RTC_RESET, 1);
1447 
1448 	if (!ath9k_hw_wait(ah,
1449 			   AR_RTC_STATUS,
1450 			   AR_RTC_STATUS_M,
1451 			   AR_RTC_STATUS_ON,
1452 			   AH_WAIT_TIMEOUT)) {
1453 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1454 		return false;
1455 	}
1456 
1457 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1458 }
1459 
1460 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1461 {
1462 	bool ret = false;
1463 
1464 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1465 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1466 		udelay(10);
1467 	}
1468 
1469 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1470 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1471 
1472 	if (!ah->reset_power_on)
1473 		type = ATH9K_RESET_POWER_ON;
1474 
1475 	switch (type) {
1476 	case ATH9K_RESET_POWER_ON:
1477 		ret = ath9k_hw_set_reset_power_on(ah);
1478 		if (ret)
1479 			ah->reset_power_on = true;
1480 		break;
1481 	case ATH9K_RESET_WARM:
1482 	case ATH9K_RESET_COLD:
1483 		ret = ath9k_hw_set_reset(ah, type);
1484 		break;
1485 	default:
1486 		break;
1487 	}
1488 
1489 	return ret;
1490 }
1491 
1492 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1493 				struct ath9k_channel *chan)
1494 {
1495 	int reset_type = ATH9K_RESET_WARM;
1496 
1497 	if (AR_SREV_9280(ah)) {
1498 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1499 			reset_type = ATH9K_RESET_POWER_ON;
1500 		else
1501 			reset_type = ATH9K_RESET_COLD;
1502 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1503 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1504 		reset_type = ATH9K_RESET_COLD;
1505 
1506 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1507 		return false;
1508 
1509 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1510 		return false;
1511 
1512 	ah->chip_fullsleep = false;
1513 
1514 	if (AR_SREV_9330(ah))
1515 		ar9003_hw_internal_regulator_apply(ah);
1516 	ath9k_hw_init_pll(ah, chan);
1517 
1518 	return true;
1519 }
1520 
1521 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1522 				    struct ath9k_channel *chan)
1523 {
1524 	struct ath_common *common = ath9k_hw_common(ah);
1525 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1526 	bool band_switch = false, mode_diff = false;
1527 	u8 ini_reloaded = 0;
1528 	u32 qnum;
1529 	int r;
1530 
1531 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1532 		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1533 		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1534 		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1535 	}
1536 
1537 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1538 		if (ath9k_hw_numtxpending(ah, qnum)) {
1539 			ath_dbg(common, QUEUE,
1540 				"Transmit frames pending on queue %d\n", qnum);
1541 			return false;
1542 		}
1543 	}
1544 
1545 	if (!ath9k_hw_rfbus_req(ah)) {
1546 		ath_err(common, "Could not kill baseband RX\n");
1547 		return false;
1548 	}
1549 
1550 	if (band_switch || mode_diff) {
1551 		ath9k_hw_mark_phy_inactive(ah);
1552 		udelay(5);
1553 
1554 		if (band_switch)
1555 			ath9k_hw_init_pll(ah, chan);
1556 
1557 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1558 			ath_err(common, "Failed to do fast channel change\n");
1559 			return false;
1560 		}
1561 	}
1562 
1563 	ath9k_hw_set_channel_regs(ah, chan);
1564 
1565 	r = ath9k_hw_rf_set_freq(ah, chan);
1566 	if (r) {
1567 		ath_err(common, "Failed to set channel\n");
1568 		return false;
1569 	}
1570 	ath9k_hw_set_clockrate(ah);
1571 	ath9k_hw_apply_txpower(ah, chan, false);
1572 
1573 	ath9k_hw_set_delta_slope(ah, chan);
1574 	ath9k_hw_spur_mitigate_freq(ah, chan);
1575 
1576 	if (band_switch || ini_reloaded)
1577 		ah->eep_ops->set_board_values(ah, chan);
1578 
1579 	ath9k_hw_init_bb(ah, chan);
1580 	ath9k_hw_rfbus_done(ah);
1581 
1582 	if (band_switch || ini_reloaded) {
1583 		ah->ah_flags |= AH_FASTCC;
1584 		ath9k_hw_init_cal(ah, chan);
1585 		ah->ah_flags &= ~AH_FASTCC;
1586 	}
1587 
1588 	return true;
1589 }
1590 
1591 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1592 {
1593 	u32 gpio_mask = ah->gpio_mask;
1594 	int i;
1595 
1596 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1597 		if (!(gpio_mask & 1))
1598 			continue;
1599 
1600 		ath9k_hw_gpio_request_out(ah, i, NULL,
1601 					  AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1602 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1603 		ath9k_hw_gpio_free(ah, i);
1604 	}
1605 }
1606 
1607 void ath9k_hw_check_nav(struct ath_hw *ah)
1608 {
1609 	struct ath_common *common = ath9k_hw_common(ah);
1610 	u32 val;
1611 
1612 	val = REG_READ(ah, AR_NAV);
1613 	if (val != 0xdeadbeef && val > 0x7fff) {
1614 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1615 		REG_WRITE(ah, AR_NAV, 0);
1616 	}
1617 }
1618 EXPORT_SYMBOL(ath9k_hw_check_nav);
1619 
1620 bool ath9k_hw_check_alive(struct ath_hw *ah)
1621 {
1622 	int count = 50;
1623 	u32 reg, last_val;
1624 
1625 	/* Check if chip failed to wake up */
1626 	if (REG_READ(ah, AR_CFG) == 0xdeadbeef)
1627 		return false;
1628 
1629 	if (AR_SREV_9300(ah))
1630 		return !ath9k_hw_detect_mac_hang(ah);
1631 
1632 	if (AR_SREV_9285_12_OR_LATER(ah))
1633 		return true;
1634 
1635 	last_val = REG_READ(ah, AR_OBS_BUS_1);
1636 	do {
1637 		reg = REG_READ(ah, AR_OBS_BUS_1);
1638 		if (reg != last_val)
1639 			return true;
1640 
1641 		udelay(1);
1642 		last_val = reg;
1643 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1644 			continue;
1645 
1646 		switch (reg & 0x7E000B00) {
1647 		case 0x1E000000:
1648 		case 0x52000B00:
1649 		case 0x18000B00:
1650 			continue;
1651 		default:
1652 			return true;
1653 		}
1654 	} while (count-- > 0);
1655 
1656 	return false;
1657 }
1658 EXPORT_SYMBOL(ath9k_hw_check_alive);
1659 
1660 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1661 {
1662 	/* Setup MFP options for CCMP */
1663 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1664 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1665 		 * frames when constructing CCMP AAD. */
1666 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1667 			      0xc7ff);
1668 		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1669 			ah->sw_mgmt_crypto_tx = true;
1670 		else
1671 			ah->sw_mgmt_crypto_tx = false;
1672 		ah->sw_mgmt_crypto_rx = false;
1673 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1674 		/* Disable hardware crypto for management frames */
1675 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1676 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1677 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1678 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1679 		ah->sw_mgmt_crypto_tx = true;
1680 		ah->sw_mgmt_crypto_rx = true;
1681 	} else {
1682 		ah->sw_mgmt_crypto_tx = true;
1683 		ah->sw_mgmt_crypto_rx = true;
1684 	}
1685 }
1686 
1687 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1688 				  u32 macStaId1, u32 saveDefAntenna)
1689 {
1690 	struct ath_common *common = ath9k_hw_common(ah);
1691 
1692 	ENABLE_REGWRITE_BUFFER(ah);
1693 
1694 	REG_RMW(ah, AR_STA_ID1, macStaId1
1695 		  | AR_STA_ID1_RTS_USE_DEF
1696 		  | ah->sta_id1_defaults,
1697 		  ~AR_STA_ID1_SADH_MASK);
1698 	ath_hw_setbssidmask(common);
1699 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1700 	ath9k_hw_write_associd(ah);
1701 	REG_WRITE(ah, AR_ISR, ~0);
1702 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1703 
1704 	REGWRITE_BUFFER_FLUSH(ah);
1705 
1706 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1707 }
1708 
1709 static void ath9k_hw_init_queues(struct ath_hw *ah)
1710 {
1711 	int i;
1712 
1713 	ENABLE_REGWRITE_BUFFER(ah);
1714 
1715 	for (i = 0; i < AR_NUM_DCU; i++)
1716 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1717 
1718 	REGWRITE_BUFFER_FLUSH(ah);
1719 
1720 	ah->intr_txqs = 0;
1721 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1722 		ath9k_hw_resettxqueue(ah, i);
1723 }
1724 
1725 /*
1726  * For big endian systems turn on swapping for descriptors
1727  */
1728 static void ath9k_hw_init_desc(struct ath_hw *ah)
1729 {
1730 	struct ath_common *common = ath9k_hw_common(ah);
1731 
1732 	if (AR_SREV_9100(ah)) {
1733 		u32 mask;
1734 		mask = REG_READ(ah, AR_CFG);
1735 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1736 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1737 				mask);
1738 		} else {
1739 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1740 			REG_WRITE(ah, AR_CFG, mask);
1741 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1742 				REG_READ(ah, AR_CFG));
1743 		}
1744 	} else {
1745 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1746 			/* Configure AR9271 target WLAN */
1747 			if (AR_SREV_9271(ah))
1748 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1749 			else
1750 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1751 		}
1752 #ifdef __BIG_ENDIAN
1753 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1754 			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1755 			 AR_SREV_9561(ah))
1756 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1757 		else
1758 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1759 #endif
1760 	}
1761 }
1762 
1763 /*
1764  * Fast channel change:
1765  * (Change synthesizer based on channel freq without resetting chip)
1766  */
1767 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1768 {
1769 	struct ath_common *common = ath9k_hw_common(ah);
1770 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1771 	int ret;
1772 
1773 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1774 		goto fail;
1775 
1776 	if (ah->chip_fullsleep)
1777 		goto fail;
1778 
1779 	if (!ah->curchan)
1780 		goto fail;
1781 
1782 	if (chan->channel == ah->curchan->channel)
1783 		goto fail;
1784 
1785 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1786 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1787 		goto fail;
1788 
1789 	/*
1790 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1791 	 */
1792 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1793 	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1794 		goto fail;
1795 
1796 	if (!ath9k_hw_check_alive(ah))
1797 		goto fail;
1798 
1799 	/*
1800 	 * For AR9462, make sure that calibration data for
1801 	 * re-using are present.
1802 	 */
1803 	if (AR_SREV_9462(ah) && (ah->caldata &&
1804 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1805 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1806 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1807 		goto fail;
1808 
1809 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1810 		ah->curchan->channel, chan->channel);
1811 
1812 	ret = ath9k_hw_channel_change(ah, chan);
1813 	if (!ret)
1814 		goto fail;
1815 
1816 	if (ath9k_hw_mci_is_enabled(ah))
1817 		ar9003_mci_2g5g_switch(ah, false);
1818 
1819 	ath9k_hw_loadnf(ah, ah->curchan);
1820 	ath9k_hw_start_nfcal(ah, true);
1821 
1822 	if (AR_SREV_9271(ah))
1823 		ar9002_hw_load_ani_reg(ah, chan);
1824 
1825 	return 0;
1826 fail:
1827 	return -EINVAL;
1828 }
1829 
1830 u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1831 {
1832 	struct timespec ts;
1833 	s64 usec;
1834 
1835 	if (!cur) {
1836 		getrawmonotonic(&ts);
1837 		cur = &ts;
1838 	}
1839 
1840 	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1841 	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1842 
1843 	return (u32) usec;
1844 }
1845 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1846 
1847 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1848 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1849 {
1850 	struct ath_common *common = ath9k_hw_common(ah);
1851 	u32 saveLedState;
1852 	u32 saveDefAntenna;
1853 	u32 macStaId1;
1854 	struct timespec tsf_ts;
1855 	u32 tsf_offset;
1856 	u64 tsf = 0;
1857 	int r;
1858 	bool start_mci_reset = false;
1859 	bool save_fullsleep = ah->chip_fullsleep;
1860 
1861 	if (ath9k_hw_mci_is_enabled(ah)) {
1862 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1863 		if (start_mci_reset)
1864 			return 0;
1865 	}
1866 
1867 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1868 		return -EIO;
1869 
1870 	if (ah->curchan && !ah->chip_fullsleep)
1871 		ath9k_hw_getnf(ah, ah->curchan);
1872 
1873 	ah->caldata = caldata;
1874 	if (caldata && (chan->channel != caldata->channel ||
1875 			chan->channelFlags != caldata->channelFlags)) {
1876 		/* Operating channel changed, reset channel calibration data */
1877 		memset(caldata, 0, sizeof(*caldata));
1878 		ath9k_init_nfcal_hist_buffer(ah, chan);
1879 	} else if (caldata) {
1880 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1881 	}
1882 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1883 
1884 	if (fastcc) {
1885 		r = ath9k_hw_do_fastcc(ah, chan);
1886 		if (!r)
1887 			return r;
1888 	}
1889 
1890 	if (ath9k_hw_mci_is_enabled(ah))
1891 		ar9003_mci_stop_bt(ah, save_fullsleep);
1892 
1893 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1894 	if (saveDefAntenna == 0)
1895 		saveDefAntenna = 1;
1896 
1897 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1898 
1899 	/* Save TSF before chip reset, a cold reset clears it */
1900 	getrawmonotonic(&tsf_ts);
1901 	tsf = ath9k_hw_gettsf64(ah);
1902 
1903 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1904 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1905 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1906 
1907 	ath9k_hw_mark_phy_inactive(ah);
1908 
1909 	ah->paprd_table_write_done = false;
1910 
1911 	/* Only required on the first reset */
1912 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1913 		REG_WRITE(ah,
1914 			  AR9271_RESET_POWER_DOWN_CONTROL,
1915 			  AR9271_RADIO_RF_RST);
1916 		udelay(50);
1917 	}
1918 
1919 	if (!ath9k_hw_chip_reset(ah, chan)) {
1920 		ath_err(common, "Chip reset failed\n");
1921 		return -EINVAL;
1922 	}
1923 
1924 	/* Only required on the first reset */
1925 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1926 		ah->htc_reset_init = false;
1927 		REG_WRITE(ah,
1928 			  AR9271_RESET_POWER_DOWN_CONTROL,
1929 			  AR9271_GATE_MAC_CTL);
1930 		udelay(50);
1931 	}
1932 
1933 	/* Restore TSF */
1934 	tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1935 	ath9k_hw_settsf64(ah, tsf + tsf_offset);
1936 
1937 	if (AR_SREV_9280_20_OR_LATER(ah))
1938 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1939 
1940 	if (!AR_SREV_9300_20_OR_LATER(ah))
1941 		ar9002_hw_enable_async_fifo(ah);
1942 
1943 	r = ath9k_hw_process_ini(ah, chan);
1944 	if (r)
1945 		return r;
1946 
1947 	ath9k_hw_set_rfmode(ah, chan);
1948 
1949 	if (ath9k_hw_mci_is_enabled(ah))
1950 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1951 
1952 	/*
1953 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1954 	 * right after the chip reset. When that happens, write a new
1955 	 * value after the initvals have been applied.
1956 	 */
1957 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1958 		tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1959 		ath9k_hw_settsf64(ah, tsf + tsf_offset);
1960 	}
1961 
1962 	ath9k_hw_init_mfp(ah);
1963 
1964 	ath9k_hw_set_delta_slope(ah, chan);
1965 	ath9k_hw_spur_mitigate_freq(ah, chan);
1966 	ah->eep_ops->set_board_values(ah, chan);
1967 
1968 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1969 
1970 	r = ath9k_hw_rf_set_freq(ah, chan);
1971 	if (r)
1972 		return r;
1973 
1974 	ath9k_hw_set_clockrate(ah);
1975 
1976 	ath9k_hw_init_queues(ah);
1977 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1978 	ath9k_hw_ani_cache_ini_regs(ah);
1979 	ath9k_hw_init_qos(ah);
1980 
1981 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1982 		ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
1983 
1984 	ath9k_hw_init_global_settings(ah);
1985 
1986 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1987 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1988 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1989 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1990 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1991 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1992 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1993 	}
1994 
1995 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1996 
1997 	ath9k_hw_set_dma(ah);
1998 
1999 	if (!ath9k_hw_mci_is_enabled(ah))
2000 		REG_WRITE(ah, AR_OBS, 8);
2001 
2002 	ENABLE_REG_RMW_BUFFER(ah);
2003 	if (ah->config.rx_intr_mitigation) {
2004 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
2005 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
2006 	}
2007 
2008 	if (ah->config.tx_intr_mitigation) {
2009 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2010 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2011 	}
2012 	REG_RMW_BUFFER_FLUSH(ah);
2013 
2014 	ath9k_hw_init_bb(ah, chan);
2015 
2016 	if (caldata) {
2017 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2018 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2019 	}
2020 	if (!ath9k_hw_init_cal(ah, chan))
2021 		return -EIO;
2022 
2023 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2024 		return -EIO;
2025 
2026 	ENABLE_REGWRITE_BUFFER(ah);
2027 
2028 	ath9k_hw_restore_chainmask(ah);
2029 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2030 
2031 	REGWRITE_BUFFER_FLUSH(ah);
2032 
2033 	ath9k_hw_gen_timer_start_tsf2(ah);
2034 
2035 	ath9k_hw_init_desc(ah);
2036 
2037 	if (ath9k_hw_btcoex_is_enabled(ah))
2038 		ath9k_hw_btcoex_enable(ah);
2039 
2040 	if (ath9k_hw_mci_is_enabled(ah))
2041 		ar9003_mci_check_bt(ah);
2042 
2043 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2044 		ath9k_hw_loadnf(ah, chan);
2045 		ath9k_hw_start_nfcal(ah, true);
2046 	}
2047 
2048 	if (AR_SREV_9300_20_OR_LATER(ah))
2049 		ar9003_hw_bb_watchdog_config(ah);
2050 
2051 	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2052 		ar9003_hw_disable_phy_restart(ah);
2053 
2054 	ath9k_hw_apply_gpio_override(ah);
2055 
2056 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2057 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2058 
2059 	if (ah->hw->conf.radar_enabled) {
2060 		/* set HW specific DFS configuration */
2061 		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2062 		ath9k_hw_set_radar_params(ah);
2063 	}
2064 
2065 	return 0;
2066 }
2067 EXPORT_SYMBOL(ath9k_hw_reset);
2068 
2069 /******************************/
2070 /* Power Management (Chipset) */
2071 /******************************/
2072 
2073 /*
2074  * Notify Power Mgt is disabled in self-generated frames.
2075  * If requested, force chip to sleep.
2076  */
2077 static void ath9k_set_power_sleep(struct ath_hw *ah)
2078 {
2079 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2080 
2081 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2082 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2083 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2084 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2085 		/* xxx Required for WLAN only case ? */
2086 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2087 		udelay(100);
2088 	}
2089 
2090 	/*
2091 	 * Clear the RTC force wake bit to allow the
2092 	 * mac to go to sleep.
2093 	 */
2094 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2095 
2096 	if (ath9k_hw_mci_is_enabled(ah))
2097 		udelay(100);
2098 
2099 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2100 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2101 
2102 	/* Shutdown chip. Active low */
2103 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2104 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2105 		udelay(2);
2106 	}
2107 
2108 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2109 	if (AR_SREV_9300_20_OR_LATER(ah))
2110 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2111 }
2112 
2113 /*
2114  * Notify Power Management is enabled in self-generating
2115  * frames. If request, set power mode of chip to
2116  * auto/normal.  Duration in units of 128us (1/8 TU).
2117  */
2118 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2119 {
2120 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2121 
2122 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2123 
2124 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2125 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2126 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2127 			  AR_RTC_FORCE_WAKE_ON_INT);
2128 	} else {
2129 
2130 		/* When chip goes into network sleep, it could be waken
2131 		 * up by MCI_INT interrupt caused by BT's HW messages
2132 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2133 		 * rate (~100us). This will cause chip to leave and
2134 		 * re-enter network sleep mode frequently, which in
2135 		 * consequence will have WLAN MCI HW to generate lots of
2136 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2137 		 * BT CPU to busy to process.
2138 		 */
2139 		if (ath9k_hw_mci_is_enabled(ah))
2140 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2141 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2142 		/*
2143 		 * Clear the RTC force wake bit to allow the
2144 		 * mac to go to sleep.
2145 		 */
2146 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2147 
2148 		if (ath9k_hw_mci_is_enabled(ah))
2149 			udelay(30);
2150 	}
2151 
2152 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2153 	if (AR_SREV_9300_20_OR_LATER(ah))
2154 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2155 }
2156 
2157 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2158 {
2159 	u32 val;
2160 	int i;
2161 
2162 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2163 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2164 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2165 		udelay(10);
2166 	}
2167 
2168 	if ((REG_READ(ah, AR_RTC_STATUS) &
2169 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2170 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2171 			return false;
2172 		}
2173 		if (!AR_SREV_9300_20_OR_LATER(ah))
2174 			ath9k_hw_init_pll(ah, NULL);
2175 	}
2176 	if (AR_SREV_9100(ah))
2177 		REG_SET_BIT(ah, AR_RTC_RESET,
2178 			    AR_RTC_RESET_EN);
2179 
2180 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2181 		    AR_RTC_FORCE_WAKE_EN);
2182 	if (AR_SREV_9100(ah))
2183 		mdelay(10);
2184 	else
2185 		udelay(50);
2186 
2187 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2188 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2189 		if (val == AR_RTC_STATUS_ON)
2190 			break;
2191 		udelay(50);
2192 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2193 			    AR_RTC_FORCE_WAKE_EN);
2194 	}
2195 	if (i == 0) {
2196 		ath_err(ath9k_hw_common(ah),
2197 			"Failed to wakeup in %uus\n",
2198 			POWER_UP_TIME / 20);
2199 		return false;
2200 	}
2201 
2202 	if (ath9k_hw_mci_is_enabled(ah))
2203 		ar9003_mci_set_power_awake(ah);
2204 
2205 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2206 
2207 	return true;
2208 }
2209 
2210 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2211 {
2212 	struct ath_common *common = ath9k_hw_common(ah);
2213 	int status = true;
2214 	static const char *modes[] = {
2215 		"AWAKE",
2216 		"FULL-SLEEP",
2217 		"NETWORK SLEEP",
2218 		"UNDEFINED"
2219 	};
2220 
2221 	if (ah->power_mode == mode)
2222 		return status;
2223 
2224 	ath_dbg(common, RESET, "%s -> %s\n",
2225 		modes[ah->power_mode], modes[mode]);
2226 
2227 	switch (mode) {
2228 	case ATH9K_PM_AWAKE:
2229 		status = ath9k_hw_set_power_awake(ah);
2230 		break;
2231 	case ATH9K_PM_FULL_SLEEP:
2232 		if (ath9k_hw_mci_is_enabled(ah))
2233 			ar9003_mci_set_full_sleep(ah);
2234 
2235 		ath9k_set_power_sleep(ah);
2236 		ah->chip_fullsleep = true;
2237 		break;
2238 	case ATH9K_PM_NETWORK_SLEEP:
2239 		ath9k_set_power_network_sleep(ah);
2240 		break;
2241 	default:
2242 		ath_err(common, "Unknown power mode %u\n", mode);
2243 		return false;
2244 	}
2245 	ah->power_mode = mode;
2246 
2247 	/*
2248 	 * XXX: If this warning never comes up after a while then
2249 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2250 	 * ath9k_hw_setpower() return type void.
2251 	 */
2252 
2253 	if (!(ah->ah_flags & AH_UNPLUGGED))
2254 		ATH_DBG_WARN_ON_ONCE(!status);
2255 
2256 	return status;
2257 }
2258 EXPORT_SYMBOL(ath9k_hw_setpower);
2259 
2260 /*******************/
2261 /* Beacon Handling */
2262 /*******************/
2263 
2264 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2265 {
2266 	int flags = 0;
2267 
2268 	ENABLE_REGWRITE_BUFFER(ah);
2269 
2270 	switch (ah->opmode) {
2271 	case NL80211_IFTYPE_ADHOC:
2272 		REG_SET_BIT(ah, AR_TXCFG,
2273 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2274 	case NL80211_IFTYPE_MESH_POINT:
2275 	case NL80211_IFTYPE_AP:
2276 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2277 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2278 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2279 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2280 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2281 		flags |=
2282 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2283 		break;
2284 	default:
2285 		ath_dbg(ath9k_hw_common(ah), BEACON,
2286 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2287 		return;
2288 		break;
2289 	}
2290 
2291 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2292 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2293 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2294 
2295 	REGWRITE_BUFFER_FLUSH(ah);
2296 
2297 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2298 }
2299 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2300 
2301 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2302 				    const struct ath9k_beacon_state *bs)
2303 {
2304 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2305 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2306 	struct ath_common *common = ath9k_hw_common(ah);
2307 
2308 	ENABLE_REGWRITE_BUFFER(ah);
2309 
2310 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2311 	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2312 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2313 
2314 	REGWRITE_BUFFER_FLUSH(ah);
2315 
2316 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2317 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2318 
2319 	beaconintval = bs->bs_intval;
2320 
2321 	if (bs->bs_sleepduration > beaconintval)
2322 		beaconintval = bs->bs_sleepduration;
2323 
2324 	dtimperiod = bs->bs_dtimperiod;
2325 	if (bs->bs_sleepduration > dtimperiod)
2326 		dtimperiod = bs->bs_sleepduration;
2327 
2328 	if (beaconintval == dtimperiod)
2329 		nextTbtt = bs->bs_nextdtim;
2330 	else
2331 		nextTbtt = bs->bs_nexttbtt;
2332 
2333 	ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2334 	ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2335 	ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2336 	ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2337 
2338 	ENABLE_REGWRITE_BUFFER(ah);
2339 
2340 	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2341 	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2342 
2343 	REG_WRITE(ah, AR_SLEEP1,
2344 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2345 		  | AR_SLEEP1_ASSUME_DTIM);
2346 
2347 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2348 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2349 	else
2350 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2351 
2352 	REG_WRITE(ah, AR_SLEEP2,
2353 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2354 
2355 	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2356 	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2357 
2358 	REGWRITE_BUFFER_FLUSH(ah);
2359 
2360 	REG_SET_BIT(ah, AR_TIMER_MODE,
2361 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2362 		    AR_DTIM_TIMER_EN);
2363 
2364 	/* TSF Out of Range Threshold */
2365 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2366 }
2367 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2368 
2369 /*******************/
2370 /* HW Capabilities */
2371 /*******************/
2372 
2373 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2374 {
2375 	eeprom_chainmask &= chip_chainmask;
2376 	if (eeprom_chainmask)
2377 		return eeprom_chainmask;
2378 	else
2379 		return chip_chainmask;
2380 }
2381 
2382 /**
2383  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2384  * @ah: the atheros hardware data structure
2385  *
2386  * We enable DFS support upstream on chipsets which have passed a series
2387  * of tests. The testing requirements are going to be documented. Desired
2388  * test requirements are documented at:
2389  *
2390  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2391  *
2392  * Once a new chipset gets properly tested an individual commit can be used
2393  * to document the testing for DFS for that chipset.
2394  */
2395 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2396 {
2397 
2398 	switch (ah->hw_version.macVersion) {
2399 	/* for temporary testing DFS with 9280 */
2400 	case AR_SREV_VERSION_9280:
2401 	/* AR9580 will likely be our first target to get testing on */
2402 	case AR_SREV_VERSION_9580:
2403 		return true;
2404 	default:
2405 		return false;
2406 	}
2407 }
2408 
2409 static void ath9k_gpio_cap_init(struct ath_hw *ah)
2410 {
2411 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2412 
2413 	if (AR_SREV_9271(ah)) {
2414 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2415 		pCap->gpio_mask = AR9271_GPIO_MASK;
2416 	} else if (AR_DEVID_7010(ah)) {
2417 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2418 		pCap->gpio_mask = AR7010_GPIO_MASK;
2419 	} else if (AR_SREV_9287(ah)) {
2420 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2421 		pCap->gpio_mask = AR9287_GPIO_MASK;
2422 	} else if (AR_SREV_9285(ah)) {
2423 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2424 		pCap->gpio_mask = AR9285_GPIO_MASK;
2425 	} else if (AR_SREV_9280(ah)) {
2426 		pCap->num_gpio_pins = AR9280_NUM_GPIO;
2427 		pCap->gpio_mask = AR9280_GPIO_MASK;
2428 	} else if (AR_SREV_9300(ah)) {
2429 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2430 		pCap->gpio_mask = AR9300_GPIO_MASK;
2431 	} else if (AR_SREV_9330(ah)) {
2432 		pCap->num_gpio_pins = AR9330_NUM_GPIO;
2433 		pCap->gpio_mask = AR9330_GPIO_MASK;
2434 	} else if (AR_SREV_9340(ah)) {
2435 		pCap->num_gpio_pins = AR9340_NUM_GPIO;
2436 		pCap->gpio_mask = AR9340_GPIO_MASK;
2437 	} else if (AR_SREV_9462(ah)) {
2438 		pCap->num_gpio_pins = AR9462_NUM_GPIO;
2439 		pCap->gpio_mask = AR9462_GPIO_MASK;
2440 	} else if (AR_SREV_9485(ah)) {
2441 		pCap->num_gpio_pins = AR9485_NUM_GPIO;
2442 		pCap->gpio_mask = AR9485_GPIO_MASK;
2443 	} else if (AR_SREV_9531(ah)) {
2444 		pCap->num_gpio_pins = AR9531_NUM_GPIO;
2445 		pCap->gpio_mask = AR9531_GPIO_MASK;
2446 	} else if (AR_SREV_9550(ah)) {
2447 		pCap->num_gpio_pins = AR9550_NUM_GPIO;
2448 		pCap->gpio_mask = AR9550_GPIO_MASK;
2449 	} else if (AR_SREV_9561(ah)) {
2450 		pCap->num_gpio_pins = AR9561_NUM_GPIO;
2451 		pCap->gpio_mask = AR9561_GPIO_MASK;
2452 	} else if (AR_SREV_9565(ah)) {
2453 		pCap->num_gpio_pins = AR9565_NUM_GPIO;
2454 		pCap->gpio_mask = AR9565_GPIO_MASK;
2455 	} else if (AR_SREV_9580(ah)) {
2456 		pCap->num_gpio_pins = AR9580_NUM_GPIO;
2457 		pCap->gpio_mask = AR9580_GPIO_MASK;
2458 	} else {
2459 		pCap->num_gpio_pins = AR_NUM_GPIO;
2460 		pCap->gpio_mask = AR_GPIO_MASK;
2461 	}
2462 }
2463 
2464 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2465 {
2466 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2467 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2468 	struct ath_common *common = ath9k_hw_common(ah);
2469 
2470 	u16 eeval;
2471 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2472 
2473 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2474 	regulatory->current_rd = eeval;
2475 
2476 	if (ah->opmode != NL80211_IFTYPE_AP &&
2477 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2478 		if (regulatory->current_rd == 0x64 ||
2479 		    regulatory->current_rd == 0x65)
2480 			regulatory->current_rd += 5;
2481 		else if (regulatory->current_rd == 0x41)
2482 			regulatory->current_rd = 0x43;
2483 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2484 			regulatory->current_rd);
2485 	}
2486 
2487 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2488 
2489 	if (eeval & AR5416_OPFLAGS_11A) {
2490 		if (ah->disable_5ghz)
2491 			ath_warn(common, "disabling 5GHz band\n");
2492 		else
2493 			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2494 	}
2495 
2496 	if (eeval & AR5416_OPFLAGS_11G) {
2497 		if (ah->disable_2ghz)
2498 			ath_warn(common, "disabling 2GHz band\n");
2499 		else
2500 			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2501 	}
2502 
2503 	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2504 		ath_err(common, "both bands are disabled\n");
2505 		return -EINVAL;
2506 	}
2507 
2508 	ath9k_gpio_cap_init(ah);
2509 
2510 	if (AR_SREV_9485(ah) ||
2511 	    AR_SREV_9285(ah) ||
2512 	    AR_SREV_9330(ah) ||
2513 	    AR_SREV_9565(ah))
2514 		pCap->chip_chainmask = 1;
2515 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2516 		pCap->chip_chainmask = 7;
2517 	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2518 		 AR_SREV_9340(ah) ||
2519 		 AR_SREV_9462(ah) ||
2520 		 AR_SREV_9531(ah))
2521 		pCap->chip_chainmask = 3;
2522 	else
2523 		pCap->chip_chainmask = 7;
2524 
2525 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2526 	/*
2527 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2528 	 * the EEPROM.
2529 	 */
2530 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2531 	    !(eeval & AR5416_OPFLAGS_11A) &&
2532 	    !(AR_SREV_9271(ah)))
2533 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2534 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2535 	else if (AR_SREV_9100(ah))
2536 		pCap->rx_chainmask = 0x7;
2537 	else
2538 		/* Use rx_chainmask from EEPROM. */
2539 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2540 
2541 	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2542 	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2543 	ah->txchainmask = pCap->tx_chainmask;
2544 	ah->rxchainmask = pCap->rx_chainmask;
2545 
2546 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2547 
2548 	/* enable key search for every frame in an aggregate */
2549 	if (AR_SREV_9300_20_OR_LATER(ah))
2550 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2551 
2552 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2553 
2554 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2555 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2556 	else
2557 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2558 
2559 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2560 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2561 	else
2562 		pCap->rts_aggr_limit = (8 * 1024);
2563 
2564 #ifdef CONFIG_ATH9K_RFKILL
2565 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2566 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2567 		ah->rfkill_gpio =
2568 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2569 		ah->rfkill_polarity =
2570 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2571 
2572 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2573 	}
2574 #endif
2575 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2576 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2577 	else
2578 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2579 
2580 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2581 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2582 	else
2583 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2584 
2585 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2586 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2587 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2588 		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2589 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2590 
2591 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2592 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2593 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2594 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2595 		pCap->txs_len = sizeof(struct ar9003_txs);
2596 	} else {
2597 		pCap->tx_desc_len = sizeof(struct ath_desc);
2598 		if (AR_SREV_9280_20(ah))
2599 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2600 	}
2601 
2602 	if (AR_SREV_9300_20_OR_LATER(ah))
2603 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2604 
2605 	if (AR_SREV_9561(ah))
2606 		ah->ent_mode = 0x3BDA000;
2607 	else if (AR_SREV_9300_20_OR_LATER(ah))
2608 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2609 
2610 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2611 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2612 
2613 	if (AR_SREV_9285(ah)) {
2614 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2615 			ant_div_ctl1 =
2616 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2617 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2618 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2619 				ath_info(common, "Enable LNA combining\n");
2620 			}
2621 		}
2622 	}
2623 
2624 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2625 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2626 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2627 	}
2628 
2629 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2630 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2631 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2632 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2633 			ath_info(common, "Enable LNA combining\n");
2634 		}
2635 	}
2636 
2637 	if (ath9k_hw_dfs_tested(ah))
2638 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2639 
2640 	tx_chainmask = pCap->tx_chainmask;
2641 	rx_chainmask = pCap->rx_chainmask;
2642 	while (tx_chainmask || rx_chainmask) {
2643 		if (tx_chainmask & BIT(0))
2644 			pCap->max_txchains++;
2645 		if (rx_chainmask & BIT(0))
2646 			pCap->max_rxchains++;
2647 
2648 		tx_chainmask >>= 1;
2649 		rx_chainmask >>= 1;
2650 	}
2651 
2652 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2653 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2654 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2655 
2656 		if (AR_SREV_9462_20_OR_LATER(ah))
2657 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2658 	}
2659 
2660 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2661 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2662 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2663 
2664 #ifdef CONFIG_ATH9K_WOW
2665 	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2666 		ah->wow.max_patterns = MAX_NUM_PATTERN;
2667 	else
2668 		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2669 #endif
2670 
2671 	return 0;
2672 }
2673 
2674 /****************************/
2675 /* GPIO / RFKILL / Antennae */
2676 /****************************/
2677 
2678 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
2679 {
2680 	int addr;
2681 	u32 gpio_shift, tmp;
2682 
2683 	if (gpio > 11)
2684 		addr = AR_GPIO_OUTPUT_MUX3;
2685 	else if (gpio > 5)
2686 		addr = AR_GPIO_OUTPUT_MUX2;
2687 	else
2688 		addr = AR_GPIO_OUTPUT_MUX1;
2689 
2690 	gpio_shift = (gpio % 6) * 5;
2691 
2692 	if (AR_SREV_9280_20_OR_LATER(ah) ||
2693 	    (addr != AR_GPIO_OUTPUT_MUX1)) {
2694 		REG_RMW(ah, addr, (type << gpio_shift),
2695 			(0x1f << gpio_shift));
2696 	} else {
2697 		tmp = REG_READ(ah, addr);
2698 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2699 		tmp &= ~(0x1f << gpio_shift);
2700 		tmp |= (type << gpio_shift);
2701 		REG_WRITE(ah, addr, tmp);
2702 	}
2703 }
2704 
2705 /* BSP should set the corresponding MUX register correctly.
2706  */
2707 static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2708 				  const char *label)
2709 {
2710 	if (ah->caps.gpio_requested & BIT(gpio))
2711 		return;
2712 
2713 	/* may be requested by BSP, free anyway */
2714 	gpio_free(gpio);
2715 
2716 	if (gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label))
2717 		return;
2718 
2719 	ah->caps.gpio_requested |= BIT(gpio);
2720 }
2721 
2722 static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2723 				   u32 ah_signal_type)
2724 {
2725 	u32 gpio_set, gpio_shift = gpio;
2726 
2727 	if (AR_DEVID_7010(ah)) {
2728 		gpio_set = out ?
2729 			AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2730 		REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2731 			AR7010_GPIO_OE_MASK << gpio_shift);
2732 	} else if (AR_SREV_SOC(ah)) {
2733 		gpio_set = out ? 1 : 0;
2734 		REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2735 			gpio_set << gpio_shift);
2736 	} else {
2737 		gpio_shift = gpio << 1;
2738 		gpio_set = out ?
2739 			AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2740 		REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2741 			AR_GPIO_OE_OUT_DRV << gpio_shift);
2742 
2743 		if (out)
2744 			ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2745 	}
2746 }
2747 
2748 static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2749 				  const char *label, u32 ah_signal_type)
2750 {
2751 	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2752 
2753 	if (BIT(gpio) & ah->caps.gpio_mask)
2754 		ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2755 	else if (AR_SREV_SOC(ah))
2756 		ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2757 	else
2758 		WARN_ON(1);
2759 }
2760 
2761 void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2762 {
2763 	ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2764 }
2765 EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2766 
2767 void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2768 			       u32 ah_signal_type)
2769 {
2770 	ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2771 }
2772 EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2773 
2774 void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2775 {
2776 	if (!AR_SREV_SOC(ah))
2777 		return;
2778 
2779 	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2780 
2781 	if (ah->caps.gpio_requested & BIT(gpio)) {
2782 		gpio_free(gpio);
2783 		ah->caps.gpio_requested &= ~BIT(gpio);
2784 	}
2785 }
2786 EXPORT_SYMBOL(ath9k_hw_gpio_free);
2787 
2788 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2789 {
2790 	u32 val = 0xffffffff;
2791 
2792 #define MS_REG_READ(x, y) \
2793 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2794 
2795 	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2796 
2797 	if (BIT(gpio) & ah->caps.gpio_mask) {
2798 		if (AR_SREV_9271(ah))
2799 			val = MS_REG_READ(AR9271, gpio);
2800 		else if (AR_SREV_9287(ah))
2801 			val = MS_REG_READ(AR9287, gpio);
2802 		else if (AR_SREV_9285(ah))
2803 			val = MS_REG_READ(AR9285, gpio);
2804 		else if (AR_SREV_9280(ah))
2805 			val = MS_REG_READ(AR928X, gpio);
2806 		else if (AR_DEVID_7010(ah))
2807 			val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2808 		else if (AR_SREV_9300_20_OR_LATER(ah))
2809 			val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio);
2810 		else
2811 			val = MS_REG_READ(AR, gpio);
2812 	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2813 		val = gpio_get_value(gpio) & BIT(gpio);
2814 	} else {
2815 		WARN_ON(1);
2816 	}
2817 
2818 	return !!val;
2819 }
2820 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2821 
2822 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2823 {
2824 	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2825 
2826 	if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2827 		val = !val;
2828 	else
2829 		val = !!val;
2830 
2831 	if (BIT(gpio) & ah->caps.gpio_mask) {
2832 		u32 out_addr = AR_DEVID_7010(ah) ?
2833 			AR7010_GPIO_OUT : AR_GPIO_IN_OUT;
2834 
2835 		REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2836 	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2837 		gpio_set_value(gpio, val);
2838 	} else {
2839 		WARN_ON(1);
2840 	}
2841 }
2842 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2843 
2844 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2845 {
2846 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2847 }
2848 EXPORT_SYMBOL(ath9k_hw_setantenna);
2849 
2850 /*********************/
2851 /* General Operation */
2852 /*********************/
2853 
2854 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2855 {
2856 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2857 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2858 
2859 	if (phybits & AR_PHY_ERR_RADAR)
2860 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2861 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2862 		bits |= ATH9K_RX_FILTER_PHYERR;
2863 
2864 	return bits;
2865 }
2866 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2867 
2868 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2869 {
2870 	u32 phybits;
2871 
2872 	ENABLE_REGWRITE_BUFFER(ah);
2873 
2874 	REG_WRITE(ah, AR_RX_FILTER, bits);
2875 
2876 	phybits = 0;
2877 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2878 		phybits |= AR_PHY_ERR_RADAR;
2879 	if (bits & ATH9K_RX_FILTER_PHYERR)
2880 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2881 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2882 
2883 	if (phybits)
2884 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2885 	else
2886 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2887 
2888 	REGWRITE_BUFFER_FLUSH(ah);
2889 }
2890 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2891 
2892 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2893 {
2894 	if (ath9k_hw_mci_is_enabled(ah))
2895 		ar9003_mci_bt_gain_ctrl(ah);
2896 
2897 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2898 		return false;
2899 
2900 	ath9k_hw_init_pll(ah, NULL);
2901 	ah->htc_reset_init = true;
2902 	return true;
2903 }
2904 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2905 
2906 bool ath9k_hw_disable(struct ath_hw *ah)
2907 {
2908 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2909 		return false;
2910 
2911 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2912 		return false;
2913 
2914 	ath9k_hw_init_pll(ah, NULL);
2915 	return true;
2916 }
2917 EXPORT_SYMBOL(ath9k_hw_disable);
2918 
2919 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2920 {
2921 	enum eeprom_param gain_param;
2922 
2923 	if (IS_CHAN_2GHZ(chan))
2924 		gain_param = EEP_ANTENNA_GAIN_2G;
2925 	else
2926 		gain_param = EEP_ANTENNA_GAIN_5G;
2927 
2928 	return ah->eep_ops->get_eeprom(ah, gain_param);
2929 }
2930 
2931 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2932 			    bool test)
2933 {
2934 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2935 	struct ieee80211_channel *channel;
2936 	int chan_pwr, new_pwr;
2937 
2938 	if (!chan)
2939 		return;
2940 
2941 	channel = chan->chan;
2942 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2943 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2944 
2945 	ah->eep_ops->set_txpower(ah, chan,
2946 				 ath9k_regd_get_ctl(reg, chan),
2947 				 get_antenna_gain(ah, chan), new_pwr, test);
2948 }
2949 
2950 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2951 {
2952 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2953 	struct ath9k_channel *chan = ah->curchan;
2954 	struct ieee80211_channel *channel = chan->chan;
2955 
2956 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2957 	if (test)
2958 		channel->max_power = MAX_RATE_POWER / 2;
2959 
2960 	ath9k_hw_apply_txpower(ah, chan, test);
2961 
2962 	if (test)
2963 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2964 }
2965 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2966 
2967 void ath9k_hw_setopmode(struct ath_hw *ah)
2968 {
2969 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2970 }
2971 EXPORT_SYMBOL(ath9k_hw_setopmode);
2972 
2973 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2974 {
2975 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2976 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2977 }
2978 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2979 
2980 void ath9k_hw_write_associd(struct ath_hw *ah)
2981 {
2982 	struct ath_common *common = ath9k_hw_common(ah);
2983 
2984 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2985 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2986 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2987 }
2988 EXPORT_SYMBOL(ath9k_hw_write_associd);
2989 
2990 #define ATH9K_MAX_TSF_READ 10
2991 
2992 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2993 {
2994 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2995 	int i;
2996 
2997 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2998 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2999 		tsf_lower = REG_READ(ah, AR_TSF_L32);
3000 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
3001 		if (tsf_upper2 == tsf_upper1)
3002 			break;
3003 		tsf_upper1 = tsf_upper2;
3004 	}
3005 
3006 	WARN_ON( i == ATH9K_MAX_TSF_READ );
3007 
3008 	return (((u64)tsf_upper1 << 32) | tsf_lower);
3009 }
3010 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3011 
3012 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3013 {
3014 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3015 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3016 }
3017 EXPORT_SYMBOL(ath9k_hw_settsf64);
3018 
3019 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3020 {
3021 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3022 			   AH_TSF_WRITE_TIMEOUT))
3023 		ath_dbg(ath9k_hw_common(ah), RESET,
3024 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3025 
3026 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3027 }
3028 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3029 
3030 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3031 {
3032 	if (set)
3033 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3034 	else
3035 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3036 }
3037 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3038 
3039 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3040 {
3041 	u32 macmode;
3042 
3043 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3044 		macmode = AR_2040_JOINED_RX_CLEAR;
3045 	else
3046 		macmode = 0;
3047 
3048 	REG_WRITE(ah, AR_2040_MODE, macmode);
3049 }
3050 
3051 /* HW Generic timers configuration */
3052 
3053 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3054 {
3055 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3056 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3057 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3058 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3059 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3060 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3061 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3062 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3063 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3064 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3065 				AR_NDP2_TIMER_MODE, 0x0002},
3066 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3067 				AR_NDP2_TIMER_MODE, 0x0004},
3068 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3069 				AR_NDP2_TIMER_MODE, 0x0008},
3070 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3071 				AR_NDP2_TIMER_MODE, 0x0010},
3072 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3073 				AR_NDP2_TIMER_MODE, 0x0020},
3074 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3075 				AR_NDP2_TIMER_MODE, 0x0040},
3076 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3077 				AR_NDP2_TIMER_MODE, 0x0080}
3078 };
3079 
3080 /* HW generic timer primitives */
3081 
3082 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3083 {
3084 	return REG_READ(ah, AR_TSF_L32);
3085 }
3086 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3087 
3088 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3089 {
3090 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3091 
3092 	if (timer_table->tsf2_enabled) {
3093 		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3094 		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3095 	}
3096 }
3097 
3098 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3099 					  void (*trigger)(void *),
3100 					  void (*overflow)(void *),
3101 					  void *arg,
3102 					  u8 timer_index)
3103 {
3104 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3105 	struct ath_gen_timer *timer;
3106 
3107 	if ((timer_index < AR_FIRST_NDP_TIMER) ||
3108 	    (timer_index >= ATH_MAX_GEN_TIMER))
3109 		return NULL;
3110 
3111 	if ((timer_index > AR_FIRST_NDP_TIMER) &&
3112 	    !AR_SREV_9300_20_OR_LATER(ah))
3113 		return NULL;
3114 
3115 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3116 	if (timer == NULL)
3117 		return NULL;
3118 
3119 	/* allocate a hardware generic timer slot */
3120 	timer_table->timers[timer_index] = timer;
3121 	timer->index = timer_index;
3122 	timer->trigger = trigger;
3123 	timer->overflow = overflow;
3124 	timer->arg = arg;
3125 
3126 	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3127 		timer_table->tsf2_enabled = true;
3128 		ath9k_hw_gen_timer_start_tsf2(ah);
3129 	}
3130 
3131 	return timer;
3132 }
3133 EXPORT_SYMBOL(ath_gen_timer_alloc);
3134 
3135 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3136 			      struct ath_gen_timer *timer,
3137 			      u32 timer_next,
3138 			      u32 timer_period)
3139 {
3140 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3141 	u32 mask = 0;
3142 
3143 	timer_table->timer_mask |= BIT(timer->index);
3144 
3145 	/*
3146 	 * Program generic timer registers
3147 	 */
3148 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3149 		 timer_next);
3150 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3151 		  timer_period);
3152 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3153 		    gen_tmr_configuration[timer->index].mode_mask);
3154 
3155 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3156 		/*
3157 		 * Starting from AR9462, each generic timer can select which tsf
3158 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3159 		 * 8 - 15  use tsf2.
3160 		 */
3161 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3162 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3163 				       (1 << timer->index));
3164 		else
3165 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3166 				       (1 << timer->index));
3167 	}
3168 
3169 	if (timer->trigger)
3170 		mask |= SM(AR_GENTMR_BIT(timer->index),
3171 			   AR_IMR_S5_GENTIMER_TRIG);
3172 	if (timer->overflow)
3173 		mask |= SM(AR_GENTMR_BIT(timer->index),
3174 			   AR_IMR_S5_GENTIMER_THRESH);
3175 
3176 	REG_SET_BIT(ah, AR_IMR_S5, mask);
3177 
3178 	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3179 		ah->imask |= ATH9K_INT_GENTIMER;
3180 		ath9k_hw_set_interrupts(ah);
3181 	}
3182 }
3183 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3184 
3185 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3186 {
3187 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3188 
3189 	/* Clear generic timer enable bits. */
3190 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3191 			gen_tmr_configuration[timer->index].mode_mask);
3192 
3193 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3194 		/*
3195 		 * Need to switch back to TSF if it was using TSF2.
3196 		 */
3197 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3198 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3199 				    (1 << timer->index));
3200 		}
3201 	}
3202 
3203 	/* Disable both trigger and thresh interrupt masks */
3204 	REG_CLR_BIT(ah, AR_IMR_S5,
3205 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3206 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3207 
3208 	timer_table->timer_mask &= ~BIT(timer->index);
3209 
3210 	if (timer_table->timer_mask == 0) {
3211 		ah->imask &= ~ATH9K_INT_GENTIMER;
3212 		ath9k_hw_set_interrupts(ah);
3213 	}
3214 }
3215 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3216 
3217 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3218 {
3219 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3220 
3221 	/* free the hardware generic timer slot */
3222 	timer_table->timers[timer->index] = NULL;
3223 	kfree(timer);
3224 }
3225 EXPORT_SYMBOL(ath_gen_timer_free);
3226 
3227 /*
3228  * Generic Timer Interrupts handling
3229  */
3230 void ath_gen_timer_isr(struct ath_hw *ah)
3231 {
3232 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3233 	struct ath_gen_timer *timer;
3234 	unsigned long trigger_mask, thresh_mask;
3235 	unsigned int index;
3236 
3237 	/* get hardware generic timer interrupt status */
3238 	trigger_mask = ah->intr_gen_timer_trigger;
3239 	thresh_mask = ah->intr_gen_timer_thresh;
3240 	trigger_mask &= timer_table->timer_mask;
3241 	thresh_mask &= timer_table->timer_mask;
3242 
3243 	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3244 		timer = timer_table->timers[index];
3245 		if (!timer)
3246 		    continue;
3247 		if (!timer->overflow)
3248 		    continue;
3249 
3250 		trigger_mask &= ~BIT(index);
3251 		timer->overflow(timer->arg);
3252 	}
3253 
3254 	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3255 		timer = timer_table->timers[index];
3256 		if (!timer)
3257 		    continue;
3258 		if (!timer->trigger)
3259 		    continue;
3260 		timer->trigger(timer->arg);
3261 	}
3262 }
3263 EXPORT_SYMBOL(ath_gen_timer_isr);
3264 
3265 /********/
3266 /* HTC  */
3267 /********/
3268 
3269 static struct {
3270 	u32 version;
3271 	const char * name;
3272 } ath_mac_bb_names[] = {
3273 	/* Devices with external radios */
3274 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3275 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3276 	{ AR_SREV_VERSION_9100,		"9100" },
3277 	{ AR_SREV_VERSION_9160,		"9160" },
3278 	/* Single-chip solutions */
3279 	{ AR_SREV_VERSION_9280,		"9280" },
3280 	{ AR_SREV_VERSION_9285,		"9285" },
3281 	{ AR_SREV_VERSION_9287,         "9287" },
3282 	{ AR_SREV_VERSION_9271,         "9271" },
3283 	{ AR_SREV_VERSION_9300,         "9300" },
3284 	{ AR_SREV_VERSION_9330,         "9330" },
3285 	{ AR_SREV_VERSION_9340,		"9340" },
3286 	{ AR_SREV_VERSION_9485,         "9485" },
3287 	{ AR_SREV_VERSION_9462,         "9462" },
3288 	{ AR_SREV_VERSION_9550,         "9550" },
3289 	{ AR_SREV_VERSION_9565,         "9565" },
3290 	{ AR_SREV_VERSION_9531,         "9531" },
3291 	{ AR_SREV_VERSION_9561,         "9561" },
3292 };
3293 
3294 /* For devices with external radios */
3295 static struct {
3296 	u16 version;
3297 	const char * name;
3298 } ath_rf_names[] = {
3299 	{ 0,				"5133" },
3300 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3301 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3302 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3303 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3304 };
3305 
3306 /*
3307  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3308  */
3309 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3310 {
3311 	int i;
3312 
3313 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3314 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3315 			return ath_mac_bb_names[i].name;
3316 		}
3317 	}
3318 
3319 	return "????";
3320 }
3321 
3322 /*
3323  * Return the RF name. "????" is returned if the RF is unknown.
3324  * Used for devices with external radios.
3325  */
3326 static const char *ath9k_hw_rf_name(u16 rf_version)
3327 {
3328 	int i;
3329 
3330 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3331 		if (ath_rf_names[i].version == rf_version) {
3332 			return ath_rf_names[i].name;
3333 		}
3334 	}
3335 
3336 	return "????";
3337 }
3338 
3339 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3340 {
3341 	int used;
3342 
3343 	/* chipsets >= AR9280 are single-chip */
3344 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3345 		used = scnprintf(hw_name, len,
3346 				 "Atheros AR%s Rev:%x",
3347 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3348 				 ah->hw_version.macRev);
3349 	}
3350 	else {
3351 		used = scnprintf(hw_name, len,
3352 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3353 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3354 				 ah->hw_version.macRev,
3355 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3356 						  & AR_RADIO_SREV_MAJOR)),
3357 				 ah->hw_version.phyRev);
3358 	}
3359 
3360 	hw_name[used] = '\0';
3361 }
3362 EXPORT_SYMBOL(ath9k_hw_name);
3363