xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision b6dcefde)
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19 
20 #include "hw.h"
21 #include "rc.h"
22 #include "initvals.h"
23 
24 #define ATH9K_CLOCK_RATE_CCK		22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM	40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM	44
27 
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31 			      struct ar5416_eeprom_def *pEepData,
32 			      u32 reg, u32 value);
33 
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38 
39 static int __init ath9k_init(void)
40 {
41 	return 0;
42 }
43 module_init(ath9k_init);
44 
45 static void __exit ath9k_exit(void)
46 {
47 	return;
48 }
49 module_exit(ath9k_exit);
50 
51 /********************/
52 /* Helper Functions */
53 /********************/
54 
55 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
56 {
57 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
58 
59 	if (!ah->curchan) /* should really check for CCK instead */
60 		return clks / ATH9K_CLOCK_RATE_CCK;
61 	if (conf->channel->band == IEEE80211_BAND_2GHZ)
62 		return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
63 
64 	return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
65 }
66 
67 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
68 {
69 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
70 
71 	if (conf_is_ht40(conf))
72 		return ath9k_hw_mac_usec(ah, clks) / 2;
73 	else
74 		return ath9k_hw_mac_usec(ah, clks);
75 }
76 
77 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
78 {
79 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
80 
81 	if (!ah->curchan) /* should really check for CCK instead */
82 		return usecs *ATH9K_CLOCK_RATE_CCK;
83 	if (conf->channel->band == IEEE80211_BAND_2GHZ)
84 		return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
85 	return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
86 }
87 
88 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
89 {
90 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
91 
92 	if (conf_is_ht40(conf))
93 		return ath9k_hw_mac_clks(ah, usecs) * 2;
94 	else
95 		return ath9k_hw_mac_clks(ah, usecs);
96 }
97 
98 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
99 {
100 	int i;
101 
102 	BUG_ON(timeout < AH_TIME_QUANTUM);
103 
104 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
105 		if ((REG_READ(ah, reg) & mask) == val)
106 			return true;
107 
108 		udelay(AH_TIME_QUANTUM);
109 	}
110 
111 	ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
112 		  "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
113 		  timeout, reg, REG_READ(ah, reg), mask, val);
114 
115 	return false;
116 }
117 EXPORT_SYMBOL(ath9k_hw_wait);
118 
119 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
120 {
121 	u32 retval;
122 	int i;
123 
124 	for (i = 0, retval = 0; i < n; i++) {
125 		retval = (retval << 1) | (val & 1);
126 		val >>= 1;
127 	}
128 	return retval;
129 }
130 
131 bool ath9k_get_channel_edges(struct ath_hw *ah,
132 			     u16 flags, u16 *low,
133 			     u16 *high)
134 {
135 	struct ath9k_hw_capabilities *pCap = &ah->caps;
136 
137 	if (flags & CHANNEL_5GHZ) {
138 		*low = pCap->low_5ghz_chan;
139 		*high = pCap->high_5ghz_chan;
140 		return true;
141 	}
142 	if ((flags & CHANNEL_2GHZ)) {
143 		*low = pCap->low_2ghz_chan;
144 		*high = pCap->high_2ghz_chan;
145 		return true;
146 	}
147 	return false;
148 }
149 
150 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
151 			   u8 phy, int kbps,
152 			   u32 frameLen, u16 rateix,
153 			   bool shortPreamble)
154 {
155 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
156 
157 	if (kbps == 0)
158 		return 0;
159 
160 	switch (phy) {
161 	case WLAN_RC_PHY_CCK:
162 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
163 		if (shortPreamble)
164 			phyTime >>= 1;
165 		numBits = frameLen << 3;
166 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
167 		break;
168 	case WLAN_RC_PHY_OFDM:
169 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
170 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
171 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
172 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
173 			txTime = OFDM_SIFS_TIME_QUARTER
174 				+ OFDM_PREAMBLE_TIME_QUARTER
175 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
176 		} else if (ah->curchan &&
177 			   IS_CHAN_HALF_RATE(ah->curchan)) {
178 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
179 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
180 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
181 			txTime = OFDM_SIFS_TIME_HALF +
182 				OFDM_PREAMBLE_TIME_HALF
183 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
184 		} else {
185 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
186 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
187 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
188 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
189 				+ (numSymbols * OFDM_SYMBOL_TIME);
190 		}
191 		break;
192 	default:
193 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
194 			  "Unknown phy %u (rate ix %u)\n", phy, rateix);
195 		txTime = 0;
196 		break;
197 	}
198 
199 	return txTime;
200 }
201 EXPORT_SYMBOL(ath9k_hw_computetxtime);
202 
203 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
204 				  struct ath9k_channel *chan,
205 				  struct chan_centers *centers)
206 {
207 	int8_t extoff;
208 
209 	if (!IS_CHAN_HT40(chan)) {
210 		centers->ctl_center = centers->ext_center =
211 			centers->synth_center = chan->channel;
212 		return;
213 	}
214 
215 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
216 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
217 		centers->synth_center =
218 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
219 		extoff = 1;
220 	} else {
221 		centers->synth_center =
222 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
223 		extoff = -1;
224 	}
225 
226 	centers->ctl_center =
227 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
228 	/* 25 MHz spacing is supported by hw but not on upper layers */
229 	centers->ext_center =
230 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
231 }
232 
233 /******************/
234 /* Chip Revisions */
235 /******************/
236 
237 static void ath9k_hw_read_revisions(struct ath_hw *ah)
238 {
239 	u32 val;
240 
241 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
242 
243 	if (val == 0xFF) {
244 		val = REG_READ(ah, AR_SREV);
245 		ah->hw_version.macVersion =
246 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
247 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
248 		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
249 	} else {
250 		if (!AR_SREV_9100(ah))
251 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
252 
253 		ah->hw_version.macRev = val & AR_SREV_REVISION;
254 
255 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
256 			ah->is_pciexpress = true;
257 	}
258 }
259 
260 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
261 {
262 	u32 val;
263 	int i;
264 
265 	REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
266 
267 	for (i = 0; i < 8; i++)
268 		REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
269 	val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
270 	val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
271 
272 	return ath9k_hw_reverse_bits(val, 8);
273 }
274 
275 /************************************/
276 /* HW Attach, Detach, Init Routines */
277 /************************************/
278 
279 static void ath9k_hw_disablepcie(struct ath_hw *ah)
280 {
281 	if (AR_SREV_9100(ah))
282 		return;
283 
284 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
285 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
286 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
287 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
288 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
289 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
290 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
291 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
292 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
293 
294 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
295 }
296 
297 static bool ath9k_hw_chip_test(struct ath_hw *ah)
298 {
299 	struct ath_common *common = ath9k_hw_common(ah);
300 	u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
301 	u32 regHold[2];
302 	u32 patternData[4] = { 0x55555555,
303 			       0xaaaaaaaa,
304 			       0x66666666,
305 			       0x99999999 };
306 	int i, j;
307 
308 	for (i = 0; i < 2; i++) {
309 		u32 addr = regAddr[i];
310 		u32 wrData, rdData;
311 
312 		regHold[i] = REG_READ(ah, addr);
313 		for (j = 0; j < 0x100; j++) {
314 			wrData = (j << 16) | j;
315 			REG_WRITE(ah, addr, wrData);
316 			rdData = REG_READ(ah, addr);
317 			if (rdData != wrData) {
318 				ath_print(common, ATH_DBG_FATAL,
319 					  "address test failed "
320 					  "addr: 0x%08x - wr:0x%08x != "
321 					  "rd:0x%08x\n",
322 					  addr, wrData, rdData);
323 				return false;
324 			}
325 		}
326 		for (j = 0; j < 4; j++) {
327 			wrData = patternData[j];
328 			REG_WRITE(ah, addr, wrData);
329 			rdData = REG_READ(ah, addr);
330 			if (wrData != rdData) {
331 				ath_print(common, ATH_DBG_FATAL,
332 					  "address test failed "
333 					  "addr: 0x%08x - wr:0x%08x != "
334 					  "rd:0x%08x\n",
335 					  addr, wrData, rdData);
336 				return false;
337 			}
338 		}
339 		REG_WRITE(ah, regAddr[i], regHold[i]);
340 	}
341 	udelay(100);
342 
343 	return true;
344 }
345 
346 static const char *ath9k_hw_devname(u16 devid)
347 {
348 	switch (devid) {
349 	case AR5416_DEVID_PCI:
350 		return "Atheros 5416";
351 	case AR5416_DEVID_PCIE:
352 		return "Atheros 5418";
353 	case AR9160_DEVID_PCI:
354 		return "Atheros 9160";
355 	case AR5416_AR9100_DEVID:
356 		return "Atheros 9100";
357 	case AR9280_DEVID_PCI:
358 	case AR9280_DEVID_PCIE:
359 		return "Atheros 9280";
360 	case AR9285_DEVID_PCIE:
361 		return "Atheros 9285";
362 	case AR5416_DEVID_AR9287_PCI:
363 	case AR5416_DEVID_AR9287_PCIE:
364 		return "Atheros 9287";
365 	}
366 
367 	return NULL;
368 }
369 
370 static void ath9k_hw_init_config(struct ath_hw *ah)
371 {
372 	int i;
373 
374 	ah->config.dma_beacon_response_time = 2;
375 	ah->config.sw_beacon_response_time = 10;
376 	ah->config.additional_swba_backoff = 0;
377 	ah->config.ack_6mb = 0x0;
378 	ah->config.cwm_ignore_extcca = 0;
379 	ah->config.pcie_powersave_enable = 0;
380 	ah->config.pcie_clock_req = 0;
381 	ah->config.pcie_waen = 0;
382 	ah->config.analog_shiftreg = 1;
383 	ah->config.ht_enable = 1;
384 	ah->config.ofdm_trig_low = 200;
385 	ah->config.ofdm_trig_high = 500;
386 	ah->config.cck_trig_high = 200;
387 	ah->config.cck_trig_low = 100;
388 	ah->config.enable_ani = 1;
389 
390 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
391 		ah->config.spurchans[i][0] = AR_NO_SPUR;
392 		ah->config.spurchans[i][1] = AR_NO_SPUR;
393 	}
394 
395 	ah->config.intr_mitigation = true;
396 
397 	/*
398 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
399 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
400 	 * This means we use it for all AR5416 devices, and the few
401 	 * minor PCI AR9280 devices out there.
402 	 *
403 	 * Serialization is required because these devices do not handle
404 	 * well the case of two concurrent reads/writes due to the latency
405 	 * involved. During one read/write another read/write can be issued
406 	 * on another CPU while the previous read/write may still be working
407 	 * on our hardware, if we hit this case the hardware poops in a loop.
408 	 * We prevent this by serializing reads and writes.
409 	 *
410 	 * This issue is not present on PCI-Express devices or pre-AR5416
411 	 * devices (legacy, 802.11abg).
412 	 */
413 	if (num_possible_cpus() > 1)
414 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
415 }
416 EXPORT_SYMBOL(ath9k_hw_init);
417 
418 static void ath9k_hw_init_defaults(struct ath_hw *ah)
419 {
420 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
421 
422 	regulatory->country_code = CTRY_DEFAULT;
423 	regulatory->power_limit = MAX_RATE_POWER;
424 	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
425 
426 	ah->hw_version.magic = AR5416_MAGIC;
427 	ah->hw_version.subvendorid = 0;
428 
429 	ah->ah_flags = 0;
430 	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
431 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
432 	if (!AR_SREV_9100(ah))
433 		ah->ah_flags = AH_USE_EEPROM;
434 
435 	ah->atim_window = 0;
436 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
437 	ah->beacon_interval = 100;
438 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
439 	ah->slottime = (u32) -1;
440 	ah->acktimeout = (u32) -1;
441 	ah->ctstimeout = (u32) -1;
442 	ah->globaltxtimeout = (u32) -1;
443 	ah->power_mode = ATH9K_PM_UNDEFINED;
444 }
445 
446 static int ath9k_hw_rf_claim(struct ath_hw *ah)
447 {
448 	u32 val;
449 
450 	REG_WRITE(ah, AR_PHY(0), 0x00000007);
451 
452 	val = ath9k_hw_get_radiorev(ah);
453 	switch (val & AR_RADIO_SREV_MAJOR) {
454 	case 0:
455 		val = AR_RAD5133_SREV_MAJOR;
456 		break;
457 	case AR_RAD5133_SREV_MAJOR:
458 	case AR_RAD5122_SREV_MAJOR:
459 	case AR_RAD2133_SREV_MAJOR:
460 	case AR_RAD2122_SREV_MAJOR:
461 		break;
462 	default:
463 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
464 			  "Radio Chip Rev 0x%02X not supported\n",
465 			  val & AR_RADIO_SREV_MAJOR);
466 		return -EOPNOTSUPP;
467 	}
468 
469 	ah->hw_version.analog5GhzRev = val;
470 
471 	return 0;
472 }
473 
474 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
475 {
476 	struct ath_common *common = ath9k_hw_common(ah);
477 	u32 sum;
478 	int i;
479 	u16 eeval;
480 
481 	sum = 0;
482 	for (i = 0; i < 3; i++) {
483 		eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
484 		sum += eeval;
485 		common->macaddr[2 * i] = eeval >> 8;
486 		common->macaddr[2 * i + 1] = eeval & 0xff;
487 	}
488 	if (sum == 0 || sum == 0xffff * 3)
489 		return -EADDRNOTAVAIL;
490 
491 	return 0;
492 }
493 
494 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
495 {
496 	u32 rxgain_type;
497 
498 	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
499 		rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
500 
501 		if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
502 			INIT_INI_ARRAY(&ah->iniModesRxGain,
503 			ar9280Modes_backoff_13db_rxgain_9280_2,
504 			ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
505 		else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
506 			INIT_INI_ARRAY(&ah->iniModesRxGain,
507 			ar9280Modes_backoff_23db_rxgain_9280_2,
508 			ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
509 		else
510 			INIT_INI_ARRAY(&ah->iniModesRxGain,
511 			ar9280Modes_original_rxgain_9280_2,
512 			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
513 	} else {
514 		INIT_INI_ARRAY(&ah->iniModesRxGain,
515 			ar9280Modes_original_rxgain_9280_2,
516 			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
517 	}
518 }
519 
520 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
521 {
522 	u32 txgain_type;
523 
524 	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
525 		txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
526 
527 		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
528 			INIT_INI_ARRAY(&ah->iniModesTxGain,
529 			ar9280Modes_high_power_tx_gain_9280_2,
530 			ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
531 		else
532 			INIT_INI_ARRAY(&ah->iniModesTxGain,
533 			ar9280Modes_original_tx_gain_9280_2,
534 			ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
535 	} else {
536 		INIT_INI_ARRAY(&ah->iniModesTxGain,
537 		ar9280Modes_original_tx_gain_9280_2,
538 		ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
539 	}
540 }
541 
542 static int ath9k_hw_post_init(struct ath_hw *ah)
543 {
544 	int ecode;
545 
546 	if (!ath9k_hw_chip_test(ah))
547 		return -ENODEV;
548 
549 	ecode = ath9k_hw_rf_claim(ah);
550 	if (ecode != 0)
551 		return ecode;
552 
553 	ecode = ath9k_hw_eeprom_init(ah);
554 	if (ecode != 0)
555 		return ecode;
556 
557 	ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
558 		  "Eeprom VER: %d, REV: %d\n",
559 		  ah->eep_ops->get_eeprom_ver(ah),
560 		  ah->eep_ops->get_eeprom_rev(ah));
561 
562         if (!AR_SREV_9280_10_OR_LATER(ah)) {
563 		ecode = ath9k_hw_rf_alloc_ext_banks(ah);
564 		if (ecode) {
565 			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
566 				  "Failed allocating banks for "
567 				  "external radio\n");
568 			return ecode;
569 		}
570 	}
571 
572 	if (!AR_SREV_9100(ah)) {
573 		ath9k_hw_ani_setup(ah);
574 		ath9k_hw_ani_init(ah);
575 	}
576 
577 	return 0;
578 }
579 
580 static bool ath9k_hw_devid_supported(u16 devid)
581 {
582 	switch (devid) {
583 	case AR5416_DEVID_PCI:
584 	case AR5416_DEVID_PCIE:
585 	case AR5416_AR9100_DEVID:
586 	case AR9160_DEVID_PCI:
587 	case AR9280_DEVID_PCI:
588 	case AR9280_DEVID_PCIE:
589 	case AR9285_DEVID_PCIE:
590 	case AR5416_DEVID_AR9287_PCI:
591 	case AR5416_DEVID_AR9287_PCIE:
592 	case AR9271_USB:
593 		return true;
594 	default:
595 		break;
596 	}
597 	return false;
598 }
599 
600 static bool ath9k_hw_macversion_supported(u32 macversion)
601 {
602 	switch (macversion) {
603 	case AR_SREV_VERSION_5416_PCI:
604 	case AR_SREV_VERSION_5416_PCIE:
605 	case AR_SREV_VERSION_9160:
606 	case AR_SREV_VERSION_9100:
607 	case AR_SREV_VERSION_9280:
608 	case AR_SREV_VERSION_9285:
609 	case AR_SREV_VERSION_9287:
610 	case AR_SREV_VERSION_9271:
611 		return true;
612 	default:
613 		break;
614 	}
615 	return false;
616 }
617 
618 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
619 {
620 	if (AR_SREV_9160_10_OR_LATER(ah)) {
621 		if (AR_SREV_9280_10_OR_LATER(ah)) {
622 			ah->iq_caldata.calData = &iq_cal_single_sample;
623 			ah->adcgain_caldata.calData =
624 				&adc_gain_cal_single_sample;
625 			ah->adcdc_caldata.calData =
626 				&adc_dc_cal_single_sample;
627 			ah->adcdc_calinitdata.calData =
628 				&adc_init_dc_cal;
629 		} else {
630 			ah->iq_caldata.calData = &iq_cal_multi_sample;
631 			ah->adcgain_caldata.calData =
632 				&adc_gain_cal_multi_sample;
633 			ah->adcdc_caldata.calData =
634 				&adc_dc_cal_multi_sample;
635 			ah->adcdc_calinitdata.calData =
636 				&adc_init_dc_cal;
637 		}
638 		ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
639 	}
640 }
641 
642 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
643 {
644 	if (AR_SREV_9271(ah)) {
645 		INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
646 			       ARRAY_SIZE(ar9271Modes_9271), 6);
647 		INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
648 			       ARRAY_SIZE(ar9271Common_9271), 2);
649 		INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
650 			       ar9271Modes_9271_1_0_only,
651 			       ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
652 		return;
653 	}
654 
655 	if (AR_SREV_9287_11_OR_LATER(ah)) {
656 		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
657 				ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
658 		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
659 				ARRAY_SIZE(ar9287Common_9287_1_1), 2);
660 		if (ah->config.pcie_clock_req)
661 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
662 			ar9287PciePhy_clkreq_off_L1_9287_1_1,
663 			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
664 		else
665 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
666 			ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
667 			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
668 					2);
669 	} else if (AR_SREV_9287_10_OR_LATER(ah)) {
670 		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
671 				ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
672 		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
673 				ARRAY_SIZE(ar9287Common_9287_1_0), 2);
674 
675 		if (ah->config.pcie_clock_req)
676 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
677 			ar9287PciePhy_clkreq_off_L1_9287_1_0,
678 			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
679 		else
680 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
681 			ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
682 			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
683 				  2);
684 	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
685 
686 
687 		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
688 			       ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
689 		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
690 			       ARRAY_SIZE(ar9285Common_9285_1_2), 2);
691 
692 		if (ah->config.pcie_clock_req) {
693 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
694 			ar9285PciePhy_clkreq_off_L1_9285_1_2,
695 			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
696 		} else {
697 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
698 			ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
699 			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
700 				  2);
701 		}
702 	} else if (AR_SREV_9285_10_OR_LATER(ah)) {
703 		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
704 			       ARRAY_SIZE(ar9285Modes_9285), 6);
705 		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
706 			       ARRAY_SIZE(ar9285Common_9285), 2);
707 
708 		if (ah->config.pcie_clock_req) {
709 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
710 			ar9285PciePhy_clkreq_off_L1_9285,
711 			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
712 		} else {
713 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
714 			ar9285PciePhy_clkreq_always_on_L1_9285,
715 			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
716 		}
717 	} else if (AR_SREV_9280_20_OR_LATER(ah)) {
718 		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
719 			       ARRAY_SIZE(ar9280Modes_9280_2), 6);
720 		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
721 			       ARRAY_SIZE(ar9280Common_9280_2), 2);
722 
723 		if (ah->config.pcie_clock_req) {
724 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
725 			       ar9280PciePhy_clkreq_off_L1_9280,
726 			       ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
727 		} else {
728 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
729 			       ar9280PciePhy_clkreq_always_on_L1_9280,
730 			       ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
731 		}
732 		INIT_INI_ARRAY(&ah->iniModesAdditional,
733 			       ar9280Modes_fast_clock_9280_2,
734 			       ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
735 	} else if (AR_SREV_9280_10_OR_LATER(ah)) {
736 		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
737 			       ARRAY_SIZE(ar9280Modes_9280), 6);
738 		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
739 			       ARRAY_SIZE(ar9280Common_9280), 2);
740 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
741 		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
742 			       ARRAY_SIZE(ar5416Modes_9160), 6);
743 		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
744 			       ARRAY_SIZE(ar5416Common_9160), 2);
745 		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
746 			       ARRAY_SIZE(ar5416Bank0_9160), 2);
747 		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
748 			       ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
749 		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
750 			       ARRAY_SIZE(ar5416Bank1_9160), 2);
751 		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
752 			       ARRAY_SIZE(ar5416Bank2_9160), 2);
753 		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
754 			       ARRAY_SIZE(ar5416Bank3_9160), 3);
755 		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
756 			       ARRAY_SIZE(ar5416Bank6_9160), 3);
757 		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
758 			       ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
759 		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
760 			       ARRAY_SIZE(ar5416Bank7_9160), 2);
761 		if (AR_SREV_9160_11(ah)) {
762 			INIT_INI_ARRAY(&ah->iniAddac,
763 				       ar5416Addac_91601_1,
764 				       ARRAY_SIZE(ar5416Addac_91601_1), 2);
765 		} else {
766 			INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
767 				       ARRAY_SIZE(ar5416Addac_9160), 2);
768 		}
769 	} else if (AR_SREV_9100_OR_LATER(ah)) {
770 		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
771 			       ARRAY_SIZE(ar5416Modes_9100), 6);
772 		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
773 			       ARRAY_SIZE(ar5416Common_9100), 2);
774 		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
775 			       ARRAY_SIZE(ar5416Bank0_9100), 2);
776 		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
777 			       ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
778 		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
779 			       ARRAY_SIZE(ar5416Bank1_9100), 2);
780 		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
781 			       ARRAY_SIZE(ar5416Bank2_9100), 2);
782 		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
783 			       ARRAY_SIZE(ar5416Bank3_9100), 3);
784 		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
785 			       ARRAY_SIZE(ar5416Bank6_9100), 3);
786 		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
787 			       ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
788 		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
789 			       ARRAY_SIZE(ar5416Bank7_9100), 2);
790 		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
791 			       ARRAY_SIZE(ar5416Addac_9100), 2);
792 	} else {
793 		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
794 			       ARRAY_SIZE(ar5416Modes), 6);
795 		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
796 			       ARRAY_SIZE(ar5416Common), 2);
797 		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
798 			       ARRAY_SIZE(ar5416Bank0), 2);
799 		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
800 			       ARRAY_SIZE(ar5416BB_RfGain), 3);
801 		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
802 			       ARRAY_SIZE(ar5416Bank1), 2);
803 		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
804 			       ARRAY_SIZE(ar5416Bank2), 2);
805 		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
806 			       ARRAY_SIZE(ar5416Bank3), 3);
807 		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
808 			       ARRAY_SIZE(ar5416Bank6), 3);
809 		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
810 			       ARRAY_SIZE(ar5416Bank6TPC), 3);
811 		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
812 			       ARRAY_SIZE(ar5416Bank7), 2);
813 		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
814 			       ARRAY_SIZE(ar5416Addac), 2);
815 	}
816 }
817 
818 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
819 {
820 	if (AR_SREV_9287_11_OR_LATER(ah))
821 		INIT_INI_ARRAY(&ah->iniModesRxGain,
822 		ar9287Modes_rx_gain_9287_1_1,
823 		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
824 	else if (AR_SREV_9287_10(ah))
825 		INIT_INI_ARRAY(&ah->iniModesRxGain,
826 		ar9287Modes_rx_gain_9287_1_0,
827 		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
828 	else if (AR_SREV_9280_20(ah))
829 		ath9k_hw_init_rxgain_ini(ah);
830 
831 	if (AR_SREV_9287_11_OR_LATER(ah)) {
832 		INIT_INI_ARRAY(&ah->iniModesTxGain,
833 		ar9287Modes_tx_gain_9287_1_1,
834 		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
835 	} else if (AR_SREV_9287_10(ah)) {
836 		INIT_INI_ARRAY(&ah->iniModesTxGain,
837 		ar9287Modes_tx_gain_9287_1_0,
838 		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
839 	} else if (AR_SREV_9280_20(ah)) {
840 		ath9k_hw_init_txgain_ini(ah);
841 	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
842 		u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
843 
844 		/* txgain table */
845 		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
846 			INIT_INI_ARRAY(&ah->iniModesTxGain,
847 			ar9285Modes_high_power_tx_gain_9285_1_2,
848 			ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
849 		} else {
850 			INIT_INI_ARRAY(&ah->iniModesTxGain,
851 			ar9285Modes_original_tx_gain_9285_1_2,
852 			ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
853 		}
854 
855 	}
856 }
857 
858 static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
859 {
860 	u32 i, j;
861 
862 	if (ah->hw_version.devid == AR9280_DEVID_PCI) {
863 
864 		/* EEPROM Fixup */
865 		for (i = 0; i < ah->iniModes.ia_rows; i++) {
866 			u32 reg = INI_RA(&ah->iniModes, i, 0);
867 
868 			for (j = 1; j < ah->iniModes.ia_columns; j++) {
869 				u32 val = INI_RA(&ah->iniModes, i, j);
870 
871 				INI_RA(&ah->iniModes, i, j) =
872 					ath9k_hw_ini_fixup(ah,
873 							   &ah->eeprom.def,
874 							   reg, val);
875 			}
876 		}
877 	}
878 }
879 
880 int ath9k_hw_init(struct ath_hw *ah)
881 {
882 	struct ath_common *common = ath9k_hw_common(ah);
883 	int r = 0;
884 
885 	if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
886 		ath_print(common, ATH_DBG_FATAL,
887 			  "Unsupported device ID: 0x%0x\n",
888 			  ah->hw_version.devid);
889 		return -EOPNOTSUPP;
890 	}
891 
892 	ath9k_hw_init_defaults(ah);
893 	ath9k_hw_init_config(ah);
894 
895 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
896 		ath_print(common, ATH_DBG_FATAL,
897 			  "Couldn't reset chip\n");
898 		return -EIO;
899 	}
900 
901 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
902 		ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
903 		return -EIO;
904 	}
905 
906 	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
907 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
908 		    (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
909 			ah->config.serialize_regmode =
910 				SER_REG_MODE_ON;
911 		} else {
912 			ah->config.serialize_regmode =
913 				SER_REG_MODE_OFF;
914 		}
915 	}
916 
917 	ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
918 		ah->config.serialize_regmode);
919 
920 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
921 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
922 	else
923 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
924 
925 	if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
926 		ath_print(common, ATH_DBG_FATAL,
927 			  "Mac Chip Rev 0x%02x.%x is not supported by "
928 			  "this driver\n", ah->hw_version.macVersion,
929 			  ah->hw_version.macRev);
930 		return -EOPNOTSUPP;
931 	}
932 
933 	if (AR_SREV_9100(ah)) {
934 		ah->iq_caldata.calData = &iq_cal_multi_sample;
935 		ah->supp_cals = IQ_MISMATCH_CAL;
936 		ah->is_pciexpress = false;
937 	}
938 
939 	if (AR_SREV_9271(ah))
940 		ah->is_pciexpress = false;
941 
942 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
943 
944 	ath9k_hw_init_cal_settings(ah);
945 
946 	ah->ani_function = ATH9K_ANI_ALL;
947 	if (AR_SREV_9280_10_OR_LATER(ah)) {
948 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
949 		ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
950 		ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
951 	} else {
952 		ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
953 		ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
954 	}
955 
956 	ath9k_hw_init_mode_regs(ah);
957 
958 	if (ah->is_pciexpress)
959 		ath9k_hw_configpcipowersave(ah, 0, 0);
960 	else
961 		ath9k_hw_disablepcie(ah);
962 
963 	/* Support for Japan ch.14 (2484) spread */
964 	if (AR_SREV_9287_11_OR_LATER(ah)) {
965 		INIT_INI_ARRAY(&ah->iniCckfirNormal,
966 		       ar9287Common_normal_cck_fir_coeff_92871_1,
967 		       ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
968 		INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
969 		       ar9287Common_japan_2484_cck_fir_coeff_92871_1,
970 		       ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
971 	}
972 
973 	r = ath9k_hw_post_init(ah);
974 	if (r)
975 		return r;
976 
977 	ath9k_hw_init_mode_gain_regs(ah);
978 	r = ath9k_hw_fill_cap_info(ah);
979 	if (r)
980 		return r;
981 
982 	ath9k_hw_init_eeprom_fix(ah);
983 
984 	r = ath9k_hw_init_macaddr(ah);
985 	if (r) {
986 		ath_print(common, ATH_DBG_FATAL,
987 			  "Failed to initialize MAC address\n");
988 		return r;
989 	}
990 
991 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
992 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
993 	else
994 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
995 
996 	ath9k_init_nfcal_hist_buffer(ah);
997 
998 	common->state = ATH_HW_INITIALIZED;
999 
1000 	return 0;
1001 }
1002 
1003 static void ath9k_hw_init_bb(struct ath_hw *ah,
1004 			     struct ath9k_channel *chan)
1005 {
1006 	u32 synthDelay;
1007 
1008 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1009 	if (IS_CHAN_B(chan))
1010 		synthDelay = (4 * synthDelay) / 22;
1011 	else
1012 		synthDelay /= 10;
1013 
1014 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1015 
1016 	udelay(synthDelay + BASE_ACTIVATE_DELAY);
1017 }
1018 
1019 static void ath9k_hw_init_qos(struct ath_hw *ah)
1020 {
1021 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1022 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1023 
1024 	REG_WRITE(ah, AR_QOS_NO_ACK,
1025 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1026 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1027 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1028 
1029 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1030 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1031 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1032 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1033 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1034 }
1035 
1036 static void ath9k_hw_change_target_baud(struct ath_hw *ah, u32 freq, u32 baud)
1037 {
1038 	u32 lcr;
1039 	u32 baud_divider = freq * 1000 * 1000 / 16 / baud;
1040 
1041 	lcr = REG_READ(ah , 0x5100c);
1042 	lcr |= 0x80;
1043 
1044 	REG_WRITE(ah, 0x5100c, lcr);
1045 	REG_WRITE(ah, 0x51004, (baud_divider >> 8));
1046 	REG_WRITE(ah, 0x51000, (baud_divider & 0xff));
1047 
1048 	lcr &= ~0x80;
1049 	REG_WRITE(ah, 0x5100c, lcr);
1050 }
1051 
1052 static void ath9k_hw_init_pll(struct ath_hw *ah,
1053 			      struct ath9k_channel *chan)
1054 {
1055 	u32 pll;
1056 
1057 	if (AR_SREV_9100(ah)) {
1058 		if (chan && IS_CHAN_5GHZ(chan))
1059 			pll = 0x1450;
1060 		else
1061 			pll = 0x1458;
1062 	} else {
1063 		if (AR_SREV_9280_10_OR_LATER(ah)) {
1064 			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1065 
1066 			if (chan && IS_CHAN_HALF_RATE(chan))
1067 				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1068 			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1069 				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1070 
1071 			if (chan && IS_CHAN_5GHZ(chan)) {
1072 				pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1073 
1074 
1075 				if (AR_SREV_9280_20(ah)) {
1076 					if (((chan->channel % 20) == 0)
1077 					    || ((chan->channel % 10) == 0))
1078 						pll = 0x2850;
1079 					else
1080 						pll = 0x142c;
1081 				}
1082 			} else {
1083 				pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1084 			}
1085 
1086 		} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1087 
1088 			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1089 
1090 			if (chan && IS_CHAN_HALF_RATE(chan))
1091 				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1092 			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1093 				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1094 
1095 			if (chan && IS_CHAN_5GHZ(chan))
1096 				pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1097 			else
1098 				pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1099 		} else {
1100 			pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1101 
1102 			if (chan && IS_CHAN_HALF_RATE(chan))
1103 				pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1104 			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1105 				pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1106 
1107 			if (chan && IS_CHAN_5GHZ(chan))
1108 				pll |= SM(0xa, AR_RTC_PLL_DIV);
1109 			else
1110 				pll |= SM(0xb, AR_RTC_PLL_DIV);
1111 		}
1112 	}
1113 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1114 
1115 	/* Switch the core clock for ar9271 to 117Mhz */
1116 	if (AR_SREV_9271(ah)) {
1117 		if ((pll == 0x142c) || (pll == 0x2850) ) {
1118 			udelay(500);
1119 			/* set CLKOBS to output AHB clock */
1120 			REG_WRITE(ah, 0x7020, 0xe);
1121 			/*
1122 			 * 0x304: 117Mhz, ahb_ratio: 1x1
1123 			 * 0x306: 40Mhz, ahb_ratio: 1x1
1124 			 */
1125 			REG_WRITE(ah, 0x50040, 0x304);
1126 			/*
1127 			 * makes adjustments for the baud dividor to keep the
1128 			 * targetted baud rate based on the used core clock.
1129 			 */
1130 			ath9k_hw_change_target_baud(ah, AR9271_CORE_CLOCK,
1131 						    AR9271_TARGET_BAUD_RATE);
1132 		}
1133 	}
1134 
1135 	udelay(RTC_PLL_SETTLE_DELAY);
1136 
1137 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1138 }
1139 
1140 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1141 {
1142 	int rx_chainmask, tx_chainmask;
1143 
1144 	rx_chainmask = ah->rxchainmask;
1145 	tx_chainmask = ah->txchainmask;
1146 
1147 	switch (rx_chainmask) {
1148 	case 0x5:
1149 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1150 			    AR_PHY_SWAP_ALT_CHAIN);
1151 	case 0x3:
1152 		if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
1153 			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1154 			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1155 			break;
1156 		}
1157 	case 0x1:
1158 	case 0x2:
1159 	case 0x7:
1160 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1161 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1162 		break;
1163 	default:
1164 		break;
1165 	}
1166 
1167 	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1168 	if (tx_chainmask == 0x5) {
1169 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1170 			    AR_PHY_SWAP_ALT_CHAIN);
1171 	}
1172 	if (AR_SREV_9100(ah))
1173 		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1174 			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1175 }
1176 
1177 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1178 					  enum nl80211_iftype opmode)
1179 {
1180 	ah->mask_reg = AR_IMR_TXERR |
1181 		AR_IMR_TXURN |
1182 		AR_IMR_RXERR |
1183 		AR_IMR_RXORN |
1184 		AR_IMR_BCNMISC;
1185 
1186 	if (ah->config.intr_mitigation)
1187 		ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1188 	else
1189 		ah->mask_reg |= AR_IMR_RXOK;
1190 
1191 	ah->mask_reg |= AR_IMR_TXOK;
1192 
1193 	if (opmode == NL80211_IFTYPE_AP)
1194 		ah->mask_reg |= AR_IMR_MIB;
1195 
1196 	REG_WRITE(ah, AR_IMR, ah->mask_reg);
1197 	REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1198 
1199 	if (!AR_SREV_9100(ah)) {
1200 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1201 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1202 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1203 	}
1204 }
1205 
1206 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1207 {
1208 	if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1209 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1210 			  "bad ack timeout %u\n", us);
1211 		ah->acktimeout = (u32) -1;
1212 		return false;
1213 	} else {
1214 		REG_RMW_FIELD(ah, AR_TIME_OUT,
1215 			      AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1216 		ah->acktimeout = us;
1217 		return true;
1218 	}
1219 }
1220 
1221 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1222 {
1223 	if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1224 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1225 			  "bad cts timeout %u\n", us);
1226 		ah->ctstimeout = (u32) -1;
1227 		return false;
1228 	} else {
1229 		REG_RMW_FIELD(ah, AR_TIME_OUT,
1230 			      AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1231 		ah->ctstimeout = us;
1232 		return true;
1233 	}
1234 }
1235 
1236 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1237 {
1238 	if (tu > 0xFFFF) {
1239 		ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1240 			  "bad global tx timeout %u\n", tu);
1241 		ah->globaltxtimeout = (u32) -1;
1242 		return false;
1243 	} else {
1244 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1245 		ah->globaltxtimeout = tu;
1246 		return true;
1247 	}
1248 }
1249 
1250 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1251 {
1252 	ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1253 		  ah->misc_mode);
1254 
1255 	if (ah->misc_mode != 0)
1256 		REG_WRITE(ah, AR_PCU_MISC,
1257 			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1258 	if (ah->slottime != (u32) -1)
1259 		ath9k_hw_setslottime(ah, ah->slottime);
1260 	if (ah->acktimeout != (u32) -1)
1261 		ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1262 	if (ah->ctstimeout != (u32) -1)
1263 		ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1264 	if (ah->globaltxtimeout != (u32) -1)
1265 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1266 }
1267 
1268 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1269 {
1270 	return vendorid == ATHEROS_VENDOR_ID ?
1271 		ath9k_hw_devname(devid) : NULL;
1272 }
1273 
1274 void ath9k_hw_detach(struct ath_hw *ah)
1275 {
1276 	struct ath_common *common = ath9k_hw_common(ah);
1277 
1278 	if (common->state <= ATH_HW_INITIALIZED)
1279 		goto free_hw;
1280 
1281 	if (!AR_SREV_9100(ah))
1282 		ath9k_hw_ani_disable(ah);
1283 
1284 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1285 
1286 free_hw:
1287 	if (!AR_SREV_9280_10_OR_LATER(ah))
1288 		ath9k_hw_rf_free_ext_banks(ah);
1289 	kfree(ah);
1290 	ah = NULL;
1291 }
1292 EXPORT_SYMBOL(ath9k_hw_detach);
1293 
1294 /*******/
1295 /* INI */
1296 /*******/
1297 
1298 static void ath9k_hw_override_ini(struct ath_hw *ah,
1299 				  struct ath9k_channel *chan)
1300 {
1301 	u32 val;
1302 
1303 	if (AR_SREV_9271(ah)) {
1304 		/*
1305 		 * Enable spectral scan to solution for issues with stuck
1306 		 * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1307 		 * AR9271 1.1
1308 		 */
1309 		if (AR_SREV_9271_10(ah)) {
1310 			val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) |
1311 			      AR_PHY_SPECTRAL_SCAN_ENABLE;
1312 			REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1313 		}
1314 		else if (AR_SREV_9271_11(ah))
1315 			/*
1316 			 * change AR_PHY_RF_CTL3 setting to fix MAC issue
1317 			 * present on AR9271 1.1
1318 			 */
1319 			REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1320 		return;
1321 	}
1322 
1323 	/*
1324 	 * Set the RX_ABORT and RX_DIS and clear if off only after
1325 	 * RXE is set for MAC. This prevents frames with corrupted
1326 	 * descriptor status.
1327 	 */
1328 	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1329 
1330 	if (AR_SREV_9280_10_OR_LATER(ah)) {
1331 		val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1332 			       (~AR_PCU_MISC_MODE2_HWWAR1);
1333 
1334 		if (AR_SREV_9287_10_OR_LATER(ah))
1335 			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1336 
1337 		REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1338 	}
1339 
1340 	if (!AR_SREV_5416_20_OR_LATER(ah) ||
1341 	    AR_SREV_9280_10_OR_LATER(ah))
1342 		return;
1343 	/*
1344 	 * Disable BB clock gating
1345 	 * Necessary to avoid issues on AR5416 2.0
1346 	 */
1347 	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1348 }
1349 
1350 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1351 			      struct ar5416_eeprom_def *pEepData,
1352 			      u32 reg, u32 value)
1353 {
1354 	struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1355 	struct ath_common *common = ath9k_hw_common(ah);
1356 
1357 	switch (ah->hw_version.devid) {
1358 	case AR9280_DEVID_PCI:
1359 		if (reg == 0x7894) {
1360 			ath_print(common, ATH_DBG_EEPROM,
1361 				"ini VAL: %x  EEPROM: %x\n", value,
1362 				(pBase->version & 0xff));
1363 
1364 			if ((pBase->version & 0xff) > 0x0a) {
1365 				ath_print(common, ATH_DBG_EEPROM,
1366 					  "PWDCLKIND: %d\n",
1367 					  pBase->pwdclkind);
1368 				value &= ~AR_AN_TOP2_PWDCLKIND;
1369 				value |= AR_AN_TOP2_PWDCLKIND &
1370 					(pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1371 			} else {
1372 				ath_print(common, ATH_DBG_EEPROM,
1373 					  "PWDCLKIND Earlier Rev\n");
1374 			}
1375 
1376 			ath_print(common, ATH_DBG_EEPROM,
1377 				  "final ini VAL: %x\n", value);
1378 		}
1379 		break;
1380 	}
1381 
1382 	return value;
1383 }
1384 
1385 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1386 			      struct ar5416_eeprom_def *pEepData,
1387 			      u32 reg, u32 value)
1388 {
1389 	if (ah->eep_map == EEP_MAP_4KBITS)
1390 		return value;
1391 	else
1392 		return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1393 }
1394 
1395 static void ath9k_olc_init(struct ath_hw *ah)
1396 {
1397 	u32 i;
1398 
1399 	if (OLC_FOR_AR9287_10_LATER) {
1400 		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1401 				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1402 		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1403 				AR9287_AN_TXPC0_TXPCMODE,
1404 				AR9287_AN_TXPC0_TXPCMODE_S,
1405 				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1406 		udelay(100);
1407 	} else {
1408 		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1409 			ah->originalGain[i] =
1410 				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1411 						AR_PHY_TX_GAIN);
1412 		ah->PDADCdelta = 0;
1413 	}
1414 }
1415 
1416 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1417 			      struct ath9k_channel *chan)
1418 {
1419 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1420 
1421 	if (IS_CHAN_B(chan))
1422 		ctl |= CTL_11B;
1423 	else if (IS_CHAN_G(chan))
1424 		ctl |= CTL_11G;
1425 	else
1426 		ctl |= CTL_11A;
1427 
1428 	return ctl;
1429 }
1430 
1431 static int ath9k_hw_process_ini(struct ath_hw *ah,
1432 				struct ath9k_channel *chan)
1433 {
1434 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1435 	int i, regWrites = 0;
1436 	struct ieee80211_channel *channel = chan->chan;
1437 	u32 modesIndex, freqIndex;
1438 
1439 	switch (chan->chanmode) {
1440 	case CHANNEL_A:
1441 	case CHANNEL_A_HT20:
1442 		modesIndex = 1;
1443 		freqIndex = 1;
1444 		break;
1445 	case CHANNEL_A_HT40PLUS:
1446 	case CHANNEL_A_HT40MINUS:
1447 		modesIndex = 2;
1448 		freqIndex = 1;
1449 		break;
1450 	case CHANNEL_G:
1451 	case CHANNEL_G_HT20:
1452 	case CHANNEL_B:
1453 		modesIndex = 4;
1454 		freqIndex = 2;
1455 		break;
1456 	case CHANNEL_G_HT40PLUS:
1457 	case CHANNEL_G_HT40MINUS:
1458 		modesIndex = 3;
1459 		freqIndex = 2;
1460 		break;
1461 
1462 	default:
1463 		return -EINVAL;
1464 	}
1465 
1466 	REG_WRITE(ah, AR_PHY(0), 0x00000007);
1467 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1468 	ah->eep_ops->set_addac(ah, chan);
1469 
1470 	if (AR_SREV_5416_22_OR_LATER(ah)) {
1471 		REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1472 	} else {
1473 		struct ar5416IniArray temp;
1474 		u32 addacSize =
1475 			sizeof(u32) * ah->iniAddac.ia_rows *
1476 			ah->iniAddac.ia_columns;
1477 
1478 		memcpy(ah->addac5416_21,
1479 		       ah->iniAddac.ia_array, addacSize);
1480 
1481 		(ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1482 
1483 		temp.ia_array = ah->addac5416_21;
1484 		temp.ia_columns = ah->iniAddac.ia_columns;
1485 		temp.ia_rows = ah->iniAddac.ia_rows;
1486 		REG_WRITE_ARRAY(&temp, 1, regWrites);
1487 	}
1488 
1489 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1490 
1491 	for (i = 0; i < ah->iniModes.ia_rows; i++) {
1492 		u32 reg = INI_RA(&ah->iniModes, i, 0);
1493 		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1494 
1495 		REG_WRITE(ah, reg, val);
1496 
1497 		if (reg >= 0x7800 && reg < 0x78a0
1498 		    && ah->config.analog_shiftreg) {
1499 			udelay(100);
1500 		}
1501 
1502 		DO_DELAY(regWrites);
1503 	}
1504 
1505 	if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1506 		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1507 
1508 	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1509 	    AR_SREV_9287_10_OR_LATER(ah))
1510 		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1511 
1512 	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1513 		u32 reg = INI_RA(&ah->iniCommon, i, 0);
1514 		u32 val = INI_RA(&ah->iniCommon, i, 1);
1515 
1516 		REG_WRITE(ah, reg, val);
1517 
1518 		if (reg >= 0x7800 && reg < 0x78a0
1519 		    && ah->config.analog_shiftreg) {
1520 			udelay(100);
1521 		}
1522 
1523 		DO_DELAY(regWrites);
1524 	}
1525 
1526 	ath9k_hw_write_regs(ah, freqIndex, regWrites);
1527 
1528 	if (AR_SREV_9271_10(ah))
1529 		REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1530 				modesIndex, regWrites);
1531 
1532 	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1533 		REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1534 				regWrites);
1535 	}
1536 
1537 	ath9k_hw_override_ini(ah, chan);
1538 	ath9k_hw_set_regs(ah, chan);
1539 	ath9k_hw_init_chain_masks(ah);
1540 
1541 	if (OLC_FOR_AR9280_20_LATER)
1542 		ath9k_olc_init(ah);
1543 
1544 	ah->eep_ops->set_txpower(ah, chan,
1545 				 ath9k_regd_get_ctl(regulatory, chan),
1546 				 channel->max_antenna_gain * 2,
1547 				 channel->max_power * 2,
1548 				 min((u32) MAX_RATE_POWER,
1549 				 (u32) regulatory->power_limit));
1550 
1551 	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1552 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1553 			  "ar5416SetRfRegs failed\n");
1554 		return -EIO;
1555 	}
1556 
1557 	return 0;
1558 }
1559 
1560 /****************************************/
1561 /* Reset and Channel Switching Routines */
1562 /****************************************/
1563 
1564 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1565 {
1566 	u32 rfMode = 0;
1567 
1568 	if (chan == NULL)
1569 		return;
1570 
1571 	rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1572 		? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1573 
1574 	if (!AR_SREV_9280_10_OR_LATER(ah))
1575 		rfMode |= (IS_CHAN_5GHZ(chan)) ?
1576 			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1577 
1578 	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1579 		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1580 
1581 	REG_WRITE(ah, AR_PHY_MODE, rfMode);
1582 }
1583 
1584 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1585 {
1586 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1587 }
1588 
1589 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1590 {
1591 	u32 regval;
1592 
1593 	/*
1594 	 * set AHB_MODE not to do cacheline prefetches
1595 	*/
1596 	regval = REG_READ(ah, AR_AHB_MODE);
1597 	REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1598 
1599 	/*
1600 	 * let mac dma reads be in 128 byte chunks
1601 	 */
1602 	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1603 	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1604 
1605 	/*
1606 	 * Restore TX Trigger Level to its pre-reset value.
1607 	 * The initial value depends on whether aggregation is enabled, and is
1608 	 * adjusted whenever underruns are detected.
1609 	 */
1610 	REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1611 
1612 	/*
1613 	 * let mac dma writes be in 128 byte chunks
1614 	 */
1615 	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1616 	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1617 
1618 	/*
1619 	 * Setup receive FIFO threshold to hold off TX activities
1620 	 */
1621 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1622 
1623 	/*
1624 	 * reduce the number of usable entries in PCU TXBUF to avoid
1625 	 * wrap around issues.
1626 	 */
1627 	if (AR_SREV_9285(ah)) {
1628 		/* For AR9285 the number of Fifos are reduced to half.
1629 		 * So set the usable tx buf size also to half to
1630 		 * avoid data/delimiter underruns
1631 		 */
1632 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1633 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1634 	} else if (!AR_SREV_9271(ah)) {
1635 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1636 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1637 	}
1638 }
1639 
1640 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1641 {
1642 	u32 val;
1643 
1644 	val = REG_READ(ah, AR_STA_ID1);
1645 	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1646 	switch (opmode) {
1647 	case NL80211_IFTYPE_AP:
1648 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1649 			  | AR_STA_ID1_KSRCH_MODE);
1650 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1651 		break;
1652 	case NL80211_IFTYPE_ADHOC:
1653 	case NL80211_IFTYPE_MESH_POINT:
1654 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1655 			  | AR_STA_ID1_KSRCH_MODE);
1656 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1657 		break;
1658 	case NL80211_IFTYPE_STATION:
1659 	case NL80211_IFTYPE_MONITOR:
1660 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1661 		break;
1662 	}
1663 }
1664 
1665 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1666 						 u32 coef_scaled,
1667 						 u32 *coef_mantissa,
1668 						 u32 *coef_exponent)
1669 {
1670 	u32 coef_exp, coef_man;
1671 
1672 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1673 		if ((coef_scaled >> coef_exp) & 0x1)
1674 			break;
1675 
1676 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1677 
1678 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1679 
1680 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1681 	*coef_exponent = coef_exp - 16;
1682 }
1683 
1684 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1685 				     struct ath9k_channel *chan)
1686 {
1687 	u32 coef_scaled, ds_coef_exp, ds_coef_man;
1688 	u32 clockMhzScaled = 0x64000000;
1689 	struct chan_centers centers;
1690 
1691 	if (IS_CHAN_HALF_RATE(chan))
1692 		clockMhzScaled = clockMhzScaled >> 1;
1693 	else if (IS_CHAN_QUARTER_RATE(chan))
1694 		clockMhzScaled = clockMhzScaled >> 2;
1695 
1696 	ath9k_hw_get_channel_centers(ah, chan, &centers);
1697 	coef_scaled = clockMhzScaled / centers.synth_center;
1698 
1699 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1700 				      &ds_coef_exp);
1701 
1702 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1703 		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1704 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1705 		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1706 
1707 	coef_scaled = (9 * coef_scaled) / 10;
1708 
1709 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1710 				      &ds_coef_exp);
1711 
1712 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1713 		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1714 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1715 		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1716 }
1717 
1718 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1719 {
1720 	u32 rst_flags;
1721 	u32 tmpReg;
1722 
1723 	if (AR_SREV_9100(ah)) {
1724 		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1725 		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1726 		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1727 		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1728 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1729 	}
1730 
1731 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1732 		  AR_RTC_FORCE_WAKE_ON_INT);
1733 
1734 	if (AR_SREV_9100(ah)) {
1735 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1736 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1737 	} else {
1738 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1739 		if (tmpReg &
1740 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1741 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1742 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1743 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1744 		} else {
1745 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1746 		}
1747 
1748 		rst_flags = AR_RTC_RC_MAC_WARM;
1749 		if (type == ATH9K_RESET_COLD)
1750 			rst_flags |= AR_RTC_RC_MAC_COLD;
1751 	}
1752 
1753 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1754 	udelay(50);
1755 
1756 	REG_WRITE(ah, AR_RTC_RC, 0);
1757 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1758 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1759 			  "RTC stuck in MAC reset\n");
1760 		return false;
1761 	}
1762 
1763 	if (!AR_SREV_9100(ah))
1764 		REG_WRITE(ah, AR_RC, 0);
1765 
1766 	if (AR_SREV_9100(ah))
1767 		udelay(50);
1768 
1769 	return true;
1770 }
1771 
1772 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1773 {
1774 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1775 		  AR_RTC_FORCE_WAKE_ON_INT);
1776 
1777 	if (!AR_SREV_9100(ah))
1778 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1779 
1780 	REG_WRITE(ah, AR_RTC_RESET, 0);
1781 	udelay(2);
1782 
1783 	if (!AR_SREV_9100(ah))
1784 		REG_WRITE(ah, AR_RC, 0);
1785 
1786 	REG_WRITE(ah, AR_RTC_RESET, 1);
1787 
1788 	if (!ath9k_hw_wait(ah,
1789 			   AR_RTC_STATUS,
1790 			   AR_RTC_STATUS_M,
1791 			   AR_RTC_STATUS_ON,
1792 			   AH_WAIT_TIMEOUT)) {
1793 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1794 			  "RTC not waking up\n");
1795 		return false;
1796 	}
1797 
1798 	ath9k_hw_read_revisions(ah);
1799 
1800 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1801 }
1802 
1803 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1804 {
1805 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1806 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1807 
1808 	switch (type) {
1809 	case ATH9K_RESET_POWER_ON:
1810 		return ath9k_hw_set_reset_power_on(ah);
1811 	case ATH9K_RESET_WARM:
1812 	case ATH9K_RESET_COLD:
1813 		return ath9k_hw_set_reset(ah, type);
1814 	default:
1815 		return false;
1816 	}
1817 }
1818 
1819 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1820 {
1821 	u32 phymode;
1822 	u32 enableDacFifo = 0;
1823 
1824 	if (AR_SREV_9285_10_OR_LATER(ah))
1825 		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1826 					 AR_PHY_FC_ENABLE_DAC_FIFO);
1827 
1828 	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1829 		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1830 
1831 	if (IS_CHAN_HT40(chan)) {
1832 		phymode |= AR_PHY_FC_DYN2040_EN;
1833 
1834 		if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1835 		    (chan->chanmode == CHANNEL_G_HT40PLUS))
1836 			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1837 
1838 	}
1839 	REG_WRITE(ah, AR_PHY_TURBO, phymode);
1840 
1841 	ath9k_hw_set11nmac2040(ah);
1842 
1843 	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1844 	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1845 }
1846 
1847 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1848 				struct ath9k_channel *chan)
1849 {
1850 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1851 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1852 			return false;
1853 	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1854 		return false;
1855 
1856 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1857 		return false;
1858 
1859 	ah->chip_fullsleep = false;
1860 	ath9k_hw_init_pll(ah, chan);
1861 	ath9k_hw_set_rfmode(ah, chan);
1862 
1863 	return true;
1864 }
1865 
1866 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1867 				    struct ath9k_channel *chan)
1868 {
1869 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1870 	struct ath_common *common = ath9k_hw_common(ah);
1871 	struct ieee80211_channel *channel = chan->chan;
1872 	u32 synthDelay, qnum;
1873 	int r;
1874 
1875 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1876 		if (ath9k_hw_numtxpending(ah, qnum)) {
1877 			ath_print(common, ATH_DBG_QUEUE,
1878 				  "Transmit frames pending on "
1879 				  "queue %d\n", qnum);
1880 			return false;
1881 		}
1882 	}
1883 
1884 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1885 	if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1886 			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1887 		ath_print(common, ATH_DBG_FATAL,
1888 			  "Could not kill baseband RX\n");
1889 		return false;
1890 	}
1891 
1892 	ath9k_hw_set_regs(ah, chan);
1893 
1894 	r = ah->ath9k_hw_rf_set_freq(ah, chan);
1895 	if (r) {
1896 		ath_print(common, ATH_DBG_FATAL,
1897 			  "Failed to set channel\n");
1898 		return false;
1899 	}
1900 
1901 	ah->eep_ops->set_txpower(ah, chan,
1902 			     ath9k_regd_get_ctl(regulatory, chan),
1903 			     channel->max_antenna_gain * 2,
1904 			     channel->max_power * 2,
1905 			     min((u32) MAX_RATE_POWER,
1906 			     (u32) regulatory->power_limit));
1907 
1908 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1909 	if (IS_CHAN_B(chan))
1910 		synthDelay = (4 * synthDelay) / 22;
1911 	else
1912 		synthDelay /= 10;
1913 
1914 	udelay(synthDelay + BASE_ACTIVATE_DELAY);
1915 
1916 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1917 
1918 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1919 		ath9k_hw_set_delta_slope(ah, chan);
1920 
1921 	ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1922 
1923 	if (!chan->oneTimeCalsDone)
1924 		chan->oneTimeCalsDone = true;
1925 
1926 	return true;
1927 }
1928 
1929 static void ath9k_enable_rfkill(struct ath_hw *ah)
1930 {
1931 	REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1932 		    AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1933 
1934 	REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1935 		    AR_GPIO_INPUT_MUX2_RFSILENT);
1936 
1937 	ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1938 	REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1939 }
1940 
1941 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1942 		    bool bChannelChange)
1943 {
1944 	struct ath_common *common = ath9k_hw_common(ah);
1945 	u32 saveLedState;
1946 	struct ath9k_channel *curchan = ah->curchan;
1947 	u32 saveDefAntenna;
1948 	u32 macStaId1;
1949 	u64 tsf = 0;
1950 	int i, rx_chainmask, r;
1951 
1952 	ah->txchainmask = common->tx_chainmask;
1953 	ah->rxchainmask = common->rx_chainmask;
1954 
1955 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1956 		return -EIO;
1957 
1958 	if (curchan && !ah->chip_fullsleep)
1959 		ath9k_hw_getnf(ah, curchan);
1960 
1961 	if (bChannelChange &&
1962 	    (ah->chip_fullsleep != true) &&
1963 	    (ah->curchan != NULL) &&
1964 	    (chan->channel != ah->curchan->channel) &&
1965 	    ((chan->channelFlags & CHANNEL_ALL) ==
1966 	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1967 	     !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1968 	     IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1969 
1970 		if (ath9k_hw_channel_change(ah, chan)) {
1971 			ath9k_hw_loadnf(ah, ah->curchan);
1972 			ath9k_hw_start_nfcal(ah);
1973 			return 0;
1974 		}
1975 	}
1976 
1977 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1978 	if (saveDefAntenna == 0)
1979 		saveDefAntenna = 1;
1980 
1981 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1982 
1983 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1984 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1985 		tsf = ath9k_hw_gettsf64(ah);
1986 
1987 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1988 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1989 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1990 
1991 	ath9k_hw_mark_phy_inactive(ah);
1992 
1993 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1994 		REG_WRITE(ah,
1995 			  AR9271_RESET_POWER_DOWN_CONTROL,
1996 			  AR9271_RADIO_RF_RST);
1997 		udelay(50);
1998 	}
1999 
2000 	if (!ath9k_hw_chip_reset(ah, chan)) {
2001 		ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
2002 		return -EINVAL;
2003 	}
2004 
2005 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2006 		ah->htc_reset_init = false;
2007 		REG_WRITE(ah,
2008 			  AR9271_RESET_POWER_DOWN_CONTROL,
2009 			  AR9271_GATE_MAC_CTL);
2010 		udelay(50);
2011 	}
2012 
2013 	/* Restore TSF */
2014 	if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2015 		ath9k_hw_settsf64(ah, tsf);
2016 
2017 	if (AR_SREV_9280_10_OR_LATER(ah))
2018 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2019 
2020 	if (AR_SREV_9287_12_OR_LATER(ah)) {
2021 		/* Enable ASYNC FIFO */
2022 		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2023 				AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2024 		REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2025 		REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2026 				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2027 		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2028 				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2029 	}
2030 	r = ath9k_hw_process_ini(ah, chan);
2031 	if (r)
2032 		return r;
2033 
2034 	/* Setup MFP options for CCMP */
2035 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2036 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2037 		 * frames when constructing CCMP AAD. */
2038 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2039 			      0xc7ff);
2040 		ah->sw_mgmt_crypto = false;
2041 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
2042 		/* Disable hardware crypto for management frames */
2043 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2044 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2045 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2046 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2047 		ah->sw_mgmt_crypto = true;
2048 	} else
2049 		ah->sw_mgmt_crypto = true;
2050 
2051 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2052 		ath9k_hw_set_delta_slope(ah, chan);
2053 
2054 	ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2055 	ah->eep_ops->set_board_values(ah, chan);
2056 
2057 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2058 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2059 		  | macStaId1
2060 		  | AR_STA_ID1_RTS_USE_DEF
2061 		  | (ah->config.
2062 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2063 		  | ah->sta_id1_defaults);
2064 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2065 
2066 	ath_hw_setbssidmask(common);
2067 
2068 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2069 
2070 	ath9k_hw_write_associd(ah);
2071 
2072 	REG_WRITE(ah, AR_ISR, ~0);
2073 
2074 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2075 
2076 	r = ah->ath9k_hw_rf_set_freq(ah, chan);
2077 	if (r)
2078 		return r;
2079 
2080 	for (i = 0; i < AR_NUM_DCU; i++)
2081 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2082 
2083 	ah->intr_txqs = 0;
2084 	for (i = 0; i < ah->caps.total_queues; i++)
2085 		ath9k_hw_resettxqueue(ah, i);
2086 
2087 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2088 	ath9k_hw_init_qos(ah);
2089 
2090 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2091 		ath9k_enable_rfkill(ah);
2092 
2093 	ath9k_hw_init_user_settings(ah);
2094 
2095 	if (AR_SREV_9287_12_OR_LATER(ah)) {
2096 		REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2097 			  AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2098 		REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2099 			  AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2100 		REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2101 			  AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2102 
2103 		REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2104 		REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2105 
2106 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2107 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2108 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2109 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2110 	}
2111 	if (AR_SREV_9287_12_OR_LATER(ah)) {
2112 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2113 				AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2114 	}
2115 
2116 	REG_WRITE(ah, AR_STA_ID1,
2117 		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2118 
2119 	ath9k_hw_set_dma(ah);
2120 
2121 	REG_WRITE(ah, AR_OBS, 8);
2122 
2123 	if (ah->config.intr_mitigation) {
2124 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2125 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2126 	}
2127 
2128 	ath9k_hw_init_bb(ah, chan);
2129 
2130 	if (!ath9k_hw_init_cal(ah, chan))
2131 		return -EIO;
2132 
2133 	rx_chainmask = ah->rxchainmask;
2134 	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2135 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2136 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2137 	}
2138 
2139 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2140 
2141 	/*
2142 	 * For big endian systems turn on swapping for descriptors
2143 	 */
2144 	if (AR_SREV_9100(ah)) {
2145 		u32 mask;
2146 		mask = REG_READ(ah, AR_CFG);
2147 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2148 			ath_print(common, ATH_DBG_RESET,
2149 				"CFG Byte Swap Set 0x%x\n", mask);
2150 		} else {
2151 			mask =
2152 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2153 			REG_WRITE(ah, AR_CFG, mask);
2154 			ath_print(common, ATH_DBG_RESET,
2155 				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2156 		}
2157 	} else {
2158 		/* Configure AR9271 target WLAN */
2159                 if (AR_SREV_9271(ah))
2160 			REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2161 #ifdef __BIG_ENDIAN
2162                 else
2163 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2164 #endif
2165 	}
2166 
2167 	if (ah->btcoex_hw.enabled)
2168 		ath9k_hw_btcoex_enable(ah);
2169 
2170 	return 0;
2171 }
2172 EXPORT_SYMBOL(ath9k_hw_reset);
2173 
2174 /************************/
2175 /* Key Cache Management */
2176 /************************/
2177 
2178 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2179 {
2180 	u32 keyType;
2181 
2182 	if (entry >= ah->caps.keycache_size) {
2183 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2184 			  "keychache entry %u out of range\n", entry);
2185 		return false;
2186 	}
2187 
2188 	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2189 
2190 	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2191 	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2192 	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2193 	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2194 	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2195 	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2196 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2197 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2198 
2199 	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2200 		u16 micentry = entry + 64;
2201 
2202 		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2203 		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2204 		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2205 		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2206 
2207 	}
2208 
2209 	return true;
2210 }
2211 EXPORT_SYMBOL(ath9k_hw_keyreset);
2212 
2213 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2214 {
2215 	u32 macHi, macLo;
2216 
2217 	if (entry >= ah->caps.keycache_size) {
2218 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2219 			  "keychache entry %u out of range\n", entry);
2220 		return false;
2221 	}
2222 
2223 	if (mac != NULL) {
2224 		macHi = (mac[5] << 8) | mac[4];
2225 		macLo = (mac[3] << 24) |
2226 			(mac[2] << 16) |
2227 			(mac[1] << 8) |
2228 			mac[0];
2229 		macLo >>= 1;
2230 		macLo |= (macHi & 1) << 31;
2231 		macHi >>= 1;
2232 	} else {
2233 		macLo = macHi = 0;
2234 	}
2235 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2236 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2237 
2238 	return true;
2239 }
2240 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2241 
2242 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2243 				 const struct ath9k_keyval *k,
2244 				 const u8 *mac)
2245 {
2246 	const struct ath9k_hw_capabilities *pCap = &ah->caps;
2247 	struct ath_common *common = ath9k_hw_common(ah);
2248 	u32 key0, key1, key2, key3, key4;
2249 	u32 keyType;
2250 
2251 	if (entry >= pCap->keycache_size) {
2252 		ath_print(common, ATH_DBG_FATAL,
2253 			  "keycache entry %u out of range\n", entry);
2254 		return false;
2255 	}
2256 
2257 	switch (k->kv_type) {
2258 	case ATH9K_CIPHER_AES_OCB:
2259 		keyType = AR_KEYTABLE_TYPE_AES;
2260 		break;
2261 	case ATH9K_CIPHER_AES_CCM:
2262 		if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2263 			ath_print(common, ATH_DBG_ANY,
2264 				  "AES-CCM not supported by mac rev 0x%x\n",
2265 				  ah->hw_version.macRev);
2266 			return false;
2267 		}
2268 		keyType = AR_KEYTABLE_TYPE_CCM;
2269 		break;
2270 	case ATH9K_CIPHER_TKIP:
2271 		keyType = AR_KEYTABLE_TYPE_TKIP;
2272 		if (ATH9K_IS_MIC_ENABLED(ah)
2273 		    && entry + 64 >= pCap->keycache_size) {
2274 			ath_print(common, ATH_DBG_ANY,
2275 				  "entry %u inappropriate for TKIP\n", entry);
2276 			return false;
2277 		}
2278 		break;
2279 	case ATH9K_CIPHER_WEP:
2280 		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2281 			ath_print(common, ATH_DBG_ANY,
2282 				  "WEP key length %u too small\n", k->kv_len);
2283 			return false;
2284 		}
2285 		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2286 			keyType = AR_KEYTABLE_TYPE_40;
2287 		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2288 			keyType = AR_KEYTABLE_TYPE_104;
2289 		else
2290 			keyType = AR_KEYTABLE_TYPE_128;
2291 		break;
2292 	case ATH9K_CIPHER_CLR:
2293 		keyType = AR_KEYTABLE_TYPE_CLR;
2294 		break;
2295 	default:
2296 		ath_print(common, ATH_DBG_FATAL,
2297 			  "cipher %u not supported\n", k->kv_type);
2298 		return false;
2299 	}
2300 
2301 	key0 = get_unaligned_le32(k->kv_val + 0);
2302 	key1 = get_unaligned_le16(k->kv_val + 4);
2303 	key2 = get_unaligned_le32(k->kv_val + 6);
2304 	key3 = get_unaligned_le16(k->kv_val + 10);
2305 	key4 = get_unaligned_le32(k->kv_val + 12);
2306 	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2307 		key4 &= 0xff;
2308 
2309 	/*
2310 	 * Note: Key cache registers access special memory area that requires
2311 	 * two 32-bit writes to actually update the values in the internal
2312 	 * memory. Consequently, the exact order and pairs used here must be
2313 	 * maintained.
2314 	 */
2315 
2316 	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2317 		u16 micentry = entry + 64;
2318 
2319 		/*
2320 		 * Write inverted key[47:0] first to avoid Michael MIC errors
2321 		 * on frames that could be sent or received at the same time.
2322 		 * The correct key will be written in the end once everything
2323 		 * else is ready.
2324 		 */
2325 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2326 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2327 
2328 		/* Write key[95:48] */
2329 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2330 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2331 
2332 		/* Write key[127:96] and key type */
2333 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2334 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2335 
2336 		/* Write MAC address for the entry */
2337 		(void) ath9k_hw_keysetmac(ah, entry, mac);
2338 
2339 		if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2340 			/*
2341 			 * TKIP uses two key cache entries:
2342 			 * Michael MIC TX/RX keys in the same key cache entry
2343 			 * (idx = main index + 64):
2344 			 * key0 [31:0] = RX key [31:0]
2345 			 * key1 [15:0] = TX key [31:16]
2346 			 * key1 [31:16] = reserved
2347 			 * key2 [31:0] = RX key [63:32]
2348 			 * key3 [15:0] = TX key [15:0]
2349 			 * key3 [31:16] = reserved
2350 			 * key4 [31:0] = TX key [63:32]
2351 			 */
2352 			u32 mic0, mic1, mic2, mic3, mic4;
2353 
2354 			mic0 = get_unaligned_le32(k->kv_mic + 0);
2355 			mic2 = get_unaligned_le32(k->kv_mic + 4);
2356 			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2357 			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2358 			mic4 = get_unaligned_le32(k->kv_txmic + 4);
2359 
2360 			/* Write RX[31:0] and TX[31:16] */
2361 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2362 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2363 
2364 			/* Write RX[63:32] and TX[15:0] */
2365 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2366 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2367 
2368 			/* Write TX[63:32] and keyType(reserved) */
2369 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2370 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2371 				  AR_KEYTABLE_TYPE_CLR);
2372 
2373 		} else {
2374 			/*
2375 			 * TKIP uses four key cache entries (two for group
2376 			 * keys):
2377 			 * Michael MIC TX/RX keys are in different key cache
2378 			 * entries (idx = main index + 64 for TX and
2379 			 * main index + 32 + 96 for RX):
2380 			 * key0 [31:0] = TX/RX MIC key [31:0]
2381 			 * key1 [31:0] = reserved
2382 			 * key2 [31:0] = TX/RX MIC key [63:32]
2383 			 * key3 [31:0] = reserved
2384 			 * key4 [31:0] = reserved
2385 			 *
2386 			 * Upper layer code will call this function separately
2387 			 * for TX and RX keys when these registers offsets are
2388 			 * used.
2389 			 */
2390 			u32 mic0, mic2;
2391 
2392 			mic0 = get_unaligned_le32(k->kv_mic + 0);
2393 			mic2 = get_unaligned_le32(k->kv_mic + 4);
2394 
2395 			/* Write MIC key[31:0] */
2396 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2397 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2398 
2399 			/* Write MIC key[63:32] */
2400 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2401 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2402 
2403 			/* Write TX[63:32] and keyType(reserved) */
2404 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2405 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2406 				  AR_KEYTABLE_TYPE_CLR);
2407 		}
2408 
2409 		/* MAC address registers are reserved for the MIC entry */
2410 		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2411 		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2412 
2413 		/*
2414 		 * Write the correct (un-inverted) key[47:0] last to enable
2415 		 * TKIP now that all other registers are set with correct
2416 		 * values.
2417 		 */
2418 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2419 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2420 	} else {
2421 		/* Write key[47:0] */
2422 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2423 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2424 
2425 		/* Write key[95:48] */
2426 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2427 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2428 
2429 		/* Write key[127:96] and key type */
2430 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2431 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2432 
2433 		/* Write MAC address for the entry */
2434 		(void) ath9k_hw_keysetmac(ah, entry, mac);
2435 	}
2436 
2437 	return true;
2438 }
2439 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2440 
2441 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2442 {
2443 	if (entry < ah->caps.keycache_size) {
2444 		u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2445 		if (val & AR_KEYTABLE_VALID)
2446 			return true;
2447 	}
2448 	return false;
2449 }
2450 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2451 
2452 /******************************/
2453 /* Power Management (Chipset) */
2454 /******************************/
2455 
2456 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2457 {
2458 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2459 	if (setChip) {
2460 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2461 			    AR_RTC_FORCE_WAKE_EN);
2462 		if (!AR_SREV_9100(ah))
2463 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2464 
2465 		if(!AR_SREV_5416(ah))
2466 			REG_CLR_BIT(ah, (AR_RTC_RESET),
2467 				    AR_RTC_RESET_EN);
2468 	}
2469 }
2470 
2471 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2472 {
2473 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2474 	if (setChip) {
2475 		struct ath9k_hw_capabilities *pCap = &ah->caps;
2476 
2477 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2478 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2479 				  AR_RTC_FORCE_WAKE_ON_INT);
2480 		} else {
2481 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2482 				    AR_RTC_FORCE_WAKE_EN);
2483 		}
2484 	}
2485 }
2486 
2487 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2488 {
2489 	u32 val;
2490 	int i;
2491 
2492 	if (setChip) {
2493 		if ((REG_READ(ah, AR_RTC_STATUS) &
2494 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2495 			if (ath9k_hw_set_reset_reg(ah,
2496 					   ATH9K_RESET_POWER_ON) != true) {
2497 				return false;
2498 			}
2499 			ath9k_hw_init_pll(ah, NULL);
2500 		}
2501 		if (AR_SREV_9100(ah))
2502 			REG_SET_BIT(ah, AR_RTC_RESET,
2503 				    AR_RTC_RESET_EN);
2504 
2505 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2506 			    AR_RTC_FORCE_WAKE_EN);
2507 		udelay(50);
2508 
2509 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2510 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2511 			if (val == AR_RTC_STATUS_ON)
2512 				break;
2513 			udelay(50);
2514 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2515 				    AR_RTC_FORCE_WAKE_EN);
2516 		}
2517 		if (i == 0) {
2518 			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2519 				  "Failed to wakeup in %uus\n",
2520 				  POWER_UP_TIME / 20);
2521 			return false;
2522 		}
2523 	}
2524 
2525 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2526 
2527 	return true;
2528 }
2529 
2530 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2531 {
2532 	struct ath_common *common = ath9k_hw_common(ah);
2533 	int status = true, setChip = true;
2534 	static const char *modes[] = {
2535 		"AWAKE",
2536 		"FULL-SLEEP",
2537 		"NETWORK SLEEP",
2538 		"UNDEFINED"
2539 	};
2540 
2541 	if (ah->power_mode == mode)
2542 		return status;
2543 
2544 	ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2545 		  modes[ah->power_mode], modes[mode]);
2546 
2547 	switch (mode) {
2548 	case ATH9K_PM_AWAKE:
2549 		status = ath9k_hw_set_power_awake(ah, setChip);
2550 		break;
2551 	case ATH9K_PM_FULL_SLEEP:
2552 		ath9k_set_power_sleep(ah, setChip);
2553 		ah->chip_fullsleep = true;
2554 		break;
2555 	case ATH9K_PM_NETWORK_SLEEP:
2556 		ath9k_set_power_network_sleep(ah, setChip);
2557 		break;
2558 	default:
2559 		ath_print(common, ATH_DBG_FATAL,
2560 			  "Unknown power mode %u\n", mode);
2561 		return false;
2562 	}
2563 	ah->power_mode = mode;
2564 
2565 	return status;
2566 }
2567 EXPORT_SYMBOL(ath9k_hw_setpower);
2568 
2569 /*
2570  * Helper for ASPM support.
2571  *
2572  * Disable PLL when in L0s as well as receiver clock when in L1.
2573  * This power saving option must be enabled through the SerDes.
2574  *
2575  * Programming the SerDes must go through the same 288 bit serial shift
2576  * register as the other analog registers.  Hence the 9 writes.
2577  */
2578 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2579 {
2580 	u8 i;
2581 	u32 val;
2582 
2583 	if (ah->is_pciexpress != true)
2584 		return;
2585 
2586 	/* Do not touch SerDes registers */
2587 	if (ah->config.pcie_powersave_enable == 2)
2588 		return;
2589 
2590 	/* Nothing to do on restore for 11N */
2591 	if (!restore) {
2592 		if (AR_SREV_9280_20_OR_LATER(ah)) {
2593 			/*
2594 			 * AR9280 2.0 or later chips use SerDes values from the
2595 			 * initvals.h initialized depending on chipset during
2596 			 * ath9k_hw_init()
2597 			 */
2598 			for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2599 				REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2600 					  INI_RA(&ah->iniPcieSerdes, i, 1));
2601 			}
2602 		} else if (AR_SREV_9280(ah) &&
2603 			   (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2604 			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2605 			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2606 
2607 			/* RX shut off when elecidle is asserted */
2608 			REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2609 			REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2610 			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2611 
2612 			/* Shut off CLKREQ active in L1 */
2613 			if (ah->config.pcie_clock_req)
2614 				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2615 			else
2616 				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2617 
2618 			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2619 			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2620 			REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2621 
2622 			/* Load the new settings */
2623 			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2624 
2625 		} else {
2626 			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2627 			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2628 
2629 			/* RX shut off when elecidle is asserted */
2630 			REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2631 			REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2632 			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2633 
2634 			/*
2635 			 * Ignore ah->ah_config.pcie_clock_req setting for
2636 			 * pre-AR9280 11n
2637 			 */
2638 			REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2639 
2640 			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2641 			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2642 			REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2643 
2644 			/* Load the new settings */
2645 			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2646 		}
2647 
2648 		udelay(1000);
2649 
2650 		/* set bit 19 to allow forcing of pcie core into L1 state */
2651 		REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2652 
2653 		/* Several PCIe massages to ensure proper behaviour */
2654 		if (ah->config.pcie_waen) {
2655 			val = ah->config.pcie_waen;
2656 			if (!power_off)
2657 				val &= (~AR_WA_D3_L1_DISABLE);
2658 		} else {
2659 			if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2660 			    AR_SREV_9287(ah)) {
2661 				val = AR9285_WA_DEFAULT;
2662 				if (!power_off)
2663 					val &= (~AR_WA_D3_L1_DISABLE);
2664 			} else if (AR_SREV_9280(ah)) {
2665 				/*
2666 				 * On AR9280 chips bit 22 of 0x4004 needs to be
2667 				 * set otherwise card may disappear.
2668 				 */
2669 				val = AR9280_WA_DEFAULT;
2670 				if (!power_off)
2671 					val &= (~AR_WA_D3_L1_DISABLE);
2672 			} else
2673 				val = AR_WA_DEFAULT;
2674 		}
2675 
2676 		REG_WRITE(ah, AR_WA, val);
2677 	}
2678 
2679 	if (power_off) {
2680 		/*
2681 		 * Set PCIe workaround bits
2682 		 * bit 14 in WA register (disable L1) should only
2683 		 * be set when device enters D3 and be cleared
2684 		 * when device comes back to D0.
2685 		 */
2686 		if (ah->config.pcie_waen) {
2687 			if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2688 				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2689 		} else {
2690 			if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2691 			      AR_SREV_9287(ah)) &&
2692 			     (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2693 			    (AR_SREV_9280(ah) &&
2694 			     (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2695 				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2696 			}
2697 		}
2698 	}
2699 }
2700 EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2701 
2702 /**********************/
2703 /* Interrupt Handling */
2704 /**********************/
2705 
2706 bool ath9k_hw_intrpend(struct ath_hw *ah)
2707 {
2708 	u32 host_isr;
2709 
2710 	if (AR_SREV_9100(ah))
2711 		return true;
2712 
2713 	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2714 	if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2715 		return true;
2716 
2717 	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2718 	if ((host_isr & AR_INTR_SYNC_DEFAULT)
2719 	    && (host_isr != AR_INTR_SPURIOUS))
2720 		return true;
2721 
2722 	return false;
2723 }
2724 EXPORT_SYMBOL(ath9k_hw_intrpend);
2725 
2726 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2727 {
2728 	u32 isr = 0;
2729 	u32 mask2 = 0;
2730 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2731 	u32 sync_cause = 0;
2732 	bool fatal_int = false;
2733 	struct ath_common *common = ath9k_hw_common(ah);
2734 
2735 	if (!AR_SREV_9100(ah)) {
2736 		if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2737 			if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2738 			    == AR_RTC_STATUS_ON) {
2739 				isr = REG_READ(ah, AR_ISR);
2740 			}
2741 		}
2742 
2743 		sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2744 			AR_INTR_SYNC_DEFAULT;
2745 
2746 		*masked = 0;
2747 
2748 		if (!isr && !sync_cause)
2749 			return false;
2750 	} else {
2751 		*masked = 0;
2752 		isr = REG_READ(ah, AR_ISR);
2753 	}
2754 
2755 	if (isr) {
2756 		if (isr & AR_ISR_BCNMISC) {
2757 			u32 isr2;
2758 			isr2 = REG_READ(ah, AR_ISR_S2);
2759 			if (isr2 & AR_ISR_S2_TIM)
2760 				mask2 |= ATH9K_INT_TIM;
2761 			if (isr2 & AR_ISR_S2_DTIM)
2762 				mask2 |= ATH9K_INT_DTIM;
2763 			if (isr2 & AR_ISR_S2_DTIMSYNC)
2764 				mask2 |= ATH9K_INT_DTIMSYNC;
2765 			if (isr2 & (AR_ISR_S2_CABEND))
2766 				mask2 |= ATH9K_INT_CABEND;
2767 			if (isr2 & AR_ISR_S2_GTT)
2768 				mask2 |= ATH9K_INT_GTT;
2769 			if (isr2 & AR_ISR_S2_CST)
2770 				mask2 |= ATH9K_INT_CST;
2771 			if (isr2 & AR_ISR_S2_TSFOOR)
2772 				mask2 |= ATH9K_INT_TSFOOR;
2773 		}
2774 
2775 		isr = REG_READ(ah, AR_ISR_RAC);
2776 		if (isr == 0xffffffff) {
2777 			*masked = 0;
2778 			return false;
2779 		}
2780 
2781 		*masked = isr & ATH9K_INT_COMMON;
2782 
2783 		if (ah->config.intr_mitigation) {
2784 			if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2785 				*masked |= ATH9K_INT_RX;
2786 		}
2787 
2788 		if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2789 			*masked |= ATH9K_INT_RX;
2790 		if (isr &
2791 		    (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2792 		     AR_ISR_TXEOL)) {
2793 			u32 s0_s, s1_s;
2794 
2795 			*masked |= ATH9K_INT_TX;
2796 
2797 			s0_s = REG_READ(ah, AR_ISR_S0_S);
2798 			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2799 			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2800 
2801 			s1_s = REG_READ(ah, AR_ISR_S1_S);
2802 			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2803 			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2804 		}
2805 
2806 		if (isr & AR_ISR_RXORN) {
2807 			ath_print(common, ATH_DBG_INTERRUPT,
2808 				  "receive FIFO overrun interrupt\n");
2809 		}
2810 
2811 		if (!AR_SREV_9100(ah)) {
2812 			if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2813 				u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2814 				if (isr5 & AR_ISR_S5_TIM_TIMER)
2815 					*masked |= ATH9K_INT_TIM_TIMER;
2816 			}
2817 		}
2818 
2819 		*masked |= mask2;
2820 	}
2821 
2822 	if (AR_SREV_9100(ah))
2823 		return true;
2824 
2825 	if (isr & AR_ISR_GENTMR) {
2826 		u32 s5_s;
2827 
2828 		s5_s = REG_READ(ah, AR_ISR_S5_S);
2829 		if (isr & AR_ISR_GENTMR) {
2830 			ah->intr_gen_timer_trigger =
2831 				MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2832 
2833 			ah->intr_gen_timer_thresh =
2834 				MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2835 
2836 			if (ah->intr_gen_timer_trigger)
2837 				*masked |= ATH9K_INT_GENTIMER;
2838 
2839 		}
2840 	}
2841 
2842 	if (sync_cause) {
2843 		fatal_int =
2844 			(sync_cause &
2845 			 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2846 			? true : false;
2847 
2848 		if (fatal_int) {
2849 			if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2850 				ath_print(common, ATH_DBG_ANY,
2851 					  "received PCI FATAL interrupt\n");
2852 			}
2853 			if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2854 				ath_print(common, ATH_DBG_ANY,
2855 					  "received PCI PERR interrupt\n");
2856 			}
2857 			*masked |= ATH9K_INT_FATAL;
2858 		}
2859 		if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2860 			ath_print(common, ATH_DBG_INTERRUPT,
2861 				  "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2862 			REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2863 			REG_WRITE(ah, AR_RC, 0);
2864 			*masked |= ATH9K_INT_FATAL;
2865 		}
2866 		if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2867 			ath_print(common, ATH_DBG_INTERRUPT,
2868 				  "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2869 		}
2870 
2871 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2872 		(void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2873 	}
2874 
2875 	return true;
2876 }
2877 EXPORT_SYMBOL(ath9k_hw_getisr);
2878 
2879 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2880 {
2881 	u32 omask = ah->mask_reg;
2882 	u32 mask, mask2;
2883 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2884 	struct ath_common *common = ath9k_hw_common(ah);
2885 
2886 	ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2887 
2888 	if (omask & ATH9K_INT_GLOBAL) {
2889 		ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2890 		REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2891 		(void) REG_READ(ah, AR_IER);
2892 		if (!AR_SREV_9100(ah)) {
2893 			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2894 			(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2895 
2896 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2897 			(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2898 		}
2899 	}
2900 
2901 	mask = ints & ATH9K_INT_COMMON;
2902 	mask2 = 0;
2903 
2904 	if (ints & ATH9K_INT_TX) {
2905 		if (ah->txok_interrupt_mask)
2906 			mask |= AR_IMR_TXOK;
2907 		if (ah->txdesc_interrupt_mask)
2908 			mask |= AR_IMR_TXDESC;
2909 		if (ah->txerr_interrupt_mask)
2910 			mask |= AR_IMR_TXERR;
2911 		if (ah->txeol_interrupt_mask)
2912 			mask |= AR_IMR_TXEOL;
2913 	}
2914 	if (ints & ATH9K_INT_RX) {
2915 		mask |= AR_IMR_RXERR;
2916 		if (ah->config.intr_mitigation)
2917 			mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2918 		else
2919 			mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2920 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2921 			mask |= AR_IMR_GENTMR;
2922 	}
2923 
2924 	if (ints & (ATH9K_INT_BMISC)) {
2925 		mask |= AR_IMR_BCNMISC;
2926 		if (ints & ATH9K_INT_TIM)
2927 			mask2 |= AR_IMR_S2_TIM;
2928 		if (ints & ATH9K_INT_DTIM)
2929 			mask2 |= AR_IMR_S2_DTIM;
2930 		if (ints & ATH9K_INT_DTIMSYNC)
2931 			mask2 |= AR_IMR_S2_DTIMSYNC;
2932 		if (ints & ATH9K_INT_CABEND)
2933 			mask2 |= AR_IMR_S2_CABEND;
2934 		if (ints & ATH9K_INT_TSFOOR)
2935 			mask2 |= AR_IMR_S2_TSFOOR;
2936 	}
2937 
2938 	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2939 		mask |= AR_IMR_BCNMISC;
2940 		if (ints & ATH9K_INT_GTT)
2941 			mask2 |= AR_IMR_S2_GTT;
2942 		if (ints & ATH9K_INT_CST)
2943 			mask2 |= AR_IMR_S2_CST;
2944 	}
2945 
2946 	ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2947 	REG_WRITE(ah, AR_IMR, mask);
2948 	mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
2949 					   AR_IMR_S2_DTIM |
2950 					   AR_IMR_S2_DTIMSYNC |
2951 					   AR_IMR_S2_CABEND |
2952 					   AR_IMR_S2_CABTO |
2953 					   AR_IMR_S2_TSFOOR |
2954 					   AR_IMR_S2_GTT | AR_IMR_S2_CST);
2955 	REG_WRITE(ah, AR_IMR_S2, mask | mask2);
2956 	ah->mask_reg = ints;
2957 
2958 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2959 		if (ints & ATH9K_INT_TIM_TIMER)
2960 			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2961 		else
2962 			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2963 	}
2964 
2965 	if (ints & ATH9K_INT_GLOBAL) {
2966 		ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2967 		REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2968 		if (!AR_SREV_9100(ah)) {
2969 			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2970 				  AR_INTR_MAC_IRQ);
2971 			REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2972 
2973 
2974 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2975 				  AR_INTR_SYNC_DEFAULT);
2976 			REG_WRITE(ah, AR_INTR_SYNC_MASK,
2977 				  AR_INTR_SYNC_DEFAULT);
2978 		}
2979 		ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2980 			  REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2981 	}
2982 
2983 	return omask;
2984 }
2985 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2986 
2987 /*******************/
2988 /* Beacon Handling */
2989 /*******************/
2990 
2991 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2992 {
2993 	int flags = 0;
2994 
2995 	ah->beacon_interval = beacon_period;
2996 
2997 	switch (ah->opmode) {
2998 	case NL80211_IFTYPE_STATION:
2999 	case NL80211_IFTYPE_MONITOR:
3000 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3001 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3002 		REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3003 		flags |= AR_TBTT_TIMER_EN;
3004 		break;
3005 	case NL80211_IFTYPE_ADHOC:
3006 	case NL80211_IFTYPE_MESH_POINT:
3007 		REG_SET_BIT(ah, AR_TXCFG,
3008 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3009 		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3010 			  TU_TO_USEC(next_beacon +
3011 				     (ah->atim_window ? ah->
3012 				      atim_window : 1)));
3013 		flags |= AR_NDP_TIMER_EN;
3014 	case NL80211_IFTYPE_AP:
3015 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3016 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3017 			  TU_TO_USEC(next_beacon -
3018 				     ah->config.
3019 				     dma_beacon_response_time));
3020 		REG_WRITE(ah, AR_NEXT_SWBA,
3021 			  TU_TO_USEC(next_beacon -
3022 				     ah->config.
3023 				     sw_beacon_response_time));
3024 		flags |=
3025 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3026 		break;
3027 	default:
3028 		ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3029 			  "%s: unsupported opmode: %d\n",
3030 			  __func__, ah->opmode);
3031 		return;
3032 		break;
3033 	}
3034 
3035 	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3036 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3037 	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3038 	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3039 
3040 	beacon_period &= ~ATH9K_BEACON_ENA;
3041 	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3042 		ath9k_hw_reset_tsf(ah);
3043 	}
3044 
3045 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3046 }
3047 EXPORT_SYMBOL(ath9k_hw_beaconinit);
3048 
3049 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3050 				    const struct ath9k_beacon_state *bs)
3051 {
3052 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3053 	struct ath9k_hw_capabilities *pCap = &ah->caps;
3054 	struct ath_common *common = ath9k_hw_common(ah);
3055 
3056 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3057 
3058 	REG_WRITE(ah, AR_BEACON_PERIOD,
3059 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3060 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3061 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3062 
3063 	REG_RMW_FIELD(ah, AR_RSSI_THR,
3064 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3065 
3066 	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3067 
3068 	if (bs->bs_sleepduration > beaconintval)
3069 		beaconintval = bs->bs_sleepduration;
3070 
3071 	dtimperiod = bs->bs_dtimperiod;
3072 	if (bs->bs_sleepduration > dtimperiod)
3073 		dtimperiod = bs->bs_sleepduration;
3074 
3075 	if (beaconintval == dtimperiod)
3076 		nextTbtt = bs->bs_nextdtim;
3077 	else
3078 		nextTbtt = bs->bs_nexttbtt;
3079 
3080 	ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3081 	ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3082 	ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3083 	ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3084 
3085 	REG_WRITE(ah, AR_NEXT_DTIM,
3086 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3087 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3088 
3089 	REG_WRITE(ah, AR_SLEEP1,
3090 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3091 		  | AR_SLEEP1_ASSUME_DTIM);
3092 
3093 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3094 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3095 	else
3096 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3097 
3098 	REG_WRITE(ah, AR_SLEEP2,
3099 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3100 
3101 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3102 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3103 
3104 	REG_SET_BIT(ah, AR_TIMER_MODE,
3105 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3106 		    AR_DTIM_TIMER_EN);
3107 
3108 	/* TSF Out of Range Threshold */
3109 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3110 }
3111 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3112 
3113 /*******************/
3114 /* HW Capabilities */
3115 /*******************/
3116 
3117 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
3118 {
3119 	struct ath9k_hw_capabilities *pCap = &ah->caps;
3120 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3121 	struct ath_common *common = ath9k_hw_common(ah);
3122 	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3123 
3124 	u16 capField = 0, eeval;
3125 
3126 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3127 	regulatory->current_rd = eeval;
3128 
3129 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3130 	if (AR_SREV_9285_10_OR_LATER(ah))
3131 		eeval |= AR9285_RDEXT_DEFAULT;
3132 	regulatory->current_rd_ext = eeval;
3133 
3134 	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3135 
3136 	if (ah->opmode != NL80211_IFTYPE_AP &&
3137 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3138 		if (regulatory->current_rd == 0x64 ||
3139 		    regulatory->current_rd == 0x65)
3140 			regulatory->current_rd += 5;
3141 		else if (regulatory->current_rd == 0x41)
3142 			regulatory->current_rd = 0x43;
3143 		ath_print(common, ATH_DBG_REGULATORY,
3144 			  "regdomain mapped to 0x%x\n", regulatory->current_rd);
3145 	}
3146 
3147 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3148 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
3149 		ath_print(common, ATH_DBG_FATAL,
3150 			  "no band has been marked as supported in EEPROM.\n");
3151 		return -EINVAL;
3152 	}
3153 
3154 	bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3155 
3156 	if (eeval & AR5416_OPFLAGS_11A) {
3157 		set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3158 		if (ah->config.ht_enable) {
3159 			if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3160 				set_bit(ATH9K_MODE_11NA_HT20,
3161 					pCap->wireless_modes);
3162 			if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3163 				set_bit(ATH9K_MODE_11NA_HT40PLUS,
3164 					pCap->wireless_modes);
3165 				set_bit(ATH9K_MODE_11NA_HT40MINUS,
3166 					pCap->wireless_modes);
3167 			}
3168 		}
3169 	}
3170 
3171 	if (eeval & AR5416_OPFLAGS_11G) {
3172 		set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3173 		if (ah->config.ht_enable) {
3174 			if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3175 				set_bit(ATH9K_MODE_11NG_HT20,
3176 					pCap->wireless_modes);
3177 			if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3178 				set_bit(ATH9K_MODE_11NG_HT40PLUS,
3179 					pCap->wireless_modes);
3180 				set_bit(ATH9K_MODE_11NG_HT40MINUS,
3181 					pCap->wireless_modes);
3182 			}
3183 		}
3184 	}
3185 
3186 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3187 	/*
3188 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
3189 	 * the EEPROM.
3190 	 */
3191 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3192 	    !(eeval & AR5416_OPFLAGS_11A) &&
3193 	    !(AR_SREV_9271(ah)))
3194 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3195 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3196 	else
3197 		/* Use rx_chainmask from EEPROM. */
3198 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3199 
3200 	if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3201 		ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3202 
3203 	pCap->low_2ghz_chan = 2312;
3204 	pCap->high_2ghz_chan = 2732;
3205 
3206 	pCap->low_5ghz_chan = 4920;
3207 	pCap->high_5ghz_chan = 6100;
3208 
3209 	pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3210 	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3211 	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3212 
3213 	pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3214 	pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3215 	pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3216 
3217 	if (ah->config.ht_enable)
3218 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
3219 	else
3220 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3221 
3222 	pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3223 	pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3224 	pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3225 	pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3226 
3227 	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3228 		pCap->total_queues =
3229 			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3230 	else
3231 		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3232 
3233 	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3234 		pCap->keycache_size =
3235 			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3236 	else
3237 		pCap->keycache_size = AR_KEYTABLE_SIZE;
3238 
3239 	pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3240 
3241 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
3242 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
3243 	else
3244 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3245 
3246 	if (AR_SREV_9285_10_OR_LATER(ah))
3247 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
3248 	else if (AR_SREV_9280_10_OR_LATER(ah))
3249 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
3250 	else
3251 		pCap->num_gpio_pins = AR_NUM_GPIO;
3252 
3253 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3254 		pCap->hw_caps |= ATH9K_HW_CAP_CST;
3255 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3256 	} else {
3257 		pCap->rts_aggr_limit = (8 * 1024);
3258 	}
3259 
3260 	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3261 
3262 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3263 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3264 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3265 		ah->rfkill_gpio =
3266 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3267 		ah->rfkill_polarity =
3268 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3269 
3270 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3271 	}
3272 #endif
3273 
3274 	pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3275 
3276 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3277 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3278 	else
3279 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3280 
3281 	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3282 		pCap->reg_cap =
3283 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3284 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3285 			AR_EEPROM_EEREGCAP_EN_KK_U2 |
3286 			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3287 	} else {
3288 		pCap->reg_cap =
3289 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3290 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3291 	}
3292 
3293 	/* Advertise midband for AR5416 with FCC midband set in eeprom */
3294 	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3295 	    AR_SREV_5416(ah))
3296 		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3297 
3298 	pCap->num_antcfg_5ghz =
3299 		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3300 	pCap->num_antcfg_2ghz =
3301 		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3302 
3303 	if (AR_SREV_9280_10_OR_LATER(ah) &&
3304 	    ath9k_hw_btcoex_supported(ah)) {
3305 		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3306 		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3307 
3308 		if (AR_SREV_9285(ah)) {
3309 			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3310 			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3311 		} else {
3312 			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3313 		}
3314 	} else {
3315 		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3316 	}
3317 
3318 	return 0;
3319 }
3320 
3321 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3322 			    u32 capability, u32 *result)
3323 {
3324 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3325 	switch (type) {
3326 	case ATH9K_CAP_CIPHER:
3327 		switch (capability) {
3328 		case ATH9K_CIPHER_AES_CCM:
3329 		case ATH9K_CIPHER_AES_OCB:
3330 		case ATH9K_CIPHER_TKIP:
3331 		case ATH9K_CIPHER_WEP:
3332 		case ATH9K_CIPHER_MIC:
3333 		case ATH9K_CIPHER_CLR:
3334 			return true;
3335 		default:
3336 			return false;
3337 		}
3338 	case ATH9K_CAP_TKIP_MIC:
3339 		switch (capability) {
3340 		case 0:
3341 			return true;
3342 		case 1:
3343 			return (ah->sta_id1_defaults &
3344 				AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3345 			false;
3346 		}
3347 	case ATH9K_CAP_TKIP_SPLIT:
3348 		return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3349 			false : true;
3350 	case ATH9K_CAP_DIVERSITY:
3351 		return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3352 			AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3353 			true : false;
3354 	case ATH9K_CAP_MCAST_KEYSRCH:
3355 		switch (capability) {
3356 		case 0:
3357 			return true;
3358 		case 1:
3359 			if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3360 				return false;
3361 			} else {
3362 				return (ah->sta_id1_defaults &
3363 					AR_STA_ID1_MCAST_KSRCH) ? true :
3364 					false;
3365 			}
3366 		}
3367 		return false;
3368 	case ATH9K_CAP_TXPOW:
3369 		switch (capability) {
3370 		case 0:
3371 			return 0;
3372 		case 1:
3373 			*result = regulatory->power_limit;
3374 			return 0;
3375 		case 2:
3376 			*result = regulatory->max_power_level;
3377 			return 0;
3378 		case 3:
3379 			*result = regulatory->tp_scale;
3380 			return 0;
3381 		}
3382 		return false;
3383 	case ATH9K_CAP_DS:
3384 		return (AR_SREV_9280_20_OR_LATER(ah) &&
3385 			(ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3386 			? false : true;
3387 	default:
3388 		return false;
3389 	}
3390 }
3391 EXPORT_SYMBOL(ath9k_hw_getcapability);
3392 
3393 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3394 			    u32 capability, u32 setting, int *status)
3395 {
3396 	u32 v;
3397 
3398 	switch (type) {
3399 	case ATH9K_CAP_TKIP_MIC:
3400 		if (setting)
3401 			ah->sta_id1_defaults |=
3402 				AR_STA_ID1_CRPT_MIC_ENABLE;
3403 		else
3404 			ah->sta_id1_defaults &=
3405 				~AR_STA_ID1_CRPT_MIC_ENABLE;
3406 		return true;
3407 	case ATH9K_CAP_DIVERSITY:
3408 		v = REG_READ(ah, AR_PHY_CCK_DETECT);
3409 		if (setting)
3410 			v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3411 		else
3412 			v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3413 		REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3414 		return true;
3415 	case ATH9K_CAP_MCAST_KEYSRCH:
3416 		if (setting)
3417 			ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3418 		else
3419 			ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3420 		return true;
3421 	default:
3422 		return false;
3423 	}
3424 }
3425 EXPORT_SYMBOL(ath9k_hw_setcapability);
3426 
3427 /****************************/
3428 /* GPIO / RFKILL / Antennae */
3429 /****************************/
3430 
3431 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3432 					 u32 gpio, u32 type)
3433 {
3434 	int addr;
3435 	u32 gpio_shift, tmp;
3436 
3437 	if (gpio > 11)
3438 		addr = AR_GPIO_OUTPUT_MUX3;
3439 	else if (gpio > 5)
3440 		addr = AR_GPIO_OUTPUT_MUX2;
3441 	else
3442 		addr = AR_GPIO_OUTPUT_MUX1;
3443 
3444 	gpio_shift = (gpio % 6) * 5;
3445 
3446 	if (AR_SREV_9280_20_OR_LATER(ah)
3447 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
3448 		REG_RMW(ah, addr, (type << gpio_shift),
3449 			(0x1f << gpio_shift));
3450 	} else {
3451 		tmp = REG_READ(ah, addr);
3452 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3453 		tmp &= ~(0x1f << gpio_shift);
3454 		tmp |= (type << gpio_shift);
3455 		REG_WRITE(ah, addr, tmp);
3456 	}
3457 }
3458 
3459 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3460 {
3461 	u32 gpio_shift;
3462 
3463 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
3464 
3465 	gpio_shift = gpio << 1;
3466 
3467 	REG_RMW(ah,
3468 		AR_GPIO_OE_OUT,
3469 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3470 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3471 }
3472 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3473 
3474 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3475 {
3476 #define MS_REG_READ(x, y) \
3477 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3478 
3479 	if (gpio >= ah->caps.num_gpio_pins)
3480 		return 0xffffffff;
3481 
3482 	if (AR_SREV_9287_10_OR_LATER(ah))
3483 		return MS_REG_READ(AR9287, gpio) != 0;
3484 	else if (AR_SREV_9285_10_OR_LATER(ah))
3485 		return MS_REG_READ(AR9285, gpio) != 0;
3486 	else if (AR_SREV_9280_10_OR_LATER(ah))
3487 		return MS_REG_READ(AR928X, gpio) != 0;
3488 	else
3489 		return MS_REG_READ(AR, gpio) != 0;
3490 }
3491 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3492 
3493 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3494 			 u32 ah_signal_type)
3495 {
3496 	u32 gpio_shift;
3497 
3498 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3499 
3500 	gpio_shift = 2 * gpio;
3501 
3502 	REG_RMW(ah,
3503 		AR_GPIO_OE_OUT,
3504 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3505 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3506 }
3507 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3508 
3509 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3510 {
3511 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3512 		AR_GPIO_BIT(gpio));
3513 }
3514 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3515 
3516 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3517 {
3518 	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3519 }
3520 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3521 
3522 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3523 {
3524 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3525 }
3526 EXPORT_SYMBOL(ath9k_hw_setantenna);
3527 
3528 /*********************/
3529 /* General Operation */
3530 /*********************/
3531 
3532 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3533 {
3534 	u32 bits = REG_READ(ah, AR_RX_FILTER);
3535 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
3536 
3537 	if (phybits & AR_PHY_ERR_RADAR)
3538 		bits |= ATH9K_RX_FILTER_PHYRADAR;
3539 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3540 		bits |= ATH9K_RX_FILTER_PHYERR;
3541 
3542 	return bits;
3543 }
3544 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3545 
3546 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3547 {
3548 	u32 phybits;
3549 
3550 	REG_WRITE(ah, AR_RX_FILTER, bits);
3551 
3552 	phybits = 0;
3553 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
3554 		phybits |= AR_PHY_ERR_RADAR;
3555 	if (bits & ATH9K_RX_FILTER_PHYERR)
3556 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3557 	REG_WRITE(ah, AR_PHY_ERR, phybits);
3558 
3559 	if (phybits)
3560 		REG_WRITE(ah, AR_RXCFG,
3561 			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3562 	else
3563 		REG_WRITE(ah, AR_RXCFG,
3564 			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3565 }
3566 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3567 
3568 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3569 {
3570 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3571 		return false;
3572 
3573 	ath9k_hw_init_pll(ah, NULL);
3574 	return true;
3575 }
3576 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3577 
3578 bool ath9k_hw_disable(struct ath_hw *ah)
3579 {
3580 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3581 		return false;
3582 
3583 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3584 		return false;
3585 
3586 	ath9k_hw_init_pll(ah, NULL);
3587 	return true;
3588 }
3589 EXPORT_SYMBOL(ath9k_hw_disable);
3590 
3591 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3592 {
3593 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3594 	struct ath9k_channel *chan = ah->curchan;
3595 	struct ieee80211_channel *channel = chan->chan;
3596 
3597 	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3598 
3599 	ah->eep_ops->set_txpower(ah, chan,
3600 				 ath9k_regd_get_ctl(regulatory, chan),
3601 				 channel->max_antenna_gain * 2,
3602 				 channel->max_power * 2,
3603 				 min((u32) MAX_RATE_POWER,
3604 				 (u32) regulatory->power_limit));
3605 }
3606 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3607 
3608 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3609 {
3610 	memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3611 }
3612 EXPORT_SYMBOL(ath9k_hw_setmac);
3613 
3614 void ath9k_hw_setopmode(struct ath_hw *ah)
3615 {
3616 	ath9k_hw_set_operating_mode(ah, ah->opmode);
3617 }
3618 EXPORT_SYMBOL(ath9k_hw_setopmode);
3619 
3620 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3621 {
3622 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3623 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3624 }
3625 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3626 
3627 void ath9k_hw_write_associd(struct ath_hw *ah)
3628 {
3629 	struct ath_common *common = ath9k_hw_common(ah);
3630 
3631 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3632 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3633 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3634 }
3635 EXPORT_SYMBOL(ath9k_hw_write_associd);
3636 
3637 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3638 {
3639 	u64 tsf;
3640 
3641 	tsf = REG_READ(ah, AR_TSF_U32);
3642 	tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3643 
3644 	return tsf;
3645 }
3646 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3647 
3648 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3649 {
3650 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3651 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3652 }
3653 EXPORT_SYMBOL(ath9k_hw_settsf64);
3654 
3655 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3656 {
3657 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3658 			   AH_TSF_WRITE_TIMEOUT))
3659 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3660 			  "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3661 
3662 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3663 }
3664 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3665 
3666 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3667 {
3668 	if (setting)
3669 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3670 	else
3671 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3672 }
3673 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3674 
3675 /*
3676  *  Extend 15-bit time stamp from rx descriptor to
3677  *  a full 64-bit TSF using the current h/w TSF.
3678 */
3679 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3680 {
3681 	u64 tsf;
3682 
3683 	tsf = ath9k_hw_gettsf64(ah);
3684 	if ((tsf & 0x7fff) < rstamp)
3685 		tsf -= 0x8000;
3686 	return (tsf & ~0x7fff) | rstamp;
3687 }
3688 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3689 
3690 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3691 {
3692 	if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3693 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3694 			  "bad slot time %u\n", us);
3695 		ah->slottime = (u32) -1;
3696 		return false;
3697 	} else {
3698 		REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3699 		ah->slottime = us;
3700 		return true;
3701 	}
3702 }
3703 EXPORT_SYMBOL(ath9k_hw_setslottime);
3704 
3705 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3706 {
3707 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3708 	u32 macmode;
3709 
3710 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3711 		macmode = AR_2040_JOINED_RX_CLEAR;
3712 	else
3713 		macmode = 0;
3714 
3715 	REG_WRITE(ah, AR_2040_MODE, macmode);
3716 }
3717 
3718 /* HW Generic timers configuration */
3719 
3720 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3721 {
3722 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3723 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3724 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3725 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3726 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3727 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3728 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3729 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3730 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3731 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3732 				AR_NDP2_TIMER_MODE, 0x0002},
3733 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3734 				AR_NDP2_TIMER_MODE, 0x0004},
3735 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3736 				AR_NDP2_TIMER_MODE, 0x0008},
3737 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3738 				AR_NDP2_TIMER_MODE, 0x0010},
3739 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3740 				AR_NDP2_TIMER_MODE, 0x0020},
3741 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3742 				AR_NDP2_TIMER_MODE, 0x0040},
3743 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3744 				AR_NDP2_TIMER_MODE, 0x0080}
3745 };
3746 
3747 /* HW generic timer primitives */
3748 
3749 /* compute and clear index of rightmost 1 */
3750 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3751 {
3752 	u32 b;
3753 
3754 	b = *mask;
3755 	b &= (0-b);
3756 	*mask &= ~b;
3757 	b *= debruijn32;
3758 	b >>= 27;
3759 
3760 	return timer_table->gen_timer_index[b];
3761 }
3762 
3763 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3764 {
3765 	return REG_READ(ah, AR_TSF_L32);
3766 }
3767 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3768 
3769 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3770 					  void (*trigger)(void *),
3771 					  void (*overflow)(void *),
3772 					  void *arg,
3773 					  u8 timer_index)
3774 {
3775 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3776 	struct ath_gen_timer *timer;
3777 
3778 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3779 
3780 	if (timer == NULL) {
3781 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3782 			  "Failed to allocate memory"
3783 			  "for hw timer[%d]\n", timer_index);
3784 		return NULL;
3785 	}
3786 
3787 	/* allocate a hardware generic timer slot */
3788 	timer_table->timers[timer_index] = timer;
3789 	timer->index = timer_index;
3790 	timer->trigger = trigger;
3791 	timer->overflow = overflow;
3792 	timer->arg = arg;
3793 
3794 	return timer;
3795 }
3796 EXPORT_SYMBOL(ath_gen_timer_alloc);
3797 
3798 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3799 			      struct ath_gen_timer *timer,
3800 			      u32 timer_next,
3801 			      u32 timer_period)
3802 {
3803 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3804 	u32 tsf;
3805 
3806 	BUG_ON(!timer_period);
3807 
3808 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3809 
3810 	tsf = ath9k_hw_gettsf32(ah);
3811 
3812 	ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3813 		  "curent tsf %x period %x"
3814 		  "timer_next %x\n", tsf, timer_period, timer_next);
3815 
3816 	/*
3817 	 * Pull timer_next forward if the current TSF already passed it
3818 	 * because of software latency
3819 	 */
3820 	if (timer_next < tsf)
3821 		timer_next = tsf + timer_period;
3822 
3823 	/*
3824 	 * Program generic timer registers
3825 	 */
3826 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3827 		 timer_next);
3828 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3829 		  timer_period);
3830 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3831 		    gen_tmr_configuration[timer->index].mode_mask);
3832 
3833 	/* Enable both trigger and thresh interrupt masks */
3834 	REG_SET_BIT(ah, AR_IMR_S5,
3835 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3836 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3837 }
3838 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3839 
3840 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3841 {
3842 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3843 
3844 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3845 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3846 		return;
3847 	}
3848 
3849 	/* Clear generic timer enable bits. */
3850 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3851 			gen_tmr_configuration[timer->index].mode_mask);
3852 
3853 	/* Disable both trigger and thresh interrupt masks */
3854 	REG_CLR_BIT(ah, AR_IMR_S5,
3855 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3856 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3857 
3858 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3859 }
3860 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3861 
3862 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3863 {
3864 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3865 
3866 	/* free the hardware generic timer slot */
3867 	timer_table->timers[timer->index] = NULL;
3868 	kfree(timer);
3869 }
3870 EXPORT_SYMBOL(ath_gen_timer_free);
3871 
3872 /*
3873  * Generic Timer Interrupts handling
3874  */
3875 void ath_gen_timer_isr(struct ath_hw *ah)
3876 {
3877 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3878 	struct ath_gen_timer *timer;
3879 	struct ath_common *common = ath9k_hw_common(ah);
3880 	u32 trigger_mask, thresh_mask, index;
3881 
3882 	/* get hardware generic timer interrupt status */
3883 	trigger_mask = ah->intr_gen_timer_trigger;
3884 	thresh_mask = ah->intr_gen_timer_thresh;
3885 	trigger_mask &= timer_table->timer_mask.val;
3886 	thresh_mask &= timer_table->timer_mask.val;
3887 
3888 	trigger_mask &= ~thresh_mask;
3889 
3890 	while (thresh_mask) {
3891 		index = rightmost_index(timer_table, &thresh_mask);
3892 		timer = timer_table->timers[index];
3893 		BUG_ON(!timer);
3894 		ath_print(common, ATH_DBG_HWTIMER,
3895 			  "TSF overflow for Gen timer %d\n", index);
3896 		timer->overflow(timer->arg);
3897 	}
3898 
3899 	while (trigger_mask) {
3900 		index = rightmost_index(timer_table, &trigger_mask);
3901 		timer = timer_table->timers[index];
3902 		BUG_ON(!timer);
3903 		ath_print(common, ATH_DBG_HWTIMER,
3904 			  "Gen timer[%d] trigger\n", index);
3905 		timer->trigger(timer->arg);
3906 	}
3907 }
3908 EXPORT_SYMBOL(ath_gen_timer_isr);
3909 
3910 static struct {
3911 	u32 version;
3912 	const char * name;
3913 } ath_mac_bb_names[] = {
3914 	/* Devices with external radios */
3915 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3916 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3917 	{ AR_SREV_VERSION_9100,		"9100" },
3918 	{ AR_SREV_VERSION_9160,		"9160" },
3919 	/* Single-chip solutions */
3920 	{ AR_SREV_VERSION_9280,		"9280" },
3921 	{ AR_SREV_VERSION_9285,		"9285" },
3922 	{ AR_SREV_VERSION_9287,         "9287" },
3923 	{ AR_SREV_VERSION_9271,         "9271" },
3924 };
3925 
3926 /* For devices with external radios */
3927 static struct {
3928 	u16 version;
3929 	const char * name;
3930 } ath_rf_names[] = {
3931 	{ 0,				"5133" },
3932 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3933 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3934 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3935 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3936 };
3937 
3938 /*
3939  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3940  */
3941 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3942 {
3943 	int i;
3944 
3945 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3946 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3947 			return ath_mac_bb_names[i].name;
3948 		}
3949 	}
3950 
3951 	return "????";
3952 }
3953 
3954 /*
3955  * Return the RF name. "????" is returned if the RF is unknown.
3956  * Used for devices with external radios.
3957  */
3958 static const char *ath9k_hw_rf_name(u16 rf_version)
3959 {
3960 	int i;
3961 
3962 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3963 		if (ath_rf_names[i].version == rf_version) {
3964 			return ath_rf_names[i].name;
3965 		}
3966 	}
3967 
3968 	return "????";
3969 }
3970 
3971 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3972 {
3973 	int used;
3974 
3975 	/* chipsets >= AR9280 are single-chip */
3976 	if (AR_SREV_9280_10_OR_LATER(ah)) {
3977 		used = snprintf(hw_name, len,
3978 			       "Atheros AR%s Rev:%x",
3979 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3980 			       ah->hw_version.macRev);
3981 	}
3982 	else {
3983 		used = snprintf(hw_name, len,
3984 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3985 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3986 			       ah->hw_version.macRev,
3987 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3988 						AR_RADIO_SREV_MAJOR)),
3989 			       ah->hw_version.phyRev);
3990 	}
3991 
3992 	hw_name[used] = '\0';
3993 }
3994 EXPORT_SYMBOL(ath9k_hw_name);
3995