xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Copyright (c) 2008-2010 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
20 
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
25 
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27 
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
32 
33 static int __init ath9k_init(void)
34 {
35 	return 0;
36 }
37 module_init(ath9k_init);
38 
39 static void __exit ath9k_exit(void)
40 {
41 	return;
42 }
43 module_exit(ath9k_exit);
44 
45 /* Private hardware callbacks */
46 
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48 {
49 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50 }
51 
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55 }
56 
57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 					struct ath9k_channel *chan)
59 {
60 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62 
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 		return;
67 
68 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70 
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 	/* You will not have this callback if using the old ANI */
74 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 		return;
76 
77 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79 
80 /********************/
81 /* Helper Functions */
82 /********************/
83 
84 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85 {
86 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87 	struct ath_common *common = ath9k_hw_common(ah);
88 	unsigned int clockrate;
89 
90 	if (!ah->curchan) /* should really check for CCK instead */
91 		clockrate = ATH9K_CLOCK_RATE_CCK;
92 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
93 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
94 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
95 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
96 	else
97 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
98 
99 	if (conf_is_ht40(conf))
100 		clockrate *= 2;
101 
102 	common->clockrate = clockrate;
103 }
104 
105 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
106 {
107 	struct ath_common *common = ath9k_hw_common(ah);
108 
109 	return usecs * common->clockrate;
110 }
111 
112 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
113 {
114 	int i;
115 
116 	BUG_ON(timeout < AH_TIME_QUANTUM);
117 
118 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
119 		if ((REG_READ(ah, reg) & mask) == val)
120 			return true;
121 
122 		udelay(AH_TIME_QUANTUM);
123 	}
124 
125 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
126 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
127 		timeout, reg, REG_READ(ah, reg), mask, val);
128 
129 	return false;
130 }
131 EXPORT_SYMBOL(ath9k_hw_wait);
132 
133 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
134 {
135 	u32 retval;
136 	int i;
137 
138 	for (i = 0, retval = 0; i < n; i++) {
139 		retval = (retval << 1) | (val & 1);
140 		val >>= 1;
141 	}
142 	return retval;
143 }
144 
145 bool ath9k_get_channel_edges(struct ath_hw *ah,
146 			     u16 flags, u16 *low,
147 			     u16 *high)
148 {
149 	struct ath9k_hw_capabilities *pCap = &ah->caps;
150 
151 	if (flags & CHANNEL_5GHZ) {
152 		*low = pCap->low_5ghz_chan;
153 		*high = pCap->high_5ghz_chan;
154 		return true;
155 	}
156 	if ((flags & CHANNEL_2GHZ)) {
157 		*low = pCap->low_2ghz_chan;
158 		*high = pCap->high_2ghz_chan;
159 		return true;
160 	}
161 	return false;
162 }
163 
164 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
165 			   u8 phy, int kbps,
166 			   u32 frameLen, u16 rateix,
167 			   bool shortPreamble)
168 {
169 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
170 
171 	if (kbps == 0)
172 		return 0;
173 
174 	switch (phy) {
175 	case WLAN_RC_PHY_CCK:
176 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
177 		if (shortPreamble)
178 			phyTime >>= 1;
179 		numBits = frameLen << 3;
180 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
181 		break;
182 	case WLAN_RC_PHY_OFDM:
183 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
184 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
185 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
186 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
187 			txTime = OFDM_SIFS_TIME_QUARTER
188 				+ OFDM_PREAMBLE_TIME_QUARTER
189 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
190 		} else if (ah->curchan &&
191 			   IS_CHAN_HALF_RATE(ah->curchan)) {
192 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
193 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
194 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
195 			txTime = OFDM_SIFS_TIME_HALF +
196 				OFDM_PREAMBLE_TIME_HALF
197 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
198 		} else {
199 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
200 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
201 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
202 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
203 				+ (numSymbols * OFDM_SYMBOL_TIME);
204 		}
205 		break;
206 	default:
207 		ath_err(ath9k_hw_common(ah),
208 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
209 		txTime = 0;
210 		break;
211 	}
212 
213 	return txTime;
214 }
215 EXPORT_SYMBOL(ath9k_hw_computetxtime);
216 
217 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
218 				  struct ath9k_channel *chan,
219 				  struct chan_centers *centers)
220 {
221 	int8_t extoff;
222 
223 	if (!IS_CHAN_HT40(chan)) {
224 		centers->ctl_center = centers->ext_center =
225 			centers->synth_center = chan->channel;
226 		return;
227 	}
228 
229 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
230 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
231 		centers->synth_center =
232 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
233 		extoff = 1;
234 	} else {
235 		centers->synth_center =
236 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
237 		extoff = -1;
238 	}
239 
240 	centers->ctl_center =
241 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
242 	/* 25 MHz spacing is supported by hw but not on upper layers */
243 	centers->ext_center =
244 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
245 }
246 
247 /******************/
248 /* Chip Revisions */
249 /******************/
250 
251 static void ath9k_hw_read_revisions(struct ath_hw *ah)
252 {
253 	u32 val;
254 
255 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
256 
257 	if (val == 0xFF) {
258 		val = REG_READ(ah, AR_SREV);
259 		ah->hw_version.macVersion =
260 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
261 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
262 		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
263 	} else {
264 		if (!AR_SREV_9100(ah))
265 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
266 
267 		ah->hw_version.macRev = val & AR_SREV_REVISION;
268 
269 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
270 			ah->is_pciexpress = true;
271 	}
272 }
273 
274 /************************************/
275 /* HW Attach, Detach, Init Routines */
276 /************************************/
277 
278 static void ath9k_hw_disablepcie(struct ath_hw *ah)
279 {
280 	if (!AR_SREV_5416(ah))
281 		return;
282 
283 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
284 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
285 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
286 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
287 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
288 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
289 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
290 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
291 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
292 
293 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
294 }
295 
296 /* This should work for all families including legacy */
297 static bool ath9k_hw_chip_test(struct ath_hw *ah)
298 {
299 	struct ath_common *common = ath9k_hw_common(ah);
300 	u32 regAddr[2] = { AR_STA_ID0 };
301 	u32 regHold[2];
302 	static const u32 patternData[4] = {
303 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
304 	};
305 	int i, j, loop_max;
306 
307 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
308 		loop_max = 2;
309 		regAddr[1] = AR_PHY_BASE + (8 << 2);
310 	} else
311 		loop_max = 1;
312 
313 	for (i = 0; i < loop_max; i++) {
314 		u32 addr = regAddr[i];
315 		u32 wrData, rdData;
316 
317 		regHold[i] = REG_READ(ah, addr);
318 		for (j = 0; j < 0x100; j++) {
319 			wrData = (j << 16) | j;
320 			REG_WRITE(ah, addr, wrData);
321 			rdData = REG_READ(ah, addr);
322 			if (rdData != wrData) {
323 				ath_err(common,
324 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
325 					addr, wrData, rdData);
326 				return false;
327 			}
328 		}
329 		for (j = 0; j < 4; j++) {
330 			wrData = patternData[j];
331 			REG_WRITE(ah, addr, wrData);
332 			rdData = REG_READ(ah, addr);
333 			if (wrData != rdData) {
334 				ath_err(common,
335 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
336 					addr, wrData, rdData);
337 				return false;
338 			}
339 		}
340 		REG_WRITE(ah, regAddr[i], regHold[i]);
341 	}
342 	udelay(100);
343 
344 	return true;
345 }
346 
347 static void ath9k_hw_init_config(struct ath_hw *ah)
348 {
349 	int i;
350 
351 	ah->config.dma_beacon_response_time = 2;
352 	ah->config.sw_beacon_response_time = 10;
353 	ah->config.additional_swba_backoff = 0;
354 	ah->config.ack_6mb = 0x0;
355 	ah->config.cwm_ignore_extcca = 0;
356 	ah->config.pcie_powersave_enable = 0;
357 	ah->config.pcie_clock_req = 0;
358 	ah->config.pcie_waen = 0;
359 	ah->config.analog_shiftreg = 1;
360 	ah->config.enable_ani = true;
361 
362 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
363 		ah->config.spurchans[i][0] = AR_NO_SPUR;
364 		ah->config.spurchans[i][1] = AR_NO_SPUR;
365 	}
366 
367 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
368 		ah->config.ht_enable = 1;
369 	else
370 		ah->config.ht_enable = 0;
371 
372 	ah->config.rx_intr_mitigation = true;
373 	ah->config.pcieSerDesWrite = true;
374 
375 	/*
376 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
377 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
378 	 * This means we use it for all AR5416 devices, and the few
379 	 * minor PCI AR9280 devices out there.
380 	 *
381 	 * Serialization is required because these devices do not handle
382 	 * well the case of two concurrent reads/writes due to the latency
383 	 * involved. During one read/write another read/write can be issued
384 	 * on another CPU while the previous read/write may still be working
385 	 * on our hardware, if we hit this case the hardware poops in a loop.
386 	 * We prevent this by serializing reads and writes.
387 	 *
388 	 * This issue is not present on PCI-Express devices or pre-AR5416
389 	 * devices (legacy, 802.11abg).
390 	 */
391 	if (num_possible_cpus() > 1)
392 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
393 }
394 
395 static void ath9k_hw_init_defaults(struct ath_hw *ah)
396 {
397 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
398 
399 	regulatory->country_code = CTRY_DEFAULT;
400 	regulatory->power_limit = MAX_RATE_POWER;
401 	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
402 
403 	ah->hw_version.magic = AR5416_MAGIC;
404 	ah->hw_version.subvendorid = 0;
405 
406 	ah->atim_window = 0;
407 	ah->sta_id1_defaults =
408 		AR_STA_ID1_CRPT_MIC_ENABLE |
409 		AR_STA_ID1_MCAST_KSRCH;
410 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
411 	ah->slottime = 20;
412 	ah->globaltxtimeout = (u32) -1;
413 	ah->power_mode = ATH9K_PM_UNDEFINED;
414 }
415 
416 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
417 {
418 	struct ath_common *common = ath9k_hw_common(ah);
419 	u32 sum;
420 	int i;
421 	u16 eeval;
422 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
423 
424 	sum = 0;
425 	for (i = 0; i < 3; i++) {
426 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
427 		sum += eeval;
428 		common->macaddr[2 * i] = eeval >> 8;
429 		common->macaddr[2 * i + 1] = eeval & 0xff;
430 	}
431 	if (sum == 0 || sum == 0xffff * 3)
432 		return -EADDRNOTAVAIL;
433 
434 	return 0;
435 }
436 
437 static int ath9k_hw_post_init(struct ath_hw *ah)
438 {
439 	int ecode;
440 
441 	if (!AR_SREV_9271(ah)) {
442 		if (!ath9k_hw_chip_test(ah))
443 			return -ENODEV;
444 	}
445 
446 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
447 		ecode = ar9002_hw_rf_claim(ah);
448 		if (ecode != 0)
449 			return ecode;
450 	}
451 
452 	ecode = ath9k_hw_eeprom_init(ah);
453 	if (ecode != 0)
454 		return ecode;
455 
456 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
457 		"Eeprom VER: %d, REV: %d\n",
458 		ah->eep_ops->get_eeprom_ver(ah),
459 		ah->eep_ops->get_eeprom_rev(ah));
460 
461 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
462 	if (ecode) {
463 		ath_err(ath9k_hw_common(ah),
464 			"Failed allocating banks for external radio\n");
465 		ath9k_hw_rf_free_ext_banks(ah);
466 		return ecode;
467 	}
468 
469 	if (!AR_SREV_9100(ah)) {
470 		ath9k_hw_ani_setup(ah);
471 		ath9k_hw_ani_init(ah);
472 	}
473 
474 	return 0;
475 }
476 
477 static void ath9k_hw_attach_ops(struct ath_hw *ah)
478 {
479 	if (AR_SREV_9300_20_OR_LATER(ah))
480 		ar9003_hw_attach_ops(ah);
481 	else
482 		ar9002_hw_attach_ops(ah);
483 }
484 
485 /* Called for all hardware families */
486 static int __ath9k_hw_init(struct ath_hw *ah)
487 {
488 	struct ath_common *common = ath9k_hw_common(ah);
489 	int r = 0;
490 
491 	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
492 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
493 
494 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
495 		ath_err(common, "Couldn't reset chip\n");
496 		return -EIO;
497 	}
498 
499 	ath9k_hw_init_defaults(ah);
500 	ath9k_hw_init_config(ah);
501 
502 	ath9k_hw_attach_ops(ah);
503 
504 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
505 		ath_err(common, "Couldn't wakeup chip\n");
506 		return -EIO;
507 	}
508 
509 	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
510 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
511 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
512 		     !ah->is_pciexpress)) {
513 			ah->config.serialize_regmode =
514 				SER_REG_MODE_ON;
515 		} else {
516 			ah->config.serialize_regmode =
517 				SER_REG_MODE_OFF;
518 		}
519 	}
520 
521 	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
522 		ah->config.serialize_regmode);
523 
524 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
525 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
526 	else
527 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
528 
529 	switch (ah->hw_version.macVersion) {
530 	case AR_SREV_VERSION_5416_PCI:
531 	case AR_SREV_VERSION_5416_PCIE:
532 	case AR_SREV_VERSION_9160:
533 	case AR_SREV_VERSION_9100:
534 	case AR_SREV_VERSION_9280:
535 	case AR_SREV_VERSION_9285:
536 	case AR_SREV_VERSION_9287:
537 	case AR_SREV_VERSION_9271:
538 	case AR_SREV_VERSION_9300:
539 	case AR_SREV_VERSION_9485:
540 		break;
541 	default:
542 		ath_err(common,
543 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
544 			ah->hw_version.macVersion, ah->hw_version.macRev);
545 		return -EOPNOTSUPP;
546 	}
547 
548 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
549 		ah->is_pciexpress = false;
550 
551 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
552 	ath9k_hw_init_cal_settings(ah);
553 
554 	ah->ani_function = ATH9K_ANI_ALL;
555 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
556 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
557 	if (!AR_SREV_9300_20_OR_LATER(ah))
558 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
559 
560 	ath9k_hw_init_mode_regs(ah);
561 
562 	/*
563 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
564 	 * We need to do this to avoid RMW of this register. We cannot
565 	 * read the reg when chip is asleep.
566 	 */
567 	ah->WARegVal = REG_READ(ah, AR_WA);
568 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
569 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
570 
571 	if (ah->is_pciexpress)
572 		ath9k_hw_configpcipowersave(ah, 0, 0);
573 	else
574 		ath9k_hw_disablepcie(ah);
575 
576 	if (!AR_SREV_9300_20_OR_LATER(ah))
577 		ar9002_hw_cck_chan14_spread(ah);
578 
579 	r = ath9k_hw_post_init(ah);
580 	if (r)
581 		return r;
582 
583 	ath9k_hw_init_mode_gain_regs(ah);
584 	r = ath9k_hw_fill_cap_info(ah);
585 	if (r)
586 		return r;
587 
588 	r = ath9k_hw_init_macaddr(ah);
589 	if (r) {
590 		ath_err(common, "Failed to initialize MAC address\n");
591 		return r;
592 	}
593 
594 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
595 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
596 	else
597 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
598 
599 	ah->bb_watchdog_timeout_ms = 25;
600 
601 	common->state = ATH_HW_INITIALIZED;
602 
603 	return 0;
604 }
605 
606 int ath9k_hw_init(struct ath_hw *ah)
607 {
608 	int ret;
609 	struct ath_common *common = ath9k_hw_common(ah);
610 
611 	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
612 	switch (ah->hw_version.devid) {
613 	case AR5416_DEVID_PCI:
614 	case AR5416_DEVID_PCIE:
615 	case AR5416_AR9100_DEVID:
616 	case AR9160_DEVID_PCI:
617 	case AR9280_DEVID_PCI:
618 	case AR9280_DEVID_PCIE:
619 	case AR9285_DEVID_PCIE:
620 	case AR9287_DEVID_PCI:
621 	case AR9287_DEVID_PCIE:
622 	case AR2427_DEVID_PCIE:
623 	case AR9300_DEVID_PCIE:
624 	case AR9300_DEVID_AR9485_PCIE:
625 		break;
626 	default:
627 		if (common->bus_ops->ath_bus_type == ATH_USB)
628 			break;
629 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
630 			ah->hw_version.devid);
631 		return -EOPNOTSUPP;
632 	}
633 
634 	ret = __ath9k_hw_init(ah);
635 	if (ret) {
636 		ath_err(common,
637 			"Unable to initialize hardware; initialization status: %d\n",
638 			ret);
639 		return ret;
640 	}
641 
642 	return 0;
643 }
644 EXPORT_SYMBOL(ath9k_hw_init);
645 
646 static void ath9k_hw_init_qos(struct ath_hw *ah)
647 {
648 	ENABLE_REGWRITE_BUFFER(ah);
649 
650 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
651 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
652 
653 	REG_WRITE(ah, AR_QOS_NO_ACK,
654 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
655 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
656 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
657 
658 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
659 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
660 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
661 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
662 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
663 
664 	REGWRITE_BUFFER_FLUSH(ah);
665 }
666 
667 static void ath9k_hw_init_pll(struct ath_hw *ah,
668 			      struct ath9k_channel *chan)
669 {
670 	u32 pll;
671 
672 	if (AR_SREV_9485(ah))
673 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
674 
675 	pll = ath9k_hw_compute_pll_control(ah, chan);
676 
677 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
678 
679 	/* Switch the core clock for ar9271 to 117Mhz */
680 	if (AR_SREV_9271(ah)) {
681 		udelay(500);
682 		REG_WRITE(ah, 0x50040, 0x304);
683 	}
684 
685 	udelay(RTC_PLL_SETTLE_DELAY);
686 
687 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
688 }
689 
690 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
691 					  enum nl80211_iftype opmode)
692 {
693 	u32 imr_reg = AR_IMR_TXERR |
694 		AR_IMR_TXURN |
695 		AR_IMR_RXERR |
696 		AR_IMR_RXORN |
697 		AR_IMR_BCNMISC;
698 
699 	if (AR_SREV_9300_20_OR_LATER(ah)) {
700 		imr_reg |= AR_IMR_RXOK_HP;
701 		if (ah->config.rx_intr_mitigation)
702 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
703 		else
704 			imr_reg |= AR_IMR_RXOK_LP;
705 
706 	} else {
707 		if (ah->config.rx_intr_mitigation)
708 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
709 		else
710 			imr_reg |= AR_IMR_RXOK;
711 	}
712 
713 	if (ah->config.tx_intr_mitigation)
714 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
715 	else
716 		imr_reg |= AR_IMR_TXOK;
717 
718 	if (opmode == NL80211_IFTYPE_AP)
719 		imr_reg |= AR_IMR_MIB;
720 
721 	ENABLE_REGWRITE_BUFFER(ah);
722 
723 	REG_WRITE(ah, AR_IMR, imr_reg);
724 	ah->imrs2_reg |= AR_IMR_S2_GTT;
725 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
726 
727 	if (!AR_SREV_9100(ah)) {
728 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
729 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
730 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
731 	}
732 
733 	REGWRITE_BUFFER_FLUSH(ah);
734 
735 	if (AR_SREV_9300_20_OR_LATER(ah)) {
736 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
737 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
738 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
739 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
740 	}
741 }
742 
743 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
744 {
745 	u32 val = ath9k_hw_mac_to_clks(ah, us);
746 	val = min(val, (u32) 0xFFFF);
747 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
748 }
749 
750 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
751 {
752 	u32 val = ath9k_hw_mac_to_clks(ah, us);
753 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
754 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
755 }
756 
757 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
758 {
759 	u32 val = ath9k_hw_mac_to_clks(ah, us);
760 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
761 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
762 }
763 
764 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
765 {
766 	if (tu > 0xFFFF) {
767 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
768 			"bad global tx timeout %u\n", tu);
769 		ah->globaltxtimeout = (u32) -1;
770 		return false;
771 	} else {
772 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
773 		ah->globaltxtimeout = tu;
774 		return true;
775 	}
776 }
777 
778 void ath9k_hw_init_global_settings(struct ath_hw *ah)
779 {
780 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
781 	int acktimeout;
782 	int slottime;
783 	int sifstime;
784 
785 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
786 		ah->misc_mode);
787 
788 	if (ah->misc_mode != 0)
789 		REG_WRITE(ah, AR_PCU_MISC,
790 			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
791 
792 	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
793 		sifstime = 16;
794 	else
795 		sifstime = 10;
796 
797 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
798 	slottime = ah->slottime + 3 * ah->coverage_class;
799 	acktimeout = slottime + sifstime;
800 
801 	/*
802 	 * Workaround for early ACK timeouts, add an offset to match the
803 	 * initval's 64us ack timeout value.
804 	 * This was initially only meant to work around an issue with delayed
805 	 * BA frames in some implementations, but it has been found to fix ACK
806 	 * timeout issues in other cases as well.
807 	 */
808 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
809 		acktimeout += 64 - sifstime - ah->slottime;
810 
811 	ath9k_hw_setslottime(ah, ah->slottime);
812 	ath9k_hw_set_ack_timeout(ah, acktimeout);
813 	ath9k_hw_set_cts_timeout(ah, acktimeout);
814 	if (ah->globaltxtimeout != (u32) -1)
815 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
816 }
817 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
818 
819 void ath9k_hw_deinit(struct ath_hw *ah)
820 {
821 	struct ath_common *common = ath9k_hw_common(ah);
822 
823 	if (common->state < ATH_HW_INITIALIZED)
824 		goto free_hw;
825 
826 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
827 
828 free_hw:
829 	ath9k_hw_rf_free_ext_banks(ah);
830 }
831 EXPORT_SYMBOL(ath9k_hw_deinit);
832 
833 /*******/
834 /* INI */
835 /*******/
836 
837 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
838 {
839 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
840 
841 	if (IS_CHAN_B(chan))
842 		ctl |= CTL_11B;
843 	else if (IS_CHAN_G(chan))
844 		ctl |= CTL_11G;
845 	else
846 		ctl |= CTL_11A;
847 
848 	return ctl;
849 }
850 
851 /****************************************/
852 /* Reset and Channel Switching Routines */
853 /****************************************/
854 
855 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
856 {
857 	struct ath_common *common = ath9k_hw_common(ah);
858 	u32 regval;
859 
860 	ENABLE_REGWRITE_BUFFER(ah);
861 
862 	/*
863 	 * set AHB_MODE not to do cacheline prefetches
864 	*/
865 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
866 		regval = REG_READ(ah, AR_AHB_MODE);
867 		REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
868 	}
869 
870 	/*
871 	 * let mac dma reads be in 128 byte chunks
872 	 */
873 	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
874 	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
875 
876 	REGWRITE_BUFFER_FLUSH(ah);
877 
878 	/*
879 	 * Restore TX Trigger Level to its pre-reset value.
880 	 * The initial value depends on whether aggregation is enabled, and is
881 	 * adjusted whenever underruns are detected.
882 	 */
883 	if (!AR_SREV_9300_20_OR_LATER(ah))
884 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
885 
886 	ENABLE_REGWRITE_BUFFER(ah);
887 
888 	/*
889 	 * let mac dma writes be in 128 byte chunks
890 	 */
891 	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
892 	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
893 
894 	/*
895 	 * Setup receive FIFO threshold to hold off TX activities
896 	 */
897 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
898 
899 	if (AR_SREV_9300_20_OR_LATER(ah)) {
900 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
901 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
902 
903 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
904 			ah->caps.rx_status_len);
905 	}
906 
907 	/*
908 	 * reduce the number of usable entries in PCU TXBUF to avoid
909 	 * wrap around issues.
910 	 */
911 	if (AR_SREV_9285(ah)) {
912 		/* For AR9285 the number of Fifos are reduced to half.
913 		 * So set the usable tx buf size also to half to
914 		 * avoid data/delimiter underruns
915 		 */
916 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
917 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
918 	} else if (!AR_SREV_9271(ah)) {
919 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
920 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
921 	}
922 
923 	REGWRITE_BUFFER_FLUSH(ah);
924 
925 	if (AR_SREV_9300_20_OR_LATER(ah))
926 		ath9k_hw_reset_txstatus_ring(ah);
927 }
928 
929 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
930 {
931 	u32 val;
932 
933 	val = REG_READ(ah, AR_STA_ID1);
934 	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
935 	switch (opmode) {
936 	case NL80211_IFTYPE_AP:
937 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
938 			  | AR_STA_ID1_KSRCH_MODE);
939 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
940 		break;
941 	case NL80211_IFTYPE_ADHOC:
942 	case NL80211_IFTYPE_MESH_POINT:
943 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
944 			  | AR_STA_ID1_KSRCH_MODE);
945 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
946 		break;
947 	case NL80211_IFTYPE_STATION:
948 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
949 		break;
950 	default:
951 		if (ah->is_monitoring)
952 			REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
953 		break;
954 	}
955 }
956 
957 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
958 				   u32 *coef_mantissa, u32 *coef_exponent)
959 {
960 	u32 coef_exp, coef_man;
961 
962 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
963 		if ((coef_scaled >> coef_exp) & 0x1)
964 			break;
965 
966 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
967 
968 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
969 
970 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
971 	*coef_exponent = coef_exp - 16;
972 }
973 
974 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
975 {
976 	u32 rst_flags;
977 	u32 tmpReg;
978 
979 	if (AR_SREV_9100(ah)) {
980 		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
981 		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
982 		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
983 		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
984 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
985 	}
986 
987 	ENABLE_REGWRITE_BUFFER(ah);
988 
989 	if (AR_SREV_9300_20_OR_LATER(ah)) {
990 		REG_WRITE(ah, AR_WA, ah->WARegVal);
991 		udelay(10);
992 	}
993 
994 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
995 		  AR_RTC_FORCE_WAKE_ON_INT);
996 
997 	if (AR_SREV_9100(ah)) {
998 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
999 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1000 	} else {
1001 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1002 		if (tmpReg &
1003 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1004 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1005 			u32 val;
1006 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1007 
1008 			val = AR_RC_HOSTIF;
1009 			if (!AR_SREV_9300_20_OR_LATER(ah))
1010 				val |= AR_RC_AHB;
1011 			REG_WRITE(ah, AR_RC, val);
1012 
1013 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1014 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1015 
1016 		rst_flags = AR_RTC_RC_MAC_WARM;
1017 		if (type == ATH9K_RESET_COLD)
1018 			rst_flags |= AR_RTC_RC_MAC_COLD;
1019 	}
1020 
1021 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1022 
1023 	REGWRITE_BUFFER_FLUSH(ah);
1024 
1025 	udelay(50);
1026 
1027 	REG_WRITE(ah, AR_RTC_RC, 0);
1028 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1029 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1030 			"RTC stuck in MAC reset\n");
1031 		return false;
1032 	}
1033 
1034 	if (!AR_SREV_9100(ah))
1035 		REG_WRITE(ah, AR_RC, 0);
1036 
1037 	if (AR_SREV_9100(ah))
1038 		udelay(50);
1039 
1040 	return true;
1041 }
1042 
1043 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1044 {
1045 	ENABLE_REGWRITE_BUFFER(ah);
1046 
1047 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1048 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1049 		udelay(10);
1050 	}
1051 
1052 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1053 		  AR_RTC_FORCE_WAKE_ON_INT);
1054 
1055 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1056 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1057 
1058 	REG_WRITE(ah, AR_RTC_RESET, 0);
1059 	udelay(2);
1060 
1061 	REGWRITE_BUFFER_FLUSH(ah);
1062 
1063 	if (!AR_SREV_9300_20_OR_LATER(ah))
1064 		udelay(2);
1065 
1066 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1067 		REG_WRITE(ah, AR_RC, 0);
1068 
1069 	REG_WRITE(ah, AR_RTC_RESET, 1);
1070 
1071 	if (!ath9k_hw_wait(ah,
1072 			   AR_RTC_STATUS,
1073 			   AR_RTC_STATUS_M,
1074 			   AR_RTC_STATUS_ON,
1075 			   AH_WAIT_TIMEOUT)) {
1076 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1077 			"RTC not waking up\n");
1078 		return false;
1079 	}
1080 
1081 	ath9k_hw_read_revisions(ah);
1082 
1083 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1084 }
1085 
1086 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1087 {
1088 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1089 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1090 		udelay(10);
1091 	}
1092 
1093 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1094 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1095 
1096 	switch (type) {
1097 	case ATH9K_RESET_POWER_ON:
1098 		return ath9k_hw_set_reset_power_on(ah);
1099 	case ATH9K_RESET_WARM:
1100 	case ATH9K_RESET_COLD:
1101 		return ath9k_hw_set_reset(ah, type);
1102 	default:
1103 		return false;
1104 	}
1105 }
1106 
1107 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1108 				struct ath9k_channel *chan)
1109 {
1110 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1111 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1112 			return false;
1113 	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1114 		return false;
1115 
1116 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1117 		return false;
1118 
1119 	ah->chip_fullsleep = false;
1120 	ath9k_hw_init_pll(ah, chan);
1121 	ath9k_hw_set_rfmode(ah, chan);
1122 
1123 	return true;
1124 }
1125 
1126 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1127 				    struct ath9k_channel *chan)
1128 {
1129 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1130 	struct ath_common *common = ath9k_hw_common(ah);
1131 	struct ieee80211_channel *channel = chan->chan;
1132 	u32 qnum;
1133 	int r;
1134 
1135 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1136 		if (ath9k_hw_numtxpending(ah, qnum)) {
1137 			ath_dbg(common, ATH_DBG_QUEUE,
1138 				"Transmit frames pending on queue %d\n", qnum);
1139 			return false;
1140 		}
1141 	}
1142 
1143 	if (!ath9k_hw_rfbus_req(ah)) {
1144 		ath_err(common, "Could not kill baseband RX\n");
1145 		return false;
1146 	}
1147 
1148 	ath9k_hw_set_channel_regs(ah, chan);
1149 
1150 	r = ath9k_hw_rf_set_freq(ah, chan);
1151 	if (r) {
1152 		ath_err(common, "Failed to set channel\n");
1153 		return false;
1154 	}
1155 	ath9k_hw_set_clockrate(ah);
1156 
1157 	ah->eep_ops->set_txpower(ah, chan,
1158 			     ath9k_regd_get_ctl(regulatory, chan),
1159 			     channel->max_antenna_gain * 2,
1160 			     channel->max_power * 2,
1161 			     min((u32) MAX_RATE_POWER,
1162 			     (u32) regulatory->power_limit), false);
1163 
1164 	ath9k_hw_rfbus_done(ah);
1165 
1166 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1167 		ath9k_hw_set_delta_slope(ah, chan);
1168 
1169 	ath9k_hw_spur_mitigate_freq(ah, chan);
1170 
1171 	return true;
1172 }
1173 
1174 bool ath9k_hw_check_alive(struct ath_hw *ah)
1175 {
1176 	int count = 50;
1177 	u32 reg;
1178 
1179 	if (AR_SREV_9285_12_OR_LATER(ah))
1180 		return true;
1181 
1182 	do {
1183 		reg = REG_READ(ah, AR_OBS_BUS_1);
1184 
1185 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1186 			continue;
1187 
1188 		switch (reg & 0x7E000B00) {
1189 		case 0x1E000000:
1190 		case 0x52000B00:
1191 		case 0x18000B00:
1192 			continue;
1193 		default:
1194 			return true;
1195 		}
1196 	} while (count-- > 0);
1197 
1198 	return false;
1199 }
1200 EXPORT_SYMBOL(ath9k_hw_check_alive);
1201 
1202 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1203 		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1204 {
1205 	struct ath_common *common = ath9k_hw_common(ah);
1206 	u32 saveLedState;
1207 	struct ath9k_channel *curchan = ah->curchan;
1208 	u32 saveDefAntenna;
1209 	u32 macStaId1;
1210 	u64 tsf = 0;
1211 	int i, r;
1212 
1213 	ah->txchainmask = common->tx_chainmask;
1214 	ah->rxchainmask = common->rx_chainmask;
1215 
1216 	if (!ah->chip_fullsleep) {
1217 		ath9k_hw_abortpcurecv(ah);
1218 		if (!ath9k_hw_stopdmarecv(ah)) {
1219 			ath_dbg(common, ATH_DBG_XMIT,
1220 				"Failed to stop receive dma\n");
1221 			bChannelChange = false;
1222 		}
1223 	}
1224 
1225 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1226 		return -EIO;
1227 
1228 	if (curchan && !ah->chip_fullsleep)
1229 		ath9k_hw_getnf(ah, curchan);
1230 
1231 	ah->caldata = caldata;
1232 	if (caldata &&
1233 	    (chan->channel != caldata->channel ||
1234 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1235 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1236 		/* Operating channel changed, reset channel calibration data */
1237 		memset(caldata, 0, sizeof(*caldata));
1238 		ath9k_init_nfcal_hist_buffer(ah, chan);
1239 	}
1240 
1241 	if (bChannelChange &&
1242 	    (ah->chip_fullsleep != true) &&
1243 	    (ah->curchan != NULL) &&
1244 	    (chan->channel != ah->curchan->channel) &&
1245 	    ((chan->channelFlags & CHANNEL_ALL) ==
1246 	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1247 	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1248 
1249 		if (ath9k_hw_channel_change(ah, chan)) {
1250 			ath9k_hw_loadnf(ah, ah->curchan);
1251 			ath9k_hw_start_nfcal(ah, true);
1252 			if (AR_SREV_9271(ah))
1253 				ar9002_hw_load_ani_reg(ah, chan);
1254 			return 0;
1255 		}
1256 	}
1257 
1258 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1259 	if (saveDefAntenna == 0)
1260 		saveDefAntenna = 1;
1261 
1262 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1263 
1264 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1265 	if (AR_SREV_9100(ah) ||
1266 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1267 		tsf = ath9k_hw_gettsf64(ah);
1268 
1269 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1270 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1271 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1272 
1273 	ath9k_hw_mark_phy_inactive(ah);
1274 
1275 	ah->paprd_table_write_done = false;
1276 
1277 	/* Only required on the first reset */
1278 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1279 		REG_WRITE(ah,
1280 			  AR9271_RESET_POWER_DOWN_CONTROL,
1281 			  AR9271_RADIO_RF_RST);
1282 		udelay(50);
1283 	}
1284 
1285 	if (!ath9k_hw_chip_reset(ah, chan)) {
1286 		ath_err(common, "Chip reset failed\n");
1287 		return -EINVAL;
1288 	}
1289 
1290 	/* Only required on the first reset */
1291 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1292 		ah->htc_reset_init = false;
1293 		REG_WRITE(ah,
1294 			  AR9271_RESET_POWER_DOWN_CONTROL,
1295 			  AR9271_GATE_MAC_CTL);
1296 		udelay(50);
1297 	}
1298 
1299 	/* Restore TSF */
1300 	if (tsf)
1301 		ath9k_hw_settsf64(ah, tsf);
1302 
1303 	if (AR_SREV_9280_20_OR_LATER(ah))
1304 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1305 
1306 	if (!AR_SREV_9300_20_OR_LATER(ah))
1307 		ar9002_hw_enable_async_fifo(ah);
1308 
1309 	r = ath9k_hw_process_ini(ah, chan);
1310 	if (r)
1311 		return r;
1312 
1313 	/*
1314 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1315 	 * right after the chip reset. When that happens, write a new
1316 	 * value after the initvals have been applied, with an offset
1317 	 * based on measured time difference
1318 	 */
1319 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1320 		tsf += 1500;
1321 		ath9k_hw_settsf64(ah, tsf);
1322 	}
1323 
1324 	/* Setup MFP options for CCMP */
1325 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1326 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1327 		 * frames when constructing CCMP AAD. */
1328 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1329 			      0xc7ff);
1330 		ah->sw_mgmt_crypto = false;
1331 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1332 		/* Disable hardware crypto for management frames */
1333 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1334 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1335 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1336 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1337 		ah->sw_mgmt_crypto = true;
1338 	} else
1339 		ah->sw_mgmt_crypto = true;
1340 
1341 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1342 		ath9k_hw_set_delta_slope(ah, chan);
1343 
1344 	ath9k_hw_spur_mitigate_freq(ah, chan);
1345 	ah->eep_ops->set_board_values(ah, chan);
1346 
1347 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1348 
1349 	ENABLE_REGWRITE_BUFFER(ah);
1350 
1351 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1352 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1353 		  | macStaId1
1354 		  | AR_STA_ID1_RTS_USE_DEF
1355 		  | (ah->config.
1356 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1357 		  | ah->sta_id1_defaults);
1358 	ath_hw_setbssidmask(common);
1359 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1360 	ath9k_hw_write_associd(ah);
1361 	REG_WRITE(ah, AR_ISR, ~0);
1362 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1363 
1364 	REGWRITE_BUFFER_FLUSH(ah);
1365 
1366 	r = ath9k_hw_rf_set_freq(ah, chan);
1367 	if (r)
1368 		return r;
1369 
1370 	ath9k_hw_set_clockrate(ah);
1371 
1372 	ENABLE_REGWRITE_BUFFER(ah);
1373 
1374 	for (i = 0; i < AR_NUM_DCU; i++)
1375 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1376 
1377 	REGWRITE_BUFFER_FLUSH(ah);
1378 
1379 	ah->intr_txqs = 0;
1380 	for (i = 0; i < ah->caps.total_queues; i++)
1381 		ath9k_hw_resettxqueue(ah, i);
1382 
1383 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1384 	ath9k_hw_ani_cache_ini_regs(ah);
1385 	ath9k_hw_init_qos(ah);
1386 
1387 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1388 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1389 
1390 	ath9k_hw_init_global_settings(ah);
1391 
1392 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1393 		ar9002_hw_update_async_fifo(ah);
1394 		ar9002_hw_enable_wep_aggregation(ah);
1395 	}
1396 
1397 	REG_WRITE(ah, AR_STA_ID1,
1398 		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1399 
1400 	ath9k_hw_set_dma(ah);
1401 
1402 	REG_WRITE(ah, AR_OBS, 8);
1403 
1404 	if (ah->config.rx_intr_mitigation) {
1405 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1406 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1407 	}
1408 
1409 	if (ah->config.tx_intr_mitigation) {
1410 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1411 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1412 	}
1413 
1414 	ath9k_hw_init_bb(ah, chan);
1415 
1416 	if (!ath9k_hw_init_cal(ah, chan))
1417 		return -EIO;
1418 
1419 	ENABLE_REGWRITE_BUFFER(ah);
1420 
1421 	ath9k_hw_restore_chainmask(ah);
1422 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1423 
1424 	REGWRITE_BUFFER_FLUSH(ah);
1425 
1426 	/*
1427 	 * For big endian systems turn on swapping for descriptors
1428 	 */
1429 	if (AR_SREV_9100(ah)) {
1430 		u32 mask;
1431 		mask = REG_READ(ah, AR_CFG);
1432 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1433 			ath_dbg(common, ATH_DBG_RESET,
1434 				"CFG Byte Swap Set 0x%x\n", mask);
1435 		} else {
1436 			mask =
1437 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1438 			REG_WRITE(ah, AR_CFG, mask);
1439 			ath_dbg(common, ATH_DBG_RESET,
1440 				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1441 		}
1442 	} else {
1443 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1444 			/* Configure AR9271 target WLAN */
1445 			if (AR_SREV_9271(ah))
1446 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1447 			else
1448 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1449 		}
1450 #ifdef __BIG_ENDIAN
1451                 else
1452 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1453 #endif
1454 	}
1455 
1456 	if (ah->btcoex_hw.enabled)
1457 		ath9k_hw_btcoex_enable(ah);
1458 
1459 	if (AR_SREV_9300_20_OR_LATER(ah))
1460 		ar9003_hw_bb_watchdog_config(ah);
1461 
1462 	return 0;
1463 }
1464 EXPORT_SYMBOL(ath9k_hw_reset);
1465 
1466 /******************************/
1467 /* Power Management (Chipset) */
1468 /******************************/
1469 
1470 /*
1471  * Notify Power Mgt is disabled in self-generated frames.
1472  * If requested, force chip to sleep.
1473  */
1474 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1475 {
1476 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1477 	if (setChip) {
1478 		/*
1479 		 * Clear the RTC force wake bit to allow the
1480 		 * mac to go to sleep.
1481 		 */
1482 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1483 			    AR_RTC_FORCE_WAKE_EN);
1484 		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1485 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1486 
1487 		/* Shutdown chip. Active low */
1488 		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1489 			REG_CLR_BIT(ah, (AR_RTC_RESET),
1490 				    AR_RTC_RESET_EN);
1491 	}
1492 
1493 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1494 	if (AR_SREV_9300_20_OR_LATER(ah))
1495 		REG_WRITE(ah, AR_WA,
1496 			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1497 }
1498 
1499 /*
1500  * Notify Power Management is enabled in self-generating
1501  * frames. If request, set power mode of chip to
1502  * auto/normal.  Duration in units of 128us (1/8 TU).
1503  */
1504 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1505 {
1506 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1507 	if (setChip) {
1508 		struct ath9k_hw_capabilities *pCap = &ah->caps;
1509 
1510 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1511 			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1512 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1513 				  AR_RTC_FORCE_WAKE_ON_INT);
1514 		} else {
1515 			/*
1516 			 * Clear the RTC force wake bit to allow the
1517 			 * mac to go to sleep.
1518 			 */
1519 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1520 				    AR_RTC_FORCE_WAKE_EN);
1521 		}
1522 	}
1523 
1524 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1525 	if (AR_SREV_9300_20_OR_LATER(ah))
1526 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1527 }
1528 
1529 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1530 {
1531 	u32 val;
1532 	int i;
1533 
1534 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1535 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1536 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1537 		udelay(10);
1538 	}
1539 
1540 	if (setChip) {
1541 		if ((REG_READ(ah, AR_RTC_STATUS) &
1542 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1543 			if (ath9k_hw_set_reset_reg(ah,
1544 					   ATH9K_RESET_POWER_ON) != true) {
1545 				return false;
1546 			}
1547 			if (!AR_SREV_9300_20_OR_LATER(ah))
1548 				ath9k_hw_init_pll(ah, NULL);
1549 		}
1550 		if (AR_SREV_9100(ah))
1551 			REG_SET_BIT(ah, AR_RTC_RESET,
1552 				    AR_RTC_RESET_EN);
1553 
1554 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1555 			    AR_RTC_FORCE_WAKE_EN);
1556 		udelay(50);
1557 
1558 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1559 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1560 			if (val == AR_RTC_STATUS_ON)
1561 				break;
1562 			udelay(50);
1563 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1564 				    AR_RTC_FORCE_WAKE_EN);
1565 		}
1566 		if (i == 0) {
1567 			ath_err(ath9k_hw_common(ah),
1568 				"Failed to wakeup in %uus\n",
1569 				POWER_UP_TIME / 20);
1570 			return false;
1571 		}
1572 	}
1573 
1574 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1575 
1576 	return true;
1577 }
1578 
1579 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1580 {
1581 	struct ath_common *common = ath9k_hw_common(ah);
1582 	int status = true, setChip = true;
1583 	static const char *modes[] = {
1584 		"AWAKE",
1585 		"FULL-SLEEP",
1586 		"NETWORK SLEEP",
1587 		"UNDEFINED"
1588 	};
1589 
1590 	if (ah->power_mode == mode)
1591 		return status;
1592 
1593 	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1594 		modes[ah->power_mode], modes[mode]);
1595 
1596 	switch (mode) {
1597 	case ATH9K_PM_AWAKE:
1598 		status = ath9k_hw_set_power_awake(ah, setChip);
1599 		break;
1600 	case ATH9K_PM_FULL_SLEEP:
1601 		ath9k_set_power_sleep(ah, setChip);
1602 		ah->chip_fullsleep = true;
1603 		break;
1604 	case ATH9K_PM_NETWORK_SLEEP:
1605 		ath9k_set_power_network_sleep(ah, setChip);
1606 		break;
1607 	default:
1608 		ath_err(common, "Unknown power mode %u\n", mode);
1609 		return false;
1610 	}
1611 	ah->power_mode = mode;
1612 
1613 	/*
1614 	 * XXX: If this warning never comes up after a while then
1615 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1616 	 * ath9k_hw_setpower() return type void.
1617 	 */
1618 
1619 	if (!(ah->ah_flags & AH_UNPLUGGED))
1620 		ATH_DBG_WARN_ON_ONCE(!status);
1621 
1622 	return status;
1623 }
1624 EXPORT_SYMBOL(ath9k_hw_setpower);
1625 
1626 /*******************/
1627 /* Beacon Handling */
1628 /*******************/
1629 
1630 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1631 {
1632 	int flags = 0;
1633 
1634 	ENABLE_REGWRITE_BUFFER(ah);
1635 
1636 	switch (ah->opmode) {
1637 	case NL80211_IFTYPE_ADHOC:
1638 	case NL80211_IFTYPE_MESH_POINT:
1639 		REG_SET_BIT(ah, AR_TXCFG,
1640 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1641 		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1642 			  TU_TO_USEC(next_beacon +
1643 				     (ah->atim_window ? ah->
1644 				      atim_window : 1)));
1645 		flags |= AR_NDP_TIMER_EN;
1646 	case NL80211_IFTYPE_AP:
1647 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1648 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1649 			  TU_TO_USEC(next_beacon -
1650 				     ah->config.
1651 				     dma_beacon_response_time));
1652 		REG_WRITE(ah, AR_NEXT_SWBA,
1653 			  TU_TO_USEC(next_beacon -
1654 				     ah->config.
1655 				     sw_beacon_response_time));
1656 		flags |=
1657 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1658 		break;
1659 	default:
1660 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1661 			"%s: unsupported opmode: %d\n",
1662 			__func__, ah->opmode);
1663 		return;
1664 		break;
1665 	}
1666 
1667 	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1668 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1669 	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1670 	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1671 
1672 	REGWRITE_BUFFER_FLUSH(ah);
1673 
1674 	beacon_period &= ~ATH9K_BEACON_ENA;
1675 	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1676 		ath9k_hw_reset_tsf(ah);
1677 	}
1678 
1679 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1680 }
1681 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1682 
1683 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1684 				    const struct ath9k_beacon_state *bs)
1685 {
1686 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1687 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1688 	struct ath_common *common = ath9k_hw_common(ah);
1689 
1690 	ENABLE_REGWRITE_BUFFER(ah);
1691 
1692 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1693 
1694 	REG_WRITE(ah, AR_BEACON_PERIOD,
1695 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1696 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1697 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1698 
1699 	REGWRITE_BUFFER_FLUSH(ah);
1700 
1701 	REG_RMW_FIELD(ah, AR_RSSI_THR,
1702 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1703 
1704 	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1705 
1706 	if (bs->bs_sleepduration > beaconintval)
1707 		beaconintval = bs->bs_sleepduration;
1708 
1709 	dtimperiod = bs->bs_dtimperiod;
1710 	if (bs->bs_sleepduration > dtimperiod)
1711 		dtimperiod = bs->bs_sleepduration;
1712 
1713 	if (beaconintval == dtimperiod)
1714 		nextTbtt = bs->bs_nextdtim;
1715 	else
1716 		nextTbtt = bs->bs_nexttbtt;
1717 
1718 	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1719 	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1720 	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1721 	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1722 
1723 	ENABLE_REGWRITE_BUFFER(ah);
1724 
1725 	REG_WRITE(ah, AR_NEXT_DTIM,
1726 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1727 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1728 
1729 	REG_WRITE(ah, AR_SLEEP1,
1730 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1731 		  | AR_SLEEP1_ASSUME_DTIM);
1732 
1733 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1734 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1735 	else
1736 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1737 
1738 	REG_WRITE(ah, AR_SLEEP2,
1739 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1740 
1741 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1742 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1743 
1744 	REGWRITE_BUFFER_FLUSH(ah);
1745 
1746 	REG_SET_BIT(ah, AR_TIMER_MODE,
1747 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1748 		    AR_DTIM_TIMER_EN);
1749 
1750 	/* TSF Out of Range Threshold */
1751 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1752 }
1753 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1754 
1755 /*******************/
1756 /* HW Capabilities */
1757 /*******************/
1758 
1759 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1760 {
1761 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1762 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1763 	struct ath_common *common = ath9k_hw_common(ah);
1764 	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1765 
1766 	u16 capField = 0, eeval;
1767 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
1768 
1769 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1770 	regulatory->current_rd = eeval;
1771 
1772 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1773 	if (AR_SREV_9285_12_OR_LATER(ah))
1774 		eeval |= AR9285_RDEXT_DEFAULT;
1775 	regulatory->current_rd_ext = eeval;
1776 
1777 	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
1778 
1779 	if (ah->opmode != NL80211_IFTYPE_AP &&
1780 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1781 		if (regulatory->current_rd == 0x64 ||
1782 		    regulatory->current_rd == 0x65)
1783 			regulatory->current_rd += 5;
1784 		else if (regulatory->current_rd == 0x41)
1785 			regulatory->current_rd = 0x43;
1786 		ath_dbg(common, ATH_DBG_REGULATORY,
1787 			"regdomain mapped to 0x%x\n", regulatory->current_rd);
1788 	}
1789 
1790 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1791 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1792 		ath_err(common,
1793 			"no band has been marked as supported in EEPROM\n");
1794 		return -EINVAL;
1795 	}
1796 
1797 	if (eeval & AR5416_OPFLAGS_11A)
1798 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1799 
1800 	if (eeval & AR5416_OPFLAGS_11G)
1801 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1802 
1803 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1804 	/*
1805 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
1806 	 * the EEPROM.
1807 	 */
1808 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1809 	    !(eeval & AR5416_OPFLAGS_11A) &&
1810 	    !(AR_SREV_9271(ah)))
1811 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1812 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1813 	else
1814 		/* Use rx_chainmask from EEPROM. */
1815 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1816 
1817 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1818 
1819 	/* enable key search for every frame in an aggregate */
1820 	if (AR_SREV_9300_20_OR_LATER(ah))
1821 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
1822 
1823 	pCap->low_2ghz_chan = 2312;
1824 	pCap->high_2ghz_chan = 2732;
1825 
1826 	pCap->low_5ghz_chan = 4920;
1827 	pCap->high_5ghz_chan = 6100;
1828 
1829 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1830 
1831 	if (ah->config.ht_enable)
1832 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
1833 	else
1834 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1835 
1836 	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
1837 		pCap->total_queues =
1838 			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
1839 	else
1840 		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
1841 
1842 	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
1843 		pCap->keycache_size =
1844 			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
1845 	else
1846 		pCap->keycache_size = AR_KEYTABLE_SIZE;
1847 
1848 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
1849 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
1850 	else
1851 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
1852 
1853 	if (AR_SREV_9271(ah))
1854 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
1855 	else if (AR_DEVID_7010(ah))
1856 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
1857 	else if (AR_SREV_9285_12_OR_LATER(ah))
1858 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
1859 	else if (AR_SREV_9280_20_OR_LATER(ah))
1860 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
1861 	else
1862 		pCap->num_gpio_pins = AR_NUM_GPIO;
1863 
1864 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1865 		pCap->hw_caps |= ATH9K_HW_CAP_CST;
1866 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1867 	} else {
1868 		pCap->rts_aggr_limit = (8 * 1024);
1869 	}
1870 
1871 	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
1872 
1873 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1874 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1875 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1876 		ah->rfkill_gpio =
1877 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1878 		ah->rfkill_polarity =
1879 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1880 
1881 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1882 	}
1883 #endif
1884 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1885 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1886 	else
1887 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1888 
1889 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1890 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1891 	else
1892 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1893 
1894 	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
1895 		pCap->reg_cap =
1896 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1897 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
1898 			AR_EEPROM_EEREGCAP_EN_KK_U2 |
1899 			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
1900 	} else {
1901 		pCap->reg_cap =
1902 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1903 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
1904 	}
1905 
1906 	/* Advertise midband for AR5416 with FCC midband set in eeprom */
1907 	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
1908 	    AR_SREV_5416(ah))
1909 		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
1910 
1911 	if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
1912 		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
1913 		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
1914 
1915 		if (AR_SREV_9285(ah)) {
1916 			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1917 			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
1918 		} else {
1919 			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1920 		}
1921 	} else {
1922 		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1923 	}
1924 
1925 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1926 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
1927 		if (!AR_SREV_9485(ah))
1928 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
1929 
1930 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1931 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1932 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
1933 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
1934 		pCap->txs_len = sizeof(struct ar9003_txs);
1935 		if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1936 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1937 	} else {
1938 		pCap->tx_desc_len = sizeof(struct ath_desc);
1939 		if (AR_SREV_9280_20(ah) &&
1940 		    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1941 		      AR5416_EEP_MINOR_VER_16) ||
1942 		     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
1943 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
1944 	}
1945 
1946 	if (AR_SREV_9300_20_OR_LATER(ah))
1947 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
1948 
1949 	if (AR_SREV_9300_20_OR_LATER(ah))
1950 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
1951 
1952 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
1953 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
1954 
1955 	if (AR_SREV_9285(ah))
1956 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
1957 			ant_div_ctl1 =
1958 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
1959 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
1960 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
1961 		}
1962 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1963 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
1964 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
1965 	}
1966 
1967 
1968 
1969 	if (AR_SREV_9485_10(ah)) {
1970 		pCap->pcie_lcr_extsync_en = true;
1971 		pCap->pcie_lcr_offset = 0x80;
1972 	}
1973 
1974 	tx_chainmask = pCap->tx_chainmask;
1975 	rx_chainmask = pCap->rx_chainmask;
1976 	while (tx_chainmask || rx_chainmask) {
1977 		if (tx_chainmask & BIT(0))
1978 			pCap->max_txchains++;
1979 		if (rx_chainmask & BIT(0))
1980 			pCap->max_rxchains++;
1981 
1982 		tx_chainmask >>= 1;
1983 		rx_chainmask >>= 1;
1984 	}
1985 
1986 	return 0;
1987 }
1988 
1989 /****************************/
1990 /* GPIO / RFKILL / Antennae */
1991 /****************************/
1992 
1993 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
1994 					 u32 gpio, u32 type)
1995 {
1996 	int addr;
1997 	u32 gpio_shift, tmp;
1998 
1999 	if (gpio > 11)
2000 		addr = AR_GPIO_OUTPUT_MUX3;
2001 	else if (gpio > 5)
2002 		addr = AR_GPIO_OUTPUT_MUX2;
2003 	else
2004 		addr = AR_GPIO_OUTPUT_MUX1;
2005 
2006 	gpio_shift = (gpio % 6) * 5;
2007 
2008 	if (AR_SREV_9280_20_OR_LATER(ah)
2009 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2010 		REG_RMW(ah, addr, (type << gpio_shift),
2011 			(0x1f << gpio_shift));
2012 	} else {
2013 		tmp = REG_READ(ah, addr);
2014 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2015 		tmp &= ~(0x1f << gpio_shift);
2016 		tmp |= (type << gpio_shift);
2017 		REG_WRITE(ah, addr, tmp);
2018 	}
2019 }
2020 
2021 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2022 {
2023 	u32 gpio_shift;
2024 
2025 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2026 
2027 	if (AR_DEVID_7010(ah)) {
2028 		gpio_shift = gpio;
2029 		REG_RMW(ah, AR7010_GPIO_OE,
2030 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2031 			(AR7010_GPIO_OE_MASK << gpio_shift));
2032 		return;
2033 	}
2034 
2035 	gpio_shift = gpio << 1;
2036 	REG_RMW(ah,
2037 		AR_GPIO_OE_OUT,
2038 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2039 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2040 }
2041 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2042 
2043 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2044 {
2045 #define MS_REG_READ(x, y) \
2046 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2047 
2048 	if (gpio >= ah->caps.num_gpio_pins)
2049 		return 0xffffffff;
2050 
2051 	if (AR_DEVID_7010(ah)) {
2052 		u32 val;
2053 		val = REG_READ(ah, AR7010_GPIO_IN);
2054 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2055 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2056 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2057 			AR_GPIO_BIT(gpio)) != 0;
2058 	else if (AR_SREV_9271(ah))
2059 		return MS_REG_READ(AR9271, gpio) != 0;
2060 	else if (AR_SREV_9287_11_OR_LATER(ah))
2061 		return MS_REG_READ(AR9287, gpio) != 0;
2062 	else if (AR_SREV_9285_12_OR_LATER(ah))
2063 		return MS_REG_READ(AR9285, gpio) != 0;
2064 	else if (AR_SREV_9280_20_OR_LATER(ah))
2065 		return MS_REG_READ(AR928X, gpio) != 0;
2066 	else
2067 		return MS_REG_READ(AR, gpio) != 0;
2068 }
2069 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2070 
2071 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2072 			 u32 ah_signal_type)
2073 {
2074 	u32 gpio_shift;
2075 
2076 	if (AR_DEVID_7010(ah)) {
2077 		gpio_shift = gpio;
2078 		REG_RMW(ah, AR7010_GPIO_OE,
2079 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2080 			(AR7010_GPIO_OE_MASK << gpio_shift));
2081 		return;
2082 	}
2083 
2084 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2085 	gpio_shift = 2 * gpio;
2086 	REG_RMW(ah,
2087 		AR_GPIO_OE_OUT,
2088 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2089 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2090 }
2091 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2092 
2093 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2094 {
2095 	if (AR_DEVID_7010(ah)) {
2096 		val = val ? 0 : 1;
2097 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2098 			AR_GPIO_BIT(gpio));
2099 		return;
2100 	}
2101 
2102 	if (AR_SREV_9271(ah))
2103 		val = ~val;
2104 
2105 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2106 		AR_GPIO_BIT(gpio));
2107 }
2108 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2109 
2110 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2111 {
2112 	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2113 }
2114 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2115 
2116 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2117 {
2118 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2119 }
2120 EXPORT_SYMBOL(ath9k_hw_setantenna);
2121 
2122 /*********************/
2123 /* General Operation */
2124 /*********************/
2125 
2126 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2127 {
2128 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2129 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2130 
2131 	if (phybits & AR_PHY_ERR_RADAR)
2132 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2133 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2134 		bits |= ATH9K_RX_FILTER_PHYERR;
2135 
2136 	return bits;
2137 }
2138 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2139 
2140 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2141 {
2142 	u32 phybits;
2143 
2144 	ENABLE_REGWRITE_BUFFER(ah);
2145 
2146 	REG_WRITE(ah, AR_RX_FILTER, bits);
2147 
2148 	phybits = 0;
2149 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2150 		phybits |= AR_PHY_ERR_RADAR;
2151 	if (bits & ATH9K_RX_FILTER_PHYERR)
2152 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2153 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2154 
2155 	if (phybits)
2156 		REG_WRITE(ah, AR_RXCFG,
2157 			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2158 	else
2159 		REG_WRITE(ah, AR_RXCFG,
2160 			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2161 
2162 	REGWRITE_BUFFER_FLUSH(ah);
2163 }
2164 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2165 
2166 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2167 {
2168 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2169 		return false;
2170 
2171 	ath9k_hw_init_pll(ah, NULL);
2172 	return true;
2173 }
2174 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2175 
2176 bool ath9k_hw_disable(struct ath_hw *ah)
2177 {
2178 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2179 		return false;
2180 
2181 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2182 		return false;
2183 
2184 	ath9k_hw_init_pll(ah, NULL);
2185 	return true;
2186 }
2187 EXPORT_SYMBOL(ath9k_hw_disable);
2188 
2189 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2190 {
2191 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2192 	struct ath9k_channel *chan = ah->curchan;
2193 	struct ieee80211_channel *channel = chan->chan;
2194 
2195 	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2196 
2197 	ah->eep_ops->set_txpower(ah, chan,
2198 				 ath9k_regd_get_ctl(regulatory, chan),
2199 				 channel->max_antenna_gain * 2,
2200 				 channel->max_power * 2,
2201 				 min((u32) MAX_RATE_POWER,
2202 				 (u32) regulatory->power_limit), test);
2203 }
2204 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2205 
2206 void ath9k_hw_setopmode(struct ath_hw *ah)
2207 {
2208 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2209 }
2210 EXPORT_SYMBOL(ath9k_hw_setopmode);
2211 
2212 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2213 {
2214 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2215 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2216 }
2217 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2218 
2219 void ath9k_hw_write_associd(struct ath_hw *ah)
2220 {
2221 	struct ath_common *common = ath9k_hw_common(ah);
2222 
2223 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2224 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2225 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2226 }
2227 EXPORT_SYMBOL(ath9k_hw_write_associd);
2228 
2229 #define ATH9K_MAX_TSF_READ 10
2230 
2231 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2232 {
2233 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2234 	int i;
2235 
2236 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2237 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2238 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2239 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2240 		if (tsf_upper2 == tsf_upper1)
2241 			break;
2242 		tsf_upper1 = tsf_upper2;
2243 	}
2244 
2245 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2246 
2247 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2248 }
2249 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2250 
2251 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2252 {
2253 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2254 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2255 }
2256 EXPORT_SYMBOL(ath9k_hw_settsf64);
2257 
2258 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2259 {
2260 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2261 			   AH_TSF_WRITE_TIMEOUT))
2262 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2263 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2264 
2265 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2266 }
2267 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2268 
2269 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2270 {
2271 	if (setting)
2272 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2273 	else
2274 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2275 }
2276 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2277 
2278 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2279 {
2280 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2281 	u32 macmode;
2282 
2283 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2284 		macmode = AR_2040_JOINED_RX_CLEAR;
2285 	else
2286 		macmode = 0;
2287 
2288 	REG_WRITE(ah, AR_2040_MODE, macmode);
2289 }
2290 
2291 /* HW Generic timers configuration */
2292 
2293 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2294 {
2295 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2296 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2297 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2298 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2299 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2300 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2301 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2302 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2303 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2304 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2305 				AR_NDP2_TIMER_MODE, 0x0002},
2306 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2307 				AR_NDP2_TIMER_MODE, 0x0004},
2308 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2309 				AR_NDP2_TIMER_MODE, 0x0008},
2310 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2311 				AR_NDP2_TIMER_MODE, 0x0010},
2312 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2313 				AR_NDP2_TIMER_MODE, 0x0020},
2314 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2315 				AR_NDP2_TIMER_MODE, 0x0040},
2316 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2317 				AR_NDP2_TIMER_MODE, 0x0080}
2318 };
2319 
2320 /* HW generic timer primitives */
2321 
2322 /* compute and clear index of rightmost 1 */
2323 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2324 {
2325 	u32 b;
2326 
2327 	b = *mask;
2328 	b &= (0-b);
2329 	*mask &= ~b;
2330 	b *= debruijn32;
2331 	b >>= 27;
2332 
2333 	return timer_table->gen_timer_index[b];
2334 }
2335 
2336 static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2337 {
2338 	return REG_READ(ah, AR_TSF_L32);
2339 }
2340 
2341 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2342 					  void (*trigger)(void *),
2343 					  void (*overflow)(void *),
2344 					  void *arg,
2345 					  u8 timer_index)
2346 {
2347 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2348 	struct ath_gen_timer *timer;
2349 
2350 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2351 
2352 	if (timer == NULL) {
2353 		ath_err(ath9k_hw_common(ah),
2354 			"Failed to allocate memory for hw timer[%d]\n",
2355 			timer_index);
2356 		return NULL;
2357 	}
2358 
2359 	/* allocate a hardware generic timer slot */
2360 	timer_table->timers[timer_index] = timer;
2361 	timer->index = timer_index;
2362 	timer->trigger = trigger;
2363 	timer->overflow = overflow;
2364 	timer->arg = arg;
2365 
2366 	return timer;
2367 }
2368 EXPORT_SYMBOL(ath_gen_timer_alloc);
2369 
2370 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2371 			      struct ath_gen_timer *timer,
2372 			      u32 timer_next,
2373 			      u32 timer_period)
2374 {
2375 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2376 	u32 tsf;
2377 
2378 	BUG_ON(!timer_period);
2379 
2380 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2381 
2382 	tsf = ath9k_hw_gettsf32(ah);
2383 
2384 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2385 		"current tsf %x period %x timer_next %x\n",
2386 		tsf, timer_period, timer_next);
2387 
2388 	/*
2389 	 * Pull timer_next forward if the current TSF already passed it
2390 	 * because of software latency
2391 	 */
2392 	if (timer_next < tsf)
2393 		timer_next = tsf + timer_period;
2394 
2395 	/*
2396 	 * Program generic timer registers
2397 	 */
2398 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2399 		 timer_next);
2400 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2401 		  timer_period);
2402 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2403 		    gen_tmr_configuration[timer->index].mode_mask);
2404 
2405 	/* Enable both trigger and thresh interrupt masks */
2406 	REG_SET_BIT(ah, AR_IMR_S5,
2407 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2408 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2409 }
2410 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2411 
2412 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2413 {
2414 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2415 
2416 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2417 		(timer->index >= ATH_MAX_GEN_TIMER)) {
2418 		return;
2419 	}
2420 
2421 	/* Clear generic timer enable bits. */
2422 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2423 			gen_tmr_configuration[timer->index].mode_mask);
2424 
2425 	/* Disable both trigger and thresh interrupt masks */
2426 	REG_CLR_BIT(ah, AR_IMR_S5,
2427 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2428 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2429 
2430 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2431 }
2432 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2433 
2434 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2435 {
2436 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2437 
2438 	/* free the hardware generic timer slot */
2439 	timer_table->timers[timer->index] = NULL;
2440 	kfree(timer);
2441 }
2442 EXPORT_SYMBOL(ath_gen_timer_free);
2443 
2444 /*
2445  * Generic Timer Interrupts handling
2446  */
2447 void ath_gen_timer_isr(struct ath_hw *ah)
2448 {
2449 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2450 	struct ath_gen_timer *timer;
2451 	struct ath_common *common = ath9k_hw_common(ah);
2452 	u32 trigger_mask, thresh_mask, index;
2453 
2454 	/* get hardware generic timer interrupt status */
2455 	trigger_mask = ah->intr_gen_timer_trigger;
2456 	thresh_mask = ah->intr_gen_timer_thresh;
2457 	trigger_mask &= timer_table->timer_mask.val;
2458 	thresh_mask &= timer_table->timer_mask.val;
2459 
2460 	trigger_mask &= ~thresh_mask;
2461 
2462 	while (thresh_mask) {
2463 		index = rightmost_index(timer_table, &thresh_mask);
2464 		timer = timer_table->timers[index];
2465 		BUG_ON(!timer);
2466 		ath_dbg(common, ATH_DBG_HWTIMER,
2467 			"TSF overflow for Gen timer %d\n", index);
2468 		timer->overflow(timer->arg);
2469 	}
2470 
2471 	while (trigger_mask) {
2472 		index = rightmost_index(timer_table, &trigger_mask);
2473 		timer = timer_table->timers[index];
2474 		BUG_ON(!timer);
2475 		ath_dbg(common, ATH_DBG_HWTIMER,
2476 			"Gen timer[%d] trigger\n", index);
2477 		timer->trigger(timer->arg);
2478 	}
2479 }
2480 EXPORT_SYMBOL(ath_gen_timer_isr);
2481 
2482 /********/
2483 /* HTC  */
2484 /********/
2485 
2486 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2487 {
2488 	ah->htc_reset_init = true;
2489 }
2490 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2491 
2492 static struct {
2493 	u32 version;
2494 	const char * name;
2495 } ath_mac_bb_names[] = {
2496 	/* Devices with external radios */
2497 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2498 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2499 	{ AR_SREV_VERSION_9100,		"9100" },
2500 	{ AR_SREV_VERSION_9160,		"9160" },
2501 	/* Single-chip solutions */
2502 	{ AR_SREV_VERSION_9280,		"9280" },
2503 	{ AR_SREV_VERSION_9285,		"9285" },
2504 	{ AR_SREV_VERSION_9287,         "9287" },
2505 	{ AR_SREV_VERSION_9271,         "9271" },
2506 	{ AR_SREV_VERSION_9300,         "9300" },
2507 };
2508 
2509 /* For devices with external radios */
2510 static struct {
2511 	u16 version;
2512 	const char * name;
2513 } ath_rf_names[] = {
2514 	{ 0,				"5133" },
2515 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2516 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2517 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2518 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2519 };
2520 
2521 /*
2522  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2523  */
2524 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2525 {
2526 	int i;
2527 
2528 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2529 		if (ath_mac_bb_names[i].version == mac_bb_version) {
2530 			return ath_mac_bb_names[i].name;
2531 		}
2532 	}
2533 
2534 	return "????";
2535 }
2536 
2537 /*
2538  * Return the RF name. "????" is returned if the RF is unknown.
2539  * Used for devices with external radios.
2540  */
2541 static const char *ath9k_hw_rf_name(u16 rf_version)
2542 {
2543 	int i;
2544 
2545 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2546 		if (ath_rf_names[i].version == rf_version) {
2547 			return ath_rf_names[i].name;
2548 		}
2549 	}
2550 
2551 	return "????";
2552 }
2553 
2554 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2555 {
2556 	int used;
2557 
2558 	/* chipsets >= AR9280 are single-chip */
2559 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2560 		used = snprintf(hw_name, len,
2561 			       "Atheros AR%s Rev:%x",
2562 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2563 			       ah->hw_version.macRev);
2564 	}
2565 	else {
2566 		used = snprintf(hw_name, len,
2567 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2568 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2569 			       ah->hw_version.macRev,
2570 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2571 						AR_RADIO_SREV_MAJOR)),
2572 			       ah->hw_version.phyRev);
2573 	}
2574 
2575 	hw_name[used] = '\0';
2576 }
2577 EXPORT_SYMBOL(ath9k_hw_name);
2578