xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision b34e08d5)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <asm/unaligned.h>
23 
24 #include "hw.h"
25 #include "hw-ops.h"
26 #include "ar9003_mac.h"
27 #include "ar9003_mci.h"
28 #include "ar9003_phy.h"
29 #include "debug.h"
30 #include "ath9k.h"
31 
32 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
33 
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38 
39 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
40 {
41 	struct ath_common *common = ath9k_hw_common(ah);
42 	struct ath9k_channel *chan = ah->curchan;
43 	unsigned int clockrate;
44 
45 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
46 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
47 		clockrate = 117;
48 	else if (!chan) /* should really check for CCK instead */
49 		clockrate = ATH9K_CLOCK_RATE_CCK;
50 	else if (IS_CHAN_2GHZ(chan))
51 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
52 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
53 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
54 	else
55 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
56 
57 	if (chan) {
58 		if (IS_CHAN_HT40(chan))
59 			clockrate *= 2;
60 		if (IS_CHAN_HALF_RATE(chan))
61 			clockrate /= 2;
62 		if (IS_CHAN_QUARTER_RATE(chan))
63 			clockrate /= 4;
64 	}
65 
66 	common->clockrate = clockrate;
67 }
68 
69 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
70 {
71 	struct ath_common *common = ath9k_hw_common(ah);
72 
73 	return usecs * common->clockrate;
74 }
75 
76 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77 {
78 	int i;
79 
80 	BUG_ON(timeout < AH_TIME_QUANTUM);
81 
82 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83 		if ((REG_READ(ah, reg) & mask) == val)
84 			return true;
85 
86 		udelay(AH_TIME_QUANTUM);
87 	}
88 
89 	ath_dbg(ath9k_hw_common(ah), ANY,
90 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91 		timeout, reg, REG_READ(ah, reg), mask, val);
92 
93 	return false;
94 }
95 EXPORT_SYMBOL(ath9k_hw_wait);
96 
97 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
98 			  int hw_delay)
99 {
100 	hw_delay /= 10;
101 
102 	if (IS_CHAN_HALF_RATE(chan))
103 		hw_delay *= 2;
104 	else if (IS_CHAN_QUARTER_RATE(chan))
105 		hw_delay *= 4;
106 
107 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
108 }
109 
110 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
111 			  int column, unsigned int *writecnt)
112 {
113 	int r;
114 
115 	ENABLE_REGWRITE_BUFFER(ah);
116 	for (r = 0; r < array->ia_rows; r++) {
117 		REG_WRITE(ah, INI_RA(array, r, 0),
118 			  INI_RA(array, r, column));
119 		DO_DELAY(*writecnt);
120 	}
121 	REGWRITE_BUFFER_FLUSH(ah);
122 }
123 
124 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
125 {
126 	u32 retval;
127 	int i;
128 
129 	for (i = 0, retval = 0; i < n; i++) {
130 		retval = (retval << 1) | (val & 1);
131 		val >>= 1;
132 	}
133 	return retval;
134 }
135 
136 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
137 			   u8 phy, int kbps,
138 			   u32 frameLen, u16 rateix,
139 			   bool shortPreamble)
140 {
141 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
142 
143 	if (kbps == 0)
144 		return 0;
145 
146 	switch (phy) {
147 	case WLAN_RC_PHY_CCK:
148 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
149 		if (shortPreamble)
150 			phyTime >>= 1;
151 		numBits = frameLen << 3;
152 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
153 		break;
154 	case WLAN_RC_PHY_OFDM:
155 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
156 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
157 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
158 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
159 			txTime = OFDM_SIFS_TIME_QUARTER
160 				+ OFDM_PREAMBLE_TIME_QUARTER
161 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
162 		} else if (ah->curchan &&
163 			   IS_CHAN_HALF_RATE(ah->curchan)) {
164 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
165 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
166 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
167 			txTime = OFDM_SIFS_TIME_HALF +
168 				OFDM_PREAMBLE_TIME_HALF
169 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
170 		} else {
171 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
172 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
173 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
174 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
175 				+ (numSymbols * OFDM_SYMBOL_TIME);
176 		}
177 		break;
178 	default:
179 		ath_err(ath9k_hw_common(ah),
180 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
181 		txTime = 0;
182 		break;
183 	}
184 
185 	return txTime;
186 }
187 EXPORT_SYMBOL(ath9k_hw_computetxtime);
188 
189 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
190 				  struct ath9k_channel *chan,
191 				  struct chan_centers *centers)
192 {
193 	int8_t extoff;
194 
195 	if (!IS_CHAN_HT40(chan)) {
196 		centers->ctl_center = centers->ext_center =
197 			centers->synth_center = chan->channel;
198 		return;
199 	}
200 
201 	if (IS_CHAN_HT40PLUS(chan)) {
202 		centers->synth_center =
203 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
204 		extoff = 1;
205 	} else {
206 		centers->synth_center =
207 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
208 		extoff = -1;
209 	}
210 
211 	centers->ctl_center =
212 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
213 	/* 25 MHz spacing is supported by hw but not on upper layers */
214 	centers->ext_center =
215 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
216 }
217 
218 /******************/
219 /* Chip Revisions */
220 /******************/
221 
222 static void ath9k_hw_read_revisions(struct ath_hw *ah)
223 {
224 	u32 val;
225 
226 	switch (ah->hw_version.devid) {
227 	case AR5416_AR9100_DEVID:
228 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
229 		break;
230 	case AR9300_DEVID_AR9330:
231 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
232 		if (ah->get_mac_revision) {
233 			ah->hw_version.macRev = ah->get_mac_revision();
234 		} else {
235 			val = REG_READ(ah, AR_SREV);
236 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
237 		}
238 		return;
239 	case AR9300_DEVID_AR9340:
240 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
241 		val = REG_READ(ah, AR_SREV);
242 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
243 		return;
244 	case AR9300_DEVID_QCA955X:
245 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
246 		return;
247 	case AR9300_DEVID_AR953X:
248 		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
249 		return;
250 	}
251 
252 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
253 
254 	if (val == 0xFF) {
255 		val = REG_READ(ah, AR_SREV);
256 		ah->hw_version.macVersion =
257 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
258 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
259 
260 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
261 			ah->is_pciexpress = true;
262 		else
263 			ah->is_pciexpress = (val &
264 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
265 	} else {
266 		if (!AR_SREV_9100(ah))
267 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
268 
269 		ah->hw_version.macRev = val & AR_SREV_REVISION;
270 
271 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
272 			ah->is_pciexpress = true;
273 	}
274 }
275 
276 /************************************/
277 /* HW Attach, Detach, Init Routines */
278 /************************************/
279 
280 static void ath9k_hw_disablepcie(struct ath_hw *ah)
281 {
282 	if (!AR_SREV_5416(ah))
283 		return;
284 
285 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
286 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
287 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
288 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
289 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
290 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
291 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
292 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
293 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
294 
295 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
296 }
297 
298 /* This should work for all families including legacy */
299 static bool ath9k_hw_chip_test(struct ath_hw *ah)
300 {
301 	struct ath_common *common = ath9k_hw_common(ah);
302 	u32 regAddr[2] = { AR_STA_ID0 };
303 	u32 regHold[2];
304 	static const u32 patternData[4] = {
305 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
306 	};
307 	int i, j, loop_max;
308 
309 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
310 		loop_max = 2;
311 		regAddr[1] = AR_PHY_BASE + (8 << 2);
312 	} else
313 		loop_max = 1;
314 
315 	for (i = 0; i < loop_max; i++) {
316 		u32 addr = regAddr[i];
317 		u32 wrData, rdData;
318 
319 		regHold[i] = REG_READ(ah, addr);
320 		for (j = 0; j < 0x100; j++) {
321 			wrData = (j << 16) | j;
322 			REG_WRITE(ah, addr, wrData);
323 			rdData = REG_READ(ah, addr);
324 			if (rdData != wrData) {
325 				ath_err(common,
326 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
327 					addr, wrData, rdData);
328 				return false;
329 			}
330 		}
331 		for (j = 0; j < 4; j++) {
332 			wrData = patternData[j];
333 			REG_WRITE(ah, addr, wrData);
334 			rdData = REG_READ(ah, addr);
335 			if (wrData != rdData) {
336 				ath_err(common,
337 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
338 					addr, wrData, rdData);
339 				return false;
340 			}
341 		}
342 		REG_WRITE(ah, regAddr[i], regHold[i]);
343 	}
344 	udelay(100);
345 
346 	return true;
347 }
348 
349 static void ath9k_hw_init_config(struct ath_hw *ah)
350 {
351 	struct ath_common *common = ath9k_hw_common(ah);
352 
353 	ah->config.dma_beacon_response_time = 1;
354 	ah->config.sw_beacon_response_time = 6;
355 	ah->config.cwm_ignore_extcca = 0;
356 	ah->config.analog_shiftreg = 1;
357 
358 	ah->config.rx_intr_mitigation = true;
359 
360 	if (AR_SREV_9300_20_OR_LATER(ah)) {
361 		ah->config.rimt_last = 500;
362 		ah->config.rimt_first = 2000;
363 	} else {
364 		ah->config.rimt_last = 250;
365 		ah->config.rimt_first = 700;
366 	}
367 
368 	/*
369 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
370 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
371 	 * This means we use it for all AR5416 devices, and the few
372 	 * minor PCI AR9280 devices out there.
373 	 *
374 	 * Serialization is required because these devices do not handle
375 	 * well the case of two concurrent reads/writes due to the latency
376 	 * involved. During one read/write another read/write can be issued
377 	 * on another CPU while the previous read/write may still be working
378 	 * on our hardware, if we hit this case the hardware poops in a loop.
379 	 * We prevent this by serializing reads and writes.
380 	 *
381 	 * This issue is not present on PCI-Express devices or pre-AR5416
382 	 * devices (legacy, 802.11abg).
383 	 */
384 	if (num_possible_cpus() > 1)
385 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
386 
387 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
388 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
389 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
390 		     !ah->is_pciexpress)) {
391 			ah->config.serialize_regmode = SER_REG_MODE_ON;
392 		} else {
393 			ah->config.serialize_regmode = SER_REG_MODE_OFF;
394 		}
395 	}
396 
397 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
398 		ah->config.serialize_regmode);
399 
400 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
401 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
402 	else
403 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
404 }
405 
406 static void ath9k_hw_init_defaults(struct ath_hw *ah)
407 {
408 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
409 
410 	regulatory->country_code = CTRY_DEFAULT;
411 	regulatory->power_limit = MAX_RATE_POWER;
412 
413 	ah->hw_version.magic = AR5416_MAGIC;
414 	ah->hw_version.subvendorid = 0;
415 
416 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
417 			       AR_STA_ID1_MCAST_KSRCH;
418 	if (AR_SREV_9100(ah))
419 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
420 
421 	ah->slottime = ATH9K_SLOT_TIME_9;
422 	ah->globaltxtimeout = (u32) -1;
423 	ah->power_mode = ATH9K_PM_UNDEFINED;
424 	ah->htc_reset_init = true;
425 
426 	ah->ani_function = ATH9K_ANI_ALL;
427 	if (!AR_SREV_9300_20_OR_LATER(ah))
428 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
429 
430 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
431 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
432 	else
433 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
434 }
435 
436 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
437 {
438 	struct ath_common *common = ath9k_hw_common(ah);
439 	u32 sum;
440 	int i;
441 	u16 eeval;
442 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
443 
444 	sum = 0;
445 	for (i = 0; i < 3; i++) {
446 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
447 		sum += eeval;
448 		common->macaddr[2 * i] = eeval >> 8;
449 		common->macaddr[2 * i + 1] = eeval & 0xff;
450 	}
451 	if (sum == 0 || sum == 0xffff * 3)
452 		return -EADDRNOTAVAIL;
453 
454 	return 0;
455 }
456 
457 static int ath9k_hw_post_init(struct ath_hw *ah)
458 {
459 	struct ath_common *common = ath9k_hw_common(ah);
460 	int ecode;
461 
462 	if (common->bus_ops->ath_bus_type != ATH_USB) {
463 		if (!ath9k_hw_chip_test(ah))
464 			return -ENODEV;
465 	}
466 
467 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
468 		ecode = ar9002_hw_rf_claim(ah);
469 		if (ecode != 0)
470 			return ecode;
471 	}
472 
473 	ecode = ath9k_hw_eeprom_init(ah);
474 	if (ecode != 0)
475 		return ecode;
476 
477 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
478 		ah->eep_ops->get_eeprom_ver(ah),
479 		ah->eep_ops->get_eeprom_rev(ah));
480 
481 	ath9k_hw_ani_init(ah);
482 
483 	/*
484 	 * EEPROM needs to be initialized before we do this.
485 	 * This is required for regulatory compliance.
486 	 */
487 	if (AR_SREV_9300_20_OR_LATER(ah)) {
488 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
489 		if ((regdmn & 0xF0) == CTL_FCC) {
490 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
491 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
492 		}
493 	}
494 
495 	return 0;
496 }
497 
498 static int ath9k_hw_attach_ops(struct ath_hw *ah)
499 {
500 	if (!AR_SREV_9300_20_OR_LATER(ah))
501 		return ar9002_hw_attach_ops(ah);
502 
503 	ar9003_hw_attach_ops(ah);
504 	return 0;
505 }
506 
507 /* Called for all hardware families */
508 static int __ath9k_hw_init(struct ath_hw *ah)
509 {
510 	struct ath_common *common = ath9k_hw_common(ah);
511 	int r = 0;
512 
513 	ath9k_hw_read_revisions(ah);
514 
515 	switch (ah->hw_version.macVersion) {
516 	case AR_SREV_VERSION_5416_PCI:
517 	case AR_SREV_VERSION_5416_PCIE:
518 	case AR_SREV_VERSION_9160:
519 	case AR_SREV_VERSION_9100:
520 	case AR_SREV_VERSION_9280:
521 	case AR_SREV_VERSION_9285:
522 	case AR_SREV_VERSION_9287:
523 	case AR_SREV_VERSION_9271:
524 	case AR_SREV_VERSION_9300:
525 	case AR_SREV_VERSION_9330:
526 	case AR_SREV_VERSION_9485:
527 	case AR_SREV_VERSION_9340:
528 	case AR_SREV_VERSION_9462:
529 	case AR_SREV_VERSION_9550:
530 	case AR_SREV_VERSION_9565:
531 	case AR_SREV_VERSION_9531:
532 		break;
533 	default:
534 		ath_err(common,
535 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
536 			ah->hw_version.macVersion, ah->hw_version.macRev);
537 		return -EOPNOTSUPP;
538 	}
539 
540 	/*
541 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
542 	 * We need to do this to avoid RMW of this register. We cannot
543 	 * read the reg when chip is asleep.
544 	 */
545 	if (AR_SREV_9300_20_OR_LATER(ah)) {
546 		ah->WARegVal = REG_READ(ah, AR_WA);
547 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
548 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
549 	}
550 
551 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
552 		ath_err(common, "Couldn't reset chip\n");
553 		return -EIO;
554 	}
555 
556 	if (AR_SREV_9565(ah)) {
557 		ah->WARegVal |= AR_WA_BIT22;
558 		REG_WRITE(ah, AR_WA, ah->WARegVal);
559 	}
560 
561 	ath9k_hw_init_defaults(ah);
562 	ath9k_hw_init_config(ah);
563 
564 	r = ath9k_hw_attach_ops(ah);
565 	if (r)
566 		return r;
567 
568 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
569 		ath_err(common, "Couldn't wakeup chip\n");
570 		return -EIO;
571 	}
572 
573 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
574 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
575 		ah->is_pciexpress = false;
576 
577 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
578 	ath9k_hw_init_cal_settings(ah);
579 
580 	if (!ah->is_pciexpress)
581 		ath9k_hw_disablepcie(ah);
582 
583 	r = ath9k_hw_post_init(ah);
584 	if (r)
585 		return r;
586 
587 	ath9k_hw_init_mode_gain_regs(ah);
588 	r = ath9k_hw_fill_cap_info(ah);
589 	if (r)
590 		return r;
591 
592 	r = ath9k_hw_init_macaddr(ah);
593 	if (r) {
594 		ath_err(common, "Failed to initialize MAC address\n");
595 		return r;
596 	}
597 
598 	ath9k_hw_init_hang_checks(ah);
599 
600 	common->state = ATH_HW_INITIALIZED;
601 
602 	return 0;
603 }
604 
605 int ath9k_hw_init(struct ath_hw *ah)
606 {
607 	int ret;
608 	struct ath_common *common = ath9k_hw_common(ah);
609 
610 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
611 	switch (ah->hw_version.devid) {
612 	case AR5416_DEVID_PCI:
613 	case AR5416_DEVID_PCIE:
614 	case AR5416_AR9100_DEVID:
615 	case AR9160_DEVID_PCI:
616 	case AR9280_DEVID_PCI:
617 	case AR9280_DEVID_PCIE:
618 	case AR9285_DEVID_PCIE:
619 	case AR9287_DEVID_PCI:
620 	case AR9287_DEVID_PCIE:
621 	case AR2427_DEVID_PCIE:
622 	case AR9300_DEVID_PCIE:
623 	case AR9300_DEVID_AR9485_PCIE:
624 	case AR9300_DEVID_AR9330:
625 	case AR9300_DEVID_AR9340:
626 	case AR9300_DEVID_QCA955X:
627 	case AR9300_DEVID_AR9580:
628 	case AR9300_DEVID_AR9462:
629 	case AR9485_DEVID_AR1111:
630 	case AR9300_DEVID_AR9565:
631 	case AR9300_DEVID_AR953X:
632 		break;
633 	default:
634 		if (common->bus_ops->ath_bus_type == ATH_USB)
635 			break;
636 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
637 			ah->hw_version.devid);
638 		return -EOPNOTSUPP;
639 	}
640 
641 	ret = __ath9k_hw_init(ah);
642 	if (ret) {
643 		ath_err(common,
644 			"Unable to initialize hardware; initialization status: %d\n",
645 			ret);
646 		return ret;
647 	}
648 
649 	return 0;
650 }
651 EXPORT_SYMBOL(ath9k_hw_init);
652 
653 static void ath9k_hw_init_qos(struct ath_hw *ah)
654 {
655 	ENABLE_REGWRITE_BUFFER(ah);
656 
657 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
658 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
659 
660 	REG_WRITE(ah, AR_QOS_NO_ACK,
661 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
662 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
663 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
664 
665 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
666 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
667 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
668 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
669 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
670 
671 	REGWRITE_BUFFER_FLUSH(ah);
672 }
673 
674 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
675 {
676 	struct ath_common *common = ath9k_hw_common(ah);
677 	int i = 0;
678 
679 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
680 	udelay(100);
681 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
682 
683 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
684 
685 		udelay(100);
686 
687 		if (WARN_ON_ONCE(i >= 100)) {
688 			ath_err(common, "PLL4 meaurement not done\n");
689 			break;
690 		}
691 
692 		i++;
693 	}
694 
695 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
696 }
697 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
698 
699 static void ath9k_hw_init_pll(struct ath_hw *ah,
700 			      struct ath9k_channel *chan)
701 {
702 	u32 pll;
703 
704 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
705 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
706 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
707 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
708 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
709 			      AR_CH0_DPLL2_KD, 0x40);
710 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
711 			      AR_CH0_DPLL2_KI, 0x4);
712 
713 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
714 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
715 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
716 			      AR_CH0_BB_DPLL1_NINI, 0x58);
717 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
718 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
719 
720 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
721 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
722 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
723 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
724 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
725 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
726 
727 		/* program BB PLL phase_shift to 0x6 */
728 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
729 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
730 
731 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
732 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
733 		udelay(1000);
734 	} else if (AR_SREV_9330(ah)) {
735 		u32 ddr_dpll2, pll_control2, kd;
736 
737 		if (ah->is_clk_25mhz) {
738 			ddr_dpll2 = 0x18e82f01;
739 			pll_control2 = 0xe04a3d;
740 			kd = 0x1d;
741 		} else {
742 			ddr_dpll2 = 0x19e82f01;
743 			pll_control2 = 0x886666;
744 			kd = 0x3d;
745 		}
746 
747 		/* program DDR PLL ki and kd value */
748 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
749 
750 		/* program DDR PLL phase_shift */
751 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
752 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
753 
754 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
755 		udelay(1000);
756 
757 		/* program refdiv, nint, frac to RTC register */
758 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
759 
760 		/* program BB PLL kd and ki value */
761 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
762 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
763 
764 		/* program BB PLL phase_shift */
765 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
766 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
767 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
768 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
769 
770 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
771 		udelay(1000);
772 
773 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
774 		udelay(100);
775 
776 		if (ah->is_clk_25mhz) {
777 			if (AR_SREV_9531(ah)) {
778 				pll2_divint = 0x1c;
779 				pll2_divfrac = 0xa3d2;
780 				refdiv = 1;
781 			} else {
782 				pll2_divint = 0x54;
783 				pll2_divfrac = 0x1eb85;
784 				refdiv = 3;
785 			}
786 		} else {
787 			if (AR_SREV_9340(ah)) {
788 				pll2_divint = 88;
789 				pll2_divfrac = 0;
790 				refdiv = 5;
791 			} else {
792 				pll2_divint = 0x11;
793 				pll2_divfrac = 0x26666;
794 				refdiv = 1;
795 			}
796 		}
797 
798 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
799 		if (AR_SREV_9531(ah))
800 			regval |= (0x1 << 22);
801 		else
802 			regval |= (0x1 << 16);
803 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
804 		udelay(100);
805 
806 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
807 			  (pll2_divint << 18) | pll2_divfrac);
808 		udelay(100);
809 
810 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
811 		if (AR_SREV_9340(ah))
812 			regval = (regval & 0x80071fff) |
813 				(0x1 << 30) |
814 				(0x1 << 13) |
815 				(0x4 << 26) |
816 				(0x18 << 19);
817 		else if (AR_SREV_9531(ah))
818 			regval = (regval & 0x01c00fff) |
819 				(0x1 << 31) |
820 				(0x2 << 29) |
821 				(0xa << 25) |
822 				(0x1 << 19) |
823 				(0x6 << 12);
824 		else
825 			regval = (regval & 0x80071fff) |
826 				(0x3 << 30) |
827 				(0x1 << 13) |
828 				(0x4 << 26) |
829 				(0x60 << 19);
830 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
831 
832 		if (AR_SREV_9531(ah))
833 			REG_WRITE(ah, AR_PHY_PLL_MODE,
834 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
835 		else
836 			REG_WRITE(ah, AR_PHY_PLL_MODE,
837 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
838 
839 		udelay(1000);
840 	}
841 
842 	pll = ath9k_hw_compute_pll_control(ah, chan);
843 	if (AR_SREV_9565(ah))
844 		pll |= 0x40000;
845 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
846 
847 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
848 	    AR_SREV_9550(ah))
849 		udelay(1000);
850 
851 	/* Switch the core clock for ar9271 to 117Mhz */
852 	if (AR_SREV_9271(ah)) {
853 		udelay(500);
854 		REG_WRITE(ah, 0x50040, 0x304);
855 	}
856 
857 	udelay(RTC_PLL_SETTLE_DELAY);
858 
859 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
860 
861 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
862 		if (ah->is_clk_25mhz) {
863 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
864 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
865 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
866 		} else {
867 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
868 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
869 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
870 		}
871 		udelay(100);
872 	}
873 }
874 
875 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
876 					  enum nl80211_iftype opmode)
877 {
878 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
879 	u32 imr_reg = AR_IMR_TXERR |
880 		AR_IMR_TXURN |
881 		AR_IMR_RXERR |
882 		AR_IMR_RXORN |
883 		AR_IMR_BCNMISC;
884 
885 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah))
886 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
887 
888 	if (AR_SREV_9300_20_OR_LATER(ah)) {
889 		imr_reg |= AR_IMR_RXOK_HP;
890 		if (ah->config.rx_intr_mitigation)
891 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
892 		else
893 			imr_reg |= AR_IMR_RXOK_LP;
894 
895 	} else {
896 		if (ah->config.rx_intr_mitigation)
897 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
898 		else
899 			imr_reg |= AR_IMR_RXOK;
900 	}
901 
902 	if (ah->config.tx_intr_mitigation)
903 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
904 	else
905 		imr_reg |= AR_IMR_TXOK;
906 
907 	ENABLE_REGWRITE_BUFFER(ah);
908 
909 	REG_WRITE(ah, AR_IMR, imr_reg);
910 	ah->imrs2_reg |= AR_IMR_S2_GTT;
911 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
912 
913 	if (!AR_SREV_9100(ah)) {
914 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
915 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
916 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
917 	}
918 
919 	REGWRITE_BUFFER_FLUSH(ah);
920 
921 	if (AR_SREV_9300_20_OR_LATER(ah)) {
922 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
923 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
924 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
925 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
926 	}
927 }
928 
929 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
930 {
931 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
932 	val = min(val, (u32) 0xFFFF);
933 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
934 }
935 
936 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
937 {
938 	u32 val = ath9k_hw_mac_to_clks(ah, us);
939 	val = min(val, (u32) 0xFFFF);
940 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
941 }
942 
943 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
944 {
945 	u32 val = ath9k_hw_mac_to_clks(ah, us);
946 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
947 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
948 }
949 
950 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
951 {
952 	u32 val = ath9k_hw_mac_to_clks(ah, us);
953 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
954 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
955 }
956 
957 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
958 {
959 	if (tu > 0xFFFF) {
960 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
961 			tu);
962 		ah->globaltxtimeout = (u32) -1;
963 		return false;
964 	} else {
965 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
966 		ah->globaltxtimeout = tu;
967 		return true;
968 	}
969 }
970 
971 void ath9k_hw_init_global_settings(struct ath_hw *ah)
972 {
973 	struct ath_common *common = ath9k_hw_common(ah);
974 	const struct ath9k_channel *chan = ah->curchan;
975 	int acktimeout, ctstimeout, ack_offset = 0;
976 	int slottime;
977 	int sifstime;
978 	int rx_lat = 0, tx_lat = 0, eifs = 0;
979 	u32 reg;
980 
981 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
982 		ah->misc_mode);
983 
984 	if (!chan)
985 		return;
986 
987 	if (ah->misc_mode != 0)
988 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
989 
990 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
991 		rx_lat = 41;
992 	else
993 		rx_lat = 37;
994 	tx_lat = 54;
995 
996 	if (IS_CHAN_5GHZ(chan))
997 		sifstime = 16;
998 	else
999 		sifstime = 10;
1000 
1001 	if (IS_CHAN_HALF_RATE(chan)) {
1002 		eifs = 175;
1003 		rx_lat *= 2;
1004 		tx_lat *= 2;
1005 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1006 		    tx_lat += 11;
1007 
1008 		sifstime = 32;
1009 		ack_offset = 16;
1010 		slottime = 13;
1011 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1012 		eifs = 340;
1013 		rx_lat = (rx_lat * 4) - 1;
1014 		tx_lat *= 4;
1015 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1016 		    tx_lat += 22;
1017 
1018 		sifstime = 64;
1019 		ack_offset = 32;
1020 		slottime = 21;
1021 	} else {
1022 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1023 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1024 			reg = AR_USEC_ASYNC_FIFO;
1025 		} else {
1026 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1027 				common->clockrate;
1028 			reg = REG_READ(ah, AR_USEC);
1029 		}
1030 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1031 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1032 
1033 		slottime = ah->slottime;
1034 	}
1035 
1036 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1037 	slottime += 3 * ah->coverage_class;
1038 	acktimeout = slottime + sifstime + ack_offset;
1039 	ctstimeout = acktimeout;
1040 
1041 	/*
1042 	 * Workaround for early ACK timeouts, add an offset to match the
1043 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1044 	 * This was initially only meant to work around an issue with delayed
1045 	 * BA frames in some implementations, but it has been found to fix ACK
1046 	 * timeout issues in other cases as well.
1047 	 */
1048 	if (IS_CHAN_2GHZ(chan) &&
1049 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1050 		acktimeout += 64 - sifstime - ah->slottime;
1051 		ctstimeout += 48 - sifstime - ah->slottime;
1052 	}
1053 
1054 	ath9k_hw_set_sifs_time(ah, sifstime);
1055 	ath9k_hw_setslottime(ah, slottime);
1056 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1057 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1058 	if (ah->globaltxtimeout != (u32) -1)
1059 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1060 
1061 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1062 	REG_RMW(ah, AR_USEC,
1063 		(common->clockrate - 1) |
1064 		SM(rx_lat, AR_USEC_RX_LAT) |
1065 		SM(tx_lat, AR_USEC_TX_LAT),
1066 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1067 
1068 }
1069 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1070 
1071 void ath9k_hw_deinit(struct ath_hw *ah)
1072 {
1073 	struct ath_common *common = ath9k_hw_common(ah);
1074 
1075 	if (common->state < ATH_HW_INITIALIZED)
1076 		return;
1077 
1078 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1079 }
1080 EXPORT_SYMBOL(ath9k_hw_deinit);
1081 
1082 /*******/
1083 /* INI */
1084 /*******/
1085 
1086 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1087 {
1088 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1089 
1090 	if (IS_CHAN_2GHZ(chan))
1091 		ctl |= CTL_11G;
1092 	else
1093 		ctl |= CTL_11A;
1094 
1095 	return ctl;
1096 }
1097 
1098 /****************************************/
1099 /* Reset and Channel Switching Routines */
1100 /****************************************/
1101 
1102 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1103 {
1104 	struct ath_common *common = ath9k_hw_common(ah);
1105 	int txbuf_size;
1106 
1107 	ENABLE_REGWRITE_BUFFER(ah);
1108 
1109 	/*
1110 	 * set AHB_MODE not to do cacheline prefetches
1111 	*/
1112 	if (!AR_SREV_9300_20_OR_LATER(ah))
1113 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1114 
1115 	/*
1116 	 * let mac dma reads be in 128 byte chunks
1117 	 */
1118 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1119 
1120 	REGWRITE_BUFFER_FLUSH(ah);
1121 
1122 	/*
1123 	 * Restore TX Trigger Level to its pre-reset value.
1124 	 * The initial value depends on whether aggregation is enabled, and is
1125 	 * adjusted whenever underruns are detected.
1126 	 */
1127 	if (!AR_SREV_9300_20_OR_LATER(ah))
1128 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1129 
1130 	ENABLE_REGWRITE_BUFFER(ah);
1131 
1132 	/*
1133 	 * let mac dma writes be in 128 byte chunks
1134 	 */
1135 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1136 
1137 	/*
1138 	 * Setup receive FIFO threshold to hold off TX activities
1139 	 */
1140 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1141 
1142 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1143 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1144 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1145 
1146 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1147 			ah->caps.rx_status_len);
1148 	}
1149 
1150 	/*
1151 	 * reduce the number of usable entries in PCU TXBUF to avoid
1152 	 * wrap around issues.
1153 	 */
1154 	if (AR_SREV_9285(ah)) {
1155 		/* For AR9285 the number of Fifos are reduced to half.
1156 		 * So set the usable tx buf size also to half to
1157 		 * avoid data/delimiter underruns
1158 		 */
1159 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1160 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1161 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1162 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1163 	} else {
1164 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1165 	}
1166 
1167 	if (!AR_SREV_9271(ah))
1168 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1169 
1170 	REGWRITE_BUFFER_FLUSH(ah);
1171 
1172 	if (AR_SREV_9300_20_OR_LATER(ah))
1173 		ath9k_hw_reset_txstatus_ring(ah);
1174 }
1175 
1176 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1177 {
1178 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1179 	u32 set = AR_STA_ID1_KSRCH_MODE;
1180 
1181 	switch (opmode) {
1182 	case NL80211_IFTYPE_ADHOC:
1183 		set |= AR_STA_ID1_ADHOC;
1184 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1185 		break;
1186 	case NL80211_IFTYPE_MESH_POINT:
1187 	case NL80211_IFTYPE_AP:
1188 		set |= AR_STA_ID1_STA_AP;
1189 		/* fall through */
1190 	case NL80211_IFTYPE_STATION:
1191 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1192 		break;
1193 	default:
1194 		if (!ah->is_monitoring)
1195 			set = 0;
1196 		break;
1197 	}
1198 	REG_RMW(ah, AR_STA_ID1, set, mask);
1199 }
1200 
1201 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1202 				   u32 *coef_mantissa, u32 *coef_exponent)
1203 {
1204 	u32 coef_exp, coef_man;
1205 
1206 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1207 		if ((coef_scaled >> coef_exp) & 0x1)
1208 			break;
1209 
1210 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1211 
1212 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1213 
1214 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1215 	*coef_exponent = coef_exp - 16;
1216 }
1217 
1218 /* AR9330 WAR:
1219  * call external reset function to reset WMAC if:
1220  * - doing a cold reset
1221  * - we have pending frames in the TX queues.
1222  */
1223 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1224 {
1225 	int i, npend = 0;
1226 
1227 	for (i = 0; i < AR_NUM_QCU; i++) {
1228 		npend = ath9k_hw_numtxpending(ah, i);
1229 		if (npend)
1230 			break;
1231 	}
1232 
1233 	if (ah->external_reset &&
1234 	    (npend || type == ATH9K_RESET_COLD)) {
1235 		int reset_err = 0;
1236 
1237 		ath_dbg(ath9k_hw_common(ah), RESET,
1238 			"reset MAC via external reset\n");
1239 
1240 		reset_err = ah->external_reset();
1241 		if (reset_err) {
1242 			ath_err(ath9k_hw_common(ah),
1243 				"External reset failed, err=%d\n",
1244 				reset_err);
1245 			return false;
1246 		}
1247 
1248 		REG_WRITE(ah, AR_RTC_RESET, 1);
1249 	}
1250 
1251 	return true;
1252 }
1253 
1254 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1255 {
1256 	u32 rst_flags;
1257 	u32 tmpReg;
1258 
1259 	if (AR_SREV_9100(ah)) {
1260 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1261 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1262 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1263 	}
1264 
1265 	ENABLE_REGWRITE_BUFFER(ah);
1266 
1267 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1268 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1269 		udelay(10);
1270 	}
1271 
1272 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1273 		  AR_RTC_FORCE_WAKE_ON_INT);
1274 
1275 	if (AR_SREV_9100(ah)) {
1276 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1277 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1278 	} else {
1279 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1280 		if (AR_SREV_9340(ah))
1281 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1282 		else
1283 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1284 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1285 
1286 		if (tmpReg) {
1287 			u32 val;
1288 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1289 
1290 			val = AR_RC_HOSTIF;
1291 			if (!AR_SREV_9300_20_OR_LATER(ah))
1292 				val |= AR_RC_AHB;
1293 			REG_WRITE(ah, AR_RC, val);
1294 
1295 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1296 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1297 
1298 		rst_flags = AR_RTC_RC_MAC_WARM;
1299 		if (type == ATH9K_RESET_COLD)
1300 			rst_flags |= AR_RTC_RC_MAC_COLD;
1301 	}
1302 
1303 	if (AR_SREV_9330(ah)) {
1304 		if (!ath9k_hw_ar9330_reset_war(ah, type))
1305 			return false;
1306 	}
1307 
1308 	if (ath9k_hw_mci_is_enabled(ah))
1309 		ar9003_mci_check_gpm_offset(ah);
1310 
1311 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1312 
1313 	REGWRITE_BUFFER_FLUSH(ah);
1314 
1315 	if (AR_SREV_9300_20_OR_LATER(ah))
1316 		udelay(50);
1317 	else if (AR_SREV_9100(ah))
1318 		mdelay(10);
1319 	else
1320 		udelay(100);
1321 
1322 	REG_WRITE(ah, AR_RTC_RC, 0);
1323 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1324 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1325 		return false;
1326 	}
1327 
1328 	if (!AR_SREV_9100(ah))
1329 		REG_WRITE(ah, AR_RC, 0);
1330 
1331 	if (AR_SREV_9100(ah))
1332 		udelay(50);
1333 
1334 	return true;
1335 }
1336 
1337 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1338 {
1339 	ENABLE_REGWRITE_BUFFER(ah);
1340 
1341 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1342 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1343 		udelay(10);
1344 	}
1345 
1346 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1347 		  AR_RTC_FORCE_WAKE_ON_INT);
1348 
1349 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1350 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1351 
1352 	REG_WRITE(ah, AR_RTC_RESET, 0);
1353 
1354 	REGWRITE_BUFFER_FLUSH(ah);
1355 
1356 	udelay(2);
1357 
1358 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1359 		REG_WRITE(ah, AR_RC, 0);
1360 
1361 	REG_WRITE(ah, AR_RTC_RESET, 1);
1362 
1363 	if (!ath9k_hw_wait(ah,
1364 			   AR_RTC_STATUS,
1365 			   AR_RTC_STATUS_M,
1366 			   AR_RTC_STATUS_ON,
1367 			   AH_WAIT_TIMEOUT)) {
1368 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1369 		return false;
1370 	}
1371 
1372 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1373 }
1374 
1375 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1376 {
1377 	bool ret = false;
1378 
1379 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1380 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1381 		udelay(10);
1382 	}
1383 
1384 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1385 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1386 
1387 	if (!ah->reset_power_on)
1388 		type = ATH9K_RESET_POWER_ON;
1389 
1390 	switch (type) {
1391 	case ATH9K_RESET_POWER_ON:
1392 		ret = ath9k_hw_set_reset_power_on(ah);
1393 		if (ret)
1394 			ah->reset_power_on = true;
1395 		break;
1396 	case ATH9K_RESET_WARM:
1397 	case ATH9K_RESET_COLD:
1398 		ret = ath9k_hw_set_reset(ah, type);
1399 		break;
1400 	default:
1401 		break;
1402 	}
1403 
1404 	return ret;
1405 }
1406 
1407 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1408 				struct ath9k_channel *chan)
1409 {
1410 	int reset_type = ATH9K_RESET_WARM;
1411 
1412 	if (AR_SREV_9280(ah)) {
1413 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1414 			reset_type = ATH9K_RESET_POWER_ON;
1415 		else
1416 			reset_type = ATH9K_RESET_COLD;
1417 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1418 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1419 		reset_type = ATH9K_RESET_COLD;
1420 
1421 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1422 		return false;
1423 
1424 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1425 		return false;
1426 
1427 	ah->chip_fullsleep = false;
1428 
1429 	if (AR_SREV_9330(ah))
1430 		ar9003_hw_internal_regulator_apply(ah);
1431 	ath9k_hw_init_pll(ah, chan);
1432 
1433 	return true;
1434 }
1435 
1436 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1437 				    struct ath9k_channel *chan)
1438 {
1439 	struct ath_common *common = ath9k_hw_common(ah);
1440 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1441 	bool band_switch = false, mode_diff = false;
1442 	u8 ini_reloaded = 0;
1443 	u32 qnum;
1444 	int r;
1445 
1446 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1447 		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1448 		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1449 		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1450 	}
1451 
1452 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1453 		if (ath9k_hw_numtxpending(ah, qnum)) {
1454 			ath_dbg(common, QUEUE,
1455 				"Transmit frames pending on queue %d\n", qnum);
1456 			return false;
1457 		}
1458 	}
1459 
1460 	if (!ath9k_hw_rfbus_req(ah)) {
1461 		ath_err(common, "Could not kill baseband RX\n");
1462 		return false;
1463 	}
1464 
1465 	if (band_switch || mode_diff) {
1466 		ath9k_hw_mark_phy_inactive(ah);
1467 		udelay(5);
1468 
1469 		if (band_switch)
1470 			ath9k_hw_init_pll(ah, chan);
1471 
1472 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1473 			ath_err(common, "Failed to do fast channel change\n");
1474 			return false;
1475 		}
1476 	}
1477 
1478 	ath9k_hw_set_channel_regs(ah, chan);
1479 
1480 	r = ath9k_hw_rf_set_freq(ah, chan);
1481 	if (r) {
1482 		ath_err(common, "Failed to set channel\n");
1483 		return false;
1484 	}
1485 	ath9k_hw_set_clockrate(ah);
1486 	ath9k_hw_apply_txpower(ah, chan, false);
1487 
1488 	ath9k_hw_set_delta_slope(ah, chan);
1489 	ath9k_hw_spur_mitigate_freq(ah, chan);
1490 
1491 	if (band_switch || ini_reloaded)
1492 		ah->eep_ops->set_board_values(ah, chan);
1493 
1494 	ath9k_hw_init_bb(ah, chan);
1495 	ath9k_hw_rfbus_done(ah);
1496 
1497 	if (band_switch || ini_reloaded) {
1498 		ah->ah_flags |= AH_FASTCC;
1499 		ath9k_hw_init_cal(ah, chan);
1500 		ah->ah_flags &= ~AH_FASTCC;
1501 	}
1502 
1503 	return true;
1504 }
1505 
1506 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1507 {
1508 	u32 gpio_mask = ah->gpio_mask;
1509 	int i;
1510 
1511 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1512 		if (!(gpio_mask & 1))
1513 			continue;
1514 
1515 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1516 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1517 	}
1518 }
1519 
1520 void ath9k_hw_check_nav(struct ath_hw *ah)
1521 {
1522 	struct ath_common *common = ath9k_hw_common(ah);
1523 	u32 val;
1524 
1525 	val = REG_READ(ah, AR_NAV);
1526 	if (val != 0xdeadbeef && val > 0x7fff) {
1527 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1528 		REG_WRITE(ah, AR_NAV, 0);
1529 	}
1530 }
1531 EXPORT_SYMBOL(ath9k_hw_check_nav);
1532 
1533 bool ath9k_hw_check_alive(struct ath_hw *ah)
1534 {
1535 	int count = 50;
1536 	u32 reg, last_val;
1537 
1538 	if (AR_SREV_9300(ah))
1539 		return !ath9k_hw_detect_mac_hang(ah);
1540 
1541 	if (AR_SREV_9285_12_OR_LATER(ah))
1542 		return true;
1543 
1544 	last_val = REG_READ(ah, AR_OBS_BUS_1);
1545 	do {
1546 		reg = REG_READ(ah, AR_OBS_BUS_1);
1547 		if (reg != last_val)
1548 			return true;
1549 
1550 		udelay(1);
1551 		last_val = reg;
1552 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1553 			continue;
1554 
1555 		switch (reg & 0x7E000B00) {
1556 		case 0x1E000000:
1557 		case 0x52000B00:
1558 		case 0x18000B00:
1559 			continue;
1560 		default:
1561 			return true;
1562 		}
1563 	} while (count-- > 0);
1564 
1565 	return false;
1566 }
1567 EXPORT_SYMBOL(ath9k_hw_check_alive);
1568 
1569 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1570 {
1571 	/* Setup MFP options for CCMP */
1572 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1573 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1574 		 * frames when constructing CCMP AAD. */
1575 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1576 			      0xc7ff);
1577 		ah->sw_mgmt_crypto = false;
1578 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1579 		/* Disable hardware crypto for management frames */
1580 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1581 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1582 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1583 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1584 		ah->sw_mgmt_crypto = true;
1585 	} else {
1586 		ah->sw_mgmt_crypto = true;
1587 	}
1588 }
1589 
1590 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1591 				  u32 macStaId1, u32 saveDefAntenna)
1592 {
1593 	struct ath_common *common = ath9k_hw_common(ah);
1594 
1595 	ENABLE_REGWRITE_BUFFER(ah);
1596 
1597 	REG_RMW(ah, AR_STA_ID1, macStaId1
1598 		  | AR_STA_ID1_RTS_USE_DEF
1599 		  | ah->sta_id1_defaults,
1600 		  ~AR_STA_ID1_SADH_MASK);
1601 	ath_hw_setbssidmask(common);
1602 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1603 	ath9k_hw_write_associd(ah);
1604 	REG_WRITE(ah, AR_ISR, ~0);
1605 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1606 
1607 	REGWRITE_BUFFER_FLUSH(ah);
1608 
1609 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1610 }
1611 
1612 static void ath9k_hw_init_queues(struct ath_hw *ah)
1613 {
1614 	int i;
1615 
1616 	ENABLE_REGWRITE_BUFFER(ah);
1617 
1618 	for (i = 0; i < AR_NUM_DCU; i++)
1619 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1620 
1621 	REGWRITE_BUFFER_FLUSH(ah);
1622 
1623 	ah->intr_txqs = 0;
1624 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1625 		ath9k_hw_resettxqueue(ah, i);
1626 }
1627 
1628 /*
1629  * For big endian systems turn on swapping for descriptors
1630  */
1631 static void ath9k_hw_init_desc(struct ath_hw *ah)
1632 {
1633 	struct ath_common *common = ath9k_hw_common(ah);
1634 
1635 	if (AR_SREV_9100(ah)) {
1636 		u32 mask;
1637 		mask = REG_READ(ah, AR_CFG);
1638 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1639 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1640 				mask);
1641 		} else {
1642 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1643 			REG_WRITE(ah, AR_CFG, mask);
1644 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1645 				REG_READ(ah, AR_CFG));
1646 		}
1647 	} else {
1648 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1649 			/* Configure AR9271 target WLAN */
1650 			if (AR_SREV_9271(ah))
1651 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1652 			else
1653 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1654 		}
1655 #ifdef __BIG_ENDIAN
1656 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1657 			 AR_SREV_9550(ah) || AR_SREV_9531(ah))
1658 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1659 		else
1660 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1661 #endif
1662 	}
1663 }
1664 
1665 /*
1666  * Fast channel change:
1667  * (Change synthesizer based on channel freq without resetting chip)
1668  */
1669 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1670 {
1671 	struct ath_common *common = ath9k_hw_common(ah);
1672 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1673 	int ret;
1674 
1675 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1676 		goto fail;
1677 
1678 	if (ah->chip_fullsleep)
1679 		goto fail;
1680 
1681 	if (!ah->curchan)
1682 		goto fail;
1683 
1684 	if (chan->channel == ah->curchan->channel)
1685 		goto fail;
1686 
1687 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1688 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1689 		goto fail;
1690 
1691 	/*
1692 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1693 	 */
1694 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1695 	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1696 		goto fail;
1697 
1698 	if (!ath9k_hw_check_alive(ah))
1699 		goto fail;
1700 
1701 	/*
1702 	 * For AR9462, make sure that calibration data for
1703 	 * re-using are present.
1704 	 */
1705 	if (AR_SREV_9462(ah) && (ah->caldata &&
1706 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1707 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1708 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1709 		goto fail;
1710 
1711 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1712 		ah->curchan->channel, chan->channel);
1713 
1714 	ret = ath9k_hw_channel_change(ah, chan);
1715 	if (!ret)
1716 		goto fail;
1717 
1718 	if (ath9k_hw_mci_is_enabled(ah))
1719 		ar9003_mci_2g5g_switch(ah, false);
1720 
1721 	ath9k_hw_loadnf(ah, ah->curchan);
1722 	ath9k_hw_start_nfcal(ah, true);
1723 
1724 	if (AR_SREV_9271(ah))
1725 		ar9002_hw_load_ani_reg(ah, chan);
1726 
1727 	return 0;
1728 fail:
1729 	return -EINVAL;
1730 }
1731 
1732 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1733 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1734 {
1735 	struct ath_common *common = ath9k_hw_common(ah);
1736 	struct timespec ts;
1737 	u32 saveLedState;
1738 	u32 saveDefAntenna;
1739 	u32 macStaId1;
1740 	u64 tsf = 0;
1741 	s64 usec = 0;
1742 	int r;
1743 	bool start_mci_reset = false;
1744 	bool save_fullsleep = ah->chip_fullsleep;
1745 
1746 	if (ath9k_hw_mci_is_enabled(ah)) {
1747 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1748 		if (start_mci_reset)
1749 			return 0;
1750 	}
1751 
1752 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1753 		return -EIO;
1754 
1755 	if (ah->curchan && !ah->chip_fullsleep)
1756 		ath9k_hw_getnf(ah, ah->curchan);
1757 
1758 	ah->caldata = caldata;
1759 	if (caldata && (chan->channel != caldata->channel ||
1760 			chan->channelFlags != caldata->channelFlags)) {
1761 		/* Operating channel changed, reset channel calibration data */
1762 		memset(caldata, 0, sizeof(*caldata));
1763 		ath9k_init_nfcal_hist_buffer(ah, chan);
1764 	} else if (caldata) {
1765 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1766 	}
1767 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1768 
1769 	if (fastcc) {
1770 		r = ath9k_hw_do_fastcc(ah, chan);
1771 		if (!r)
1772 			return r;
1773 	}
1774 
1775 	if (ath9k_hw_mci_is_enabled(ah))
1776 		ar9003_mci_stop_bt(ah, save_fullsleep);
1777 
1778 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1779 	if (saveDefAntenna == 0)
1780 		saveDefAntenna = 1;
1781 
1782 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1783 
1784 	/* Save TSF before chip reset, a cold reset clears it */
1785 	tsf = ath9k_hw_gettsf64(ah);
1786 	getrawmonotonic(&ts);
1787 	usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000;
1788 
1789 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1790 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1791 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1792 
1793 	ath9k_hw_mark_phy_inactive(ah);
1794 
1795 	ah->paprd_table_write_done = false;
1796 
1797 	/* Only required on the first reset */
1798 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1799 		REG_WRITE(ah,
1800 			  AR9271_RESET_POWER_DOWN_CONTROL,
1801 			  AR9271_RADIO_RF_RST);
1802 		udelay(50);
1803 	}
1804 
1805 	if (!ath9k_hw_chip_reset(ah, chan)) {
1806 		ath_err(common, "Chip reset failed\n");
1807 		return -EINVAL;
1808 	}
1809 
1810 	/* Only required on the first reset */
1811 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1812 		ah->htc_reset_init = false;
1813 		REG_WRITE(ah,
1814 			  AR9271_RESET_POWER_DOWN_CONTROL,
1815 			  AR9271_GATE_MAC_CTL);
1816 		udelay(50);
1817 	}
1818 
1819 	/* Restore TSF */
1820 	getrawmonotonic(&ts);
1821 	usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000 - usec;
1822 	ath9k_hw_settsf64(ah, tsf + usec);
1823 
1824 	if (AR_SREV_9280_20_OR_LATER(ah))
1825 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1826 
1827 	if (!AR_SREV_9300_20_OR_LATER(ah))
1828 		ar9002_hw_enable_async_fifo(ah);
1829 
1830 	r = ath9k_hw_process_ini(ah, chan);
1831 	if (r)
1832 		return r;
1833 
1834 	ath9k_hw_set_rfmode(ah, chan);
1835 
1836 	if (ath9k_hw_mci_is_enabled(ah))
1837 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1838 
1839 	/*
1840 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1841 	 * right after the chip reset. When that happens, write a new
1842 	 * value after the initvals have been applied, with an offset
1843 	 * based on measured time difference
1844 	 */
1845 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1846 		tsf += 1500;
1847 		ath9k_hw_settsf64(ah, tsf);
1848 	}
1849 
1850 	ath9k_hw_init_mfp(ah);
1851 
1852 	ath9k_hw_set_delta_slope(ah, chan);
1853 	ath9k_hw_spur_mitigate_freq(ah, chan);
1854 	ah->eep_ops->set_board_values(ah, chan);
1855 
1856 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1857 
1858 	r = ath9k_hw_rf_set_freq(ah, chan);
1859 	if (r)
1860 		return r;
1861 
1862 	ath9k_hw_set_clockrate(ah);
1863 
1864 	ath9k_hw_init_queues(ah);
1865 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1866 	ath9k_hw_ani_cache_ini_regs(ah);
1867 	ath9k_hw_init_qos(ah);
1868 
1869 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1870 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1871 
1872 	ath9k_hw_init_global_settings(ah);
1873 
1874 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1875 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1876 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1877 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1878 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1879 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1880 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1881 	}
1882 
1883 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1884 
1885 	ath9k_hw_set_dma(ah);
1886 
1887 	if (!ath9k_hw_mci_is_enabled(ah))
1888 		REG_WRITE(ah, AR_OBS, 8);
1889 
1890 	if (ah->config.rx_intr_mitigation) {
1891 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1892 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1893 	}
1894 
1895 	if (ah->config.tx_intr_mitigation) {
1896 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1897 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1898 	}
1899 
1900 	ath9k_hw_init_bb(ah, chan);
1901 
1902 	if (caldata) {
1903 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1904 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1905 	}
1906 	if (!ath9k_hw_init_cal(ah, chan))
1907 		return -EIO;
1908 
1909 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1910 		return -EIO;
1911 
1912 	ENABLE_REGWRITE_BUFFER(ah);
1913 
1914 	ath9k_hw_restore_chainmask(ah);
1915 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1916 
1917 	REGWRITE_BUFFER_FLUSH(ah);
1918 
1919 	ath9k_hw_init_desc(ah);
1920 
1921 	if (ath9k_hw_btcoex_is_enabled(ah))
1922 		ath9k_hw_btcoex_enable(ah);
1923 
1924 	if (ath9k_hw_mci_is_enabled(ah))
1925 		ar9003_mci_check_bt(ah);
1926 
1927 	ath9k_hw_loadnf(ah, chan);
1928 	ath9k_hw_start_nfcal(ah, true);
1929 
1930 	if (AR_SREV_9300_20_OR_LATER(ah))
1931 		ar9003_hw_bb_watchdog_config(ah);
1932 
1933 	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
1934 		ar9003_hw_disable_phy_restart(ah);
1935 
1936 	ath9k_hw_apply_gpio_override(ah);
1937 
1938 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1939 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1940 
1941 	return 0;
1942 }
1943 EXPORT_SYMBOL(ath9k_hw_reset);
1944 
1945 /******************************/
1946 /* Power Management (Chipset) */
1947 /******************************/
1948 
1949 /*
1950  * Notify Power Mgt is disabled in self-generated frames.
1951  * If requested, force chip to sleep.
1952  */
1953 static void ath9k_set_power_sleep(struct ath_hw *ah)
1954 {
1955 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1956 
1957 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
1958 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
1959 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
1960 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
1961 		/* xxx Required for WLAN only case ? */
1962 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1963 		udelay(100);
1964 	}
1965 
1966 	/*
1967 	 * Clear the RTC force wake bit to allow the
1968 	 * mac to go to sleep.
1969 	 */
1970 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1971 
1972 	if (ath9k_hw_mci_is_enabled(ah))
1973 		udelay(100);
1974 
1975 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1976 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1977 
1978 	/* Shutdown chip. Active low */
1979 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
1980 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1981 		udelay(2);
1982 	}
1983 
1984 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1985 	if (AR_SREV_9300_20_OR_LATER(ah))
1986 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1987 }
1988 
1989 /*
1990  * Notify Power Management is enabled in self-generating
1991  * frames. If request, set power mode of chip to
1992  * auto/normal.  Duration in units of 128us (1/8 TU).
1993  */
1994 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
1995 {
1996 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1997 
1998 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1999 
2000 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2001 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2002 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2003 			  AR_RTC_FORCE_WAKE_ON_INT);
2004 	} else {
2005 
2006 		/* When chip goes into network sleep, it could be waken
2007 		 * up by MCI_INT interrupt caused by BT's HW messages
2008 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2009 		 * rate (~100us). This will cause chip to leave and
2010 		 * re-enter network sleep mode frequently, which in
2011 		 * consequence will have WLAN MCI HW to generate lots of
2012 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2013 		 * BT CPU to busy to process.
2014 		 */
2015 		if (ath9k_hw_mci_is_enabled(ah))
2016 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2017 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2018 		/*
2019 		 * Clear the RTC force wake bit to allow the
2020 		 * mac to go to sleep.
2021 		 */
2022 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2023 
2024 		if (ath9k_hw_mci_is_enabled(ah))
2025 			udelay(30);
2026 	}
2027 
2028 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2029 	if (AR_SREV_9300_20_OR_LATER(ah))
2030 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2031 }
2032 
2033 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2034 {
2035 	u32 val;
2036 	int i;
2037 
2038 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2039 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2040 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2041 		udelay(10);
2042 	}
2043 
2044 	if ((REG_READ(ah, AR_RTC_STATUS) &
2045 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2046 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2047 			return false;
2048 		}
2049 		if (!AR_SREV_9300_20_OR_LATER(ah))
2050 			ath9k_hw_init_pll(ah, NULL);
2051 	}
2052 	if (AR_SREV_9100(ah))
2053 		REG_SET_BIT(ah, AR_RTC_RESET,
2054 			    AR_RTC_RESET_EN);
2055 
2056 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2057 		    AR_RTC_FORCE_WAKE_EN);
2058 	if (AR_SREV_9100(ah))
2059 		mdelay(10);
2060 	else
2061 		udelay(50);
2062 
2063 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2064 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2065 		if (val == AR_RTC_STATUS_ON)
2066 			break;
2067 		udelay(50);
2068 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2069 			    AR_RTC_FORCE_WAKE_EN);
2070 	}
2071 	if (i == 0) {
2072 		ath_err(ath9k_hw_common(ah),
2073 			"Failed to wakeup in %uus\n",
2074 			POWER_UP_TIME / 20);
2075 		return false;
2076 	}
2077 
2078 	if (ath9k_hw_mci_is_enabled(ah))
2079 		ar9003_mci_set_power_awake(ah);
2080 
2081 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2082 
2083 	return true;
2084 }
2085 
2086 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2087 {
2088 	struct ath_common *common = ath9k_hw_common(ah);
2089 	int status = true;
2090 	static const char *modes[] = {
2091 		"AWAKE",
2092 		"FULL-SLEEP",
2093 		"NETWORK SLEEP",
2094 		"UNDEFINED"
2095 	};
2096 
2097 	if (ah->power_mode == mode)
2098 		return status;
2099 
2100 	ath_dbg(common, RESET, "%s -> %s\n",
2101 		modes[ah->power_mode], modes[mode]);
2102 
2103 	switch (mode) {
2104 	case ATH9K_PM_AWAKE:
2105 		status = ath9k_hw_set_power_awake(ah);
2106 		break;
2107 	case ATH9K_PM_FULL_SLEEP:
2108 		if (ath9k_hw_mci_is_enabled(ah))
2109 			ar9003_mci_set_full_sleep(ah);
2110 
2111 		ath9k_set_power_sleep(ah);
2112 		ah->chip_fullsleep = true;
2113 		break;
2114 	case ATH9K_PM_NETWORK_SLEEP:
2115 		ath9k_set_power_network_sleep(ah);
2116 		break;
2117 	default:
2118 		ath_err(common, "Unknown power mode %u\n", mode);
2119 		return false;
2120 	}
2121 	ah->power_mode = mode;
2122 
2123 	/*
2124 	 * XXX: If this warning never comes up after a while then
2125 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2126 	 * ath9k_hw_setpower() return type void.
2127 	 */
2128 
2129 	if (!(ah->ah_flags & AH_UNPLUGGED))
2130 		ATH_DBG_WARN_ON_ONCE(!status);
2131 
2132 	return status;
2133 }
2134 EXPORT_SYMBOL(ath9k_hw_setpower);
2135 
2136 /*******************/
2137 /* Beacon Handling */
2138 /*******************/
2139 
2140 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2141 {
2142 	int flags = 0;
2143 
2144 	ENABLE_REGWRITE_BUFFER(ah);
2145 
2146 	switch (ah->opmode) {
2147 	case NL80211_IFTYPE_ADHOC:
2148 		REG_SET_BIT(ah, AR_TXCFG,
2149 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2150 	case NL80211_IFTYPE_MESH_POINT:
2151 	case NL80211_IFTYPE_AP:
2152 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2153 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2154 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2155 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2156 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2157 		flags |=
2158 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2159 		break;
2160 	default:
2161 		ath_dbg(ath9k_hw_common(ah), BEACON,
2162 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2163 		return;
2164 		break;
2165 	}
2166 
2167 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2168 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2169 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2170 
2171 	REGWRITE_BUFFER_FLUSH(ah);
2172 
2173 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2174 }
2175 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2176 
2177 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2178 				    const struct ath9k_beacon_state *bs)
2179 {
2180 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2181 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2182 	struct ath_common *common = ath9k_hw_common(ah);
2183 
2184 	ENABLE_REGWRITE_BUFFER(ah);
2185 
2186 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2187 	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2188 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2189 
2190 	REGWRITE_BUFFER_FLUSH(ah);
2191 
2192 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2193 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2194 
2195 	beaconintval = bs->bs_intval;
2196 
2197 	if (bs->bs_sleepduration > beaconintval)
2198 		beaconintval = bs->bs_sleepduration;
2199 
2200 	dtimperiod = bs->bs_dtimperiod;
2201 	if (bs->bs_sleepduration > dtimperiod)
2202 		dtimperiod = bs->bs_sleepduration;
2203 
2204 	if (beaconintval == dtimperiod)
2205 		nextTbtt = bs->bs_nextdtim;
2206 	else
2207 		nextTbtt = bs->bs_nexttbtt;
2208 
2209 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2210 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2211 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2212 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2213 
2214 	ENABLE_REGWRITE_BUFFER(ah);
2215 
2216 	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2217 	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2218 
2219 	REG_WRITE(ah, AR_SLEEP1,
2220 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2221 		  | AR_SLEEP1_ASSUME_DTIM);
2222 
2223 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2224 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2225 	else
2226 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2227 
2228 	REG_WRITE(ah, AR_SLEEP2,
2229 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2230 
2231 	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2232 	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2233 
2234 	REGWRITE_BUFFER_FLUSH(ah);
2235 
2236 	REG_SET_BIT(ah, AR_TIMER_MODE,
2237 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2238 		    AR_DTIM_TIMER_EN);
2239 
2240 	/* TSF Out of Range Threshold */
2241 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2242 }
2243 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2244 
2245 /*******************/
2246 /* HW Capabilities */
2247 /*******************/
2248 
2249 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2250 {
2251 	eeprom_chainmask &= chip_chainmask;
2252 	if (eeprom_chainmask)
2253 		return eeprom_chainmask;
2254 	else
2255 		return chip_chainmask;
2256 }
2257 
2258 /**
2259  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2260  * @ah: the atheros hardware data structure
2261  *
2262  * We enable DFS support upstream on chipsets which have passed a series
2263  * of tests. The testing requirements are going to be documented. Desired
2264  * test requirements are documented at:
2265  *
2266  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2267  *
2268  * Once a new chipset gets properly tested an individual commit can be used
2269  * to document the testing for DFS for that chipset.
2270  */
2271 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2272 {
2273 
2274 	switch (ah->hw_version.macVersion) {
2275 	/* for temporary testing DFS with 9280 */
2276 	case AR_SREV_VERSION_9280:
2277 	/* AR9580 will likely be our first target to get testing on */
2278 	case AR_SREV_VERSION_9580:
2279 		return true;
2280 	default:
2281 		return false;
2282 	}
2283 }
2284 
2285 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2286 {
2287 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2288 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2289 	struct ath_common *common = ath9k_hw_common(ah);
2290 	unsigned int chip_chainmask;
2291 
2292 	u16 eeval;
2293 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2294 
2295 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2296 	regulatory->current_rd = eeval;
2297 
2298 	if (ah->opmode != NL80211_IFTYPE_AP &&
2299 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2300 		if (regulatory->current_rd == 0x64 ||
2301 		    regulatory->current_rd == 0x65)
2302 			regulatory->current_rd += 5;
2303 		else if (regulatory->current_rd == 0x41)
2304 			regulatory->current_rd = 0x43;
2305 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2306 			regulatory->current_rd);
2307 	}
2308 
2309 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2310 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2311 		ath_err(common,
2312 			"no band has been marked as supported in EEPROM\n");
2313 		return -EINVAL;
2314 	}
2315 
2316 	if (eeval & AR5416_OPFLAGS_11A)
2317 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2318 
2319 	if (eeval & AR5416_OPFLAGS_11G)
2320 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2321 
2322 	if (AR_SREV_9485(ah) ||
2323 	    AR_SREV_9285(ah) ||
2324 	    AR_SREV_9330(ah) ||
2325 	    AR_SREV_9565(ah))
2326 		chip_chainmask = 1;
2327 	else if (AR_SREV_9462(ah))
2328 		chip_chainmask = 3;
2329 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2330 		chip_chainmask = 7;
2331 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2332 		chip_chainmask = 3;
2333 	else
2334 		chip_chainmask = 7;
2335 
2336 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2337 	/*
2338 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2339 	 * the EEPROM.
2340 	 */
2341 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2342 	    !(eeval & AR5416_OPFLAGS_11A) &&
2343 	    !(AR_SREV_9271(ah)))
2344 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2345 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2346 	else if (AR_SREV_9100(ah))
2347 		pCap->rx_chainmask = 0x7;
2348 	else
2349 		/* Use rx_chainmask from EEPROM. */
2350 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2351 
2352 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2353 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2354 	ah->txchainmask = pCap->tx_chainmask;
2355 	ah->rxchainmask = pCap->rx_chainmask;
2356 
2357 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2358 
2359 	/* enable key search for every frame in an aggregate */
2360 	if (AR_SREV_9300_20_OR_LATER(ah))
2361 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2362 
2363 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2364 
2365 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2366 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2367 	else
2368 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2369 
2370 	if (AR_SREV_9271(ah))
2371 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2372 	else if (AR_DEVID_7010(ah))
2373 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2374 	else if (AR_SREV_9300_20_OR_LATER(ah))
2375 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2376 	else if (AR_SREV_9287_11_OR_LATER(ah))
2377 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2378 	else if (AR_SREV_9285_12_OR_LATER(ah))
2379 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2380 	else if (AR_SREV_9280_20_OR_LATER(ah))
2381 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2382 	else
2383 		pCap->num_gpio_pins = AR_NUM_GPIO;
2384 
2385 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2386 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2387 	else
2388 		pCap->rts_aggr_limit = (8 * 1024);
2389 
2390 #ifdef CONFIG_ATH9K_RFKILL
2391 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2392 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2393 		ah->rfkill_gpio =
2394 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2395 		ah->rfkill_polarity =
2396 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2397 
2398 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2399 	}
2400 #endif
2401 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2402 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2403 	else
2404 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2405 
2406 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2407 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2408 	else
2409 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2410 
2411 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2412 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2413 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2414 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2415 
2416 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2417 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2418 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2419 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2420 		pCap->txs_len = sizeof(struct ar9003_txs);
2421 	} else {
2422 		pCap->tx_desc_len = sizeof(struct ath_desc);
2423 		if (AR_SREV_9280_20(ah))
2424 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2425 	}
2426 
2427 	if (AR_SREV_9300_20_OR_LATER(ah))
2428 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2429 
2430 	if (AR_SREV_9300_20_OR_LATER(ah))
2431 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2432 
2433 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2434 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2435 
2436 	if (AR_SREV_9285(ah)) {
2437 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2438 			ant_div_ctl1 =
2439 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2440 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2441 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2442 				ath_info(common, "Enable LNA combining\n");
2443 			}
2444 		}
2445 	}
2446 
2447 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2448 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2449 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2450 	}
2451 
2452 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2453 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2454 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2455 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2456 			ath_info(common, "Enable LNA combining\n");
2457 		}
2458 	}
2459 
2460 	if (ath9k_hw_dfs_tested(ah))
2461 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2462 
2463 	tx_chainmask = pCap->tx_chainmask;
2464 	rx_chainmask = pCap->rx_chainmask;
2465 	while (tx_chainmask || rx_chainmask) {
2466 		if (tx_chainmask & BIT(0))
2467 			pCap->max_txchains++;
2468 		if (rx_chainmask & BIT(0))
2469 			pCap->max_rxchains++;
2470 
2471 		tx_chainmask >>= 1;
2472 		rx_chainmask >>= 1;
2473 	}
2474 
2475 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2476 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2477 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2478 
2479 		if (AR_SREV_9462_20_OR_LATER(ah))
2480 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2481 	}
2482 
2483 	if (AR_SREV_9462(ah))
2484 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2485 
2486 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2487 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2488 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2489 
2490 	return 0;
2491 }
2492 
2493 /****************************/
2494 /* GPIO / RFKILL / Antennae */
2495 /****************************/
2496 
2497 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2498 					 u32 gpio, u32 type)
2499 {
2500 	int addr;
2501 	u32 gpio_shift, tmp;
2502 
2503 	if (gpio > 11)
2504 		addr = AR_GPIO_OUTPUT_MUX3;
2505 	else if (gpio > 5)
2506 		addr = AR_GPIO_OUTPUT_MUX2;
2507 	else
2508 		addr = AR_GPIO_OUTPUT_MUX1;
2509 
2510 	gpio_shift = (gpio % 6) * 5;
2511 
2512 	if (AR_SREV_9280_20_OR_LATER(ah)
2513 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2514 		REG_RMW(ah, addr, (type << gpio_shift),
2515 			(0x1f << gpio_shift));
2516 	} else {
2517 		tmp = REG_READ(ah, addr);
2518 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2519 		tmp &= ~(0x1f << gpio_shift);
2520 		tmp |= (type << gpio_shift);
2521 		REG_WRITE(ah, addr, tmp);
2522 	}
2523 }
2524 
2525 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2526 {
2527 	u32 gpio_shift;
2528 
2529 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2530 
2531 	if (AR_DEVID_7010(ah)) {
2532 		gpio_shift = gpio;
2533 		REG_RMW(ah, AR7010_GPIO_OE,
2534 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2535 			(AR7010_GPIO_OE_MASK << gpio_shift));
2536 		return;
2537 	}
2538 
2539 	gpio_shift = gpio << 1;
2540 	REG_RMW(ah,
2541 		AR_GPIO_OE_OUT,
2542 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2543 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2544 }
2545 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2546 
2547 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2548 {
2549 #define MS_REG_READ(x, y) \
2550 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2551 
2552 	if (gpio >= ah->caps.num_gpio_pins)
2553 		return 0xffffffff;
2554 
2555 	if (AR_DEVID_7010(ah)) {
2556 		u32 val;
2557 		val = REG_READ(ah, AR7010_GPIO_IN);
2558 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2559 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2560 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2561 			AR_GPIO_BIT(gpio)) != 0;
2562 	else if (AR_SREV_9271(ah))
2563 		return MS_REG_READ(AR9271, gpio) != 0;
2564 	else if (AR_SREV_9287_11_OR_LATER(ah))
2565 		return MS_REG_READ(AR9287, gpio) != 0;
2566 	else if (AR_SREV_9285_12_OR_LATER(ah))
2567 		return MS_REG_READ(AR9285, gpio) != 0;
2568 	else if (AR_SREV_9280_20_OR_LATER(ah))
2569 		return MS_REG_READ(AR928X, gpio) != 0;
2570 	else
2571 		return MS_REG_READ(AR, gpio) != 0;
2572 }
2573 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2574 
2575 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2576 			 u32 ah_signal_type)
2577 {
2578 	u32 gpio_shift;
2579 
2580 	if (AR_DEVID_7010(ah)) {
2581 		gpio_shift = gpio;
2582 		REG_RMW(ah, AR7010_GPIO_OE,
2583 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2584 			(AR7010_GPIO_OE_MASK << gpio_shift));
2585 		return;
2586 	}
2587 
2588 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2589 	gpio_shift = 2 * gpio;
2590 	REG_RMW(ah,
2591 		AR_GPIO_OE_OUT,
2592 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2593 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2594 }
2595 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2596 
2597 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2598 {
2599 	if (AR_DEVID_7010(ah)) {
2600 		val = val ? 0 : 1;
2601 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2602 			AR_GPIO_BIT(gpio));
2603 		return;
2604 	}
2605 
2606 	if (AR_SREV_9271(ah))
2607 		val = ~val;
2608 
2609 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2610 		AR_GPIO_BIT(gpio));
2611 }
2612 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2613 
2614 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2615 {
2616 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2617 }
2618 EXPORT_SYMBOL(ath9k_hw_setantenna);
2619 
2620 /*********************/
2621 /* General Operation */
2622 /*********************/
2623 
2624 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2625 {
2626 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2627 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2628 
2629 	if (phybits & AR_PHY_ERR_RADAR)
2630 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2631 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2632 		bits |= ATH9K_RX_FILTER_PHYERR;
2633 
2634 	return bits;
2635 }
2636 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2637 
2638 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2639 {
2640 	u32 phybits;
2641 
2642 	ENABLE_REGWRITE_BUFFER(ah);
2643 
2644 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2645 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2646 
2647 	REG_WRITE(ah, AR_RX_FILTER, bits);
2648 
2649 	phybits = 0;
2650 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2651 		phybits |= AR_PHY_ERR_RADAR;
2652 	if (bits & ATH9K_RX_FILTER_PHYERR)
2653 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2654 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2655 
2656 	if (phybits)
2657 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2658 	else
2659 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2660 
2661 	REGWRITE_BUFFER_FLUSH(ah);
2662 }
2663 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2664 
2665 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2666 {
2667 	if (ath9k_hw_mci_is_enabled(ah))
2668 		ar9003_mci_bt_gain_ctrl(ah);
2669 
2670 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2671 		return false;
2672 
2673 	ath9k_hw_init_pll(ah, NULL);
2674 	ah->htc_reset_init = true;
2675 	return true;
2676 }
2677 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2678 
2679 bool ath9k_hw_disable(struct ath_hw *ah)
2680 {
2681 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2682 		return false;
2683 
2684 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2685 		return false;
2686 
2687 	ath9k_hw_init_pll(ah, NULL);
2688 	return true;
2689 }
2690 EXPORT_SYMBOL(ath9k_hw_disable);
2691 
2692 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2693 {
2694 	enum eeprom_param gain_param;
2695 
2696 	if (IS_CHAN_2GHZ(chan))
2697 		gain_param = EEP_ANTENNA_GAIN_2G;
2698 	else
2699 		gain_param = EEP_ANTENNA_GAIN_5G;
2700 
2701 	return ah->eep_ops->get_eeprom(ah, gain_param);
2702 }
2703 
2704 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2705 			    bool test)
2706 {
2707 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2708 	struct ieee80211_channel *channel;
2709 	int chan_pwr, new_pwr, max_gain;
2710 	int ant_gain, ant_reduction = 0;
2711 
2712 	if (!chan)
2713 		return;
2714 
2715 	channel = chan->chan;
2716 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2717 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2718 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2719 
2720 	ant_gain = get_antenna_gain(ah, chan);
2721 	if (ant_gain > max_gain)
2722 		ant_reduction = ant_gain - max_gain;
2723 
2724 	ah->eep_ops->set_txpower(ah, chan,
2725 				 ath9k_regd_get_ctl(reg, chan),
2726 				 ant_reduction, new_pwr, test);
2727 }
2728 
2729 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2730 {
2731 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2732 	struct ath9k_channel *chan = ah->curchan;
2733 	struct ieee80211_channel *channel = chan->chan;
2734 
2735 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2736 	if (test)
2737 		channel->max_power = MAX_RATE_POWER / 2;
2738 
2739 	ath9k_hw_apply_txpower(ah, chan, test);
2740 
2741 	if (test)
2742 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2743 }
2744 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2745 
2746 void ath9k_hw_setopmode(struct ath_hw *ah)
2747 {
2748 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2749 }
2750 EXPORT_SYMBOL(ath9k_hw_setopmode);
2751 
2752 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2753 {
2754 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2755 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2756 }
2757 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2758 
2759 void ath9k_hw_write_associd(struct ath_hw *ah)
2760 {
2761 	struct ath_common *common = ath9k_hw_common(ah);
2762 
2763 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2764 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2765 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2766 }
2767 EXPORT_SYMBOL(ath9k_hw_write_associd);
2768 
2769 #define ATH9K_MAX_TSF_READ 10
2770 
2771 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2772 {
2773 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2774 	int i;
2775 
2776 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2777 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2778 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2779 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2780 		if (tsf_upper2 == tsf_upper1)
2781 			break;
2782 		tsf_upper1 = tsf_upper2;
2783 	}
2784 
2785 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2786 
2787 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2788 }
2789 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2790 
2791 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2792 {
2793 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2794 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2795 }
2796 EXPORT_SYMBOL(ath9k_hw_settsf64);
2797 
2798 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2799 {
2800 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2801 			   AH_TSF_WRITE_TIMEOUT))
2802 		ath_dbg(ath9k_hw_common(ah), RESET,
2803 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2804 
2805 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2806 }
2807 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2808 
2809 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2810 {
2811 	if (set)
2812 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2813 	else
2814 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2815 }
2816 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2817 
2818 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2819 {
2820 	u32 macmode;
2821 
2822 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2823 		macmode = AR_2040_JOINED_RX_CLEAR;
2824 	else
2825 		macmode = 0;
2826 
2827 	REG_WRITE(ah, AR_2040_MODE, macmode);
2828 }
2829 
2830 /* HW Generic timers configuration */
2831 
2832 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2833 {
2834 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2835 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2836 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2837 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2838 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2839 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2840 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2841 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2842 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2843 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2844 				AR_NDP2_TIMER_MODE, 0x0002},
2845 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2846 				AR_NDP2_TIMER_MODE, 0x0004},
2847 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2848 				AR_NDP2_TIMER_MODE, 0x0008},
2849 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2850 				AR_NDP2_TIMER_MODE, 0x0010},
2851 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2852 				AR_NDP2_TIMER_MODE, 0x0020},
2853 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2854 				AR_NDP2_TIMER_MODE, 0x0040},
2855 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2856 				AR_NDP2_TIMER_MODE, 0x0080}
2857 };
2858 
2859 /* HW generic timer primitives */
2860 
2861 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2862 {
2863 	return REG_READ(ah, AR_TSF_L32);
2864 }
2865 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2866 
2867 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2868 					  void (*trigger)(void *),
2869 					  void (*overflow)(void *),
2870 					  void *arg,
2871 					  u8 timer_index)
2872 {
2873 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2874 	struct ath_gen_timer *timer;
2875 
2876 	if ((timer_index < AR_FIRST_NDP_TIMER) ||
2877 		(timer_index >= ATH_MAX_GEN_TIMER))
2878 		return NULL;
2879 
2880 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2881 	if (timer == NULL)
2882 		return NULL;
2883 
2884 	/* allocate a hardware generic timer slot */
2885 	timer_table->timers[timer_index] = timer;
2886 	timer->index = timer_index;
2887 	timer->trigger = trigger;
2888 	timer->overflow = overflow;
2889 	timer->arg = arg;
2890 
2891 	return timer;
2892 }
2893 EXPORT_SYMBOL(ath_gen_timer_alloc);
2894 
2895 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2896 			      struct ath_gen_timer *timer,
2897 			      u32 timer_next,
2898 			      u32 timer_period)
2899 {
2900 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2901 	u32 mask = 0;
2902 
2903 	timer_table->timer_mask |= BIT(timer->index);
2904 
2905 	/*
2906 	 * Program generic timer registers
2907 	 */
2908 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2909 		 timer_next);
2910 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2911 		  timer_period);
2912 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2913 		    gen_tmr_configuration[timer->index].mode_mask);
2914 
2915 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2916 		/*
2917 		 * Starting from AR9462, each generic timer can select which tsf
2918 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2919 		 * 8 - 15  use tsf2.
2920 		 */
2921 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2922 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2923 				       (1 << timer->index));
2924 		else
2925 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2926 				       (1 << timer->index));
2927 	}
2928 
2929 	if (timer->trigger)
2930 		mask |= SM(AR_GENTMR_BIT(timer->index),
2931 			   AR_IMR_S5_GENTIMER_TRIG);
2932 	if (timer->overflow)
2933 		mask |= SM(AR_GENTMR_BIT(timer->index),
2934 			   AR_IMR_S5_GENTIMER_THRESH);
2935 
2936 	REG_SET_BIT(ah, AR_IMR_S5, mask);
2937 
2938 	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
2939 		ah->imask |= ATH9K_INT_GENTIMER;
2940 		ath9k_hw_set_interrupts(ah);
2941 	}
2942 }
2943 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2944 
2945 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2946 {
2947 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2948 
2949 	/* Clear generic timer enable bits. */
2950 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2951 			gen_tmr_configuration[timer->index].mode_mask);
2952 
2953 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2954 		/*
2955 		 * Need to switch back to TSF if it was using TSF2.
2956 		 */
2957 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
2958 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2959 				    (1 << timer->index));
2960 		}
2961 	}
2962 
2963 	/* Disable both trigger and thresh interrupt masks */
2964 	REG_CLR_BIT(ah, AR_IMR_S5,
2965 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2966 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2967 
2968 	timer_table->timer_mask &= ~BIT(timer->index);
2969 
2970 	if (timer_table->timer_mask == 0) {
2971 		ah->imask &= ~ATH9K_INT_GENTIMER;
2972 		ath9k_hw_set_interrupts(ah);
2973 	}
2974 }
2975 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2976 
2977 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2978 {
2979 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2980 
2981 	/* free the hardware generic timer slot */
2982 	timer_table->timers[timer->index] = NULL;
2983 	kfree(timer);
2984 }
2985 EXPORT_SYMBOL(ath_gen_timer_free);
2986 
2987 /*
2988  * Generic Timer Interrupts handling
2989  */
2990 void ath_gen_timer_isr(struct ath_hw *ah)
2991 {
2992 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2993 	struct ath_gen_timer *timer;
2994 	unsigned long trigger_mask, thresh_mask;
2995 	unsigned int index;
2996 
2997 	/* get hardware generic timer interrupt status */
2998 	trigger_mask = ah->intr_gen_timer_trigger;
2999 	thresh_mask = ah->intr_gen_timer_thresh;
3000 	trigger_mask &= timer_table->timer_mask;
3001 	thresh_mask &= timer_table->timer_mask;
3002 
3003 	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3004 		timer = timer_table->timers[index];
3005 		if (!timer)
3006 		    continue;
3007 		if (!timer->overflow)
3008 		    continue;
3009 
3010 		trigger_mask &= ~BIT(index);
3011 		timer->overflow(timer->arg);
3012 	}
3013 
3014 	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3015 		timer = timer_table->timers[index];
3016 		if (!timer)
3017 		    continue;
3018 		if (!timer->trigger)
3019 		    continue;
3020 		timer->trigger(timer->arg);
3021 	}
3022 }
3023 EXPORT_SYMBOL(ath_gen_timer_isr);
3024 
3025 /********/
3026 /* HTC  */
3027 /********/
3028 
3029 static struct {
3030 	u32 version;
3031 	const char * name;
3032 } ath_mac_bb_names[] = {
3033 	/* Devices with external radios */
3034 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3035 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3036 	{ AR_SREV_VERSION_9100,		"9100" },
3037 	{ AR_SREV_VERSION_9160,		"9160" },
3038 	/* Single-chip solutions */
3039 	{ AR_SREV_VERSION_9280,		"9280" },
3040 	{ AR_SREV_VERSION_9285,		"9285" },
3041 	{ AR_SREV_VERSION_9287,         "9287" },
3042 	{ AR_SREV_VERSION_9271,         "9271" },
3043 	{ AR_SREV_VERSION_9300,         "9300" },
3044 	{ AR_SREV_VERSION_9330,         "9330" },
3045 	{ AR_SREV_VERSION_9340,		"9340" },
3046 	{ AR_SREV_VERSION_9485,         "9485" },
3047 	{ AR_SREV_VERSION_9462,         "9462" },
3048 	{ AR_SREV_VERSION_9550,         "9550" },
3049 	{ AR_SREV_VERSION_9565,         "9565" },
3050 	{ AR_SREV_VERSION_9531,         "9531" },
3051 };
3052 
3053 /* For devices with external radios */
3054 static struct {
3055 	u16 version;
3056 	const char * name;
3057 } ath_rf_names[] = {
3058 	{ 0,				"5133" },
3059 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3060 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3061 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3062 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3063 };
3064 
3065 /*
3066  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3067  */
3068 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3069 {
3070 	int i;
3071 
3072 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3073 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3074 			return ath_mac_bb_names[i].name;
3075 		}
3076 	}
3077 
3078 	return "????";
3079 }
3080 
3081 /*
3082  * Return the RF name. "????" is returned if the RF is unknown.
3083  * Used for devices with external radios.
3084  */
3085 static const char *ath9k_hw_rf_name(u16 rf_version)
3086 {
3087 	int i;
3088 
3089 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3090 		if (ath_rf_names[i].version == rf_version) {
3091 			return ath_rf_names[i].name;
3092 		}
3093 	}
3094 
3095 	return "????";
3096 }
3097 
3098 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3099 {
3100 	int used;
3101 
3102 	/* chipsets >= AR9280 are single-chip */
3103 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3104 		used = scnprintf(hw_name, len,
3105 				 "Atheros AR%s Rev:%x",
3106 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3107 				 ah->hw_version.macRev);
3108 	}
3109 	else {
3110 		used = scnprintf(hw_name, len,
3111 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3112 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3113 				 ah->hw_version.macRev,
3114 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3115 						  & AR_RADIO_SREV_MAJOR)),
3116 				 ah->hw_version.phyRev);
3117 	}
3118 
3119 	hw_name[used] = '\0';
3120 }
3121 EXPORT_SYMBOL(ath9k_hw_name);
3122