xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision ab73b751)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 #include "debug.h"
28 #include "ath9k.h"
29 
30 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
31 
32 MODULE_AUTHOR("Atheros Communications");
33 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
34 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
35 MODULE_LICENSE("Dual BSD/GPL");
36 
37 static int __init ath9k_init(void)
38 {
39 	return 0;
40 }
41 module_init(ath9k_init);
42 
43 static void __exit ath9k_exit(void)
44 {
45 	return;
46 }
47 module_exit(ath9k_exit);
48 
49 /* Private hardware callbacks */
50 
51 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
52 {
53 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
54 }
55 
56 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
57 {
58 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
59 }
60 
61 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
62 					struct ath9k_channel *chan)
63 {
64 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
65 }
66 
67 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
68 {
69 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
70 		return;
71 
72 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
73 }
74 
75 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
76 {
77 	/* You will not have this callback if using the old ANI */
78 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
79 		return;
80 
81 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
82 }
83 
84 /********************/
85 /* Helper Functions */
86 /********************/
87 
88 #ifdef CONFIG_ATH9K_DEBUGFS
89 
90 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
91 {
92 	struct ath_softc *sc = common->priv;
93 	if (sync_cause)
94 		sc->debug.stats.istats.sync_cause_all++;
95 	if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
96 		sc->debug.stats.istats.sync_rtc_irq++;
97 	if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
98 		sc->debug.stats.istats.sync_mac_irq++;
99 	if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
100 		sc->debug.stats.istats.eeprom_illegal_access++;
101 	if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
102 		sc->debug.stats.istats.apb_timeout++;
103 	if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
104 		sc->debug.stats.istats.pci_mode_conflict++;
105 	if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
106 		sc->debug.stats.istats.host1_fatal++;
107 	if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
108 		sc->debug.stats.istats.host1_perr++;
109 	if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
110 		sc->debug.stats.istats.trcv_fifo_perr++;
111 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
112 		sc->debug.stats.istats.radm_cpl_ep++;
113 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
114 		sc->debug.stats.istats.radm_cpl_dllp_abort++;
115 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
116 		sc->debug.stats.istats.radm_cpl_tlp_abort++;
117 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
118 		sc->debug.stats.istats.radm_cpl_ecrc_err++;
119 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
120 		sc->debug.stats.istats.radm_cpl_timeout++;
121 	if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
122 		sc->debug.stats.istats.local_timeout++;
123 	if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
124 		sc->debug.stats.istats.pm_access++;
125 	if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
126 		sc->debug.stats.istats.mac_awake++;
127 	if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
128 		sc->debug.stats.istats.mac_asleep++;
129 	if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
130 		sc->debug.stats.istats.mac_sleep_access++;
131 }
132 #endif
133 
134 
135 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
136 {
137 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
138 	struct ath_common *common = ath9k_hw_common(ah);
139 	unsigned int clockrate;
140 
141 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
142 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
143 		clockrate = 117;
144 	else if (!ah->curchan) /* should really check for CCK instead */
145 		clockrate = ATH9K_CLOCK_RATE_CCK;
146 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
147 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
148 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
149 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
150 	else
151 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
152 
153 	if (conf_is_ht40(conf))
154 		clockrate *= 2;
155 
156 	if (ah->curchan) {
157 		if (IS_CHAN_HALF_RATE(ah->curchan))
158 			clockrate /= 2;
159 		if (IS_CHAN_QUARTER_RATE(ah->curchan))
160 			clockrate /= 4;
161 	}
162 
163 	common->clockrate = clockrate;
164 }
165 
166 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
167 {
168 	struct ath_common *common = ath9k_hw_common(ah);
169 
170 	return usecs * common->clockrate;
171 }
172 
173 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
174 {
175 	int i;
176 
177 	BUG_ON(timeout < AH_TIME_QUANTUM);
178 
179 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
180 		if ((REG_READ(ah, reg) & mask) == val)
181 			return true;
182 
183 		udelay(AH_TIME_QUANTUM);
184 	}
185 
186 	ath_dbg(ath9k_hw_common(ah), ANY,
187 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
188 		timeout, reg, REG_READ(ah, reg), mask, val);
189 
190 	return false;
191 }
192 EXPORT_SYMBOL(ath9k_hw_wait);
193 
194 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
195 			  int hw_delay)
196 {
197 	if (IS_CHAN_B(chan))
198 		hw_delay = (4 * hw_delay) / 22;
199 	else
200 		hw_delay /= 10;
201 
202 	if (IS_CHAN_HALF_RATE(chan))
203 		hw_delay *= 2;
204 	else if (IS_CHAN_QUARTER_RATE(chan))
205 		hw_delay *= 4;
206 
207 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
208 }
209 
210 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
211 			  int column, unsigned int *writecnt)
212 {
213 	int r;
214 
215 	ENABLE_REGWRITE_BUFFER(ah);
216 	for (r = 0; r < array->ia_rows; r++) {
217 		REG_WRITE(ah, INI_RA(array, r, 0),
218 			  INI_RA(array, r, column));
219 		DO_DELAY(*writecnt);
220 	}
221 	REGWRITE_BUFFER_FLUSH(ah);
222 }
223 
224 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
225 {
226 	u32 retval;
227 	int i;
228 
229 	for (i = 0, retval = 0; i < n; i++) {
230 		retval = (retval << 1) | (val & 1);
231 		val >>= 1;
232 	}
233 	return retval;
234 }
235 
236 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
237 			   u8 phy, int kbps,
238 			   u32 frameLen, u16 rateix,
239 			   bool shortPreamble)
240 {
241 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
242 
243 	if (kbps == 0)
244 		return 0;
245 
246 	switch (phy) {
247 	case WLAN_RC_PHY_CCK:
248 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
249 		if (shortPreamble)
250 			phyTime >>= 1;
251 		numBits = frameLen << 3;
252 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
253 		break;
254 	case WLAN_RC_PHY_OFDM:
255 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
256 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
257 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
258 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
259 			txTime = OFDM_SIFS_TIME_QUARTER
260 				+ OFDM_PREAMBLE_TIME_QUARTER
261 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
262 		} else if (ah->curchan &&
263 			   IS_CHAN_HALF_RATE(ah->curchan)) {
264 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
265 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
266 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
267 			txTime = OFDM_SIFS_TIME_HALF +
268 				OFDM_PREAMBLE_TIME_HALF
269 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
270 		} else {
271 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
272 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
273 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
274 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
275 				+ (numSymbols * OFDM_SYMBOL_TIME);
276 		}
277 		break;
278 	default:
279 		ath_err(ath9k_hw_common(ah),
280 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
281 		txTime = 0;
282 		break;
283 	}
284 
285 	return txTime;
286 }
287 EXPORT_SYMBOL(ath9k_hw_computetxtime);
288 
289 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
290 				  struct ath9k_channel *chan,
291 				  struct chan_centers *centers)
292 {
293 	int8_t extoff;
294 
295 	if (!IS_CHAN_HT40(chan)) {
296 		centers->ctl_center = centers->ext_center =
297 			centers->synth_center = chan->channel;
298 		return;
299 	}
300 
301 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
302 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
303 		centers->synth_center =
304 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
305 		extoff = 1;
306 	} else {
307 		centers->synth_center =
308 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
309 		extoff = -1;
310 	}
311 
312 	centers->ctl_center =
313 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
314 	/* 25 MHz spacing is supported by hw but not on upper layers */
315 	centers->ext_center =
316 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
317 }
318 
319 /******************/
320 /* Chip Revisions */
321 /******************/
322 
323 static void ath9k_hw_read_revisions(struct ath_hw *ah)
324 {
325 	u32 val;
326 
327 	switch (ah->hw_version.devid) {
328 	case AR5416_AR9100_DEVID:
329 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
330 		break;
331 	case AR9300_DEVID_AR9330:
332 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
333 		if (ah->get_mac_revision) {
334 			ah->hw_version.macRev = ah->get_mac_revision();
335 		} else {
336 			val = REG_READ(ah, AR_SREV);
337 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
338 		}
339 		return;
340 	case AR9300_DEVID_AR9340:
341 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
342 		val = REG_READ(ah, AR_SREV);
343 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
344 		return;
345 	}
346 
347 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
348 
349 	if (val == 0xFF) {
350 		val = REG_READ(ah, AR_SREV);
351 		ah->hw_version.macVersion =
352 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
353 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
354 
355 		if (AR_SREV_9462(ah))
356 			ah->is_pciexpress = true;
357 		else
358 			ah->is_pciexpress = (val &
359 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
360 	} else {
361 		if (!AR_SREV_9100(ah))
362 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
363 
364 		ah->hw_version.macRev = val & AR_SREV_REVISION;
365 
366 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
367 			ah->is_pciexpress = true;
368 	}
369 }
370 
371 /************************************/
372 /* HW Attach, Detach, Init Routines */
373 /************************************/
374 
375 static void ath9k_hw_disablepcie(struct ath_hw *ah)
376 {
377 	if (!AR_SREV_5416(ah))
378 		return;
379 
380 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
381 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
382 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
383 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
384 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
385 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
386 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
387 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
388 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
389 
390 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
391 }
392 
393 static void ath9k_hw_aspm_init(struct ath_hw *ah)
394 {
395 	struct ath_common *common = ath9k_hw_common(ah);
396 
397 	if (common->bus_ops->aspm_init)
398 		common->bus_ops->aspm_init(common);
399 }
400 
401 /* This should work for all families including legacy */
402 static bool ath9k_hw_chip_test(struct ath_hw *ah)
403 {
404 	struct ath_common *common = ath9k_hw_common(ah);
405 	u32 regAddr[2] = { AR_STA_ID0 };
406 	u32 regHold[2];
407 	static const u32 patternData[4] = {
408 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
409 	};
410 	int i, j, loop_max;
411 
412 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
413 		loop_max = 2;
414 		regAddr[1] = AR_PHY_BASE + (8 << 2);
415 	} else
416 		loop_max = 1;
417 
418 	for (i = 0; i < loop_max; i++) {
419 		u32 addr = regAddr[i];
420 		u32 wrData, rdData;
421 
422 		regHold[i] = REG_READ(ah, addr);
423 		for (j = 0; j < 0x100; j++) {
424 			wrData = (j << 16) | j;
425 			REG_WRITE(ah, addr, wrData);
426 			rdData = REG_READ(ah, addr);
427 			if (rdData != wrData) {
428 				ath_err(common,
429 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
430 					addr, wrData, rdData);
431 				return false;
432 			}
433 		}
434 		for (j = 0; j < 4; j++) {
435 			wrData = patternData[j];
436 			REG_WRITE(ah, addr, wrData);
437 			rdData = REG_READ(ah, addr);
438 			if (wrData != rdData) {
439 				ath_err(common,
440 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
441 					addr, wrData, rdData);
442 				return false;
443 			}
444 		}
445 		REG_WRITE(ah, regAddr[i], regHold[i]);
446 	}
447 	udelay(100);
448 
449 	return true;
450 }
451 
452 static void ath9k_hw_init_config(struct ath_hw *ah)
453 {
454 	int i;
455 
456 	ah->config.dma_beacon_response_time = 1;
457 	ah->config.sw_beacon_response_time = 6;
458 	ah->config.additional_swba_backoff = 0;
459 	ah->config.ack_6mb = 0x0;
460 	ah->config.cwm_ignore_extcca = 0;
461 	ah->config.pcie_clock_req = 0;
462 	ah->config.pcie_waen = 0;
463 	ah->config.analog_shiftreg = 1;
464 	ah->config.enable_ani = true;
465 
466 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
467 		ah->config.spurchans[i][0] = AR_NO_SPUR;
468 		ah->config.spurchans[i][1] = AR_NO_SPUR;
469 	}
470 
471 	/* PAPRD needs some more work to be enabled */
472 	ah->config.paprd_disable = 1;
473 
474 	ah->config.rx_intr_mitigation = true;
475 	ah->config.pcieSerDesWrite = true;
476 
477 	/*
478 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
479 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
480 	 * This means we use it for all AR5416 devices, and the few
481 	 * minor PCI AR9280 devices out there.
482 	 *
483 	 * Serialization is required because these devices do not handle
484 	 * well the case of two concurrent reads/writes due to the latency
485 	 * involved. During one read/write another read/write can be issued
486 	 * on another CPU while the previous read/write may still be working
487 	 * on our hardware, if we hit this case the hardware poops in a loop.
488 	 * We prevent this by serializing reads and writes.
489 	 *
490 	 * This issue is not present on PCI-Express devices or pre-AR5416
491 	 * devices (legacy, 802.11abg).
492 	 */
493 	if (num_possible_cpus() > 1)
494 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
495 }
496 
497 static void ath9k_hw_init_defaults(struct ath_hw *ah)
498 {
499 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
500 
501 	regulatory->country_code = CTRY_DEFAULT;
502 	regulatory->power_limit = MAX_RATE_POWER;
503 
504 	ah->hw_version.magic = AR5416_MAGIC;
505 	ah->hw_version.subvendorid = 0;
506 
507 	ah->atim_window = 0;
508 	ah->sta_id1_defaults =
509 		AR_STA_ID1_CRPT_MIC_ENABLE |
510 		AR_STA_ID1_MCAST_KSRCH;
511 	if (AR_SREV_9100(ah))
512 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
513 	ah->slottime = ATH9K_SLOT_TIME_9;
514 	ah->globaltxtimeout = (u32) -1;
515 	ah->power_mode = ATH9K_PM_UNDEFINED;
516 	ah->htc_reset_init = true;
517 }
518 
519 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
520 {
521 	struct ath_common *common = ath9k_hw_common(ah);
522 	u32 sum;
523 	int i;
524 	u16 eeval;
525 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
526 
527 	sum = 0;
528 	for (i = 0; i < 3; i++) {
529 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
530 		sum += eeval;
531 		common->macaddr[2 * i] = eeval >> 8;
532 		common->macaddr[2 * i + 1] = eeval & 0xff;
533 	}
534 	if (sum == 0 || sum == 0xffff * 3)
535 		return -EADDRNOTAVAIL;
536 
537 	return 0;
538 }
539 
540 static int ath9k_hw_post_init(struct ath_hw *ah)
541 {
542 	struct ath_common *common = ath9k_hw_common(ah);
543 	int ecode;
544 
545 	if (common->bus_ops->ath_bus_type != ATH_USB) {
546 		if (!ath9k_hw_chip_test(ah))
547 			return -ENODEV;
548 	}
549 
550 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
551 		ecode = ar9002_hw_rf_claim(ah);
552 		if (ecode != 0)
553 			return ecode;
554 	}
555 
556 	ecode = ath9k_hw_eeprom_init(ah);
557 	if (ecode != 0)
558 		return ecode;
559 
560 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
561 		ah->eep_ops->get_eeprom_ver(ah),
562 		ah->eep_ops->get_eeprom_rev(ah));
563 
564 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
565 	if (ecode) {
566 		ath_err(ath9k_hw_common(ah),
567 			"Failed allocating banks for external radio\n");
568 		ath9k_hw_rf_free_ext_banks(ah);
569 		return ecode;
570 	}
571 
572 	if (ah->config.enable_ani) {
573 		ath9k_hw_ani_setup(ah);
574 		ath9k_hw_ani_init(ah);
575 	}
576 
577 	return 0;
578 }
579 
580 static void ath9k_hw_attach_ops(struct ath_hw *ah)
581 {
582 	if (AR_SREV_9300_20_OR_LATER(ah))
583 		ar9003_hw_attach_ops(ah);
584 	else
585 		ar9002_hw_attach_ops(ah);
586 }
587 
588 /* Called for all hardware families */
589 static int __ath9k_hw_init(struct ath_hw *ah)
590 {
591 	struct ath_common *common = ath9k_hw_common(ah);
592 	int r = 0;
593 
594 	ath9k_hw_read_revisions(ah);
595 
596 	/*
597 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
598 	 * We need to do this to avoid RMW of this register. We cannot
599 	 * read the reg when chip is asleep.
600 	 */
601 	ah->WARegVal = REG_READ(ah, AR_WA);
602 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
603 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
604 
605 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
606 		ath_err(common, "Couldn't reset chip\n");
607 		return -EIO;
608 	}
609 
610 	if (AR_SREV_9462(ah))
611 		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
612 
613 	ath9k_hw_init_defaults(ah);
614 	ath9k_hw_init_config(ah);
615 
616 	ath9k_hw_attach_ops(ah);
617 
618 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
619 		ath_err(common, "Couldn't wakeup chip\n");
620 		return -EIO;
621 	}
622 
623 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
624 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
625 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
626 		     !ah->is_pciexpress)) {
627 			ah->config.serialize_regmode =
628 				SER_REG_MODE_ON;
629 		} else {
630 			ah->config.serialize_regmode =
631 				SER_REG_MODE_OFF;
632 		}
633 	}
634 
635 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
636 		ah->config.serialize_regmode);
637 
638 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
639 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
640 	else
641 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
642 
643 	switch (ah->hw_version.macVersion) {
644 	case AR_SREV_VERSION_5416_PCI:
645 	case AR_SREV_VERSION_5416_PCIE:
646 	case AR_SREV_VERSION_9160:
647 	case AR_SREV_VERSION_9100:
648 	case AR_SREV_VERSION_9280:
649 	case AR_SREV_VERSION_9285:
650 	case AR_SREV_VERSION_9287:
651 	case AR_SREV_VERSION_9271:
652 	case AR_SREV_VERSION_9300:
653 	case AR_SREV_VERSION_9330:
654 	case AR_SREV_VERSION_9485:
655 	case AR_SREV_VERSION_9340:
656 	case AR_SREV_VERSION_9462:
657 		break;
658 	default:
659 		ath_err(common,
660 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
661 			ah->hw_version.macVersion, ah->hw_version.macRev);
662 		return -EOPNOTSUPP;
663 	}
664 
665 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
666 	    AR_SREV_9330(ah))
667 		ah->is_pciexpress = false;
668 
669 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
670 	ath9k_hw_init_cal_settings(ah);
671 
672 	ah->ani_function = ATH9K_ANI_ALL;
673 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
674 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
675 	if (!AR_SREV_9300_20_OR_LATER(ah))
676 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
677 
678 	/* disable ANI for 9340 */
679 	if (AR_SREV_9340(ah))
680 		ah->config.enable_ani = false;
681 
682 	ath9k_hw_init_mode_regs(ah);
683 
684 	if (!ah->is_pciexpress)
685 		ath9k_hw_disablepcie(ah);
686 
687 	r = ath9k_hw_post_init(ah);
688 	if (r)
689 		return r;
690 
691 	ath9k_hw_init_mode_gain_regs(ah);
692 	r = ath9k_hw_fill_cap_info(ah);
693 	if (r)
694 		return r;
695 
696 	if (ah->is_pciexpress)
697 		ath9k_hw_aspm_init(ah);
698 
699 	r = ath9k_hw_init_macaddr(ah);
700 	if (r) {
701 		ath_err(common, "Failed to initialize MAC address\n");
702 		return r;
703 	}
704 
705 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
706 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
707 	else
708 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
709 
710 	if (AR_SREV_9330(ah))
711 		ah->bb_watchdog_timeout_ms = 85;
712 	else
713 		ah->bb_watchdog_timeout_ms = 25;
714 
715 	common->state = ATH_HW_INITIALIZED;
716 
717 	return 0;
718 }
719 
720 int ath9k_hw_init(struct ath_hw *ah)
721 {
722 	int ret;
723 	struct ath_common *common = ath9k_hw_common(ah);
724 
725 	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
726 	switch (ah->hw_version.devid) {
727 	case AR5416_DEVID_PCI:
728 	case AR5416_DEVID_PCIE:
729 	case AR5416_AR9100_DEVID:
730 	case AR9160_DEVID_PCI:
731 	case AR9280_DEVID_PCI:
732 	case AR9280_DEVID_PCIE:
733 	case AR9285_DEVID_PCIE:
734 	case AR9287_DEVID_PCI:
735 	case AR9287_DEVID_PCIE:
736 	case AR2427_DEVID_PCIE:
737 	case AR9300_DEVID_PCIE:
738 	case AR9300_DEVID_AR9485_PCIE:
739 	case AR9300_DEVID_AR9330:
740 	case AR9300_DEVID_AR9340:
741 	case AR9300_DEVID_AR9580:
742 	case AR9300_DEVID_AR9462:
743 		break;
744 	default:
745 		if (common->bus_ops->ath_bus_type == ATH_USB)
746 			break;
747 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
748 			ah->hw_version.devid);
749 		return -EOPNOTSUPP;
750 	}
751 
752 	ret = __ath9k_hw_init(ah);
753 	if (ret) {
754 		ath_err(common,
755 			"Unable to initialize hardware; initialization status: %d\n",
756 			ret);
757 		return ret;
758 	}
759 
760 	return 0;
761 }
762 EXPORT_SYMBOL(ath9k_hw_init);
763 
764 static void ath9k_hw_init_qos(struct ath_hw *ah)
765 {
766 	ENABLE_REGWRITE_BUFFER(ah);
767 
768 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
769 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
770 
771 	REG_WRITE(ah, AR_QOS_NO_ACK,
772 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
773 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
774 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
775 
776 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
777 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
778 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
779 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
780 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
781 
782 	REGWRITE_BUFFER_FLUSH(ah);
783 }
784 
785 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
786 {
787 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
788 	udelay(100);
789 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
790 
791 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
792 		udelay(100);
793 
794 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
795 }
796 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
797 
798 static void ath9k_hw_init_pll(struct ath_hw *ah,
799 			      struct ath9k_channel *chan)
800 {
801 	u32 pll;
802 
803 	if (AR_SREV_9485(ah)) {
804 
805 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
806 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
807 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
808 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
809 			      AR_CH0_DPLL2_KD, 0x40);
810 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
811 			      AR_CH0_DPLL2_KI, 0x4);
812 
813 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
814 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
815 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
816 			      AR_CH0_BB_DPLL1_NINI, 0x58);
817 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
818 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
819 
820 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
821 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
822 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
823 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
824 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
825 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
826 
827 		/* program BB PLL phase_shift to 0x6 */
828 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
829 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
830 
831 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
832 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
833 		udelay(1000);
834 	} else if (AR_SREV_9330(ah)) {
835 		u32 ddr_dpll2, pll_control2, kd;
836 
837 		if (ah->is_clk_25mhz) {
838 			ddr_dpll2 = 0x18e82f01;
839 			pll_control2 = 0xe04a3d;
840 			kd = 0x1d;
841 		} else {
842 			ddr_dpll2 = 0x19e82f01;
843 			pll_control2 = 0x886666;
844 			kd = 0x3d;
845 		}
846 
847 		/* program DDR PLL ki and kd value */
848 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
849 
850 		/* program DDR PLL phase_shift */
851 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
852 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
853 
854 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
855 		udelay(1000);
856 
857 		/* program refdiv, nint, frac to RTC register */
858 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
859 
860 		/* program BB PLL kd and ki value */
861 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
862 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
863 
864 		/* program BB PLL phase_shift */
865 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
866 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
867 	} else if (AR_SREV_9340(ah)) {
868 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
869 
870 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
871 		udelay(1000);
872 
873 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
874 		udelay(100);
875 
876 		if (ah->is_clk_25mhz) {
877 			pll2_divint = 0x54;
878 			pll2_divfrac = 0x1eb85;
879 			refdiv = 3;
880 		} else {
881 			pll2_divint = 88;
882 			pll2_divfrac = 0;
883 			refdiv = 5;
884 		}
885 
886 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
887 		regval |= (0x1 << 16);
888 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
889 		udelay(100);
890 
891 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
892 			  (pll2_divint << 18) | pll2_divfrac);
893 		udelay(100);
894 
895 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
896 		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
897 			 (0x4 << 26) | (0x18 << 19);
898 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
899 		REG_WRITE(ah, AR_PHY_PLL_MODE,
900 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
901 		udelay(1000);
902 	}
903 
904 	pll = ath9k_hw_compute_pll_control(ah, chan);
905 
906 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
907 
908 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
909 		udelay(1000);
910 
911 	/* Switch the core clock for ar9271 to 117Mhz */
912 	if (AR_SREV_9271(ah)) {
913 		udelay(500);
914 		REG_WRITE(ah, 0x50040, 0x304);
915 	}
916 
917 	udelay(RTC_PLL_SETTLE_DELAY);
918 
919 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
920 
921 	if (AR_SREV_9340(ah)) {
922 		if (ah->is_clk_25mhz) {
923 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
924 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
925 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
926 		} else {
927 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
928 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
929 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
930 		}
931 		udelay(100);
932 	}
933 }
934 
935 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
936 					  enum nl80211_iftype opmode)
937 {
938 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
939 	u32 imr_reg = AR_IMR_TXERR |
940 		AR_IMR_TXURN |
941 		AR_IMR_RXERR |
942 		AR_IMR_RXORN |
943 		AR_IMR_BCNMISC;
944 
945 	if (AR_SREV_9340(ah))
946 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
947 
948 	if (AR_SREV_9300_20_OR_LATER(ah)) {
949 		imr_reg |= AR_IMR_RXOK_HP;
950 		if (ah->config.rx_intr_mitigation)
951 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
952 		else
953 			imr_reg |= AR_IMR_RXOK_LP;
954 
955 	} else {
956 		if (ah->config.rx_intr_mitigation)
957 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
958 		else
959 			imr_reg |= AR_IMR_RXOK;
960 	}
961 
962 	if (ah->config.tx_intr_mitigation)
963 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
964 	else
965 		imr_reg |= AR_IMR_TXOK;
966 
967 	if (opmode == NL80211_IFTYPE_AP)
968 		imr_reg |= AR_IMR_MIB;
969 
970 	ENABLE_REGWRITE_BUFFER(ah);
971 
972 	REG_WRITE(ah, AR_IMR, imr_reg);
973 	ah->imrs2_reg |= AR_IMR_S2_GTT;
974 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
975 
976 	if (!AR_SREV_9100(ah)) {
977 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
978 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
979 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
980 	}
981 
982 	REGWRITE_BUFFER_FLUSH(ah);
983 
984 	if (AR_SREV_9300_20_OR_LATER(ah)) {
985 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
986 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
987 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
988 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
989 	}
990 }
991 
992 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
993 {
994 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
995 	val = min(val, (u32) 0xFFFF);
996 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
997 }
998 
999 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1000 {
1001 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1002 	val = min(val, (u32) 0xFFFF);
1003 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1004 }
1005 
1006 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1007 {
1008 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1009 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1010 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1011 }
1012 
1013 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1014 {
1015 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1016 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1017 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1018 }
1019 
1020 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1021 {
1022 	if (tu > 0xFFFF) {
1023 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1024 			tu);
1025 		ah->globaltxtimeout = (u32) -1;
1026 		return false;
1027 	} else {
1028 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1029 		ah->globaltxtimeout = tu;
1030 		return true;
1031 	}
1032 }
1033 
1034 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1035 {
1036 	struct ath_common *common = ath9k_hw_common(ah);
1037 	struct ieee80211_conf *conf = &common->hw->conf;
1038 	const struct ath9k_channel *chan = ah->curchan;
1039 	int acktimeout, ctstimeout, ack_offset = 0;
1040 	int slottime;
1041 	int sifstime;
1042 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1043 	u32 reg;
1044 
1045 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1046 		ah->misc_mode);
1047 
1048 	if (!chan)
1049 		return;
1050 
1051 	if (ah->misc_mode != 0)
1052 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1053 
1054 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1055 		rx_lat = 41;
1056 	else
1057 		rx_lat = 37;
1058 	tx_lat = 54;
1059 
1060 	if (IS_CHAN_5GHZ(chan))
1061 		sifstime = 16;
1062 	else
1063 		sifstime = 10;
1064 
1065 	if (IS_CHAN_HALF_RATE(chan)) {
1066 		eifs = 175;
1067 		rx_lat *= 2;
1068 		tx_lat *= 2;
1069 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1070 		    tx_lat += 11;
1071 
1072 		sifstime *= 2;
1073 		ack_offset = 16;
1074 		slottime = 13;
1075 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1076 		eifs = 340;
1077 		rx_lat = (rx_lat * 4) - 1;
1078 		tx_lat *= 4;
1079 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1080 		    tx_lat += 22;
1081 
1082 		sifstime *= 4;
1083 		ack_offset = 32;
1084 		slottime = 21;
1085 	} else {
1086 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1087 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1088 			reg = AR_USEC_ASYNC_FIFO;
1089 		} else {
1090 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1091 				common->clockrate;
1092 			reg = REG_READ(ah, AR_USEC);
1093 		}
1094 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1095 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1096 
1097 		slottime = ah->slottime;
1098 	}
1099 
1100 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1101 	acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
1102 	ctstimeout = acktimeout;
1103 
1104 	/*
1105 	 * Workaround for early ACK timeouts, add an offset to match the
1106 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1107 	 * This was initially only meant to work around an issue with delayed
1108 	 * BA frames in some implementations, but it has been found to fix ACK
1109 	 * timeout issues in other cases as well.
1110 	 */
1111 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
1112 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1113 		acktimeout += 64 - sifstime - ah->slottime;
1114 		ctstimeout += 48 - sifstime - ah->slottime;
1115 	}
1116 
1117 
1118 	ath9k_hw_set_sifs_time(ah, sifstime);
1119 	ath9k_hw_setslottime(ah, slottime);
1120 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1121 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1122 	if (ah->globaltxtimeout != (u32) -1)
1123 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1124 
1125 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1126 	REG_RMW(ah, AR_USEC,
1127 		(common->clockrate - 1) |
1128 		SM(rx_lat, AR_USEC_RX_LAT) |
1129 		SM(tx_lat, AR_USEC_TX_LAT),
1130 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1131 
1132 }
1133 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1134 
1135 void ath9k_hw_deinit(struct ath_hw *ah)
1136 {
1137 	struct ath_common *common = ath9k_hw_common(ah);
1138 
1139 	if (common->state < ATH_HW_INITIALIZED)
1140 		goto free_hw;
1141 
1142 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1143 
1144 free_hw:
1145 	ath9k_hw_rf_free_ext_banks(ah);
1146 }
1147 EXPORT_SYMBOL(ath9k_hw_deinit);
1148 
1149 /*******/
1150 /* INI */
1151 /*******/
1152 
1153 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1154 {
1155 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1156 
1157 	if (IS_CHAN_B(chan))
1158 		ctl |= CTL_11B;
1159 	else if (IS_CHAN_G(chan))
1160 		ctl |= CTL_11G;
1161 	else
1162 		ctl |= CTL_11A;
1163 
1164 	return ctl;
1165 }
1166 
1167 /****************************************/
1168 /* Reset and Channel Switching Routines */
1169 /****************************************/
1170 
1171 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1172 {
1173 	struct ath_common *common = ath9k_hw_common(ah);
1174 
1175 	ENABLE_REGWRITE_BUFFER(ah);
1176 
1177 	/*
1178 	 * set AHB_MODE not to do cacheline prefetches
1179 	*/
1180 	if (!AR_SREV_9300_20_OR_LATER(ah))
1181 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1182 
1183 	/*
1184 	 * let mac dma reads be in 128 byte chunks
1185 	 */
1186 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1187 
1188 	REGWRITE_BUFFER_FLUSH(ah);
1189 
1190 	/*
1191 	 * Restore TX Trigger Level to its pre-reset value.
1192 	 * The initial value depends on whether aggregation is enabled, and is
1193 	 * adjusted whenever underruns are detected.
1194 	 */
1195 	if (!AR_SREV_9300_20_OR_LATER(ah))
1196 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1197 
1198 	ENABLE_REGWRITE_BUFFER(ah);
1199 
1200 	/*
1201 	 * let mac dma writes be in 128 byte chunks
1202 	 */
1203 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1204 
1205 	/*
1206 	 * Setup receive FIFO threshold to hold off TX activities
1207 	 */
1208 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1209 
1210 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1211 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1212 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1213 
1214 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1215 			ah->caps.rx_status_len);
1216 	}
1217 
1218 	/*
1219 	 * reduce the number of usable entries in PCU TXBUF to avoid
1220 	 * wrap around issues.
1221 	 */
1222 	if (AR_SREV_9285(ah)) {
1223 		/* For AR9285 the number of Fifos are reduced to half.
1224 		 * So set the usable tx buf size also to half to
1225 		 * avoid data/delimiter underruns
1226 		 */
1227 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1228 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1229 	} else if (!AR_SREV_9271(ah)) {
1230 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1231 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1232 	}
1233 
1234 	REGWRITE_BUFFER_FLUSH(ah);
1235 
1236 	if (AR_SREV_9300_20_OR_LATER(ah))
1237 		ath9k_hw_reset_txstatus_ring(ah);
1238 }
1239 
1240 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1241 {
1242 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1243 	u32 set = AR_STA_ID1_KSRCH_MODE;
1244 
1245 	switch (opmode) {
1246 	case NL80211_IFTYPE_ADHOC:
1247 	case NL80211_IFTYPE_MESH_POINT:
1248 		set |= AR_STA_ID1_ADHOC;
1249 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1250 		break;
1251 	case NL80211_IFTYPE_AP:
1252 		set |= AR_STA_ID1_STA_AP;
1253 		/* fall through */
1254 	case NL80211_IFTYPE_STATION:
1255 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1256 		break;
1257 	default:
1258 		if (!ah->is_monitoring)
1259 			set = 0;
1260 		break;
1261 	}
1262 	REG_RMW(ah, AR_STA_ID1, set, mask);
1263 }
1264 
1265 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1266 				   u32 *coef_mantissa, u32 *coef_exponent)
1267 {
1268 	u32 coef_exp, coef_man;
1269 
1270 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1271 		if ((coef_scaled >> coef_exp) & 0x1)
1272 			break;
1273 
1274 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1275 
1276 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1277 
1278 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1279 	*coef_exponent = coef_exp - 16;
1280 }
1281 
1282 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1283 {
1284 	u32 rst_flags;
1285 	u32 tmpReg;
1286 
1287 	if (AR_SREV_9100(ah)) {
1288 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1289 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1290 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1291 	}
1292 
1293 	ENABLE_REGWRITE_BUFFER(ah);
1294 
1295 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1296 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1297 		udelay(10);
1298 	}
1299 
1300 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1301 		  AR_RTC_FORCE_WAKE_ON_INT);
1302 
1303 	if (AR_SREV_9100(ah)) {
1304 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1305 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1306 	} else {
1307 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1308 		if (tmpReg &
1309 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1310 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1311 			u32 val;
1312 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1313 
1314 			val = AR_RC_HOSTIF;
1315 			if (!AR_SREV_9300_20_OR_LATER(ah))
1316 				val |= AR_RC_AHB;
1317 			REG_WRITE(ah, AR_RC, val);
1318 
1319 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1320 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1321 
1322 		rst_flags = AR_RTC_RC_MAC_WARM;
1323 		if (type == ATH9K_RESET_COLD)
1324 			rst_flags |= AR_RTC_RC_MAC_COLD;
1325 	}
1326 
1327 	if (AR_SREV_9330(ah)) {
1328 		int npend = 0;
1329 		int i;
1330 
1331 		/* AR9330 WAR:
1332 		 * call external reset function to reset WMAC if:
1333 		 * - doing a cold reset
1334 		 * - we have pending frames in the TX queues
1335 		 */
1336 
1337 		for (i = 0; i < AR_NUM_QCU; i++) {
1338 			npend = ath9k_hw_numtxpending(ah, i);
1339 			if (npend)
1340 				break;
1341 		}
1342 
1343 		if (ah->external_reset &&
1344 		    (npend || type == ATH9K_RESET_COLD)) {
1345 			int reset_err = 0;
1346 
1347 			ath_dbg(ath9k_hw_common(ah), RESET,
1348 				"reset MAC via external reset\n");
1349 
1350 			reset_err = ah->external_reset();
1351 			if (reset_err) {
1352 				ath_err(ath9k_hw_common(ah),
1353 					"External reset failed, err=%d\n",
1354 					reset_err);
1355 				return false;
1356 			}
1357 
1358 			REG_WRITE(ah, AR_RTC_RESET, 1);
1359 		}
1360 	}
1361 
1362 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1363 
1364 	REGWRITE_BUFFER_FLUSH(ah);
1365 
1366 	udelay(50);
1367 
1368 	REG_WRITE(ah, AR_RTC_RC, 0);
1369 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1370 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1371 		return false;
1372 	}
1373 
1374 	if (!AR_SREV_9100(ah))
1375 		REG_WRITE(ah, AR_RC, 0);
1376 
1377 	if (AR_SREV_9100(ah))
1378 		udelay(50);
1379 
1380 	return true;
1381 }
1382 
1383 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1384 {
1385 	ENABLE_REGWRITE_BUFFER(ah);
1386 
1387 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1388 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1389 		udelay(10);
1390 	}
1391 
1392 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1393 		  AR_RTC_FORCE_WAKE_ON_INT);
1394 
1395 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1396 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1397 
1398 	REG_WRITE(ah, AR_RTC_RESET, 0);
1399 
1400 	REGWRITE_BUFFER_FLUSH(ah);
1401 
1402 	if (!AR_SREV_9300_20_OR_LATER(ah))
1403 		udelay(2);
1404 
1405 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1406 		REG_WRITE(ah, AR_RC, 0);
1407 
1408 	REG_WRITE(ah, AR_RTC_RESET, 1);
1409 
1410 	if (!ath9k_hw_wait(ah,
1411 			   AR_RTC_STATUS,
1412 			   AR_RTC_STATUS_M,
1413 			   AR_RTC_STATUS_ON,
1414 			   AH_WAIT_TIMEOUT)) {
1415 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1416 		return false;
1417 	}
1418 
1419 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1420 }
1421 
1422 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1423 {
1424 	bool ret = false;
1425 
1426 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1427 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1428 		udelay(10);
1429 	}
1430 
1431 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1432 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1433 
1434 	switch (type) {
1435 	case ATH9K_RESET_POWER_ON:
1436 		ret = ath9k_hw_set_reset_power_on(ah);
1437 		break;
1438 	case ATH9K_RESET_WARM:
1439 	case ATH9K_RESET_COLD:
1440 		ret = ath9k_hw_set_reset(ah, type);
1441 		break;
1442 	default:
1443 		break;
1444 	}
1445 
1446 	if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
1447 		REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
1448 
1449 	return ret;
1450 }
1451 
1452 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1453 				struct ath9k_channel *chan)
1454 {
1455 	int reset_type = ATH9K_RESET_WARM;
1456 
1457 	if (AR_SREV_9280(ah)) {
1458 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1459 			reset_type = ATH9K_RESET_POWER_ON;
1460 		else
1461 			reset_type = ATH9K_RESET_COLD;
1462 	}
1463 
1464 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1465 		return false;
1466 
1467 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1468 		return false;
1469 
1470 	ah->chip_fullsleep = false;
1471 
1472 	if (AR_SREV_9330(ah))
1473 		ar9003_hw_internal_regulator_apply(ah);
1474 	ath9k_hw_init_pll(ah, chan);
1475 	ath9k_hw_set_rfmode(ah, chan);
1476 
1477 	return true;
1478 }
1479 
1480 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1481 				    struct ath9k_channel *chan)
1482 {
1483 	struct ath_common *common = ath9k_hw_common(ah);
1484 	u32 qnum;
1485 	int r;
1486 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1487 	bool band_switch, mode_diff;
1488 	u8 ini_reloaded;
1489 
1490 	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1491 		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1492 						    CHANNEL_5GHZ));
1493 	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1494 
1495 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1496 		if (ath9k_hw_numtxpending(ah, qnum)) {
1497 			ath_dbg(common, QUEUE,
1498 				"Transmit frames pending on queue %d\n", qnum);
1499 			return false;
1500 		}
1501 	}
1502 
1503 	if (!ath9k_hw_rfbus_req(ah)) {
1504 		ath_err(common, "Could not kill baseband RX\n");
1505 		return false;
1506 	}
1507 
1508 	if (edma && (band_switch || mode_diff)) {
1509 		ath9k_hw_mark_phy_inactive(ah);
1510 		udelay(5);
1511 
1512 		ath9k_hw_init_pll(ah, NULL);
1513 
1514 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1515 			ath_err(common, "Failed to do fast channel change\n");
1516 			return false;
1517 		}
1518 	}
1519 
1520 	ath9k_hw_set_channel_regs(ah, chan);
1521 
1522 	r = ath9k_hw_rf_set_freq(ah, chan);
1523 	if (r) {
1524 		ath_err(common, "Failed to set channel\n");
1525 		return false;
1526 	}
1527 	ath9k_hw_set_clockrate(ah);
1528 	ath9k_hw_apply_txpower(ah, chan, false);
1529 	ath9k_hw_rfbus_done(ah);
1530 
1531 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1532 		ath9k_hw_set_delta_slope(ah, chan);
1533 
1534 	ath9k_hw_spur_mitigate_freq(ah, chan);
1535 
1536 	if (edma && (band_switch || mode_diff)) {
1537 		ah->ah_flags |= AH_FASTCC;
1538 		if (band_switch || ini_reloaded)
1539 			ah->eep_ops->set_board_values(ah, chan);
1540 
1541 		ath9k_hw_init_bb(ah, chan);
1542 
1543 		if (band_switch || ini_reloaded)
1544 			ath9k_hw_init_cal(ah, chan);
1545 		ah->ah_flags &= ~AH_FASTCC;
1546 	}
1547 
1548 	return true;
1549 }
1550 
1551 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1552 {
1553 	u32 gpio_mask = ah->gpio_mask;
1554 	int i;
1555 
1556 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1557 		if (!(gpio_mask & 1))
1558 			continue;
1559 
1560 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1561 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1562 	}
1563 }
1564 
1565 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1566 			       int *hang_state, int *hang_pos)
1567 {
1568 	static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1569 	u32 chain_state, dcs_pos, i;
1570 
1571 	for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1572 		chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1573 		for (i = 0; i < 3; i++) {
1574 			if (chain_state == dcu_chain_state[i]) {
1575 				*hang_state = chain_state;
1576 				*hang_pos = dcs_pos;
1577 				return true;
1578 			}
1579 		}
1580 	}
1581 	return false;
1582 }
1583 
1584 #define DCU_COMPLETE_STATE        1
1585 #define DCU_COMPLETE_STATE_MASK 0x3
1586 #define NUM_STATUS_READS         50
1587 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1588 {
1589 	u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1590 	u32 i, hang_pos, hang_state, num_state = 6;
1591 
1592 	comp_state = REG_READ(ah, AR_DMADBG_6);
1593 
1594 	if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1595 		ath_dbg(ath9k_hw_common(ah), RESET,
1596 			"MAC Hang signature not found at DCU complete\n");
1597 		return false;
1598 	}
1599 
1600 	chain_state = REG_READ(ah, dcs_reg);
1601 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1602 		goto hang_check_iter;
1603 
1604 	dcs_reg = AR_DMADBG_5;
1605 	num_state = 4;
1606 	chain_state = REG_READ(ah, dcs_reg);
1607 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1608 		goto hang_check_iter;
1609 
1610 	ath_dbg(ath9k_hw_common(ah), RESET,
1611 		"MAC Hang signature 1 not found\n");
1612 	return false;
1613 
1614 hang_check_iter:
1615 	ath_dbg(ath9k_hw_common(ah), RESET,
1616 		"DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1617 		chain_state, comp_state, hang_state, hang_pos);
1618 
1619 	for (i = 0; i < NUM_STATUS_READS; i++) {
1620 		chain_state = REG_READ(ah, dcs_reg);
1621 		chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1622 		comp_state = REG_READ(ah, AR_DMADBG_6);
1623 
1624 		if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1625 					DCU_COMPLETE_STATE) ||
1626 		    (chain_state != hang_state))
1627 			return false;
1628 	}
1629 
1630 	ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1631 
1632 	return true;
1633 }
1634 
1635 bool ath9k_hw_check_alive(struct ath_hw *ah)
1636 {
1637 	int count = 50;
1638 	u32 reg;
1639 
1640 	if (AR_SREV_9300(ah))
1641 		return !ath9k_hw_detect_mac_hang(ah);
1642 
1643 	if (AR_SREV_9285_12_OR_LATER(ah))
1644 		return true;
1645 
1646 	do {
1647 		reg = REG_READ(ah, AR_OBS_BUS_1);
1648 
1649 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1650 			continue;
1651 
1652 		switch (reg & 0x7E000B00) {
1653 		case 0x1E000000:
1654 		case 0x52000B00:
1655 		case 0x18000B00:
1656 			continue;
1657 		default:
1658 			return true;
1659 		}
1660 	} while (count-- > 0);
1661 
1662 	return false;
1663 }
1664 EXPORT_SYMBOL(ath9k_hw_check_alive);
1665 
1666 /*
1667  * Fast channel change:
1668  * (Change synthesizer based on channel freq without resetting chip)
1669  *
1670  * Don't do FCC when
1671  *   - Flag is not set
1672  *   - Chip is just coming out of full sleep
1673  *   - Channel to be set is same as current channel
1674  *   - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
1675  */
1676 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1677 {
1678 	struct ath_common *common = ath9k_hw_common(ah);
1679 	int ret;
1680 
1681 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1682 		goto fail;
1683 
1684 	if (ah->chip_fullsleep)
1685 		goto fail;
1686 
1687 	if (!ah->curchan)
1688 		goto fail;
1689 
1690 	if (chan->channel == ah->curchan->channel)
1691 		goto fail;
1692 
1693 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1694 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1695 		goto fail;
1696 
1697 	if ((chan->channelFlags & CHANNEL_ALL) !=
1698 	    (ah->curchan->channelFlags & CHANNEL_ALL))
1699 		goto fail;
1700 
1701 	if (!ath9k_hw_check_alive(ah))
1702 		goto fail;
1703 
1704 	/*
1705 	 * For AR9462, make sure that calibration data for
1706 	 * re-using are present.
1707 	 */
1708 	if (AR_SREV_9462(ah) && (ah->caldata &&
1709 				 (!ah->caldata->done_txiqcal_once ||
1710 				  !ah->caldata->done_txclcal_once ||
1711 				  !ah->caldata->rtt_done)))
1712 		goto fail;
1713 
1714 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1715 		ah->curchan->channel, chan->channel);
1716 
1717 	ret = ath9k_hw_channel_change(ah, chan);
1718 	if (!ret)
1719 		goto fail;
1720 
1721 	ath9k_hw_loadnf(ah, ah->curchan);
1722 	ath9k_hw_start_nfcal(ah, true);
1723 
1724 	if ((ah->caps.hw_caps & ATH9K_HW_CAP_MCI) && ar9003_mci_is_ready(ah))
1725 		ar9003_mci_2g5g_switch(ah, true);
1726 
1727 	if (AR_SREV_9271(ah))
1728 		ar9002_hw_load_ani_reg(ah, chan);
1729 
1730 	return 0;
1731 fail:
1732 	return -EINVAL;
1733 }
1734 
1735 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1736 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1737 {
1738 	struct ath_common *common = ath9k_hw_common(ah);
1739 	u32 saveLedState;
1740 	u32 saveDefAntenna;
1741 	u32 macStaId1;
1742 	u64 tsf = 0;
1743 	int i, r;
1744 	bool start_mci_reset = false;
1745 	bool mci = !!(ah->caps.hw_caps & ATH9K_HW_CAP_MCI);
1746 	bool save_fullsleep = ah->chip_fullsleep;
1747 
1748 	if (mci) {
1749 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1750 		if (start_mci_reset)
1751 			return 0;
1752 	}
1753 
1754 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1755 		return -EIO;
1756 
1757 	if (ah->curchan && !ah->chip_fullsleep)
1758 		ath9k_hw_getnf(ah, ah->curchan);
1759 
1760 	ah->caldata = caldata;
1761 	if (caldata &&
1762 	    (chan->channel != caldata->channel ||
1763 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1764 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1765 		/* Operating channel changed, reset channel calibration data */
1766 		memset(caldata, 0, sizeof(*caldata));
1767 		ath9k_init_nfcal_hist_buffer(ah, chan);
1768 	}
1769 	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1770 
1771 	if (fastcc) {
1772 		r = ath9k_hw_do_fastcc(ah, chan);
1773 		if (!r)
1774 			return r;
1775 	}
1776 
1777 	if (mci)
1778 		ar9003_mci_stop_bt(ah, save_fullsleep);
1779 
1780 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1781 	if (saveDefAntenna == 0)
1782 		saveDefAntenna = 1;
1783 
1784 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1785 
1786 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1787 	if (AR_SREV_9100(ah) ||
1788 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1789 		tsf = ath9k_hw_gettsf64(ah);
1790 
1791 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1792 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1793 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1794 
1795 	ath9k_hw_mark_phy_inactive(ah);
1796 
1797 	ah->paprd_table_write_done = false;
1798 
1799 	/* Only required on the first reset */
1800 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1801 		REG_WRITE(ah,
1802 			  AR9271_RESET_POWER_DOWN_CONTROL,
1803 			  AR9271_RADIO_RF_RST);
1804 		udelay(50);
1805 	}
1806 
1807 	if (!ath9k_hw_chip_reset(ah, chan)) {
1808 		ath_err(common, "Chip reset failed\n");
1809 		return -EINVAL;
1810 	}
1811 
1812 	/* Only required on the first reset */
1813 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1814 		ah->htc_reset_init = false;
1815 		REG_WRITE(ah,
1816 			  AR9271_RESET_POWER_DOWN_CONTROL,
1817 			  AR9271_GATE_MAC_CTL);
1818 		udelay(50);
1819 	}
1820 
1821 	/* Restore TSF */
1822 	if (tsf)
1823 		ath9k_hw_settsf64(ah, tsf);
1824 
1825 	if (AR_SREV_9280_20_OR_LATER(ah))
1826 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1827 
1828 	if (!AR_SREV_9300_20_OR_LATER(ah))
1829 		ar9002_hw_enable_async_fifo(ah);
1830 
1831 	r = ath9k_hw_process_ini(ah, chan);
1832 	if (r)
1833 		return r;
1834 
1835 	if (mci)
1836 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1837 
1838 	/*
1839 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1840 	 * right after the chip reset. When that happens, write a new
1841 	 * value after the initvals have been applied, with an offset
1842 	 * based on measured time difference
1843 	 */
1844 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1845 		tsf += 1500;
1846 		ath9k_hw_settsf64(ah, tsf);
1847 	}
1848 
1849 	/* Setup MFP options for CCMP */
1850 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1851 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1852 		 * frames when constructing CCMP AAD. */
1853 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1854 			      0xc7ff);
1855 		ah->sw_mgmt_crypto = false;
1856 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1857 		/* Disable hardware crypto for management frames */
1858 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1859 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1860 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1861 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1862 		ah->sw_mgmt_crypto = true;
1863 	} else
1864 		ah->sw_mgmt_crypto = true;
1865 
1866 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1867 		ath9k_hw_set_delta_slope(ah, chan);
1868 
1869 	ath9k_hw_spur_mitigate_freq(ah, chan);
1870 	ah->eep_ops->set_board_values(ah, chan);
1871 
1872 	ENABLE_REGWRITE_BUFFER(ah);
1873 
1874 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1875 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1876 		  | macStaId1
1877 		  | AR_STA_ID1_RTS_USE_DEF
1878 		  | (ah->config.
1879 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1880 		  | ah->sta_id1_defaults);
1881 	ath_hw_setbssidmask(common);
1882 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1883 	ath9k_hw_write_associd(ah);
1884 	REG_WRITE(ah, AR_ISR, ~0);
1885 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1886 
1887 	REGWRITE_BUFFER_FLUSH(ah);
1888 
1889 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1890 
1891 	r = ath9k_hw_rf_set_freq(ah, chan);
1892 	if (r)
1893 		return r;
1894 
1895 	ath9k_hw_set_clockrate(ah);
1896 
1897 	ENABLE_REGWRITE_BUFFER(ah);
1898 
1899 	for (i = 0; i < AR_NUM_DCU; i++)
1900 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1901 
1902 	REGWRITE_BUFFER_FLUSH(ah);
1903 
1904 	ah->intr_txqs = 0;
1905 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1906 		ath9k_hw_resettxqueue(ah, i);
1907 
1908 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1909 	ath9k_hw_ani_cache_ini_regs(ah);
1910 	ath9k_hw_init_qos(ah);
1911 
1912 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1913 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1914 
1915 	ath9k_hw_init_global_settings(ah);
1916 
1917 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1918 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1919 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1920 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1921 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1922 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1923 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1924 	}
1925 
1926 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1927 
1928 	ath9k_hw_set_dma(ah);
1929 
1930 	REG_WRITE(ah, AR_OBS, 8);
1931 
1932 	if (ah->config.rx_intr_mitigation) {
1933 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1934 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1935 	}
1936 
1937 	if (ah->config.tx_intr_mitigation) {
1938 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1939 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1940 	}
1941 
1942 	ath9k_hw_init_bb(ah, chan);
1943 
1944 	if (caldata) {
1945 		caldata->done_txiqcal_once = false;
1946 		caldata->done_txclcal_once = false;
1947 	}
1948 	if (!ath9k_hw_init_cal(ah, chan))
1949 		return -EIO;
1950 
1951 	ath9k_hw_loadnf(ah, chan);
1952 	ath9k_hw_start_nfcal(ah, true);
1953 
1954 	if (mci && ar9003_mci_end_reset(ah, chan, caldata))
1955 		return -EIO;
1956 
1957 	ENABLE_REGWRITE_BUFFER(ah);
1958 
1959 	ath9k_hw_restore_chainmask(ah);
1960 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1961 
1962 	REGWRITE_BUFFER_FLUSH(ah);
1963 
1964 	/*
1965 	 * For big endian systems turn on swapping for descriptors
1966 	 */
1967 	if (AR_SREV_9100(ah)) {
1968 		u32 mask;
1969 		mask = REG_READ(ah, AR_CFG);
1970 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1971 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1972 				mask);
1973 		} else {
1974 			mask =
1975 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1976 			REG_WRITE(ah, AR_CFG, mask);
1977 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1978 				REG_READ(ah, AR_CFG));
1979 		}
1980 	} else {
1981 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1982 			/* Configure AR9271 target WLAN */
1983 			if (AR_SREV_9271(ah))
1984 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1985 			else
1986 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1987 		}
1988 #ifdef __BIG_ENDIAN
1989 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1990 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1991 		else
1992 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1993 #endif
1994 	}
1995 
1996 	if (ath9k_hw_btcoex_is_enabled(ah))
1997 		ath9k_hw_btcoex_enable(ah);
1998 
1999 	if (mci)
2000 		ar9003_mci_check_bt(ah);
2001 
2002 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2003 		ar9003_hw_bb_watchdog_config(ah);
2004 
2005 		ar9003_hw_disable_phy_restart(ah);
2006 	}
2007 
2008 	ath9k_hw_apply_gpio_override(ah);
2009 
2010 	return 0;
2011 }
2012 EXPORT_SYMBOL(ath9k_hw_reset);
2013 
2014 /******************************/
2015 /* Power Management (Chipset) */
2016 /******************************/
2017 
2018 /*
2019  * Notify Power Mgt is disabled in self-generated frames.
2020  * If requested, force chip to sleep.
2021  */
2022 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2023 {
2024 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2025 	if (setChip) {
2026 		if (AR_SREV_9462(ah)) {
2027 			REG_WRITE(ah, AR_TIMER_MODE,
2028 				  REG_READ(ah, AR_TIMER_MODE) & 0xFFFFFF00);
2029 			REG_WRITE(ah, AR_NDP2_TIMER_MODE, REG_READ(ah,
2030 				  AR_NDP2_TIMER_MODE) & 0xFFFFFF00);
2031 			REG_WRITE(ah, AR_SLP32_INC,
2032 				  REG_READ(ah, AR_SLP32_INC) & 0xFFF00000);
2033 			/* xxx Required for WLAN only case ? */
2034 			REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2035 			udelay(100);
2036 		}
2037 
2038 		/*
2039 		 * Clear the RTC force wake bit to allow the
2040 		 * mac to go to sleep.
2041 		 */
2042 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2043 
2044 		if (AR_SREV_9462(ah))
2045 			udelay(100);
2046 
2047 		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2048 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2049 
2050 		/* Shutdown chip. Active low */
2051 		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2052 			REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2053 			udelay(2);
2054 		}
2055 	}
2056 
2057 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2058 	if (AR_SREV_9300_20_OR_LATER(ah))
2059 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2060 }
2061 
2062 /*
2063  * Notify Power Management is enabled in self-generating
2064  * frames. If request, set power mode of chip to
2065  * auto/normal.  Duration in units of 128us (1/8 TU).
2066  */
2067 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2068 {
2069 	u32 val;
2070 
2071 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2072 	if (setChip) {
2073 		struct ath9k_hw_capabilities *pCap = &ah->caps;
2074 
2075 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2076 			/* Set WakeOnInterrupt bit; clear ForceWake bit */
2077 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2078 				  AR_RTC_FORCE_WAKE_ON_INT);
2079 		} else {
2080 
2081 			/* When chip goes into network sleep, it could be waken
2082 			 * up by MCI_INT interrupt caused by BT's HW messages
2083 			 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2084 			 * rate (~100us). This will cause chip to leave and
2085 			 * re-enter network sleep mode frequently, which in
2086 			 * consequence will have WLAN MCI HW to generate lots of
2087 			 * SYS_WAKING and SYS_SLEEPING messages which will make
2088 			 * BT CPU to busy to process.
2089 			 */
2090 			if (AR_SREV_9462(ah)) {
2091 				val = REG_READ(ah, AR_MCI_INTERRUPT_RX_MSG_EN) &
2092 					~AR_MCI_INTERRUPT_RX_HW_MSG_MASK;
2093 				REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, val);
2094 			}
2095 			/*
2096 			 * Clear the RTC force wake bit to allow the
2097 			 * mac to go to sleep.
2098 			 */
2099 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2100 				    AR_RTC_FORCE_WAKE_EN);
2101 
2102 			if (AR_SREV_9462(ah))
2103 				udelay(30);
2104 		}
2105 	}
2106 
2107 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2108 	if (AR_SREV_9300_20_OR_LATER(ah))
2109 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2110 }
2111 
2112 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2113 {
2114 	u32 val;
2115 	int i;
2116 
2117 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2118 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2119 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2120 		udelay(10);
2121 	}
2122 
2123 	if (setChip) {
2124 		if ((REG_READ(ah, AR_RTC_STATUS) &
2125 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2126 			if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2127 				return false;
2128 			}
2129 			if (!AR_SREV_9300_20_OR_LATER(ah))
2130 				ath9k_hw_init_pll(ah, NULL);
2131 		}
2132 		if (AR_SREV_9100(ah))
2133 			REG_SET_BIT(ah, AR_RTC_RESET,
2134 				    AR_RTC_RESET_EN);
2135 
2136 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2137 			    AR_RTC_FORCE_WAKE_EN);
2138 		udelay(50);
2139 
2140 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2141 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2142 			if (val == AR_RTC_STATUS_ON)
2143 				break;
2144 			udelay(50);
2145 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2146 				    AR_RTC_FORCE_WAKE_EN);
2147 		}
2148 		if (i == 0) {
2149 			ath_err(ath9k_hw_common(ah),
2150 				"Failed to wakeup in %uus\n",
2151 				POWER_UP_TIME / 20);
2152 			return false;
2153 		}
2154 	}
2155 
2156 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2157 
2158 	return true;
2159 }
2160 
2161 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2162 {
2163 	struct ath_common *common = ath9k_hw_common(ah);
2164 	int status = true, setChip = true;
2165 	static const char *modes[] = {
2166 		"AWAKE",
2167 		"FULL-SLEEP",
2168 		"NETWORK SLEEP",
2169 		"UNDEFINED"
2170 	};
2171 
2172 	if (ah->power_mode == mode)
2173 		return status;
2174 
2175 	ath_dbg(common, RESET, "%s -> %s\n",
2176 		modes[ah->power_mode], modes[mode]);
2177 
2178 	switch (mode) {
2179 	case ATH9K_PM_AWAKE:
2180 		status = ath9k_hw_set_power_awake(ah, setChip);
2181 
2182 		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2183 			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2184 
2185 		break;
2186 	case ATH9K_PM_FULL_SLEEP:
2187 		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2188 			ar9003_mci_set_full_sleep(ah);
2189 
2190 		ath9k_set_power_sleep(ah, setChip);
2191 		ah->chip_fullsleep = true;
2192 		break;
2193 	case ATH9K_PM_NETWORK_SLEEP:
2194 
2195 		if (ah->caps.hw_caps & ATH9K_HW_CAP_MCI)
2196 			REG_WRITE(ah, AR_RTC_KEEP_AWAKE, 0x2);
2197 
2198 		ath9k_set_power_network_sleep(ah, setChip);
2199 		break;
2200 	default:
2201 		ath_err(common, "Unknown power mode %u\n", mode);
2202 		return false;
2203 	}
2204 	ah->power_mode = mode;
2205 
2206 	/*
2207 	 * XXX: If this warning never comes up after a while then
2208 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2209 	 * ath9k_hw_setpower() return type void.
2210 	 */
2211 
2212 	if (!(ah->ah_flags & AH_UNPLUGGED))
2213 		ATH_DBG_WARN_ON_ONCE(!status);
2214 
2215 	return status;
2216 }
2217 EXPORT_SYMBOL(ath9k_hw_setpower);
2218 
2219 /*******************/
2220 /* Beacon Handling */
2221 /*******************/
2222 
2223 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2224 {
2225 	int flags = 0;
2226 
2227 	ENABLE_REGWRITE_BUFFER(ah);
2228 
2229 	switch (ah->opmode) {
2230 	case NL80211_IFTYPE_ADHOC:
2231 	case NL80211_IFTYPE_MESH_POINT:
2232 		REG_SET_BIT(ah, AR_TXCFG,
2233 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2234 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2235 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2236 		flags |= AR_NDP_TIMER_EN;
2237 	case NL80211_IFTYPE_AP:
2238 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2239 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2240 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2241 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2242 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2243 		flags |=
2244 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2245 		break;
2246 	default:
2247 		ath_dbg(ath9k_hw_common(ah), BEACON,
2248 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2249 		return;
2250 		break;
2251 	}
2252 
2253 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2254 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2255 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2256 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2257 
2258 	REGWRITE_BUFFER_FLUSH(ah);
2259 
2260 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2261 }
2262 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2263 
2264 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2265 				    const struct ath9k_beacon_state *bs)
2266 {
2267 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2268 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2269 	struct ath_common *common = ath9k_hw_common(ah);
2270 
2271 	ENABLE_REGWRITE_BUFFER(ah);
2272 
2273 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2274 
2275 	REG_WRITE(ah, AR_BEACON_PERIOD,
2276 		  TU_TO_USEC(bs->bs_intval));
2277 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2278 		  TU_TO_USEC(bs->bs_intval));
2279 
2280 	REGWRITE_BUFFER_FLUSH(ah);
2281 
2282 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2283 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2284 
2285 	beaconintval = bs->bs_intval;
2286 
2287 	if (bs->bs_sleepduration > beaconintval)
2288 		beaconintval = bs->bs_sleepduration;
2289 
2290 	dtimperiod = bs->bs_dtimperiod;
2291 	if (bs->bs_sleepduration > dtimperiod)
2292 		dtimperiod = bs->bs_sleepduration;
2293 
2294 	if (beaconintval == dtimperiod)
2295 		nextTbtt = bs->bs_nextdtim;
2296 	else
2297 		nextTbtt = bs->bs_nexttbtt;
2298 
2299 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2300 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2301 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2302 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2303 
2304 	ENABLE_REGWRITE_BUFFER(ah);
2305 
2306 	REG_WRITE(ah, AR_NEXT_DTIM,
2307 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2308 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2309 
2310 	REG_WRITE(ah, AR_SLEEP1,
2311 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2312 		  | AR_SLEEP1_ASSUME_DTIM);
2313 
2314 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2315 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2316 	else
2317 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2318 
2319 	REG_WRITE(ah, AR_SLEEP2,
2320 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2321 
2322 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2323 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2324 
2325 	REGWRITE_BUFFER_FLUSH(ah);
2326 
2327 	REG_SET_BIT(ah, AR_TIMER_MODE,
2328 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2329 		    AR_DTIM_TIMER_EN);
2330 
2331 	/* TSF Out of Range Threshold */
2332 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2333 }
2334 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2335 
2336 /*******************/
2337 /* HW Capabilities */
2338 /*******************/
2339 
2340 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2341 {
2342 	eeprom_chainmask &= chip_chainmask;
2343 	if (eeprom_chainmask)
2344 		return eeprom_chainmask;
2345 	else
2346 		return chip_chainmask;
2347 }
2348 
2349 /**
2350  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2351  * @ah: the atheros hardware data structure
2352  *
2353  * We enable DFS support upstream on chipsets which have passed a series
2354  * of tests. The testing requirements are going to be documented. Desired
2355  * test requirements are documented at:
2356  *
2357  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2358  *
2359  * Once a new chipset gets properly tested an individual commit can be used
2360  * to document the testing for DFS for that chipset.
2361  */
2362 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2363 {
2364 
2365 	switch (ah->hw_version.macVersion) {
2366 	/* AR9580 will likely be our first target to get testing on */
2367 	case AR_SREV_VERSION_9580:
2368 	default:
2369 		return false;
2370 	}
2371 }
2372 
2373 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2374 {
2375 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2376 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2377 	struct ath_common *common = ath9k_hw_common(ah);
2378 	unsigned int chip_chainmask;
2379 
2380 	u16 eeval;
2381 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2382 
2383 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2384 	regulatory->current_rd = eeval;
2385 
2386 	if (ah->opmode != NL80211_IFTYPE_AP &&
2387 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2388 		if (regulatory->current_rd == 0x64 ||
2389 		    regulatory->current_rd == 0x65)
2390 			regulatory->current_rd += 5;
2391 		else if (regulatory->current_rd == 0x41)
2392 			regulatory->current_rd = 0x43;
2393 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2394 			regulatory->current_rd);
2395 	}
2396 
2397 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2398 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2399 		ath_err(common,
2400 			"no band has been marked as supported in EEPROM\n");
2401 		return -EINVAL;
2402 	}
2403 
2404 	if (eeval & AR5416_OPFLAGS_11A)
2405 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2406 
2407 	if (eeval & AR5416_OPFLAGS_11G)
2408 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2409 
2410 	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2411 		chip_chainmask = 1;
2412 	else if (AR_SREV_9462(ah))
2413 		chip_chainmask = 3;
2414 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2415 		chip_chainmask = 7;
2416 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2417 		chip_chainmask = 3;
2418 	else
2419 		chip_chainmask = 7;
2420 
2421 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2422 	/*
2423 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2424 	 * the EEPROM.
2425 	 */
2426 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2427 	    !(eeval & AR5416_OPFLAGS_11A) &&
2428 	    !(AR_SREV_9271(ah)))
2429 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2430 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2431 	else if (AR_SREV_9100(ah))
2432 		pCap->rx_chainmask = 0x7;
2433 	else
2434 		/* Use rx_chainmask from EEPROM. */
2435 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2436 
2437 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2438 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2439 	ah->txchainmask = pCap->tx_chainmask;
2440 	ah->rxchainmask = pCap->rx_chainmask;
2441 
2442 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2443 
2444 	/* enable key search for every frame in an aggregate */
2445 	if (AR_SREV_9300_20_OR_LATER(ah))
2446 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2447 
2448 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2449 
2450 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2451 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2452 	else
2453 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2454 
2455 	if (AR_SREV_9271(ah))
2456 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2457 	else if (AR_DEVID_7010(ah))
2458 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2459 	else if (AR_SREV_9300_20_OR_LATER(ah))
2460 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2461 	else if (AR_SREV_9287_11_OR_LATER(ah))
2462 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2463 	else if (AR_SREV_9285_12_OR_LATER(ah))
2464 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2465 	else if (AR_SREV_9280_20_OR_LATER(ah))
2466 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2467 	else
2468 		pCap->num_gpio_pins = AR_NUM_GPIO;
2469 
2470 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2471 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2472 	else
2473 		pCap->rts_aggr_limit = (8 * 1024);
2474 
2475 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2476 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2477 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2478 		ah->rfkill_gpio =
2479 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2480 		ah->rfkill_polarity =
2481 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2482 
2483 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2484 	}
2485 #endif
2486 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2487 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2488 	else
2489 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2490 
2491 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2492 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2493 	else
2494 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2495 
2496 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2497 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2498 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2499 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2500 
2501 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2502 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2503 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2504 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2505 		pCap->txs_len = sizeof(struct ar9003_txs);
2506 		if (!ah->config.paprd_disable &&
2507 		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2508 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2509 	} else {
2510 		pCap->tx_desc_len = sizeof(struct ath_desc);
2511 		if (AR_SREV_9280_20(ah))
2512 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2513 	}
2514 
2515 	if (AR_SREV_9300_20_OR_LATER(ah))
2516 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2517 
2518 	if (AR_SREV_9300_20_OR_LATER(ah))
2519 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2520 
2521 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2522 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2523 
2524 	if (AR_SREV_9285(ah))
2525 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2526 			ant_div_ctl1 =
2527 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2528 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2529 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2530 		}
2531 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2532 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2533 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2534 	}
2535 
2536 
2537 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2538 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2539 		/*
2540 		 * enable the diversity-combining algorithm only when
2541 		 * both enable_lna_div and enable_fast_div are set
2542 		 *		Table for Diversity
2543 		 * ant_div_alt_lnaconf		bit 0-1
2544 		 * ant_div_main_lnaconf		bit 2-3
2545 		 * ant_div_alt_gaintb		bit 4
2546 		 * ant_div_main_gaintb		bit 5
2547 		 * enable_ant_div_lnadiv	bit 6
2548 		 * enable_ant_fast_div		bit 7
2549 		 */
2550 		if ((ant_div_ctl1 >> 0x6) == 0x3)
2551 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2552 	}
2553 
2554 	if (AR_SREV_9485_10(ah)) {
2555 		pCap->pcie_lcr_extsync_en = true;
2556 		pCap->pcie_lcr_offset = 0x80;
2557 	}
2558 
2559 	if (ath9k_hw_dfs_tested(ah))
2560 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2561 
2562 	tx_chainmask = pCap->tx_chainmask;
2563 	rx_chainmask = pCap->rx_chainmask;
2564 	while (tx_chainmask || rx_chainmask) {
2565 		if (tx_chainmask & BIT(0))
2566 			pCap->max_txchains++;
2567 		if (rx_chainmask & BIT(0))
2568 			pCap->max_rxchains++;
2569 
2570 		tx_chainmask >>= 1;
2571 		rx_chainmask >>= 1;
2572 	}
2573 
2574 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2575 		ah->enabled_cals |= TX_IQ_CAL;
2576 		if (AR_SREV_9485_OR_LATER(ah))
2577 			ah->enabled_cals |= TX_IQ_ON_AGC_CAL;
2578 	}
2579 
2580 	if (AR_SREV_9462(ah)) {
2581 
2582 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2583 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2584 
2585 		if (AR_SREV_9462_20(ah))
2586 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2587 
2588 	}
2589 
2590 
2591 	return 0;
2592 }
2593 
2594 /****************************/
2595 /* GPIO / RFKILL / Antennae */
2596 /****************************/
2597 
2598 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2599 					 u32 gpio, u32 type)
2600 {
2601 	int addr;
2602 	u32 gpio_shift, tmp;
2603 
2604 	if (gpio > 11)
2605 		addr = AR_GPIO_OUTPUT_MUX3;
2606 	else if (gpio > 5)
2607 		addr = AR_GPIO_OUTPUT_MUX2;
2608 	else
2609 		addr = AR_GPIO_OUTPUT_MUX1;
2610 
2611 	gpio_shift = (gpio % 6) * 5;
2612 
2613 	if (AR_SREV_9280_20_OR_LATER(ah)
2614 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2615 		REG_RMW(ah, addr, (type << gpio_shift),
2616 			(0x1f << gpio_shift));
2617 	} else {
2618 		tmp = REG_READ(ah, addr);
2619 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2620 		tmp &= ~(0x1f << gpio_shift);
2621 		tmp |= (type << gpio_shift);
2622 		REG_WRITE(ah, addr, tmp);
2623 	}
2624 }
2625 
2626 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2627 {
2628 	u32 gpio_shift;
2629 
2630 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2631 
2632 	if (AR_DEVID_7010(ah)) {
2633 		gpio_shift = gpio;
2634 		REG_RMW(ah, AR7010_GPIO_OE,
2635 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2636 			(AR7010_GPIO_OE_MASK << gpio_shift));
2637 		return;
2638 	}
2639 
2640 	gpio_shift = gpio << 1;
2641 	REG_RMW(ah,
2642 		AR_GPIO_OE_OUT,
2643 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2644 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2645 }
2646 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2647 
2648 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2649 {
2650 #define MS_REG_READ(x, y) \
2651 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2652 
2653 	if (gpio >= ah->caps.num_gpio_pins)
2654 		return 0xffffffff;
2655 
2656 	if (AR_DEVID_7010(ah)) {
2657 		u32 val;
2658 		val = REG_READ(ah, AR7010_GPIO_IN);
2659 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2660 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2661 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2662 			AR_GPIO_BIT(gpio)) != 0;
2663 	else if (AR_SREV_9271(ah))
2664 		return MS_REG_READ(AR9271, gpio) != 0;
2665 	else if (AR_SREV_9287_11_OR_LATER(ah))
2666 		return MS_REG_READ(AR9287, gpio) != 0;
2667 	else if (AR_SREV_9285_12_OR_LATER(ah))
2668 		return MS_REG_READ(AR9285, gpio) != 0;
2669 	else if (AR_SREV_9280_20_OR_LATER(ah))
2670 		return MS_REG_READ(AR928X, gpio) != 0;
2671 	else
2672 		return MS_REG_READ(AR, gpio) != 0;
2673 }
2674 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2675 
2676 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2677 			 u32 ah_signal_type)
2678 {
2679 	u32 gpio_shift;
2680 
2681 	if (AR_DEVID_7010(ah)) {
2682 		gpio_shift = gpio;
2683 		REG_RMW(ah, AR7010_GPIO_OE,
2684 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2685 			(AR7010_GPIO_OE_MASK << gpio_shift));
2686 		return;
2687 	}
2688 
2689 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2690 	gpio_shift = 2 * gpio;
2691 	REG_RMW(ah,
2692 		AR_GPIO_OE_OUT,
2693 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2694 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2695 }
2696 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2697 
2698 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2699 {
2700 	if (AR_DEVID_7010(ah)) {
2701 		val = val ? 0 : 1;
2702 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2703 			AR_GPIO_BIT(gpio));
2704 		return;
2705 	}
2706 
2707 	if (AR_SREV_9271(ah))
2708 		val = ~val;
2709 
2710 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2711 		AR_GPIO_BIT(gpio));
2712 }
2713 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2714 
2715 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2716 {
2717 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2718 }
2719 EXPORT_SYMBOL(ath9k_hw_setantenna);
2720 
2721 /*********************/
2722 /* General Operation */
2723 /*********************/
2724 
2725 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2726 {
2727 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2728 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2729 
2730 	if (phybits & AR_PHY_ERR_RADAR)
2731 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2732 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2733 		bits |= ATH9K_RX_FILTER_PHYERR;
2734 
2735 	return bits;
2736 }
2737 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2738 
2739 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2740 {
2741 	u32 phybits;
2742 
2743 	ENABLE_REGWRITE_BUFFER(ah);
2744 
2745 	if (AR_SREV_9462(ah))
2746 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2747 
2748 	REG_WRITE(ah, AR_RX_FILTER, bits);
2749 
2750 	phybits = 0;
2751 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2752 		phybits |= AR_PHY_ERR_RADAR;
2753 	if (bits & ATH9K_RX_FILTER_PHYERR)
2754 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2755 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2756 
2757 	if (phybits)
2758 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2759 	else
2760 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2761 
2762 	REGWRITE_BUFFER_FLUSH(ah);
2763 }
2764 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2765 
2766 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2767 {
2768 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2769 		return false;
2770 
2771 	ath9k_hw_init_pll(ah, NULL);
2772 	ah->htc_reset_init = true;
2773 	return true;
2774 }
2775 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2776 
2777 bool ath9k_hw_disable(struct ath_hw *ah)
2778 {
2779 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2780 		return false;
2781 
2782 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2783 		return false;
2784 
2785 	ath9k_hw_init_pll(ah, NULL);
2786 	return true;
2787 }
2788 EXPORT_SYMBOL(ath9k_hw_disable);
2789 
2790 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2791 {
2792 	enum eeprom_param gain_param;
2793 
2794 	if (IS_CHAN_2GHZ(chan))
2795 		gain_param = EEP_ANTENNA_GAIN_2G;
2796 	else
2797 		gain_param = EEP_ANTENNA_GAIN_5G;
2798 
2799 	return ah->eep_ops->get_eeprom(ah, gain_param);
2800 }
2801 
2802 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2803 			    bool test)
2804 {
2805 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2806 	struct ieee80211_channel *channel;
2807 	int chan_pwr, new_pwr, max_gain;
2808 	int ant_gain, ant_reduction = 0;
2809 
2810 	if (!chan)
2811 		return;
2812 
2813 	channel = chan->chan;
2814 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2815 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2816 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2817 
2818 	ant_gain = get_antenna_gain(ah, chan);
2819 	if (ant_gain > max_gain)
2820 		ant_reduction = ant_gain - max_gain;
2821 
2822 	ah->eep_ops->set_txpower(ah, chan,
2823 				 ath9k_regd_get_ctl(reg, chan),
2824 				 ant_reduction, new_pwr, test);
2825 }
2826 
2827 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2828 {
2829 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2830 	struct ath9k_channel *chan = ah->curchan;
2831 	struct ieee80211_channel *channel = chan->chan;
2832 
2833 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2834 	if (test)
2835 		channel->max_power = MAX_RATE_POWER / 2;
2836 
2837 	ath9k_hw_apply_txpower(ah, chan, test);
2838 
2839 	if (test)
2840 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2841 }
2842 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2843 
2844 void ath9k_hw_setopmode(struct ath_hw *ah)
2845 {
2846 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2847 }
2848 EXPORT_SYMBOL(ath9k_hw_setopmode);
2849 
2850 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2851 {
2852 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2853 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2854 }
2855 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2856 
2857 void ath9k_hw_write_associd(struct ath_hw *ah)
2858 {
2859 	struct ath_common *common = ath9k_hw_common(ah);
2860 
2861 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2862 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2863 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2864 }
2865 EXPORT_SYMBOL(ath9k_hw_write_associd);
2866 
2867 #define ATH9K_MAX_TSF_READ 10
2868 
2869 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2870 {
2871 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2872 	int i;
2873 
2874 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2875 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2876 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2877 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2878 		if (tsf_upper2 == tsf_upper1)
2879 			break;
2880 		tsf_upper1 = tsf_upper2;
2881 	}
2882 
2883 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2884 
2885 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2886 }
2887 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2888 
2889 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2890 {
2891 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2892 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2893 }
2894 EXPORT_SYMBOL(ath9k_hw_settsf64);
2895 
2896 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2897 {
2898 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2899 			   AH_TSF_WRITE_TIMEOUT))
2900 		ath_dbg(ath9k_hw_common(ah), RESET,
2901 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2902 
2903 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2904 }
2905 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2906 
2907 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2908 {
2909 	if (setting)
2910 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2911 	else
2912 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2913 }
2914 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2915 
2916 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2917 {
2918 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2919 	u32 macmode;
2920 
2921 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2922 		macmode = AR_2040_JOINED_RX_CLEAR;
2923 	else
2924 		macmode = 0;
2925 
2926 	REG_WRITE(ah, AR_2040_MODE, macmode);
2927 }
2928 
2929 /* HW Generic timers configuration */
2930 
2931 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2932 {
2933 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2934 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2935 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2936 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2937 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2938 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2939 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2940 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2941 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2942 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2943 				AR_NDP2_TIMER_MODE, 0x0002},
2944 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2945 				AR_NDP2_TIMER_MODE, 0x0004},
2946 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2947 				AR_NDP2_TIMER_MODE, 0x0008},
2948 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2949 				AR_NDP2_TIMER_MODE, 0x0010},
2950 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2951 				AR_NDP2_TIMER_MODE, 0x0020},
2952 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2953 				AR_NDP2_TIMER_MODE, 0x0040},
2954 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2955 				AR_NDP2_TIMER_MODE, 0x0080}
2956 };
2957 
2958 /* HW generic timer primitives */
2959 
2960 /* compute and clear index of rightmost 1 */
2961 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2962 {
2963 	u32 b;
2964 
2965 	b = *mask;
2966 	b &= (0-b);
2967 	*mask &= ~b;
2968 	b *= debruijn32;
2969 	b >>= 27;
2970 
2971 	return timer_table->gen_timer_index[b];
2972 }
2973 
2974 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2975 {
2976 	return REG_READ(ah, AR_TSF_L32);
2977 }
2978 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2979 
2980 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2981 					  void (*trigger)(void *),
2982 					  void (*overflow)(void *),
2983 					  void *arg,
2984 					  u8 timer_index)
2985 {
2986 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2987 	struct ath_gen_timer *timer;
2988 
2989 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2990 
2991 	if (timer == NULL) {
2992 		ath_err(ath9k_hw_common(ah),
2993 			"Failed to allocate memory for hw timer[%d]\n",
2994 			timer_index);
2995 		return NULL;
2996 	}
2997 
2998 	/* allocate a hardware generic timer slot */
2999 	timer_table->timers[timer_index] = timer;
3000 	timer->index = timer_index;
3001 	timer->trigger = trigger;
3002 	timer->overflow = overflow;
3003 	timer->arg = arg;
3004 
3005 	return timer;
3006 }
3007 EXPORT_SYMBOL(ath_gen_timer_alloc);
3008 
3009 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3010 			      struct ath_gen_timer *timer,
3011 			      u32 trig_timeout,
3012 			      u32 timer_period)
3013 {
3014 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3015 	u32 tsf, timer_next;
3016 
3017 	BUG_ON(!timer_period);
3018 
3019 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3020 
3021 	tsf = ath9k_hw_gettsf32(ah);
3022 
3023 	timer_next = tsf + trig_timeout;
3024 
3025 	ath_dbg(ath9k_hw_common(ah), HWTIMER,
3026 		"current tsf %x period %x timer_next %x\n",
3027 		tsf, timer_period, timer_next);
3028 
3029 	/*
3030 	 * Program generic timer registers
3031 	 */
3032 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3033 		 timer_next);
3034 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3035 		  timer_period);
3036 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3037 		    gen_tmr_configuration[timer->index].mode_mask);
3038 
3039 	if (AR_SREV_9462(ah)) {
3040 		/*
3041 		 * Starting from AR9462, each generic timer can select which tsf
3042 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3043 		 * 8 - 15  use tsf2.
3044 		 */
3045 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3046 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3047 				       (1 << timer->index));
3048 		else
3049 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3050 				       (1 << timer->index));
3051 	}
3052 
3053 	/* Enable both trigger and thresh interrupt masks */
3054 	REG_SET_BIT(ah, AR_IMR_S5,
3055 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3056 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3057 }
3058 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3059 
3060 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3061 {
3062 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3063 
3064 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3065 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3066 		return;
3067 	}
3068 
3069 	/* Clear generic timer enable bits. */
3070 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3071 			gen_tmr_configuration[timer->index].mode_mask);
3072 
3073 	/* Disable both trigger and thresh interrupt masks */
3074 	REG_CLR_BIT(ah, AR_IMR_S5,
3075 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3076 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3077 
3078 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3079 }
3080 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3081 
3082 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3083 {
3084 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3085 
3086 	/* free the hardware generic timer slot */
3087 	timer_table->timers[timer->index] = NULL;
3088 	kfree(timer);
3089 }
3090 EXPORT_SYMBOL(ath_gen_timer_free);
3091 
3092 /*
3093  * Generic Timer Interrupts handling
3094  */
3095 void ath_gen_timer_isr(struct ath_hw *ah)
3096 {
3097 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3098 	struct ath_gen_timer *timer;
3099 	struct ath_common *common = ath9k_hw_common(ah);
3100 	u32 trigger_mask, thresh_mask, index;
3101 
3102 	/* get hardware generic timer interrupt status */
3103 	trigger_mask = ah->intr_gen_timer_trigger;
3104 	thresh_mask = ah->intr_gen_timer_thresh;
3105 	trigger_mask &= timer_table->timer_mask.val;
3106 	thresh_mask &= timer_table->timer_mask.val;
3107 
3108 	trigger_mask &= ~thresh_mask;
3109 
3110 	while (thresh_mask) {
3111 		index = rightmost_index(timer_table, &thresh_mask);
3112 		timer = timer_table->timers[index];
3113 		BUG_ON(!timer);
3114 		ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3115 			index);
3116 		timer->overflow(timer->arg);
3117 	}
3118 
3119 	while (trigger_mask) {
3120 		index = rightmost_index(timer_table, &trigger_mask);
3121 		timer = timer_table->timers[index];
3122 		BUG_ON(!timer);
3123 		ath_dbg(common, HWTIMER,
3124 			"Gen timer[%d] trigger\n", index);
3125 		timer->trigger(timer->arg);
3126 	}
3127 }
3128 EXPORT_SYMBOL(ath_gen_timer_isr);
3129 
3130 /********/
3131 /* HTC  */
3132 /********/
3133 
3134 static struct {
3135 	u32 version;
3136 	const char * name;
3137 } ath_mac_bb_names[] = {
3138 	/* Devices with external radios */
3139 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3140 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3141 	{ AR_SREV_VERSION_9100,		"9100" },
3142 	{ AR_SREV_VERSION_9160,		"9160" },
3143 	/* Single-chip solutions */
3144 	{ AR_SREV_VERSION_9280,		"9280" },
3145 	{ AR_SREV_VERSION_9285,		"9285" },
3146 	{ AR_SREV_VERSION_9287,         "9287" },
3147 	{ AR_SREV_VERSION_9271,         "9271" },
3148 	{ AR_SREV_VERSION_9300,         "9300" },
3149 	{ AR_SREV_VERSION_9330,         "9330" },
3150 	{ AR_SREV_VERSION_9340,		"9340" },
3151 	{ AR_SREV_VERSION_9485,         "9485" },
3152 	{ AR_SREV_VERSION_9462,         "9462" },
3153 };
3154 
3155 /* For devices with external radios */
3156 static struct {
3157 	u16 version;
3158 	const char * name;
3159 } ath_rf_names[] = {
3160 	{ 0,				"5133" },
3161 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3162 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3163 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3164 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3165 };
3166 
3167 /*
3168  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3169  */
3170 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3171 {
3172 	int i;
3173 
3174 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3175 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3176 			return ath_mac_bb_names[i].name;
3177 		}
3178 	}
3179 
3180 	return "????";
3181 }
3182 
3183 /*
3184  * Return the RF name. "????" is returned if the RF is unknown.
3185  * Used for devices with external radios.
3186  */
3187 static const char *ath9k_hw_rf_name(u16 rf_version)
3188 {
3189 	int i;
3190 
3191 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3192 		if (ath_rf_names[i].version == rf_version) {
3193 			return ath_rf_names[i].name;
3194 		}
3195 	}
3196 
3197 	return "????";
3198 }
3199 
3200 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3201 {
3202 	int used;
3203 
3204 	/* chipsets >= AR9280 are single-chip */
3205 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3206 		used = snprintf(hw_name, len,
3207 			       "Atheros AR%s Rev:%x",
3208 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3209 			       ah->hw_version.macRev);
3210 	}
3211 	else {
3212 		used = snprintf(hw_name, len,
3213 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3214 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3215 			       ah->hw_version.macRev,
3216 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3217 						AR_RADIO_SREV_MAJOR)),
3218 			       ah->hw_version.phyRev);
3219 	}
3220 
3221 	hw_name[used] = '\0';
3222 }
3223 EXPORT_SYMBOL(ath9k_hw_name);
3224