xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision c819e2cf)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <asm/unaligned.h>
24 
25 #include "hw.h"
26 #include "hw-ops.h"
27 #include "ar9003_mac.h"
28 #include "ar9003_mci.h"
29 #include "ar9003_phy.h"
30 #include "ath9k.h"
31 
32 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
33 
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38 
39 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
40 {
41 	struct ath_common *common = ath9k_hw_common(ah);
42 	struct ath9k_channel *chan = ah->curchan;
43 	unsigned int clockrate;
44 
45 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
46 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
47 		clockrate = 117;
48 	else if (!chan) /* should really check for CCK instead */
49 		clockrate = ATH9K_CLOCK_RATE_CCK;
50 	else if (IS_CHAN_2GHZ(chan))
51 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
52 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
53 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
54 	else
55 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
56 
57 	if (chan) {
58 		if (IS_CHAN_HT40(chan))
59 			clockrate *= 2;
60 		if (IS_CHAN_HALF_RATE(chan))
61 			clockrate /= 2;
62 		if (IS_CHAN_QUARTER_RATE(chan))
63 			clockrate /= 4;
64 	}
65 
66 	common->clockrate = clockrate;
67 }
68 
69 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
70 {
71 	struct ath_common *common = ath9k_hw_common(ah);
72 
73 	return usecs * common->clockrate;
74 }
75 
76 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77 {
78 	int i;
79 
80 	BUG_ON(timeout < AH_TIME_QUANTUM);
81 
82 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83 		if ((REG_READ(ah, reg) & mask) == val)
84 			return true;
85 
86 		udelay(AH_TIME_QUANTUM);
87 	}
88 
89 	ath_dbg(ath9k_hw_common(ah), ANY,
90 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91 		timeout, reg, REG_READ(ah, reg), mask, val);
92 
93 	return false;
94 }
95 EXPORT_SYMBOL(ath9k_hw_wait);
96 
97 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
98 			  int hw_delay)
99 {
100 	hw_delay /= 10;
101 
102 	if (IS_CHAN_HALF_RATE(chan))
103 		hw_delay *= 2;
104 	else if (IS_CHAN_QUARTER_RATE(chan))
105 		hw_delay *= 4;
106 
107 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
108 }
109 
110 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
111 			  int column, unsigned int *writecnt)
112 {
113 	int r;
114 
115 	ENABLE_REGWRITE_BUFFER(ah);
116 	for (r = 0; r < array->ia_rows; r++) {
117 		REG_WRITE(ah, INI_RA(array, r, 0),
118 			  INI_RA(array, r, column));
119 		DO_DELAY(*writecnt);
120 	}
121 	REGWRITE_BUFFER_FLUSH(ah);
122 }
123 
124 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
125 {
126 	u32 retval;
127 	int i;
128 
129 	for (i = 0, retval = 0; i < n; i++) {
130 		retval = (retval << 1) | (val & 1);
131 		val >>= 1;
132 	}
133 	return retval;
134 }
135 
136 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
137 			   u8 phy, int kbps,
138 			   u32 frameLen, u16 rateix,
139 			   bool shortPreamble)
140 {
141 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
142 
143 	if (kbps == 0)
144 		return 0;
145 
146 	switch (phy) {
147 	case WLAN_RC_PHY_CCK:
148 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
149 		if (shortPreamble)
150 			phyTime >>= 1;
151 		numBits = frameLen << 3;
152 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
153 		break;
154 	case WLAN_RC_PHY_OFDM:
155 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
156 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
157 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
158 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
159 			txTime = OFDM_SIFS_TIME_QUARTER
160 				+ OFDM_PREAMBLE_TIME_QUARTER
161 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
162 		} else if (ah->curchan &&
163 			   IS_CHAN_HALF_RATE(ah->curchan)) {
164 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
165 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
166 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
167 			txTime = OFDM_SIFS_TIME_HALF +
168 				OFDM_PREAMBLE_TIME_HALF
169 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
170 		} else {
171 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
172 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
173 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
174 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
175 				+ (numSymbols * OFDM_SYMBOL_TIME);
176 		}
177 		break;
178 	default:
179 		ath_err(ath9k_hw_common(ah),
180 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
181 		txTime = 0;
182 		break;
183 	}
184 
185 	return txTime;
186 }
187 EXPORT_SYMBOL(ath9k_hw_computetxtime);
188 
189 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
190 				  struct ath9k_channel *chan,
191 				  struct chan_centers *centers)
192 {
193 	int8_t extoff;
194 
195 	if (!IS_CHAN_HT40(chan)) {
196 		centers->ctl_center = centers->ext_center =
197 			centers->synth_center = chan->channel;
198 		return;
199 	}
200 
201 	if (IS_CHAN_HT40PLUS(chan)) {
202 		centers->synth_center =
203 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
204 		extoff = 1;
205 	} else {
206 		centers->synth_center =
207 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
208 		extoff = -1;
209 	}
210 
211 	centers->ctl_center =
212 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
213 	/* 25 MHz spacing is supported by hw but not on upper layers */
214 	centers->ext_center =
215 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
216 }
217 
218 /******************/
219 /* Chip Revisions */
220 /******************/
221 
222 static void ath9k_hw_read_revisions(struct ath_hw *ah)
223 {
224 	u32 val;
225 
226 	if (ah->get_mac_revision)
227 		ah->hw_version.macRev = ah->get_mac_revision();
228 
229 	switch (ah->hw_version.devid) {
230 	case AR5416_AR9100_DEVID:
231 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
232 		break;
233 	case AR9300_DEVID_AR9330:
234 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
235 		if (!ah->get_mac_revision) {
236 			val = REG_READ(ah, AR_SREV);
237 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
238 		}
239 		return;
240 	case AR9300_DEVID_AR9340:
241 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
242 		return;
243 	case AR9300_DEVID_QCA955X:
244 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
245 		return;
246 	case AR9300_DEVID_AR953X:
247 		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
248 		return;
249 	}
250 
251 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
252 
253 	if (val == 0xFF) {
254 		val = REG_READ(ah, AR_SREV);
255 		ah->hw_version.macVersion =
256 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
257 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
258 
259 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
260 			ah->is_pciexpress = true;
261 		else
262 			ah->is_pciexpress = (val &
263 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
264 	} else {
265 		if (!AR_SREV_9100(ah))
266 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
267 
268 		ah->hw_version.macRev = val & AR_SREV_REVISION;
269 
270 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
271 			ah->is_pciexpress = true;
272 	}
273 }
274 
275 /************************************/
276 /* HW Attach, Detach, Init Routines */
277 /************************************/
278 
279 static void ath9k_hw_disablepcie(struct ath_hw *ah)
280 {
281 	if (!AR_SREV_5416(ah))
282 		return;
283 
284 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
285 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
286 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
287 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
288 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
289 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
290 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
291 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
292 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
293 
294 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
295 }
296 
297 /* This should work for all families including legacy */
298 static bool ath9k_hw_chip_test(struct ath_hw *ah)
299 {
300 	struct ath_common *common = ath9k_hw_common(ah);
301 	u32 regAddr[2] = { AR_STA_ID0 };
302 	u32 regHold[2];
303 	static const u32 patternData[4] = {
304 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
305 	};
306 	int i, j, loop_max;
307 
308 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
309 		loop_max = 2;
310 		regAddr[1] = AR_PHY_BASE + (8 << 2);
311 	} else
312 		loop_max = 1;
313 
314 	for (i = 0; i < loop_max; i++) {
315 		u32 addr = regAddr[i];
316 		u32 wrData, rdData;
317 
318 		regHold[i] = REG_READ(ah, addr);
319 		for (j = 0; j < 0x100; j++) {
320 			wrData = (j << 16) | j;
321 			REG_WRITE(ah, addr, wrData);
322 			rdData = REG_READ(ah, addr);
323 			if (rdData != wrData) {
324 				ath_err(common,
325 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
326 					addr, wrData, rdData);
327 				return false;
328 			}
329 		}
330 		for (j = 0; j < 4; j++) {
331 			wrData = patternData[j];
332 			REG_WRITE(ah, addr, wrData);
333 			rdData = REG_READ(ah, addr);
334 			if (wrData != rdData) {
335 				ath_err(common,
336 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
337 					addr, wrData, rdData);
338 				return false;
339 			}
340 		}
341 		REG_WRITE(ah, regAddr[i], regHold[i]);
342 	}
343 	udelay(100);
344 
345 	return true;
346 }
347 
348 static void ath9k_hw_init_config(struct ath_hw *ah)
349 {
350 	struct ath_common *common = ath9k_hw_common(ah);
351 
352 	ah->config.dma_beacon_response_time = 1;
353 	ah->config.sw_beacon_response_time = 6;
354 	ah->config.cwm_ignore_extcca = 0;
355 	ah->config.analog_shiftreg = 1;
356 
357 	ah->config.rx_intr_mitigation = true;
358 
359 	if (AR_SREV_9300_20_OR_LATER(ah)) {
360 		ah->config.rimt_last = 500;
361 		ah->config.rimt_first = 2000;
362 	} else {
363 		ah->config.rimt_last = 250;
364 		ah->config.rimt_first = 700;
365 	}
366 
367 	/*
368 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
369 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
370 	 * This means we use it for all AR5416 devices, and the few
371 	 * minor PCI AR9280 devices out there.
372 	 *
373 	 * Serialization is required because these devices do not handle
374 	 * well the case of two concurrent reads/writes due to the latency
375 	 * involved. During one read/write another read/write can be issued
376 	 * on another CPU while the previous read/write may still be working
377 	 * on our hardware, if we hit this case the hardware poops in a loop.
378 	 * We prevent this by serializing reads and writes.
379 	 *
380 	 * This issue is not present on PCI-Express devices or pre-AR5416
381 	 * devices (legacy, 802.11abg).
382 	 */
383 	if (num_possible_cpus() > 1)
384 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
385 
386 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
387 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
388 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
389 		     !ah->is_pciexpress)) {
390 			ah->config.serialize_regmode = SER_REG_MODE_ON;
391 		} else {
392 			ah->config.serialize_regmode = SER_REG_MODE_OFF;
393 		}
394 	}
395 
396 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
397 		ah->config.serialize_regmode);
398 
399 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
400 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
401 	else
402 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
403 }
404 
405 static void ath9k_hw_init_defaults(struct ath_hw *ah)
406 {
407 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
408 
409 	regulatory->country_code = CTRY_DEFAULT;
410 	regulatory->power_limit = MAX_RATE_POWER;
411 
412 	ah->hw_version.magic = AR5416_MAGIC;
413 	ah->hw_version.subvendorid = 0;
414 
415 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
416 			       AR_STA_ID1_MCAST_KSRCH;
417 	if (AR_SREV_9100(ah))
418 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
419 
420 	ah->slottime = ATH9K_SLOT_TIME_9;
421 	ah->globaltxtimeout = (u32) -1;
422 	ah->power_mode = ATH9K_PM_UNDEFINED;
423 	ah->htc_reset_init = true;
424 
425 	ah->ani_function = ATH9K_ANI_ALL;
426 	if (!AR_SREV_9300_20_OR_LATER(ah))
427 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
428 
429 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
430 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
431 	else
432 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
433 }
434 
435 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
436 {
437 	struct ath_common *common = ath9k_hw_common(ah);
438 	u32 sum;
439 	int i;
440 	u16 eeval;
441 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
442 
443 	sum = 0;
444 	for (i = 0; i < 3; i++) {
445 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
446 		sum += eeval;
447 		common->macaddr[2 * i] = eeval >> 8;
448 		common->macaddr[2 * i + 1] = eeval & 0xff;
449 	}
450 	if (!is_valid_ether_addr(common->macaddr)) {
451 		ath_err(common,
452 			"eeprom contains invalid mac address: %pM\n",
453 			common->macaddr);
454 
455 		random_ether_addr(common->macaddr);
456 		ath_err(common,
457 			"random mac address will be used: %pM\n",
458 			common->macaddr);
459 	}
460 
461 	return 0;
462 }
463 
464 static int ath9k_hw_post_init(struct ath_hw *ah)
465 {
466 	struct ath_common *common = ath9k_hw_common(ah);
467 	int ecode;
468 
469 	if (common->bus_ops->ath_bus_type != ATH_USB) {
470 		if (!ath9k_hw_chip_test(ah))
471 			return -ENODEV;
472 	}
473 
474 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
475 		ecode = ar9002_hw_rf_claim(ah);
476 		if (ecode != 0)
477 			return ecode;
478 	}
479 
480 	ecode = ath9k_hw_eeprom_init(ah);
481 	if (ecode != 0)
482 		return ecode;
483 
484 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
485 		ah->eep_ops->get_eeprom_ver(ah),
486 		ah->eep_ops->get_eeprom_rev(ah));
487 
488 	ath9k_hw_ani_init(ah);
489 
490 	/*
491 	 * EEPROM needs to be initialized before we do this.
492 	 * This is required for regulatory compliance.
493 	 */
494 	if (AR_SREV_9300_20_OR_LATER(ah)) {
495 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
496 		if ((regdmn & 0xF0) == CTL_FCC) {
497 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
498 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
499 		}
500 	}
501 
502 	return 0;
503 }
504 
505 static int ath9k_hw_attach_ops(struct ath_hw *ah)
506 {
507 	if (!AR_SREV_9300_20_OR_LATER(ah))
508 		return ar9002_hw_attach_ops(ah);
509 
510 	ar9003_hw_attach_ops(ah);
511 	return 0;
512 }
513 
514 /* Called for all hardware families */
515 static int __ath9k_hw_init(struct ath_hw *ah)
516 {
517 	struct ath_common *common = ath9k_hw_common(ah);
518 	int r = 0;
519 
520 	ath9k_hw_read_revisions(ah);
521 
522 	switch (ah->hw_version.macVersion) {
523 	case AR_SREV_VERSION_5416_PCI:
524 	case AR_SREV_VERSION_5416_PCIE:
525 	case AR_SREV_VERSION_9160:
526 	case AR_SREV_VERSION_9100:
527 	case AR_SREV_VERSION_9280:
528 	case AR_SREV_VERSION_9285:
529 	case AR_SREV_VERSION_9287:
530 	case AR_SREV_VERSION_9271:
531 	case AR_SREV_VERSION_9300:
532 	case AR_SREV_VERSION_9330:
533 	case AR_SREV_VERSION_9485:
534 	case AR_SREV_VERSION_9340:
535 	case AR_SREV_VERSION_9462:
536 	case AR_SREV_VERSION_9550:
537 	case AR_SREV_VERSION_9565:
538 	case AR_SREV_VERSION_9531:
539 		break;
540 	default:
541 		ath_err(common,
542 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
543 			ah->hw_version.macVersion, ah->hw_version.macRev);
544 		return -EOPNOTSUPP;
545 	}
546 
547 	/*
548 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
549 	 * We need to do this to avoid RMW of this register. We cannot
550 	 * read the reg when chip is asleep.
551 	 */
552 	if (AR_SREV_9300_20_OR_LATER(ah)) {
553 		ah->WARegVal = REG_READ(ah, AR_WA);
554 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
555 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
556 	}
557 
558 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
559 		ath_err(common, "Couldn't reset chip\n");
560 		return -EIO;
561 	}
562 
563 	if (AR_SREV_9565(ah)) {
564 		ah->WARegVal |= AR_WA_BIT22;
565 		REG_WRITE(ah, AR_WA, ah->WARegVal);
566 	}
567 
568 	ath9k_hw_init_defaults(ah);
569 	ath9k_hw_init_config(ah);
570 
571 	r = ath9k_hw_attach_ops(ah);
572 	if (r)
573 		return r;
574 
575 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
576 		ath_err(common, "Couldn't wakeup chip\n");
577 		return -EIO;
578 	}
579 
580 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
581 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
582 		ah->is_pciexpress = false;
583 
584 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
585 	ath9k_hw_init_cal_settings(ah);
586 
587 	if (!ah->is_pciexpress)
588 		ath9k_hw_disablepcie(ah);
589 
590 	r = ath9k_hw_post_init(ah);
591 	if (r)
592 		return r;
593 
594 	ath9k_hw_init_mode_gain_regs(ah);
595 	r = ath9k_hw_fill_cap_info(ah);
596 	if (r)
597 		return r;
598 
599 	r = ath9k_hw_init_macaddr(ah);
600 	if (r) {
601 		ath_err(common, "Failed to initialize MAC address\n");
602 		return r;
603 	}
604 
605 	ath9k_hw_init_hang_checks(ah);
606 
607 	common->state = ATH_HW_INITIALIZED;
608 
609 	return 0;
610 }
611 
612 int ath9k_hw_init(struct ath_hw *ah)
613 {
614 	int ret;
615 	struct ath_common *common = ath9k_hw_common(ah);
616 
617 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
618 	switch (ah->hw_version.devid) {
619 	case AR5416_DEVID_PCI:
620 	case AR5416_DEVID_PCIE:
621 	case AR5416_AR9100_DEVID:
622 	case AR9160_DEVID_PCI:
623 	case AR9280_DEVID_PCI:
624 	case AR9280_DEVID_PCIE:
625 	case AR9285_DEVID_PCIE:
626 	case AR9287_DEVID_PCI:
627 	case AR9287_DEVID_PCIE:
628 	case AR2427_DEVID_PCIE:
629 	case AR9300_DEVID_PCIE:
630 	case AR9300_DEVID_AR9485_PCIE:
631 	case AR9300_DEVID_AR9330:
632 	case AR9300_DEVID_AR9340:
633 	case AR9300_DEVID_QCA955X:
634 	case AR9300_DEVID_AR9580:
635 	case AR9300_DEVID_AR9462:
636 	case AR9485_DEVID_AR1111:
637 	case AR9300_DEVID_AR9565:
638 	case AR9300_DEVID_AR953X:
639 		break;
640 	default:
641 		if (common->bus_ops->ath_bus_type == ATH_USB)
642 			break;
643 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
644 			ah->hw_version.devid);
645 		return -EOPNOTSUPP;
646 	}
647 
648 	ret = __ath9k_hw_init(ah);
649 	if (ret) {
650 		ath_err(common,
651 			"Unable to initialize hardware; initialization status: %d\n",
652 			ret);
653 		return ret;
654 	}
655 
656 	ath_dynack_init(ah);
657 
658 	return 0;
659 }
660 EXPORT_SYMBOL(ath9k_hw_init);
661 
662 static void ath9k_hw_init_qos(struct ath_hw *ah)
663 {
664 	ENABLE_REGWRITE_BUFFER(ah);
665 
666 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
667 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
668 
669 	REG_WRITE(ah, AR_QOS_NO_ACK,
670 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
671 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
672 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
673 
674 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
675 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
676 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
677 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
678 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
679 
680 	REGWRITE_BUFFER_FLUSH(ah);
681 }
682 
683 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
684 {
685 	struct ath_common *common = ath9k_hw_common(ah);
686 	int i = 0;
687 
688 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
689 	udelay(100);
690 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
691 
692 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
693 
694 		udelay(100);
695 
696 		if (WARN_ON_ONCE(i >= 100)) {
697 			ath_err(common, "PLL4 meaurement not done\n");
698 			break;
699 		}
700 
701 		i++;
702 	}
703 
704 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
705 }
706 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
707 
708 static void ath9k_hw_init_pll(struct ath_hw *ah,
709 			      struct ath9k_channel *chan)
710 {
711 	u32 pll;
712 
713 	pll = ath9k_hw_compute_pll_control(ah, chan);
714 
715 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
716 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
717 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
718 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
719 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
720 			      AR_CH0_DPLL2_KD, 0x40);
721 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
722 			      AR_CH0_DPLL2_KI, 0x4);
723 
724 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
725 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
726 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
727 			      AR_CH0_BB_DPLL1_NINI, 0x58);
728 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
729 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
730 
731 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
732 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
733 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
734 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
735 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
736 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
737 
738 		/* program BB PLL phase_shift to 0x6 */
739 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
740 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
741 
742 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
743 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
744 		udelay(1000);
745 	} else if (AR_SREV_9330(ah)) {
746 		u32 ddr_dpll2, pll_control2, kd;
747 
748 		if (ah->is_clk_25mhz) {
749 			ddr_dpll2 = 0x18e82f01;
750 			pll_control2 = 0xe04a3d;
751 			kd = 0x1d;
752 		} else {
753 			ddr_dpll2 = 0x19e82f01;
754 			pll_control2 = 0x886666;
755 			kd = 0x3d;
756 		}
757 
758 		/* program DDR PLL ki and kd value */
759 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
760 
761 		/* program DDR PLL phase_shift */
762 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
763 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
764 
765 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
766 			  pll | AR_RTC_9300_PLL_BYPASS);
767 		udelay(1000);
768 
769 		/* program refdiv, nint, frac to RTC register */
770 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
771 
772 		/* program BB PLL kd and ki value */
773 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
774 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
775 
776 		/* program BB PLL phase_shift */
777 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
778 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
779 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
780 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
781 
782 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
783 			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
784 		udelay(1000);
785 
786 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
787 		udelay(100);
788 
789 		if (ah->is_clk_25mhz) {
790 			if (AR_SREV_9531(ah)) {
791 				pll2_divint = 0x1c;
792 				pll2_divfrac = 0xa3d2;
793 				refdiv = 1;
794 			} else {
795 				pll2_divint = 0x54;
796 				pll2_divfrac = 0x1eb85;
797 				refdiv = 3;
798 			}
799 		} else {
800 			if (AR_SREV_9340(ah)) {
801 				pll2_divint = 88;
802 				pll2_divfrac = 0;
803 				refdiv = 5;
804 			} else {
805 				pll2_divint = 0x11;
806 				pll2_divfrac =
807 					AR_SREV_9531(ah) ? 0x26665 : 0x26666;
808 				refdiv = 1;
809 			}
810 		}
811 
812 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
813 		if (AR_SREV_9531(ah))
814 			regval |= (0x1 << 22);
815 		else
816 			regval |= (0x1 << 16);
817 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
818 		udelay(100);
819 
820 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
821 			  (pll2_divint << 18) | pll2_divfrac);
822 		udelay(100);
823 
824 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
825 		if (AR_SREV_9340(ah))
826 			regval = (regval & 0x80071fff) |
827 				(0x1 << 30) |
828 				(0x1 << 13) |
829 				(0x4 << 26) |
830 				(0x18 << 19);
831 		else if (AR_SREV_9531(ah))
832 			regval = (regval & 0x01c00fff) |
833 				(0x1 << 31) |
834 				(0x2 << 29) |
835 				(0xa << 25) |
836 				(0x1 << 19) |
837 				(0x6 << 12);
838 		else
839 			regval = (regval & 0x80071fff) |
840 				(0x3 << 30) |
841 				(0x1 << 13) |
842 				(0x4 << 26) |
843 				(0x60 << 19);
844 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
845 
846 		if (AR_SREV_9531(ah))
847 			REG_WRITE(ah, AR_PHY_PLL_MODE,
848 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
849 		else
850 			REG_WRITE(ah, AR_PHY_PLL_MODE,
851 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
852 
853 		udelay(1000);
854 	}
855 
856 	if (AR_SREV_9565(ah))
857 		pll |= 0x40000;
858 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
859 
860 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
861 	    AR_SREV_9550(ah))
862 		udelay(1000);
863 
864 	/* Switch the core clock for ar9271 to 117Mhz */
865 	if (AR_SREV_9271(ah)) {
866 		udelay(500);
867 		REG_WRITE(ah, 0x50040, 0x304);
868 	}
869 
870 	udelay(RTC_PLL_SETTLE_DELAY);
871 
872 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
873 }
874 
875 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
876 					  enum nl80211_iftype opmode)
877 {
878 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
879 	u32 imr_reg = AR_IMR_TXERR |
880 		AR_IMR_TXURN |
881 		AR_IMR_RXERR |
882 		AR_IMR_RXORN |
883 		AR_IMR_BCNMISC;
884 
885 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah))
886 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
887 
888 	if (AR_SREV_9300_20_OR_LATER(ah)) {
889 		imr_reg |= AR_IMR_RXOK_HP;
890 		if (ah->config.rx_intr_mitigation)
891 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
892 		else
893 			imr_reg |= AR_IMR_RXOK_LP;
894 
895 	} else {
896 		if (ah->config.rx_intr_mitigation)
897 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
898 		else
899 			imr_reg |= AR_IMR_RXOK;
900 	}
901 
902 	if (ah->config.tx_intr_mitigation)
903 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
904 	else
905 		imr_reg |= AR_IMR_TXOK;
906 
907 	ENABLE_REGWRITE_BUFFER(ah);
908 
909 	REG_WRITE(ah, AR_IMR, imr_reg);
910 	ah->imrs2_reg |= AR_IMR_S2_GTT;
911 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
912 
913 	if (!AR_SREV_9100(ah)) {
914 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
915 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
916 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
917 	}
918 
919 	REGWRITE_BUFFER_FLUSH(ah);
920 
921 	if (AR_SREV_9300_20_OR_LATER(ah)) {
922 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
923 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
924 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
925 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
926 	}
927 }
928 
929 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
930 {
931 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
932 	val = min(val, (u32) 0xFFFF);
933 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
934 }
935 
936 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
937 {
938 	u32 val = ath9k_hw_mac_to_clks(ah, us);
939 	val = min(val, (u32) 0xFFFF);
940 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
941 }
942 
943 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
944 {
945 	u32 val = ath9k_hw_mac_to_clks(ah, us);
946 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
947 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
948 }
949 
950 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
951 {
952 	u32 val = ath9k_hw_mac_to_clks(ah, us);
953 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
954 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
955 }
956 
957 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
958 {
959 	if (tu > 0xFFFF) {
960 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
961 			tu);
962 		ah->globaltxtimeout = (u32) -1;
963 		return false;
964 	} else {
965 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
966 		ah->globaltxtimeout = tu;
967 		return true;
968 	}
969 }
970 
971 void ath9k_hw_init_global_settings(struct ath_hw *ah)
972 {
973 	struct ath_common *common = ath9k_hw_common(ah);
974 	const struct ath9k_channel *chan = ah->curchan;
975 	int acktimeout, ctstimeout, ack_offset = 0;
976 	int slottime;
977 	int sifstime;
978 	int rx_lat = 0, tx_lat = 0, eifs = 0;
979 	u32 reg;
980 
981 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
982 		ah->misc_mode);
983 
984 	if (!chan)
985 		return;
986 
987 	if (ah->misc_mode != 0)
988 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
989 
990 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
991 		rx_lat = 41;
992 	else
993 		rx_lat = 37;
994 	tx_lat = 54;
995 
996 	if (IS_CHAN_5GHZ(chan))
997 		sifstime = 16;
998 	else
999 		sifstime = 10;
1000 
1001 	if (IS_CHAN_HALF_RATE(chan)) {
1002 		eifs = 175;
1003 		rx_lat *= 2;
1004 		tx_lat *= 2;
1005 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1006 		    tx_lat += 11;
1007 
1008 		sifstime = 32;
1009 		ack_offset = 16;
1010 		slottime = 13;
1011 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1012 		eifs = 340;
1013 		rx_lat = (rx_lat * 4) - 1;
1014 		tx_lat *= 4;
1015 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1016 		    tx_lat += 22;
1017 
1018 		sifstime = 64;
1019 		ack_offset = 32;
1020 		slottime = 21;
1021 	} else {
1022 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1023 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1024 			reg = AR_USEC_ASYNC_FIFO;
1025 		} else {
1026 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1027 				common->clockrate;
1028 			reg = REG_READ(ah, AR_USEC);
1029 		}
1030 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1031 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1032 
1033 		slottime = ah->slottime;
1034 	}
1035 
1036 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1037 	slottime += 3 * ah->coverage_class;
1038 	acktimeout = slottime + sifstime + ack_offset;
1039 	ctstimeout = acktimeout;
1040 
1041 	/*
1042 	 * Workaround for early ACK timeouts, add an offset to match the
1043 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1044 	 * This was initially only meant to work around an issue with delayed
1045 	 * BA frames in some implementations, but it has been found to fix ACK
1046 	 * timeout issues in other cases as well.
1047 	 */
1048 	if (IS_CHAN_2GHZ(chan) &&
1049 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1050 		acktimeout += 64 - sifstime - ah->slottime;
1051 		ctstimeout += 48 - sifstime - ah->slottime;
1052 	}
1053 
1054 	if (ah->dynack.enabled) {
1055 		acktimeout = ah->dynack.ackto;
1056 		ctstimeout = acktimeout;
1057 		slottime = (acktimeout - 3) / 2;
1058 	} else {
1059 		ah->dynack.ackto = acktimeout;
1060 	}
1061 
1062 	ath9k_hw_set_sifs_time(ah, sifstime);
1063 	ath9k_hw_setslottime(ah, slottime);
1064 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1065 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1066 	if (ah->globaltxtimeout != (u32) -1)
1067 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1068 
1069 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1070 	REG_RMW(ah, AR_USEC,
1071 		(common->clockrate - 1) |
1072 		SM(rx_lat, AR_USEC_RX_LAT) |
1073 		SM(tx_lat, AR_USEC_TX_LAT),
1074 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1075 
1076 }
1077 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1078 
1079 void ath9k_hw_deinit(struct ath_hw *ah)
1080 {
1081 	struct ath_common *common = ath9k_hw_common(ah);
1082 
1083 	if (common->state < ATH_HW_INITIALIZED)
1084 		return;
1085 
1086 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1087 }
1088 EXPORT_SYMBOL(ath9k_hw_deinit);
1089 
1090 /*******/
1091 /* INI */
1092 /*******/
1093 
1094 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1095 {
1096 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1097 
1098 	if (IS_CHAN_2GHZ(chan))
1099 		ctl |= CTL_11G;
1100 	else
1101 		ctl |= CTL_11A;
1102 
1103 	return ctl;
1104 }
1105 
1106 /****************************************/
1107 /* Reset and Channel Switching Routines */
1108 /****************************************/
1109 
1110 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1111 {
1112 	struct ath_common *common = ath9k_hw_common(ah);
1113 	int txbuf_size;
1114 
1115 	ENABLE_REGWRITE_BUFFER(ah);
1116 
1117 	/*
1118 	 * set AHB_MODE not to do cacheline prefetches
1119 	*/
1120 	if (!AR_SREV_9300_20_OR_LATER(ah))
1121 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1122 
1123 	/*
1124 	 * let mac dma reads be in 128 byte chunks
1125 	 */
1126 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1127 
1128 	REGWRITE_BUFFER_FLUSH(ah);
1129 
1130 	/*
1131 	 * Restore TX Trigger Level to its pre-reset value.
1132 	 * The initial value depends on whether aggregation is enabled, and is
1133 	 * adjusted whenever underruns are detected.
1134 	 */
1135 	if (!AR_SREV_9300_20_OR_LATER(ah))
1136 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1137 
1138 	ENABLE_REGWRITE_BUFFER(ah);
1139 
1140 	/*
1141 	 * let mac dma writes be in 128 byte chunks
1142 	 */
1143 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1144 
1145 	/*
1146 	 * Setup receive FIFO threshold to hold off TX activities
1147 	 */
1148 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1149 
1150 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1151 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1152 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1153 
1154 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1155 			ah->caps.rx_status_len);
1156 	}
1157 
1158 	/*
1159 	 * reduce the number of usable entries in PCU TXBUF to avoid
1160 	 * wrap around issues.
1161 	 */
1162 	if (AR_SREV_9285(ah)) {
1163 		/* For AR9285 the number of Fifos are reduced to half.
1164 		 * So set the usable tx buf size also to half to
1165 		 * avoid data/delimiter underruns
1166 		 */
1167 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1168 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1169 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1170 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1171 	} else {
1172 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1173 	}
1174 
1175 	if (!AR_SREV_9271(ah))
1176 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1177 
1178 	REGWRITE_BUFFER_FLUSH(ah);
1179 
1180 	if (AR_SREV_9300_20_OR_LATER(ah))
1181 		ath9k_hw_reset_txstatus_ring(ah);
1182 }
1183 
1184 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1185 {
1186 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1187 	u32 set = AR_STA_ID1_KSRCH_MODE;
1188 
1189 	switch (opmode) {
1190 	case NL80211_IFTYPE_ADHOC:
1191 		if (!AR_SREV_9340_13(ah)) {
1192 			set |= AR_STA_ID1_ADHOC;
1193 			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1194 			break;
1195 		}
1196 		/* fall through */
1197 	case NL80211_IFTYPE_MESH_POINT:
1198 	case NL80211_IFTYPE_AP:
1199 		set |= AR_STA_ID1_STA_AP;
1200 		/* fall through */
1201 	case NL80211_IFTYPE_STATION:
1202 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1203 		break;
1204 	default:
1205 		if (!ah->is_monitoring)
1206 			set = 0;
1207 		break;
1208 	}
1209 	REG_RMW(ah, AR_STA_ID1, set, mask);
1210 }
1211 
1212 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1213 				   u32 *coef_mantissa, u32 *coef_exponent)
1214 {
1215 	u32 coef_exp, coef_man;
1216 
1217 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1218 		if ((coef_scaled >> coef_exp) & 0x1)
1219 			break;
1220 
1221 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1222 
1223 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1224 
1225 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1226 	*coef_exponent = coef_exp - 16;
1227 }
1228 
1229 /* AR9330 WAR:
1230  * call external reset function to reset WMAC if:
1231  * - doing a cold reset
1232  * - we have pending frames in the TX queues.
1233  */
1234 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1235 {
1236 	int i, npend = 0;
1237 
1238 	for (i = 0; i < AR_NUM_QCU; i++) {
1239 		npend = ath9k_hw_numtxpending(ah, i);
1240 		if (npend)
1241 			break;
1242 	}
1243 
1244 	if (ah->external_reset &&
1245 	    (npend || type == ATH9K_RESET_COLD)) {
1246 		int reset_err = 0;
1247 
1248 		ath_dbg(ath9k_hw_common(ah), RESET,
1249 			"reset MAC via external reset\n");
1250 
1251 		reset_err = ah->external_reset();
1252 		if (reset_err) {
1253 			ath_err(ath9k_hw_common(ah),
1254 				"External reset failed, err=%d\n",
1255 				reset_err);
1256 			return false;
1257 		}
1258 
1259 		REG_WRITE(ah, AR_RTC_RESET, 1);
1260 	}
1261 
1262 	return true;
1263 }
1264 
1265 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1266 {
1267 	u32 rst_flags;
1268 	u32 tmpReg;
1269 
1270 	if (AR_SREV_9100(ah)) {
1271 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1272 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1273 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1274 	}
1275 
1276 	ENABLE_REGWRITE_BUFFER(ah);
1277 
1278 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1279 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1280 		udelay(10);
1281 	}
1282 
1283 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1284 		  AR_RTC_FORCE_WAKE_ON_INT);
1285 
1286 	if (AR_SREV_9100(ah)) {
1287 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1288 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1289 	} else {
1290 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1291 		if (AR_SREV_9340(ah))
1292 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1293 		else
1294 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1295 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1296 
1297 		if (tmpReg) {
1298 			u32 val;
1299 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1300 
1301 			val = AR_RC_HOSTIF;
1302 			if (!AR_SREV_9300_20_OR_LATER(ah))
1303 				val |= AR_RC_AHB;
1304 			REG_WRITE(ah, AR_RC, val);
1305 
1306 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1307 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1308 
1309 		rst_flags = AR_RTC_RC_MAC_WARM;
1310 		if (type == ATH9K_RESET_COLD)
1311 			rst_flags |= AR_RTC_RC_MAC_COLD;
1312 	}
1313 
1314 	if (AR_SREV_9330(ah)) {
1315 		if (!ath9k_hw_ar9330_reset_war(ah, type))
1316 			return false;
1317 	}
1318 
1319 	if (ath9k_hw_mci_is_enabled(ah))
1320 		ar9003_mci_check_gpm_offset(ah);
1321 
1322 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1323 
1324 	REGWRITE_BUFFER_FLUSH(ah);
1325 
1326 	if (AR_SREV_9300_20_OR_LATER(ah))
1327 		udelay(50);
1328 	else if (AR_SREV_9100(ah))
1329 		mdelay(10);
1330 	else
1331 		udelay(100);
1332 
1333 	REG_WRITE(ah, AR_RTC_RC, 0);
1334 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1335 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1336 		return false;
1337 	}
1338 
1339 	if (!AR_SREV_9100(ah))
1340 		REG_WRITE(ah, AR_RC, 0);
1341 
1342 	if (AR_SREV_9100(ah))
1343 		udelay(50);
1344 
1345 	return true;
1346 }
1347 
1348 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1349 {
1350 	ENABLE_REGWRITE_BUFFER(ah);
1351 
1352 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1353 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1354 		udelay(10);
1355 	}
1356 
1357 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1358 		  AR_RTC_FORCE_WAKE_ON_INT);
1359 
1360 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1361 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1362 
1363 	REG_WRITE(ah, AR_RTC_RESET, 0);
1364 
1365 	REGWRITE_BUFFER_FLUSH(ah);
1366 
1367 	udelay(2);
1368 
1369 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1370 		REG_WRITE(ah, AR_RC, 0);
1371 
1372 	REG_WRITE(ah, AR_RTC_RESET, 1);
1373 
1374 	if (!ath9k_hw_wait(ah,
1375 			   AR_RTC_STATUS,
1376 			   AR_RTC_STATUS_M,
1377 			   AR_RTC_STATUS_ON,
1378 			   AH_WAIT_TIMEOUT)) {
1379 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1380 		return false;
1381 	}
1382 
1383 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1384 }
1385 
1386 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1387 {
1388 	bool ret = false;
1389 
1390 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1391 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1392 		udelay(10);
1393 	}
1394 
1395 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1396 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1397 
1398 	if (!ah->reset_power_on)
1399 		type = ATH9K_RESET_POWER_ON;
1400 
1401 	switch (type) {
1402 	case ATH9K_RESET_POWER_ON:
1403 		ret = ath9k_hw_set_reset_power_on(ah);
1404 		if (ret)
1405 			ah->reset_power_on = true;
1406 		break;
1407 	case ATH9K_RESET_WARM:
1408 	case ATH9K_RESET_COLD:
1409 		ret = ath9k_hw_set_reset(ah, type);
1410 		break;
1411 	default:
1412 		break;
1413 	}
1414 
1415 	return ret;
1416 }
1417 
1418 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1419 				struct ath9k_channel *chan)
1420 {
1421 	int reset_type = ATH9K_RESET_WARM;
1422 
1423 	if (AR_SREV_9280(ah)) {
1424 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1425 			reset_type = ATH9K_RESET_POWER_ON;
1426 		else
1427 			reset_type = ATH9K_RESET_COLD;
1428 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1429 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1430 		reset_type = ATH9K_RESET_COLD;
1431 
1432 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1433 		return false;
1434 
1435 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1436 		return false;
1437 
1438 	ah->chip_fullsleep = false;
1439 
1440 	if (AR_SREV_9330(ah))
1441 		ar9003_hw_internal_regulator_apply(ah);
1442 	ath9k_hw_init_pll(ah, chan);
1443 
1444 	return true;
1445 }
1446 
1447 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1448 				    struct ath9k_channel *chan)
1449 {
1450 	struct ath_common *common = ath9k_hw_common(ah);
1451 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1452 	bool band_switch = false, mode_diff = false;
1453 	u8 ini_reloaded = 0;
1454 	u32 qnum;
1455 	int r;
1456 
1457 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1458 		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1459 		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1460 		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1461 	}
1462 
1463 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1464 		if (ath9k_hw_numtxpending(ah, qnum)) {
1465 			ath_dbg(common, QUEUE,
1466 				"Transmit frames pending on queue %d\n", qnum);
1467 			return false;
1468 		}
1469 	}
1470 
1471 	if (!ath9k_hw_rfbus_req(ah)) {
1472 		ath_err(common, "Could not kill baseband RX\n");
1473 		return false;
1474 	}
1475 
1476 	if (band_switch || mode_diff) {
1477 		ath9k_hw_mark_phy_inactive(ah);
1478 		udelay(5);
1479 
1480 		if (band_switch)
1481 			ath9k_hw_init_pll(ah, chan);
1482 
1483 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1484 			ath_err(common, "Failed to do fast channel change\n");
1485 			return false;
1486 		}
1487 	}
1488 
1489 	ath9k_hw_set_channel_regs(ah, chan);
1490 
1491 	r = ath9k_hw_rf_set_freq(ah, chan);
1492 	if (r) {
1493 		ath_err(common, "Failed to set channel\n");
1494 		return false;
1495 	}
1496 	ath9k_hw_set_clockrate(ah);
1497 	ath9k_hw_apply_txpower(ah, chan, false);
1498 
1499 	ath9k_hw_set_delta_slope(ah, chan);
1500 	ath9k_hw_spur_mitigate_freq(ah, chan);
1501 
1502 	if (band_switch || ini_reloaded)
1503 		ah->eep_ops->set_board_values(ah, chan);
1504 
1505 	ath9k_hw_init_bb(ah, chan);
1506 	ath9k_hw_rfbus_done(ah);
1507 
1508 	if (band_switch || ini_reloaded) {
1509 		ah->ah_flags |= AH_FASTCC;
1510 		ath9k_hw_init_cal(ah, chan);
1511 		ah->ah_flags &= ~AH_FASTCC;
1512 	}
1513 
1514 	return true;
1515 }
1516 
1517 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1518 {
1519 	u32 gpio_mask = ah->gpio_mask;
1520 	int i;
1521 
1522 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1523 		if (!(gpio_mask & 1))
1524 			continue;
1525 
1526 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1527 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1528 	}
1529 }
1530 
1531 void ath9k_hw_check_nav(struct ath_hw *ah)
1532 {
1533 	struct ath_common *common = ath9k_hw_common(ah);
1534 	u32 val;
1535 
1536 	val = REG_READ(ah, AR_NAV);
1537 	if (val != 0xdeadbeef && val > 0x7fff) {
1538 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1539 		REG_WRITE(ah, AR_NAV, 0);
1540 	}
1541 }
1542 EXPORT_SYMBOL(ath9k_hw_check_nav);
1543 
1544 bool ath9k_hw_check_alive(struct ath_hw *ah)
1545 {
1546 	int count = 50;
1547 	u32 reg, last_val;
1548 
1549 	if (AR_SREV_9300(ah))
1550 		return !ath9k_hw_detect_mac_hang(ah);
1551 
1552 	if (AR_SREV_9285_12_OR_LATER(ah))
1553 		return true;
1554 
1555 	last_val = REG_READ(ah, AR_OBS_BUS_1);
1556 	do {
1557 		reg = REG_READ(ah, AR_OBS_BUS_1);
1558 		if (reg != last_val)
1559 			return true;
1560 
1561 		udelay(1);
1562 		last_val = reg;
1563 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1564 			continue;
1565 
1566 		switch (reg & 0x7E000B00) {
1567 		case 0x1E000000:
1568 		case 0x52000B00:
1569 		case 0x18000B00:
1570 			continue;
1571 		default:
1572 			return true;
1573 		}
1574 	} while (count-- > 0);
1575 
1576 	return false;
1577 }
1578 EXPORT_SYMBOL(ath9k_hw_check_alive);
1579 
1580 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1581 {
1582 	/* Setup MFP options for CCMP */
1583 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1584 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1585 		 * frames when constructing CCMP AAD. */
1586 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1587 			      0xc7ff);
1588 		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1589 			ah->sw_mgmt_crypto_tx = true;
1590 		else
1591 			ah->sw_mgmt_crypto_tx = false;
1592 		ah->sw_mgmt_crypto_rx = false;
1593 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1594 		/* Disable hardware crypto for management frames */
1595 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1596 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1597 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1598 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1599 		ah->sw_mgmt_crypto_tx = true;
1600 		ah->sw_mgmt_crypto_rx = true;
1601 	} else {
1602 		ah->sw_mgmt_crypto_tx = true;
1603 		ah->sw_mgmt_crypto_rx = true;
1604 	}
1605 }
1606 
1607 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1608 				  u32 macStaId1, u32 saveDefAntenna)
1609 {
1610 	struct ath_common *common = ath9k_hw_common(ah);
1611 
1612 	ENABLE_REGWRITE_BUFFER(ah);
1613 
1614 	REG_RMW(ah, AR_STA_ID1, macStaId1
1615 		  | AR_STA_ID1_RTS_USE_DEF
1616 		  | ah->sta_id1_defaults,
1617 		  ~AR_STA_ID1_SADH_MASK);
1618 	ath_hw_setbssidmask(common);
1619 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1620 	ath9k_hw_write_associd(ah);
1621 	REG_WRITE(ah, AR_ISR, ~0);
1622 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1623 
1624 	REGWRITE_BUFFER_FLUSH(ah);
1625 
1626 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1627 }
1628 
1629 static void ath9k_hw_init_queues(struct ath_hw *ah)
1630 {
1631 	int i;
1632 
1633 	ENABLE_REGWRITE_BUFFER(ah);
1634 
1635 	for (i = 0; i < AR_NUM_DCU; i++)
1636 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1637 
1638 	REGWRITE_BUFFER_FLUSH(ah);
1639 
1640 	ah->intr_txqs = 0;
1641 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1642 		ath9k_hw_resettxqueue(ah, i);
1643 }
1644 
1645 /*
1646  * For big endian systems turn on swapping for descriptors
1647  */
1648 static void ath9k_hw_init_desc(struct ath_hw *ah)
1649 {
1650 	struct ath_common *common = ath9k_hw_common(ah);
1651 
1652 	if (AR_SREV_9100(ah)) {
1653 		u32 mask;
1654 		mask = REG_READ(ah, AR_CFG);
1655 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1656 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1657 				mask);
1658 		} else {
1659 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1660 			REG_WRITE(ah, AR_CFG, mask);
1661 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1662 				REG_READ(ah, AR_CFG));
1663 		}
1664 	} else {
1665 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1666 			/* Configure AR9271 target WLAN */
1667 			if (AR_SREV_9271(ah))
1668 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1669 			else
1670 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1671 		}
1672 #ifdef __BIG_ENDIAN
1673 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1674 			 AR_SREV_9550(ah) || AR_SREV_9531(ah))
1675 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1676 		else
1677 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1678 #endif
1679 	}
1680 }
1681 
1682 /*
1683  * Fast channel change:
1684  * (Change synthesizer based on channel freq without resetting chip)
1685  */
1686 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1687 {
1688 	struct ath_common *common = ath9k_hw_common(ah);
1689 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1690 	int ret;
1691 
1692 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1693 		goto fail;
1694 
1695 	if (ah->chip_fullsleep)
1696 		goto fail;
1697 
1698 	if (!ah->curchan)
1699 		goto fail;
1700 
1701 	if (chan->channel == ah->curchan->channel)
1702 		goto fail;
1703 
1704 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1705 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1706 		goto fail;
1707 
1708 	/*
1709 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1710 	 */
1711 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1712 	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1713 		goto fail;
1714 
1715 	if (!ath9k_hw_check_alive(ah))
1716 		goto fail;
1717 
1718 	/*
1719 	 * For AR9462, make sure that calibration data for
1720 	 * re-using are present.
1721 	 */
1722 	if (AR_SREV_9462(ah) && (ah->caldata &&
1723 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1724 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1725 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1726 		goto fail;
1727 
1728 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1729 		ah->curchan->channel, chan->channel);
1730 
1731 	ret = ath9k_hw_channel_change(ah, chan);
1732 	if (!ret)
1733 		goto fail;
1734 
1735 	if (ath9k_hw_mci_is_enabled(ah))
1736 		ar9003_mci_2g5g_switch(ah, false);
1737 
1738 	ath9k_hw_loadnf(ah, ah->curchan);
1739 	ath9k_hw_start_nfcal(ah, true);
1740 
1741 	if (AR_SREV_9271(ah))
1742 		ar9002_hw_load_ani_reg(ah, chan);
1743 
1744 	return 0;
1745 fail:
1746 	return -EINVAL;
1747 }
1748 
1749 u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1750 {
1751 	struct timespec ts;
1752 	s64 usec;
1753 
1754 	if (!cur) {
1755 		getrawmonotonic(&ts);
1756 		cur = &ts;
1757 	}
1758 
1759 	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1760 	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1761 
1762 	return (u32) usec;
1763 }
1764 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1765 
1766 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1767 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1768 {
1769 	struct ath_common *common = ath9k_hw_common(ah);
1770 	u32 saveLedState;
1771 	u32 saveDefAntenna;
1772 	u32 macStaId1;
1773 	u64 tsf = 0;
1774 	s64 usec = 0;
1775 	int r;
1776 	bool start_mci_reset = false;
1777 	bool save_fullsleep = ah->chip_fullsleep;
1778 
1779 	if (ath9k_hw_mci_is_enabled(ah)) {
1780 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1781 		if (start_mci_reset)
1782 			return 0;
1783 	}
1784 
1785 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1786 		return -EIO;
1787 
1788 	if (ah->curchan && !ah->chip_fullsleep)
1789 		ath9k_hw_getnf(ah, ah->curchan);
1790 
1791 	ah->caldata = caldata;
1792 	if (caldata && (chan->channel != caldata->channel ||
1793 			chan->channelFlags != caldata->channelFlags)) {
1794 		/* Operating channel changed, reset channel calibration data */
1795 		memset(caldata, 0, sizeof(*caldata));
1796 		ath9k_init_nfcal_hist_buffer(ah, chan);
1797 	} else if (caldata) {
1798 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1799 	}
1800 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1801 
1802 	if (fastcc) {
1803 		r = ath9k_hw_do_fastcc(ah, chan);
1804 		if (!r)
1805 			return r;
1806 	}
1807 
1808 	if (ath9k_hw_mci_is_enabled(ah))
1809 		ar9003_mci_stop_bt(ah, save_fullsleep);
1810 
1811 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1812 	if (saveDefAntenna == 0)
1813 		saveDefAntenna = 1;
1814 
1815 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1816 
1817 	/* Save TSF before chip reset, a cold reset clears it */
1818 	tsf = ath9k_hw_gettsf64(ah);
1819 	usec = ktime_to_us(ktime_get_raw());
1820 
1821 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1822 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1823 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1824 
1825 	ath9k_hw_mark_phy_inactive(ah);
1826 
1827 	ah->paprd_table_write_done = false;
1828 
1829 	/* Only required on the first reset */
1830 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1831 		REG_WRITE(ah,
1832 			  AR9271_RESET_POWER_DOWN_CONTROL,
1833 			  AR9271_RADIO_RF_RST);
1834 		udelay(50);
1835 	}
1836 
1837 	if (!ath9k_hw_chip_reset(ah, chan)) {
1838 		ath_err(common, "Chip reset failed\n");
1839 		return -EINVAL;
1840 	}
1841 
1842 	/* Only required on the first reset */
1843 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1844 		ah->htc_reset_init = false;
1845 		REG_WRITE(ah,
1846 			  AR9271_RESET_POWER_DOWN_CONTROL,
1847 			  AR9271_GATE_MAC_CTL);
1848 		udelay(50);
1849 	}
1850 
1851 	/* Restore TSF */
1852 	usec = ktime_to_us(ktime_get_raw()) - usec;
1853 	ath9k_hw_settsf64(ah, tsf + usec);
1854 
1855 	if (AR_SREV_9280_20_OR_LATER(ah))
1856 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1857 
1858 	if (!AR_SREV_9300_20_OR_LATER(ah))
1859 		ar9002_hw_enable_async_fifo(ah);
1860 
1861 	r = ath9k_hw_process_ini(ah, chan);
1862 	if (r)
1863 		return r;
1864 
1865 	ath9k_hw_set_rfmode(ah, chan);
1866 
1867 	if (ath9k_hw_mci_is_enabled(ah))
1868 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1869 
1870 	/*
1871 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1872 	 * right after the chip reset. When that happens, write a new
1873 	 * value after the initvals have been applied, with an offset
1874 	 * based on measured time difference
1875 	 */
1876 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1877 		tsf += 1500;
1878 		ath9k_hw_settsf64(ah, tsf);
1879 	}
1880 
1881 	ath9k_hw_init_mfp(ah);
1882 
1883 	ath9k_hw_set_delta_slope(ah, chan);
1884 	ath9k_hw_spur_mitigate_freq(ah, chan);
1885 	ah->eep_ops->set_board_values(ah, chan);
1886 
1887 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1888 
1889 	r = ath9k_hw_rf_set_freq(ah, chan);
1890 	if (r)
1891 		return r;
1892 
1893 	ath9k_hw_set_clockrate(ah);
1894 
1895 	ath9k_hw_init_queues(ah);
1896 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1897 	ath9k_hw_ani_cache_ini_regs(ah);
1898 	ath9k_hw_init_qos(ah);
1899 
1900 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1901 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1902 
1903 	ath9k_hw_init_global_settings(ah);
1904 
1905 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1906 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1907 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1908 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1909 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1910 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1911 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1912 	}
1913 
1914 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1915 
1916 	ath9k_hw_set_dma(ah);
1917 
1918 	if (!ath9k_hw_mci_is_enabled(ah))
1919 		REG_WRITE(ah, AR_OBS, 8);
1920 
1921 	if (ah->config.rx_intr_mitigation) {
1922 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1923 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1924 	}
1925 
1926 	if (ah->config.tx_intr_mitigation) {
1927 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1928 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1929 	}
1930 
1931 	ath9k_hw_init_bb(ah, chan);
1932 
1933 	if (caldata) {
1934 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1935 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1936 	}
1937 	if (!ath9k_hw_init_cal(ah, chan))
1938 		return -EIO;
1939 
1940 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1941 		return -EIO;
1942 
1943 	ENABLE_REGWRITE_BUFFER(ah);
1944 
1945 	ath9k_hw_restore_chainmask(ah);
1946 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1947 
1948 	REGWRITE_BUFFER_FLUSH(ah);
1949 
1950 	ath9k_hw_gen_timer_start_tsf2(ah);
1951 
1952 	ath9k_hw_init_desc(ah);
1953 
1954 	if (ath9k_hw_btcoex_is_enabled(ah))
1955 		ath9k_hw_btcoex_enable(ah);
1956 
1957 	if (ath9k_hw_mci_is_enabled(ah))
1958 		ar9003_mci_check_bt(ah);
1959 
1960 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1961 		ath9k_hw_loadnf(ah, chan);
1962 		ath9k_hw_start_nfcal(ah, true);
1963 	}
1964 
1965 	if (AR_SREV_9300_20_OR_LATER(ah))
1966 		ar9003_hw_bb_watchdog_config(ah);
1967 
1968 	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
1969 		ar9003_hw_disable_phy_restart(ah);
1970 
1971 	ath9k_hw_apply_gpio_override(ah);
1972 
1973 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1974 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1975 
1976 	if (ah->hw->conf.radar_enabled) {
1977 		/* set HW specific DFS configuration */
1978 		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
1979 		ath9k_hw_set_radar_params(ah);
1980 	}
1981 
1982 	return 0;
1983 }
1984 EXPORT_SYMBOL(ath9k_hw_reset);
1985 
1986 /******************************/
1987 /* Power Management (Chipset) */
1988 /******************************/
1989 
1990 /*
1991  * Notify Power Mgt is disabled in self-generated frames.
1992  * If requested, force chip to sleep.
1993  */
1994 static void ath9k_set_power_sleep(struct ath_hw *ah)
1995 {
1996 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1997 
1998 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
1999 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2000 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2001 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2002 		/* xxx Required for WLAN only case ? */
2003 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2004 		udelay(100);
2005 	}
2006 
2007 	/*
2008 	 * Clear the RTC force wake bit to allow the
2009 	 * mac to go to sleep.
2010 	 */
2011 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2012 
2013 	if (ath9k_hw_mci_is_enabled(ah))
2014 		udelay(100);
2015 
2016 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2017 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2018 
2019 	/* Shutdown chip. Active low */
2020 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2021 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2022 		udelay(2);
2023 	}
2024 
2025 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2026 	if (AR_SREV_9300_20_OR_LATER(ah))
2027 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2028 }
2029 
2030 /*
2031  * Notify Power Management is enabled in self-generating
2032  * frames. If request, set power mode of chip to
2033  * auto/normal.  Duration in units of 128us (1/8 TU).
2034  */
2035 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2036 {
2037 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2038 
2039 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2040 
2041 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2042 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2043 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2044 			  AR_RTC_FORCE_WAKE_ON_INT);
2045 	} else {
2046 
2047 		/* When chip goes into network sleep, it could be waken
2048 		 * up by MCI_INT interrupt caused by BT's HW messages
2049 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2050 		 * rate (~100us). This will cause chip to leave and
2051 		 * re-enter network sleep mode frequently, which in
2052 		 * consequence will have WLAN MCI HW to generate lots of
2053 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2054 		 * BT CPU to busy to process.
2055 		 */
2056 		if (ath9k_hw_mci_is_enabled(ah))
2057 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2058 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2059 		/*
2060 		 * Clear the RTC force wake bit to allow the
2061 		 * mac to go to sleep.
2062 		 */
2063 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2064 
2065 		if (ath9k_hw_mci_is_enabled(ah))
2066 			udelay(30);
2067 	}
2068 
2069 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2070 	if (AR_SREV_9300_20_OR_LATER(ah))
2071 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2072 }
2073 
2074 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2075 {
2076 	u32 val;
2077 	int i;
2078 
2079 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2080 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2081 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2082 		udelay(10);
2083 	}
2084 
2085 	if ((REG_READ(ah, AR_RTC_STATUS) &
2086 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2087 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2088 			return false;
2089 		}
2090 		if (!AR_SREV_9300_20_OR_LATER(ah))
2091 			ath9k_hw_init_pll(ah, NULL);
2092 	}
2093 	if (AR_SREV_9100(ah))
2094 		REG_SET_BIT(ah, AR_RTC_RESET,
2095 			    AR_RTC_RESET_EN);
2096 
2097 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2098 		    AR_RTC_FORCE_WAKE_EN);
2099 	if (AR_SREV_9100(ah))
2100 		mdelay(10);
2101 	else
2102 		udelay(50);
2103 
2104 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2105 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2106 		if (val == AR_RTC_STATUS_ON)
2107 			break;
2108 		udelay(50);
2109 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2110 			    AR_RTC_FORCE_WAKE_EN);
2111 	}
2112 	if (i == 0) {
2113 		ath_err(ath9k_hw_common(ah),
2114 			"Failed to wakeup in %uus\n",
2115 			POWER_UP_TIME / 20);
2116 		return false;
2117 	}
2118 
2119 	if (ath9k_hw_mci_is_enabled(ah))
2120 		ar9003_mci_set_power_awake(ah);
2121 
2122 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2123 
2124 	return true;
2125 }
2126 
2127 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2128 {
2129 	struct ath_common *common = ath9k_hw_common(ah);
2130 	int status = true;
2131 	static const char *modes[] = {
2132 		"AWAKE",
2133 		"FULL-SLEEP",
2134 		"NETWORK SLEEP",
2135 		"UNDEFINED"
2136 	};
2137 
2138 	if (ah->power_mode == mode)
2139 		return status;
2140 
2141 	ath_dbg(common, RESET, "%s -> %s\n",
2142 		modes[ah->power_mode], modes[mode]);
2143 
2144 	switch (mode) {
2145 	case ATH9K_PM_AWAKE:
2146 		status = ath9k_hw_set_power_awake(ah);
2147 		break;
2148 	case ATH9K_PM_FULL_SLEEP:
2149 		if (ath9k_hw_mci_is_enabled(ah))
2150 			ar9003_mci_set_full_sleep(ah);
2151 
2152 		ath9k_set_power_sleep(ah);
2153 		ah->chip_fullsleep = true;
2154 		break;
2155 	case ATH9K_PM_NETWORK_SLEEP:
2156 		ath9k_set_power_network_sleep(ah);
2157 		break;
2158 	default:
2159 		ath_err(common, "Unknown power mode %u\n", mode);
2160 		return false;
2161 	}
2162 	ah->power_mode = mode;
2163 
2164 	/*
2165 	 * XXX: If this warning never comes up after a while then
2166 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2167 	 * ath9k_hw_setpower() return type void.
2168 	 */
2169 
2170 	if (!(ah->ah_flags & AH_UNPLUGGED))
2171 		ATH_DBG_WARN_ON_ONCE(!status);
2172 
2173 	return status;
2174 }
2175 EXPORT_SYMBOL(ath9k_hw_setpower);
2176 
2177 /*******************/
2178 /* Beacon Handling */
2179 /*******************/
2180 
2181 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2182 {
2183 	int flags = 0;
2184 
2185 	ENABLE_REGWRITE_BUFFER(ah);
2186 
2187 	switch (ah->opmode) {
2188 	case NL80211_IFTYPE_ADHOC:
2189 		REG_SET_BIT(ah, AR_TXCFG,
2190 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2191 	case NL80211_IFTYPE_MESH_POINT:
2192 	case NL80211_IFTYPE_AP:
2193 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2194 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2195 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2196 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2197 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2198 		flags |=
2199 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2200 		break;
2201 	default:
2202 		ath_dbg(ath9k_hw_common(ah), BEACON,
2203 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2204 		return;
2205 		break;
2206 	}
2207 
2208 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2209 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2210 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2211 
2212 	REGWRITE_BUFFER_FLUSH(ah);
2213 
2214 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2215 }
2216 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2217 
2218 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2219 				    const struct ath9k_beacon_state *bs)
2220 {
2221 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2222 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2223 	struct ath_common *common = ath9k_hw_common(ah);
2224 
2225 	ENABLE_REGWRITE_BUFFER(ah);
2226 
2227 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2228 	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2229 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2230 
2231 	REGWRITE_BUFFER_FLUSH(ah);
2232 
2233 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2234 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2235 
2236 	beaconintval = bs->bs_intval;
2237 
2238 	if (bs->bs_sleepduration > beaconintval)
2239 		beaconintval = bs->bs_sleepduration;
2240 
2241 	dtimperiod = bs->bs_dtimperiod;
2242 	if (bs->bs_sleepduration > dtimperiod)
2243 		dtimperiod = bs->bs_sleepduration;
2244 
2245 	if (beaconintval == dtimperiod)
2246 		nextTbtt = bs->bs_nextdtim;
2247 	else
2248 		nextTbtt = bs->bs_nexttbtt;
2249 
2250 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2251 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2252 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2253 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2254 
2255 	ENABLE_REGWRITE_BUFFER(ah);
2256 
2257 	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2258 	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2259 
2260 	REG_WRITE(ah, AR_SLEEP1,
2261 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2262 		  | AR_SLEEP1_ASSUME_DTIM);
2263 
2264 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2265 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2266 	else
2267 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2268 
2269 	REG_WRITE(ah, AR_SLEEP2,
2270 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2271 
2272 	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2273 	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2274 
2275 	REGWRITE_BUFFER_FLUSH(ah);
2276 
2277 	REG_SET_BIT(ah, AR_TIMER_MODE,
2278 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2279 		    AR_DTIM_TIMER_EN);
2280 
2281 	/* TSF Out of Range Threshold */
2282 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2283 }
2284 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2285 
2286 /*******************/
2287 /* HW Capabilities */
2288 /*******************/
2289 
2290 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2291 {
2292 	eeprom_chainmask &= chip_chainmask;
2293 	if (eeprom_chainmask)
2294 		return eeprom_chainmask;
2295 	else
2296 		return chip_chainmask;
2297 }
2298 
2299 /**
2300  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2301  * @ah: the atheros hardware data structure
2302  *
2303  * We enable DFS support upstream on chipsets which have passed a series
2304  * of tests. The testing requirements are going to be documented. Desired
2305  * test requirements are documented at:
2306  *
2307  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2308  *
2309  * Once a new chipset gets properly tested an individual commit can be used
2310  * to document the testing for DFS for that chipset.
2311  */
2312 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2313 {
2314 
2315 	switch (ah->hw_version.macVersion) {
2316 	/* for temporary testing DFS with 9280 */
2317 	case AR_SREV_VERSION_9280:
2318 	/* AR9580 will likely be our first target to get testing on */
2319 	case AR_SREV_VERSION_9580:
2320 		return true;
2321 	default:
2322 		return false;
2323 	}
2324 }
2325 
2326 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2327 {
2328 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2329 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2330 	struct ath_common *common = ath9k_hw_common(ah);
2331 
2332 	u16 eeval;
2333 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2334 
2335 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2336 	regulatory->current_rd = eeval;
2337 
2338 	if (ah->opmode != NL80211_IFTYPE_AP &&
2339 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2340 		if (regulatory->current_rd == 0x64 ||
2341 		    regulatory->current_rd == 0x65)
2342 			regulatory->current_rd += 5;
2343 		else if (regulatory->current_rd == 0x41)
2344 			regulatory->current_rd = 0x43;
2345 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2346 			regulatory->current_rd);
2347 	}
2348 
2349 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2350 
2351 	if (eeval & AR5416_OPFLAGS_11A) {
2352 		if (ah->disable_5ghz)
2353 			ath_warn(common, "disabling 5GHz band\n");
2354 		else
2355 			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2356 	}
2357 
2358 	if (eeval & AR5416_OPFLAGS_11G) {
2359 		if (ah->disable_2ghz)
2360 			ath_warn(common, "disabling 2GHz band\n");
2361 		else
2362 			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2363 	}
2364 
2365 	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2366 		ath_err(common, "both bands are disabled\n");
2367 		return -EINVAL;
2368 	}
2369 
2370 	if (AR_SREV_9485(ah) ||
2371 	    AR_SREV_9285(ah) ||
2372 	    AR_SREV_9330(ah) ||
2373 	    AR_SREV_9565(ah))
2374 		pCap->chip_chainmask = 1;
2375 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2376 		pCap->chip_chainmask = 7;
2377 	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2378 		 AR_SREV_9340(ah) ||
2379 		 AR_SREV_9462(ah) ||
2380 		 AR_SREV_9531(ah))
2381 		pCap->chip_chainmask = 3;
2382 	else
2383 		pCap->chip_chainmask = 7;
2384 
2385 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2386 	/*
2387 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2388 	 * the EEPROM.
2389 	 */
2390 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2391 	    !(eeval & AR5416_OPFLAGS_11A) &&
2392 	    !(AR_SREV_9271(ah)))
2393 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2394 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2395 	else if (AR_SREV_9100(ah))
2396 		pCap->rx_chainmask = 0x7;
2397 	else
2398 		/* Use rx_chainmask from EEPROM. */
2399 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2400 
2401 	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2402 	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2403 	ah->txchainmask = pCap->tx_chainmask;
2404 	ah->rxchainmask = pCap->rx_chainmask;
2405 
2406 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2407 
2408 	/* enable key search for every frame in an aggregate */
2409 	if (AR_SREV_9300_20_OR_LATER(ah))
2410 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2411 
2412 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2413 
2414 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2415 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2416 	else
2417 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2418 
2419 	if (AR_SREV_9271(ah))
2420 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2421 	else if (AR_DEVID_7010(ah))
2422 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2423 	else if (AR_SREV_9300_20_OR_LATER(ah))
2424 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2425 	else if (AR_SREV_9287_11_OR_LATER(ah))
2426 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2427 	else if (AR_SREV_9285_12_OR_LATER(ah))
2428 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2429 	else if (AR_SREV_9280_20_OR_LATER(ah))
2430 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2431 	else
2432 		pCap->num_gpio_pins = AR_NUM_GPIO;
2433 
2434 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2435 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2436 	else
2437 		pCap->rts_aggr_limit = (8 * 1024);
2438 
2439 #ifdef CONFIG_ATH9K_RFKILL
2440 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2441 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2442 		ah->rfkill_gpio =
2443 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2444 		ah->rfkill_polarity =
2445 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2446 
2447 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2448 	}
2449 #endif
2450 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2451 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2452 	else
2453 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2454 
2455 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2456 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2457 	else
2458 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2459 
2460 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2461 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2462 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2463 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2464 
2465 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2466 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2467 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2468 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2469 		pCap->txs_len = sizeof(struct ar9003_txs);
2470 	} else {
2471 		pCap->tx_desc_len = sizeof(struct ath_desc);
2472 		if (AR_SREV_9280_20(ah))
2473 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2474 	}
2475 
2476 	if (AR_SREV_9300_20_OR_LATER(ah))
2477 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2478 
2479 	if (AR_SREV_9300_20_OR_LATER(ah))
2480 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2481 
2482 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2483 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2484 
2485 	if (AR_SREV_9285(ah)) {
2486 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2487 			ant_div_ctl1 =
2488 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2489 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2490 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2491 				ath_info(common, "Enable LNA combining\n");
2492 			}
2493 		}
2494 	}
2495 
2496 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2497 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2498 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2499 	}
2500 
2501 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2502 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2503 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2504 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2505 			ath_info(common, "Enable LNA combining\n");
2506 		}
2507 	}
2508 
2509 	if (ath9k_hw_dfs_tested(ah))
2510 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2511 
2512 	tx_chainmask = pCap->tx_chainmask;
2513 	rx_chainmask = pCap->rx_chainmask;
2514 	while (tx_chainmask || rx_chainmask) {
2515 		if (tx_chainmask & BIT(0))
2516 			pCap->max_txchains++;
2517 		if (rx_chainmask & BIT(0))
2518 			pCap->max_rxchains++;
2519 
2520 		tx_chainmask >>= 1;
2521 		rx_chainmask >>= 1;
2522 	}
2523 
2524 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2525 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2526 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2527 
2528 		if (AR_SREV_9462_20_OR_LATER(ah))
2529 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2530 	}
2531 
2532 	if (AR_SREV_9462(ah))
2533 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2534 
2535 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2536 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2537 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2538 
2539 	return 0;
2540 }
2541 
2542 /****************************/
2543 /* GPIO / RFKILL / Antennae */
2544 /****************************/
2545 
2546 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2547 					 u32 gpio, u32 type)
2548 {
2549 	int addr;
2550 	u32 gpio_shift, tmp;
2551 
2552 	if (gpio > 11)
2553 		addr = AR_GPIO_OUTPUT_MUX3;
2554 	else if (gpio > 5)
2555 		addr = AR_GPIO_OUTPUT_MUX2;
2556 	else
2557 		addr = AR_GPIO_OUTPUT_MUX1;
2558 
2559 	gpio_shift = (gpio % 6) * 5;
2560 
2561 	if (AR_SREV_9280_20_OR_LATER(ah)
2562 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2563 		REG_RMW(ah, addr, (type << gpio_shift),
2564 			(0x1f << gpio_shift));
2565 	} else {
2566 		tmp = REG_READ(ah, addr);
2567 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2568 		tmp &= ~(0x1f << gpio_shift);
2569 		tmp |= (type << gpio_shift);
2570 		REG_WRITE(ah, addr, tmp);
2571 	}
2572 }
2573 
2574 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2575 {
2576 	u32 gpio_shift;
2577 
2578 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2579 
2580 	if (AR_DEVID_7010(ah)) {
2581 		gpio_shift = gpio;
2582 		REG_RMW(ah, AR7010_GPIO_OE,
2583 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2584 			(AR7010_GPIO_OE_MASK << gpio_shift));
2585 		return;
2586 	}
2587 
2588 	gpio_shift = gpio << 1;
2589 	REG_RMW(ah,
2590 		AR_GPIO_OE_OUT,
2591 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2592 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2593 }
2594 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2595 
2596 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2597 {
2598 #define MS_REG_READ(x, y) \
2599 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2600 
2601 	if (gpio >= ah->caps.num_gpio_pins)
2602 		return 0xffffffff;
2603 
2604 	if (AR_DEVID_7010(ah)) {
2605 		u32 val;
2606 		val = REG_READ(ah, AR7010_GPIO_IN);
2607 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2608 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2609 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2610 			AR_GPIO_BIT(gpio)) != 0;
2611 	else if (AR_SREV_9271(ah))
2612 		return MS_REG_READ(AR9271, gpio) != 0;
2613 	else if (AR_SREV_9287_11_OR_LATER(ah))
2614 		return MS_REG_READ(AR9287, gpio) != 0;
2615 	else if (AR_SREV_9285_12_OR_LATER(ah))
2616 		return MS_REG_READ(AR9285, gpio) != 0;
2617 	else if (AR_SREV_9280_20_OR_LATER(ah))
2618 		return MS_REG_READ(AR928X, gpio) != 0;
2619 	else
2620 		return MS_REG_READ(AR, gpio) != 0;
2621 }
2622 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2623 
2624 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2625 			 u32 ah_signal_type)
2626 {
2627 	u32 gpio_shift;
2628 
2629 	if (AR_DEVID_7010(ah)) {
2630 		gpio_shift = gpio;
2631 		REG_RMW(ah, AR7010_GPIO_OE,
2632 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2633 			(AR7010_GPIO_OE_MASK << gpio_shift));
2634 		return;
2635 	}
2636 
2637 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2638 	gpio_shift = 2 * gpio;
2639 	REG_RMW(ah,
2640 		AR_GPIO_OE_OUT,
2641 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2642 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2643 }
2644 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2645 
2646 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2647 {
2648 	if (AR_DEVID_7010(ah)) {
2649 		val = val ? 0 : 1;
2650 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2651 			AR_GPIO_BIT(gpio));
2652 		return;
2653 	}
2654 
2655 	if (AR_SREV_9271(ah))
2656 		val = ~val;
2657 
2658 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2659 		AR_GPIO_BIT(gpio));
2660 }
2661 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2662 
2663 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2664 {
2665 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2666 }
2667 EXPORT_SYMBOL(ath9k_hw_setantenna);
2668 
2669 /*********************/
2670 /* General Operation */
2671 /*********************/
2672 
2673 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2674 {
2675 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2676 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2677 
2678 	if (phybits & AR_PHY_ERR_RADAR)
2679 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2680 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2681 		bits |= ATH9K_RX_FILTER_PHYERR;
2682 
2683 	return bits;
2684 }
2685 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2686 
2687 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2688 {
2689 	u32 phybits;
2690 
2691 	ENABLE_REGWRITE_BUFFER(ah);
2692 
2693 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2694 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2695 
2696 	REG_WRITE(ah, AR_RX_FILTER, bits);
2697 
2698 	phybits = 0;
2699 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2700 		phybits |= AR_PHY_ERR_RADAR;
2701 	if (bits & ATH9K_RX_FILTER_PHYERR)
2702 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2703 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2704 
2705 	if (phybits)
2706 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2707 	else
2708 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2709 
2710 	REGWRITE_BUFFER_FLUSH(ah);
2711 }
2712 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2713 
2714 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2715 {
2716 	if (ath9k_hw_mci_is_enabled(ah))
2717 		ar9003_mci_bt_gain_ctrl(ah);
2718 
2719 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2720 		return false;
2721 
2722 	ath9k_hw_init_pll(ah, NULL);
2723 	ah->htc_reset_init = true;
2724 	return true;
2725 }
2726 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2727 
2728 bool ath9k_hw_disable(struct ath_hw *ah)
2729 {
2730 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2731 		return false;
2732 
2733 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2734 		return false;
2735 
2736 	ath9k_hw_init_pll(ah, NULL);
2737 	return true;
2738 }
2739 EXPORT_SYMBOL(ath9k_hw_disable);
2740 
2741 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2742 {
2743 	enum eeprom_param gain_param;
2744 
2745 	if (IS_CHAN_2GHZ(chan))
2746 		gain_param = EEP_ANTENNA_GAIN_2G;
2747 	else
2748 		gain_param = EEP_ANTENNA_GAIN_5G;
2749 
2750 	return ah->eep_ops->get_eeprom(ah, gain_param);
2751 }
2752 
2753 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2754 			    bool test)
2755 {
2756 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2757 	struct ieee80211_channel *channel;
2758 	int chan_pwr, new_pwr, max_gain;
2759 	int ant_gain, ant_reduction = 0;
2760 
2761 	if (!chan)
2762 		return;
2763 
2764 	channel = chan->chan;
2765 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2766 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2767 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2768 
2769 	ant_gain = get_antenna_gain(ah, chan);
2770 	if (ant_gain > max_gain)
2771 		ant_reduction = ant_gain - max_gain;
2772 
2773 	ah->eep_ops->set_txpower(ah, chan,
2774 				 ath9k_regd_get_ctl(reg, chan),
2775 				 ant_reduction, new_pwr, test);
2776 }
2777 
2778 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2779 {
2780 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2781 	struct ath9k_channel *chan = ah->curchan;
2782 	struct ieee80211_channel *channel = chan->chan;
2783 
2784 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2785 	if (test)
2786 		channel->max_power = MAX_RATE_POWER / 2;
2787 
2788 	ath9k_hw_apply_txpower(ah, chan, test);
2789 
2790 	if (test)
2791 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2792 }
2793 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2794 
2795 void ath9k_hw_setopmode(struct ath_hw *ah)
2796 {
2797 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2798 }
2799 EXPORT_SYMBOL(ath9k_hw_setopmode);
2800 
2801 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2802 {
2803 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2804 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2805 }
2806 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2807 
2808 void ath9k_hw_write_associd(struct ath_hw *ah)
2809 {
2810 	struct ath_common *common = ath9k_hw_common(ah);
2811 
2812 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2813 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2814 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2815 }
2816 EXPORT_SYMBOL(ath9k_hw_write_associd);
2817 
2818 #define ATH9K_MAX_TSF_READ 10
2819 
2820 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2821 {
2822 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2823 	int i;
2824 
2825 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2826 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2827 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2828 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2829 		if (tsf_upper2 == tsf_upper1)
2830 			break;
2831 		tsf_upper1 = tsf_upper2;
2832 	}
2833 
2834 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2835 
2836 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2837 }
2838 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2839 
2840 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2841 {
2842 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2843 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2844 }
2845 EXPORT_SYMBOL(ath9k_hw_settsf64);
2846 
2847 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2848 {
2849 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2850 			   AH_TSF_WRITE_TIMEOUT))
2851 		ath_dbg(ath9k_hw_common(ah), RESET,
2852 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2853 
2854 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2855 }
2856 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2857 
2858 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2859 {
2860 	if (set)
2861 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2862 	else
2863 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2864 }
2865 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2866 
2867 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2868 {
2869 	u32 macmode;
2870 
2871 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2872 		macmode = AR_2040_JOINED_RX_CLEAR;
2873 	else
2874 		macmode = 0;
2875 
2876 	REG_WRITE(ah, AR_2040_MODE, macmode);
2877 }
2878 
2879 /* HW Generic timers configuration */
2880 
2881 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2882 {
2883 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2884 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2885 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2886 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2887 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2888 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2889 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2890 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2891 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2892 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2893 				AR_NDP2_TIMER_MODE, 0x0002},
2894 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2895 				AR_NDP2_TIMER_MODE, 0x0004},
2896 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2897 				AR_NDP2_TIMER_MODE, 0x0008},
2898 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2899 				AR_NDP2_TIMER_MODE, 0x0010},
2900 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2901 				AR_NDP2_TIMER_MODE, 0x0020},
2902 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2903 				AR_NDP2_TIMER_MODE, 0x0040},
2904 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2905 				AR_NDP2_TIMER_MODE, 0x0080}
2906 };
2907 
2908 /* HW generic timer primitives */
2909 
2910 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2911 {
2912 	return REG_READ(ah, AR_TSF_L32);
2913 }
2914 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2915 
2916 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
2917 {
2918 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2919 
2920 	if (timer_table->tsf2_enabled) {
2921 		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
2922 		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
2923 	}
2924 }
2925 
2926 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2927 					  void (*trigger)(void *),
2928 					  void (*overflow)(void *),
2929 					  void *arg,
2930 					  u8 timer_index)
2931 {
2932 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2933 	struct ath_gen_timer *timer;
2934 
2935 	if ((timer_index < AR_FIRST_NDP_TIMER) ||
2936 	    (timer_index >= ATH_MAX_GEN_TIMER))
2937 		return NULL;
2938 
2939 	if ((timer_index > AR_FIRST_NDP_TIMER) &&
2940 	    !AR_SREV_9300_20_OR_LATER(ah))
2941 		return NULL;
2942 
2943 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2944 	if (timer == NULL)
2945 		return NULL;
2946 
2947 	/* allocate a hardware generic timer slot */
2948 	timer_table->timers[timer_index] = timer;
2949 	timer->index = timer_index;
2950 	timer->trigger = trigger;
2951 	timer->overflow = overflow;
2952 	timer->arg = arg;
2953 
2954 	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
2955 		timer_table->tsf2_enabled = true;
2956 		ath9k_hw_gen_timer_start_tsf2(ah);
2957 	}
2958 
2959 	return timer;
2960 }
2961 EXPORT_SYMBOL(ath_gen_timer_alloc);
2962 
2963 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2964 			      struct ath_gen_timer *timer,
2965 			      u32 timer_next,
2966 			      u32 timer_period)
2967 {
2968 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2969 	u32 mask = 0;
2970 
2971 	timer_table->timer_mask |= BIT(timer->index);
2972 
2973 	/*
2974 	 * Program generic timer registers
2975 	 */
2976 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2977 		 timer_next);
2978 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2979 		  timer_period);
2980 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2981 		    gen_tmr_configuration[timer->index].mode_mask);
2982 
2983 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2984 		/*
2985 		 * Starting from AR9462, each generic timer can select which tsf
2986 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2987 		 * 8 - 15  use tsf2.
2988 		 */
2989 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2990 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2991 				       (1 << timer->index));
2992 		else
2993 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2994 				       (1 << timer->index));
2995 	}
2996 
2997 	if (timer->trigger)
2998 		mask |= SM(AR_GENTMR_BIT(timer->index),
2999 			   AR_IMR_S5_GENTIMER_TRIG);
3000 	if (timer->overflow)
3001 		mask |= SM(AR_GENTMR_BIT(timer->index),
3002 			   AR_IMR_S5_GENTIMER_THRESH);
3003 
3004 	REG_SET_BIT(ah, AR_IMR_S5, mask);
3005 
3006 	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3007 		ah->imask |= ATH9K_INT_GENTIMER;
3008 		ath9k_hw_set_interrupts(ah);
3009 	}
3010 }
3011 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3012 
3013 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3014 {
3015 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3016 
3017 	/* Clear generic timer enable bits. */
3018 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3019 			gen_tmr_configuration[timer->index].mode_mask);
3020 
3021 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3022 		/*
3023 		 * Need to switch back to TSF if it was using TSF2.
3024 		 */
3025 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3026 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3027 				    (1 << timer->index));
3028 		}
3029 	}
3030 
3031 	/* Disable both trigger and thresh interrupt masks */
3032 	REG_CLR_BIT(ah, AR_IMR_S5,
3033 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3034 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3035 
3036 	timer_table->timer_mask &= ~BIT(timer->index);
3037 
3038 	if (timer_table->timer_mask == 0) {
3039 		ah->imask &= ~ATH9K_INT_GENTIMER;
3040 		ath9k_hw_set_interrupts(ah);
3041 	}
3042 }
3043 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3044 
3045 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3046 {
3047 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3048 
3049 	/* free the hardware generic timer slot */
3050 	timer_table->timers[timer->index] = NULL;
3051 	kfree(timer);
3052 }
3053 EXPORT_SYMBOL(ath_gen_timer_free);
3054 
3055 /*
3056  * Generic Timer Interrupts handling
3057  */
3058 void ath_gen_timer_isr(struct ath_hw *ah)
3059 {
3060 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3061 	struct ath_gen_timer *timer;
3062 	unsigned long trigger_mask, thresh_mask;
3063 	unsigned int index;
3064 
3065 	/* get hardware generic timer interrupt status */
3066 	trigger_mask = ah->intr_gen_timer_trigger;
3067 	thresh_mask = ah->intr_gen_timer_thresh;
3068 	trigger_mask &= timer_table->timer_mask;
3069 	thresh_mask &= timer_table->timer_mask;
3070 
3071 	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3072 		timer = timer_table->timers[index];
3073 		if (!timer)
3074 		    continue;
3075 		if (!timer->overflow)
3076 		    continue;
3077 
3078 		trigger_mask &= ~BIT(index);
3079 		timer->overflow(timer->arg);
3080 	}
3081 
3082 	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3083 		timer = timer_table->timers[index];
3084 		if (!timer)
3085 		    continue;
3086 		if (!timer->trigger)
3087 		    continue;
3088 		timer->trigger(timer->arg);
3089 	}
3090 }
3091 EXPORT_SYMBOL(ath_gen_timer_isr);
3092 
3093 /********/
3094 /* HTC  */
3095 /********/
3096 
3097 static struct {
3098 	u32 version;
3099 	const char * name;
3100 } ath_mac_bb_names[] = {
3101 	/* Devices with external radios */
3102 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3103 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3104 	{ AR_SREV_VERSION_9100,		"9100" },
3105 	{ AR_SREV_VERSION_9160,		"9160" },
3106 	/* Single-chip solutions */
3107 	{ AR_SREV_VERSION_9280,		"9280" },
3108 	{ AR_SREV_VERSION_9285,		"9285" },
3109 	{ AR_SREV_VERSION_9287,         "9287" },
3110 	{ AR_SREV_VERSION_9271,         "9271" },
3111 	{ AR_SREV_VERSION_9300,         "9300" },
3112 	{ AR_SREV_VERSION_9330,         "9330" },
3113 	{ AR_SREV_VERSION_9340,		"9340" },
3114 	{ AR_SREV_VERSION_9485,         "9485" },
3115 	{ AR_SREV_VERSION_9462,         "9462" },
3116 	{ AR_SREV_VERSION_9550,         "9550" },
3117 	{ AR_SREV_VERSION_9565,         "9565" },
3118 	{ AR_SREV_VERSION_9531,         "9531" },
3119 };
3120 
3121 /* For devices with external radios */
3122 static struct {
3123 	u16 version;
3124 	const char * name;
3125 } ath_rf_names[] = {
3126 	{ 0,				"5133" },
3127 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3128 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3129 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3130 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3131 };
3132 
3133 /*
3134  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3135  */
3136 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3137 {
3138 	int i;
3139 
3140 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3141 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3142 			return ath_mac_bb_names[i].name;
3143 		}
3144 	}
3145 
3146 	return "????";
3147 }
3148 
3149 /*
3150  * Return the RF name. "????" is returned if the RF is unknown.
3151  * Used for devices with external radios.
3152  */
3153 static const char *ath9k_hw_rf_name(u16 rf_version)
3154 {
3155 	int i;
3156 
3157 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3158 		if (ath_rf_names[i].version == rf_version) {
3159 			return ath_rf_names[i].name;
3160 		}
3161 	}
3162 
3163 	return "????";
3164 }
3165 
3166 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3167 {
3168 	int used;
3169 
3170 	/* chipsets >= AR9280 are single-chip */
3171 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3172 		used = scnprintf(hw_name, len,
3173 				 "Atheros AR%s Rev:%x",
3174 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3175 				 ah->hw_version.macRev);
3176 	}
3177 	else {
3178 		used = scnprintf(hw_name, len,
3179 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3180 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3181 				 ah->hw_version.macRev,
3182 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3183 						  & AR_RADIO_SREV_MAJOR)),
3184 				 ah->hw_version.phyRev);
3185 	}
3186 
3187 	hw_name[used] = '\0';
3188 }
3189 EXPORT_SYMBOL(ath9k_hw_name);
3190