xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision a2fb4d78)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <asm/unaligned.h>
23 
24 #include "hw.h"
25 #include "hw-ops.h"
26 #include "rc.h"
27 #include "ar9003_mac.h"
28 #include "ar9003_mci.h"
29 #include "ar9003_phy.h"
30 #include "debug.h"
31 #include "ath9k.h"
32 
33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
34 
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
39 
40 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
41 {
42 	struct ath_common *common = ath9k_hw_common(ah);
43 	struct ath9k_channel *chan = ah->curchan;
44 	unsigned int clockrate;
45 
46 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
48 		clockrate = 117;
49 	else if (!chan) /* should really check for CCK instead */
50 		clockrate = ATH9K_CLOCK_RATE_CCK;
51 	else if (IS_CHAN_2GHZ(chan))
52 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
53 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
54 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
55 	else
56 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
57 
58 	if (chan) {
59 		if (IS_CHAN_HT40(chan))
60 			clockrate *= 2;
61 		if (IS_CHAN_HALF_RATE(chan))
62 			clockrate /= 2;
63 		if (IS_CHAN_QUARTER_RATE(chan))
64 			clockrate /= 4;
65 	}
66 
67 	common->clockrate = clockrate;
68 }
69 
70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
71 {
72 	struct ath_common *common = ath9k_hw_common(ah);
73 
74 	return usecs * common->clockrate;
75 }
76 
77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
78 {
79 	int i;
80 
81 	BUG_ON(timeout < AH_TIME_QUANTUM);
82 
83 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
84 		if ((REG_READ(ah, reg) & mask) == val)
85 			return true;
86 
87 		udelay(AH_TIME_QUANTUM);
88 	}
89 
90 	ath_dbg(ath9k_hw_common(ah), ANY,
91 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 		timeout, reg, REG_READ(ah, reg), mask, val);
93 
94 	return false;
95 }
96 EXPORT_SYMBOL(ath9k_hw_wait);
97 
98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
99 			  int hw_delay)
100 {
101 	hw_delay /= 10;
102 
103 	if (IS_CHAN_HALF_RATE(chan))
104 		hw_delay *= 2;
105 	else if (IS_CHAN_QUARTER_RATE(chan))
106 		hw_delay *= 4;
107 
108 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
109 }
110 
111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
112 			  int column, unsigned int *writecnt)
113 {
114 	int r;
115 
116 	ENABLE_REGWRITE_BUFFER(ah);
117 	for (r = 0; r < array->ia_rows; r++) {
118 		REG_WRITE(ah, INI_RA(array, r, 0),
119 			  INI_RA(array, r, column));
120 		DO_DELAY(*writecnt);
121 	}
122 	REGWRITE_BUFFER_FLUSH(ah);
123 }
124 
125 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
126 {
127 	u32 retval;
128 	int i;
129 
130 	for (i = 0, retval = 0; i < n; i++) {
131 		retval = (retval << 1) | (val & 1);
132 		val >>= 1;
133 	}
134 	return retval;
135 }
136 
137 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
138 			   u8 phy, int kbps,
139 			   u32 frameLen, u16 rateix,
140 			   bool shortPreamble)
141 {
142 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
143 
144 	if (kbps == 0)
145 		return 0;
146 
147 	switch (phy) {
148 	case WLAN_RC_PHY_CCK:
149 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
150 		if (shortPreamble)
151 			phyTime >>= 1;
152 		numBits = frameLen << 3;
153 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
154 		break;
155 	case WLAN_RC_PHY_OFDM:
156 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
157 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
158 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
159 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
160 			txTime = OFDM_SIFS_TIME_QUARTER
161 				+ OFDM_PREAMBLE_TIME_QUARTER
162 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
163 		} else if (ah->curchan &&
164 			   IS_CHAN_HALF_RATE(ah->curchan)) {
165 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
166 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
167 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
168 			txTime = OFDM_SIFS_TIME_HALF +
169 				OFDM_PREAMBLE_TIME_HALF
170 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
171 		} else {
172 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
173 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
174 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
175 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
176 				+ (numSymbols * OFDM_SYMBOL_TIME);
177 		}
178 		break;
179 	default:
180 		ath_err(ath9k_hw_common(ah),
181 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
182 		txTime = 0;
183 		break;
184 	}
185 
186 	return txTime;
187 }
188 EXPORT_SYMBOL(ath9k_hw_computetxtime);
189 
190 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
191 				  struct ath9k_channel *chan,
192 				  struct chan_centers *centers)
193 {
194 	int8_t extoff;
195 
196 	if (!IS_CHAN_HT40(chan)) {
197 		centers->ctl_center = centers->ext_center =
198 			centers->synth_center = chan->channel;
199 		return;
200 	}
201 
202 	if (IS_CHAN_HT40PLUS(chan)) {
203 		centers->synth_center =
204 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
205 		extoff = 1;
206 	} else {
207 		centers->synth_center =
208 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
209 		extoff = -1;
210 	}
211 
212 	centers->ctl_center =
213 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
214 	/* 25 MHz spacing is supported by hw but not on upper layers */
215 	centers->ext_center =
216 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
217 }
218 
219 /******************/
220 /* Chip Revisions */
221 /******************/
222 
223 static void ath9k_hw_read_revisions(struct ath_hw *ah)
224 {
225 	u32 val;
226 
227 	switch (ah->hw_version.devid) {
228 	case AR5416_AR9100_DEVID:
229 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
230 		break;
231 	case AR9300_DEVID_AR9330:
232 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
233 		if (ah->get_mac_revision) {
234 			ah->hw_version.macRev = ah->get_mac_revision();
235 		} else {
236 			val = REG_READ(ah, AR_SREV);
237 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
238 		}
239 		return;
240 	case AR9300_DEVID_AR9340:
241 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
242 		val = REG_READ(ah, AR_SREV);
243 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
244 		return;
245 	case AR9300_DEVID_QCA955X:
246 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
247 		return;
248 	case AR9300_DEVID_AR953X:
249 		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
250 		return;
251 	}
252 
253 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
254 
255 	if (val == 0xFF) {
256 		val = REG_READ(ah, AR_SREV);
257 		ah->hw_version.macVersion =
258 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
259 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
260 
261 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
262 			ah->is_pciexpress = true;
263 		else
264 			ah->is_pciexpress = (val &
265 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
266 	} else {
267 		if (!AR_SREV_9100(ah))
268 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
269 
270 		ah->hw_version.macRev = val & AR_SREV_REVISION;
271 
272 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
273 			ah->is_pciexpress = true;
274 	}
275 }
276 
277 /************************************/
278 /* HW Attach, Detach, Init Routines */
279 /************************************/
280 
281 static void ath9k_hw_disablepcie(struct ath_hw *ah)
282 {
283 	if (!AR_SREV_5416(ah))
284 		return;
285 
286 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
287 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
288 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
289 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
290 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
291 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
292 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
293 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
294 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
295 
296 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
297 }
298 
299 /* This should work for all families including legacy */
300 static bool ath9k_hw_chip_test(struct ath_hw *ah)
301 {
302 	struct ath_common *common = ath9k_hw_common(ah);
303 	u32 regAddr[2] = { AR_STA_ID0 };
304 	u32 regHold[2];
305 	static const u32 patternData[4] = {
306 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
307 	};
308 	int i, j, loop_max;
309 
310 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
311 		loop_max = 2;
312 		regAddr[1] = AR_PHY_BASE + (8 << 2);
313 	} else
314 		loop_max = 1;
315 
316 	for (i = 0; i < loop_max; i++) {
317 		u32 addr = regAddr[i];
318 		u32 wrData, rdData;
319 
320 		regHold[i] = REG_READ(ah, addr);
321 		for (j = 0; j < 0x100; j++) {
322 			wrData = (j << 16) | j;
323 			REG_WRITE(ah, addr, wrData);
324 			rdData = REG_READ(ah, addr);
325 			if (rdData != wrData) {
326 				ath_err(common,
327 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
328 					addr, wrData, rdData);
329 				return false;
330 			}
331 		}
332 		for (j = 0; j < 4; j++) {
333 			wrData = patternData[j];
334 			REG_WRITE(ah, addr, wrData);
335 			rdData = REG_READ(ah, addr);
336 			if (wrData != rdData) {
337 				ath_err(common,
338 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
339 					addr, wrData, rdData);
340 				return false;
341 			}
342 		}
343 		REG_WRITE(ah, regAddr[i], regHold[i]);
344 	}
345 	udelay(100);
346 
347 	return true;
348 }
349 
350 static void ath9k_hw_init_config(struct ath_hw *ah)
351 {
352 	struct ath_common *common = ath9k_hw_common(ah);
353 
354 	ah->config.dma_beacon_response_time = 1;
355 	ah->config.sw_beacon_response_time = 6;
356 	ah->config.cwm_ignore_extcca = 0;
357 	ah->config.analog_shiftreg = 1;
358 
359 	ah->config.rx_intr_mitigation = true;
360 
361 	if (AR_SREV_9300_20_OR_LATER(ah)) {
362 		ah->config.rimt_last = 500;
363 		ah->config.rimt_first = 2000;
364 	} else {
365 		ah->config.rimt_last = 250;
366 		ah->config.rimt_first = 700;
367 	}
368 
369 	/*
370 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
371 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
372 	 * This means we use it for all AR5416 devices, and the few
373 	 * minor PCI AR9280 devices out there.
374 	 *
375 	 * Serialization is required because these devices do not handle
376 	 * well the case of two concurrent reads/writes due to the latency
377 	 * involved. During one read/write another read/write can be issued
378 	 * on another CPU while the previous read/write may still be working
379 	 * on our hardware, if we hit this case the hardware poops in a loop.
380 	 * We prevent this by serializing reads and writes.
381 	 *
382 	 * This issue is not present on PCI-Express devices or pre-AR5416
383 	 * devices (legacy, 802.11abg).
384 	 */
385 	if (num_possible_cpus() > 1)
386 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
387 
388 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
389 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
390 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
391 		     !ah->is_pciexpress)) {
392 			ah->config.serialize_regmode = SER_REG_MODE_ON;
393 		} else {
394 			ah->config.serialize_regmode = SER_REG_MODE_OFF;
395 		}
396 	}
397 
398 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
399 		ah->config.serialize_regmode);
400 
401 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
402 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
403 	else
404 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
405 }
406 
407 static void ath9k_hw_init_defaults(struct ath_hw *ah)
408 {
409 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
410 
411 	regulatory->country_code = CTRY_DEFAULT;
412 	regulatory->power_limit = MAX_RATE_POWER;
413 
414 	ah->hw_version.magic = AR5416_MAGIC;
415 	ah->hw_version.subvendorid = 0;
416 
417 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
418 			       AR_STA_ID1_MCAST_KSRCH;
419 	if (AR_SREV_9100(ah))
420 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
421 
422 	ah->slottime = ATH9K_SLOT_TIME_9;
423 	ah->globaltxtimeout = (u32) -1;
424 	ah->power_mode = ATH9K_PM_UNDEFINED;
425 	ah->htc_reset_init = true;
426 
427 	ah->ani_function = ATH9K_ANI_ALL;
428 	if (!AR_SREV_9300_20_OR_LATER(ah))
429 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
430 
431 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
432 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
433 	else
434 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
435 }
436 
437 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
438 {
439 	struct ath_common *common = ath9k_hw_common(ah);
440 	u32 sum;
441 	int i;
442 	u16 eeval;
443 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
444 
445 	sum = 0;
446 	for (i = 0; i < 3; i++) {
447 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
448 		sum += eeval;
449 		common->macaddr[2 * i] = eeval >> 8;
450 		common->macaddr[2 * i + 1] = eeval & 0xff;
451 	}
452 	if (sum == 0 || sum == 0xffff * 3)
453 		return -EADDRNOTAVAIL;
454 
455 	return 0;
456 }
457 
458 static int ath9k_hw_post_init(struct ath_hw *ah)
459 {
460 	struct ath_common *common = ath9k_hw_common(ah);
461 	int ecode;
462 
463 	if (common->bus_ops->ath_bus_type != ATH_USB) {
464 		if (!ath9k_hw_chip_test(ah))
465 			return -ENODEV;
466 	}
467 
468 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
469 		ecode = ar9002_hw_rf_claim(ah);
470 		if (ecode != 0)
471 			return ecode;
472 	}
473 
474 	ecode = ath9k_hw_eeprom_init(ah);
475 	if (ecode != 0)
476 		return ecode;
477 
478 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
479 		ah->eep_ops->get_eeprom_ver(ah),
480 		ah->eep_ops->get_eeprom_rev(ah));
481 
482 	ath9k_hw_ani_init(ah);
483 
484 	/*
485 	 * EEPROM needs to be initialized before we do this.
486 	 * This is required for regulatory compliance.
487 	 */
488 	if (AR_SREV_9300_20_OR_LATER(ah)) {
489 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
490 		if ((regdmn & 0xF0) == CTL_FCC) {
491 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
492 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
493 		}
494 	}
495 
496 	return 0;
497 }
498 
499 static int ath9k_hw_attach_ops(struct ath_hw *ah)
500 {
501 	if (!AR_SREV_9300_20_OR_LATER(ah))
502 		return ar9002_hw_attach_ops(ah);
503 
504 	ar9003_hw_attach_ops(ah);
505 	return 0;
506 }
507 
508 /* Called for all hardware families */
509 static int __ath9k_hw_init(struct ath_hw *ah)
510 {
511 	struct ath_common *common = ath9k_hw_common(ah);
512 	int r = 0;
513 
514 	ath9k_hw_read_revisions(ah);
515 
516 	switch (ah->hw_version.macVersion) {
517 	case AR_SREV_VERSION_5416_PCI:
518 	case AR_SREV_VERSION_5416_PCIE:
519 	case AR_SREV_VERSION_9160:
520 	case AR_SREV_VERSION_9100:
521 	case AR_SREV_VERSION_9280:
522 	case AR_SREV_VERSION_9285:
523 	case AR_SREV_VERSION_9287:
524 	case AR_SREV_VERSION_9271:
525 	case AR_SREV_VERSION_9300:
526 	case AR_SREV_VERSION_9330:
527 	case AR_SREV_VERSION_9485:
528 	case AR_SREV_VERSION_9340:
529 	case AR_SREV_VERSION_9462:
530 	case AR_SREV_VERSION_9550:
531 	case AR_SREV_VERSION_9565:
532 	case AR_SREV_VERSION_9531:
533 		break;
534 	default:
535 		ath_err(common,
536 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
537 			ah->hw_version.macVersion, ah->hw_version.macRev);
538 		return -EOPNOTSUPP;
539 	}
540 
541 	/*
542 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
543 	 * We need to do this to avoid RMW of this register. We cannot
544 	 * read the reg when chip is asleep.
545 	 */
546 	if (AR_SREV_9300_20_OR_LATER(ah)) {
547 		ah->WARegVal = REG_READ(ah, AR_WA);
548 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
549 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
550 	}
551 
552 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
553 		ath_err(common, "Couldn't reset chip\n");
554 		return -EIO;
555 	}
556 
557 	if (AR_SREV_9565(ah)) {
558 		ah->WARegVal |= AR_WA_BIT22;
559 		REG_WRITE(ah, AR_WA, ah->WARegVal);
560 	}
561 
562 	ath9k_hw_init_defaults(ah);
563 	ath9k_hw_init_config(ah);
564 
565 	r = ath9k_hw_attach_ops(ah);
566 	if (r)
567 		return r;
568 
569 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
570 		ath_err(common, "Couldn't wakeup chip\n");
571 		return -EIO;
572 	}
573 
574 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
575 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
576 		ah->is_pciexpress = false;
577 
578 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
579 	ath9k_hw_init_cal_settings(ah);
580 
581 	if (!ah->is_pciexpress)
582 		ath9k_hw_disablepcie(ah);
583 
584 	r = ath9k_hw_post_init(ah);
585 	if (r)
586 		return r;
587 
588 	ath9k_hw_init_mode_gain_regs(ah);
589 	r = ath9k_hw_fill_cap_info(ah);
590 	if (r)
591 		return r;
592 
593 	r = ath9k_hw_init_macaddr(ah);
594 	if (r) {
595 		ath_err(common, "Failed to initialize MAC address\n");
596 		return r;
597 	}
598 
599 	ath9k_hw_init_hang_checks(ah);
600 
601 	common->state = ATH_HW_INITIALIZED;
602 
603 	return 0;
604 }
605 
606 int ath9k_hw_init(struct ath_hw *ah)
607 {
608 	int ret;
609 	struct ath_common *common = ath9k_hw_common(ah);
610 
611 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
612 	switch (ah->hw_version.devid) {
613 	case AR5416_DEVID_PCI:
614 	case AR5416_DEVID_PCIE:
615 	case AR5416_AR9100_DEVID:
616 	case AR9160_DEVID_PCI:
617 	case AR9280_DEVID_PCI:
618 	case AR9280_DEVID_PCIE:
619 	case AR9285_DEVID_PCIE:
620 	case AR9287_DEVID_PCI:
621 	case AR9287_DEVID_PCIE:
622 	case AR2427_DEVID_PCIE:
623 	case AR9300_DEVID_PCIE:
624 	case AR9300_DEVID_AR9485_PCIE:
625 	case AR9300_DEVID_AR9330:
626 	case AR9300_DEVID_AR9340:
627 	case AR9300_DEVID_QCA955X:
628 	case AR9300_DEVID_AR9580:
629 	case AR9300_DEVID_AR9462:
630 	case AR9485_DEVID_AR1111:
631 	case AR9300_DEVID_AR9565:
632 	case AR9300_DEVID_AR953X:
633 		break;
634 	default:
635 		if (common->bus_ops->ath_bus_type == ATH_USB)
636 			break;
637 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
638 			ah->hw_version.devid);
639 		return -EOPNOTSUPP;
640 	}
641 
642 	ret = __ath9k_hw_init(ah);
643 	if (ret) {
644 		ath_err(common,
645 			"Unable to initialize hardware; initialization status: %d\n",
646 			ret);
647 		return ret;
648 	}
649 
650 	return 0;
651 }
652 EXPORT_SYMBOL(ath9k_hw_init);
653 
654 static void ath9k_hw_init_qos(struct ath_hw *ah)
655 {
656 	ENABLE_REGWRITE_BUFFER(ah);
657 
658 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
659 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
660 
661 	REG_WRITE(ah, AR_QOS_NO_ACK,
662 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
663 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
664 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
665 
666 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
667 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
668 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
669 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
670 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
671 
672 	REGWRITE_BUFFER_FLUSH(ah);
673 }
674 
675 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
676 {
677 	struct ath_common *common = ath9k_hw_common(ah);
678 	int i = 0;
679 
680 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
681 	udelay(100);
682 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
683 
684 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
685 
686 		udelay(100);
687 
688 		if (WARN_ON_ONCE(i >= 100)) {
689 			ath_err(common, "PLL4 meaurement not done\n");
690 			break;
691 		}
692 
693 		i++;
694 	}
695 
696 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
697 }
698 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
699 
700 static void ath9k_hw_init_pll(struct ath_hw *ah,
701 			      struct ath9k_channel *chan)
702 {
703 	u32 pll;
704 
705 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
706 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
707 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
708 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
709 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
710 			      AR_CH0_DPLL2_KD, 0x40);
711 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
712 			      AR_CH0_DPLL2_KI, 0x4);
713 
714 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
715 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
716 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
717 			      AR_CH0_BB_DPLL1_NINI, 0x58);
718 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
719 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
720 
721 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
722 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
723 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
724 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
725 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
726 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
727 
728 		/* program BB PLL phase_shift to 0x6 */
729 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
730 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
731 
732 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
733 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
734 		udelay(1000);
735 	} else if (AR_SREV_9330(ah)) {
736 		u32 ddr_dpll2, pll_control2, kd;
737 
738 		if (ah->is_clk_25mhz) {
739 			ddr_dpll2 = 0x18e82f01;
740 			pll_control2 = 0xe04a3d;
741 			kd = 0x1d;
742 		} else {
743 			ddr_dpll2 = 0x19e82f01;
744 			pll_control2 = 0x886666;
745 			kd = 0x3d;
746 		}
747 
748 		/* program DDR PLL ki and kd value */
749 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
750 
751 		/* program DDR PLL phase_shift */
752 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
753 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
754 
755 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
756 		udelay(1000);
757 
758 		/* program refdiv, nint, frac to RTC register */
759 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
760 
761 		/* program BB PLL kd and ki value */
762 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
763 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
764 
765 		/* program BB PLL phase_shift */
766 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
767 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
768 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
769 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
770 
771 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
772 		udelay(1000);
773 
774 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
775 		udelay(100);
776 
777 		if (ah->is_clk_25mhz) {
778 			if (AR_SREV_9531(ah)) {
779 				pll2_divint = 0x1c;
780 				pll2_divfrac = 0xa3d2;
781 				refdiv = 1;
782 			} else {
783 				pll2_divint = 0x54;
784 				pll2_divfrac = 0x1eb85;
785 				refdiv = 3;
786 			}
787 		} else {
788 			if (AR_SREV_9340(ah)) {
789 				pll2_divint = 88;
790 				pll2_divfrac = 0;
791 				refdiv = 5;
792 			} else {
793 				pll2_divint = 0x11;
794 				pll2_divfrac = 0x26666;
795 				refdiv = 1;
796 			}
797 		}
798 
799 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
800 		if (AR_SREV_9531(ah))
801 			regval |= (0x1 << 22);
802 		else
803 			regval |= (0x1 << 16);
804 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
805 		udelay(100);
806 
807 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
808 			  (pll2_divint << 18) | pll2_divfrac);
809 		udelay(100);
810 
811 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
812 		if (AR_SREV_9340(ah))
813 			regval = (regval & 0x80071fff) |
814 				(0x1 << 30) |
815 				(0x1 << 13) |
816 				(0x4 << 26) |
817 				(0x18 << 19);
818 		else if (AR_SREV_9531(ah))
819 			regval = (regval & 0x01c00fff) |
820 				(0x1 << 31) |
821 				(0x2 << 29) |
822 				(0xa << 25) |
823 				(0x1 << 19) |
824 				(0x6 << 12);
825 		else
826 			regval = (regval & 0x80071fff) |
827 				(0x3 << 30) |
828 				(0x1 << 13) |
829 				(0x4 << 26) |
830 				(0x60 << 19);
831 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
832 
833 		if (AR_SREV_9531(ah))
834 			REG_WRITE(ah, AR_PHY_PLL_MODE,
835 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
836 		else
837 			REG_WRITE(ah, AR_PHY_PLL_MODE,
838 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
839 
840 		udelay(1000);
841 	}
842 
843 	pll = ath9k_hw_compute_pll_control(ah, chan);
844 	if (AR_SREV_9565(ah))
845 		pll |= 0x40000;
846 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
847 
848 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
849 	    AR_SREV_9550(ah))
850 		udelay(1000);
851 
852 	/* Switch the core clock for ar9271 to 117Mhz */
853 	if (AR_SREV_9271(ah)) {
854 		udelay(500);
855 		REG_WRITE(ah, 0x50040, 0x304);
856 	}
857 
858 	udelay(RTC_PLL_SETTLE_DELAY);
859 
860 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
861 
862 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
863 		if (ah->is_clk_25mhz) {
864 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
865 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
866 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
867 		} else {
868 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
869 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
870 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
871 		}
872 		udelay(100);
873 	}
874 }
875 
876 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
877 					  enum nl80211_iftype opmode)
878 {
879 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
880 	u32 imr_reg = AR_IMR_TXERR |
881 		AR_IMR_TXURN |
882 		AR_IMR_RXERR |
883 		AR_IMR_RXORN |
884 		AR_IMR_BCNMISC;
885 
886 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
887 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
888 
889 	if (AR_SREV_9300_20_OR_LATER(ah)) {
890 		imr_reg |= AR_IMR_RXOK_HP;
891 		if (ah->config.rx_intr_mitigation)
892 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
893 		else
894 			imr_reg |= AR_IMR_RXOK_LP;
895 
896 	} else {
897 		if (ah->config.rx_intr_mitigation)
898 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
899 		else
900 			imr_reg |= AR_IMR_RXOK;
901 	}
902 
903 	if (ah->config.tx_intr_mitigation)
904 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
905 	else
906 		imr_reg |= AR_IMR_TXOK;
907 
908 	ENABLE_REGWRITE_BUFFER(ah);
909 
910 	REG_WRITE(ah, AR_IMR, imr_reg);
911 	ah->imrs2_reg |= AR_IMR_S2_GTT;
912 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
913 
914 	if (!AR_SREV_9100(ah)) {
915 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
916 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
917 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
918 	}
919 
920 	REGWRITE_BUFFER_FLUSH(ah);
921 
922 	if (AR_SREV_9300_20_OR_LATER(ah)) {
923 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
924 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
925 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
926 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
927 	}
928 }
929 
930 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
931 {
932 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
933 	val = min(val, (u32) 0xFFFF);
934 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
935 }
936 
937 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
938 {
939 	u32 val = ath9k_hw_mac_to_clks(ah, us);
940 	val = min(val, (u32) 0xFFFF);
941 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
942 }
943 
944 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
945 {
946 	u32 val = ath9k_hw_mac_to_clks(ah, us);
947 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
948 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
949 }
950 
951 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
952 {
953 	u32 val = ath9k_hw_mac_to_clks(ah, us);
954 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
955 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
956 }
957 
958 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
959 {
960 	if (tu > 0xFFFF) {
961 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
962 			tu);
963 		ah->globaltxtimeout = (u32) -1;
964 		return false;
965 	} else {
966 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
967 		ah->globaltxtimeout = tu;
968 		return true;
969 	}
970 }
971 
972 void ath9k_hw_init_global_settings(struct ath_hw *ah)
973 {
974 	struct ath_common *common = ath9k_hw_common(ah);
975 	const struct ath9k_channel *chan = ah->curchan;
976 	int acktimeout, ctstimeout, ack_offset = 0;
977 	int slottime;
978 	int sifstime;
979 	int rx_lat = 0, tx_lat = 0, eifs = 0;
980 	u32 reg;
981 
982 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
983 		ah->misc_mode);
984 
985 	if (!chan)
986 		return;
987 
988 	if (ah->misc_mode != 0)
989 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
990 
991 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
992 		rx_lat = 41;
993 	else
994 		rx_lat = 37;
995 	tx_lat = 54;
996 
997 	if (IS_CHAN_5GHZ(chan))
998 		sifstime = 16;
999 	else
1000 		sifstime = 10;
1001 
1002 	if (IS_CHAN_HALF_RATE(chan)) {
1003 		eifs = 175;
1004 		rx_lat *= 2;
1005 		tx_lat *= 2;
1006 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1007 		    tx_lat += 11;
1008 
1009 		sifstime = 32;
1010 		ack_offset = 16;
1011 		slottime = 13;
1012 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1013 		eifs = 340;
1014 		rx_lat = (rx_lat * 4) - 1;
1015 		tx_lat *= 4;
1016 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1017 		    tx_lat += 22;
1018 
1019 		sifstime = 64;
1020 		ack_offset = 32;
1021 		slottime = 21;
1022 	} else {
1023 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1024 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1025 			reg = AR_USEC_ASYNC_FIFO;
1026 		} else {
1027 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1028 				common->clockrate;
1029 			reg = REG_READ(ah, AR_USEC);
1030 		}
1031 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1032 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1033 
1034 		slottime = ah->slottime;
1035 	}
1036 
1037 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1038 	slottime += 3 * ah->coverage_class;
1039 	acktimeout = slottime + sifstime + ack_offset;
1040 	ctstimeout = acktimeout;
1041 
1042 	/*
1043 	 * Workaround for early ACK timeouts, add an offset to match the
1044 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1045 	 * This was initially only meant to work around an issue with delayed
1046 	 * BA frames in some implementations, but it has been found to fix ACK
1047 	 * timeout issues in other cases as well.
1048 	 */
1049 	if (IS_CHAN_2GHZ(chan) &&
1050 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1051 		acktimeout += 64 - sifstime - ah->slottime;
1052 		ctstimeout += 48 - sifstime - ah->slottime;
1053 	}
1054 
1055 	ath9k_hw_set_sifs_time(ah, sifstime);
1056 	ath9k_hw_setslottime(ah, slottime);
1057 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1058 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1059 	if (ah->globaltxtimeout != (u32) -1)
1060 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1061 
1062 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1063 	REG_RMW(ah, AR_USEC,
1064 		(common->clockrate - 1) |
1065 		SM(rx_lat, AR_USEC_RX_LAT) |
1066 		SM(tx_lat, AR_USEC_TX_LAT),
1067 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1068 
1069 }
1070 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1071 
1072 void ath9k_hw_deinit(struct ath_hw *ah)
1073 {
1074 	struct ath_common *common = ath9k_hw_common(ah);
1075 
1076 	if (common->state < ATH_HW_INITIALIZED)
1077 		return;
1078 
1079 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1080 }
1081 EXPORT_SYMBOL(ath9k_hw_deinit);
1082 
1083 /*******/
1084 /* INI */
1085 /*******/
1086 
1087 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1088 {
1089 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1090 
1091 	if (IS_CHAN_2GHZ(chan))
1092 		ctl |= CTL_11G;
1093 	else
1094 		ctl |= CTL_11A;
1095 
1096 	return ctl;
1097 }
1098 
1099 /****************************************/
1100 /* Reset and Channel Switching Routines */
1101 /****************************************/
1102 
1103 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1104 {
1105 	struct ath_common *common = ath9k_hw_common(ah);
1106 	int txbuf_size;
1107 
1108 	ENABLE_REGWRITE_BUFFER(ah);
1109 
1110 	/*
1111 	 * set AHB_MODE not to do cacheline prefetches
1112 	*/
1113 	if (!AR_SREV_9300_20_OR_LATER(ah))
1114 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1115 
1116 	/*
1117 	 * let mac dma reads be in 128 byte chunks
1118 	 */
1119 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1120 
1121 	REGWRITE_BUFFER_FLUSH(ah);
1122 
1123 	/*
1124 	 * Restore TX Trigger Level to its pre-reset value.
1125 	 * The initial value depends on whether aggregation is enabled, and is
1126 	 * adjusted whenever underruns are detected.
1127 	 */
1128 	if (!AR_SREV_9300_20_OR_LATER(ah))
1129 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1130 
1131 	ENABLE_REGWRITE_BUFFER(ah);
1132 
1133 	/*
1134 	 * let mac dma writes be in 128 byte chunks
1135 	 */
1136 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1137 
1138 	/*
1139 	 * Setup receive FIFO threshold to hold off TX activities
1140 	 */
1141 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1142 
1143 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1144 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1145 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1146 
1147 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1148 			ah->caps.rx_status_len);
1149 	}
1150 
1151 	/*
1152 	 * reduce the number of usable entries in PCU TXBUF to avoid
1153 	 * wrap around issues.
1154 	 */
1155 	if (AR_SREV_9285(ah)) {
1156 		/* For AR9285 the number of Fifos are reduced to half.
1157 		 * So set the usable tx buf size also to half to
1158 		 * avoid data/delimiter underruns
1159 		 */
1160 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1161 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1162 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1163 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1164 	} else {
1165 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1166 	}
1167 
1168 	if (!AR_SREV_9271(ah))
1169 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1170 
1171 	REGWRITE_BUFFER_FLUSH(ah);
1172 
1173 	if (AR_SREV_9300_20_OR_LATER(ah))
1174 		ath9k_hw_reset_txstatus_ring(ah);
1175 }
1176 
1177 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1178 {
1179 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1180 	u32 set = AR_STA_ID1_KSRCH_MODE;
1181 
1182 	switch (opmode) {
1183 	case NL80211_IFTYPE_ADHOC:
1184 		set |= AR_STA_ID1_ADHOC;
1185 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1186 		break;
1187 	case NL80211_IFTYPE_MESH_POINT:
1188 	case NL80211_IFTYPE_AP:
1189 		set |= AR_STA_ID1_STA_AP;
1190 		/* fall through */
1191 	case NL80211_IFTYPE_STATION:
1192 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1193 		break;
1194 	default:
1195 		if (!ah->is_monitoring)
1196 			set = 0;
1197 		break;
1198 	}
1199 	REG_RMW(ah, AR_STA_ID1, set, mask);
1200 }
1201 
1202 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1203 				   u32 *coef_mantissa, u32 *coef_exponent)
1204 {
1205 	u32 coef_exp, coef_man;
1206 
1207 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1208 		if ((coef_scaled >> coef_exp) & 0x1)
1209 			break;
1210 
1211 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1212 
1213 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1214 
1215 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1216 	*coef_exponent = coef_exp - 16;
1217 }
1218 
1219 /* AR9330 WAR:
1220  * call external reset function to reset WMAC if:
1221  * - doing a cold reset
1222  * - we have pending frames in the TX queues.
1223  */
1224 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1225 {
1226 	int i, npend = 0;
1227 
1228 	for (i = 0; i < AR_NUM_QCU; i++) {
1229 		npend = ath9k_hw_numtxpending(ah, i);
1230 		if (npend)
1231 			break;
1232 	}
1233 
1234 	if (ah->external_reset &&
1235 	    (npend || type == ATH9K_RESET_COLD)) {
1236 		int reset_err = 0;
1237 
1238 		ath_dbg(ath9k_hw_common(ah), RESET,
1239 			"reset MAC via external reset\n");
1240 
1241 		reset_err = ah->external_reset();
1242 		if (reset_err) {
1243 			ath_err(ath9k_hw_common(ah),
1244 				"External reset failed, err=%d\n",
1245 				reset_err);
1246 			return false;
1247 		}
1248 
1249 		REG_WRITE(ah, AR_RTC_RESET, 1);
1250 	}
1251 
1252 	return true;
1253 }
1254 
1255 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1256 {
1257 	u32 rst_flags;
1258 	u32 tmpReg;
1259 
1260 	if (AR_SREV_9100(ah)) {
1261 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1262 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1263 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1264 	}
1265 
1266 	ENABLE_REGWRITE_BUFFER(ah);
1267 
1268 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1269 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1270 		udelay(10);
1271 	}
1272 
1273 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1274 		  AR_RTC_FORCE_WAKE_ON_INT);
1275 
1276 	if (AR_SREV_9100(ah)) {
1277 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1278 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1279 	} else {
1280 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1281 		if (AR_SREV_9340(ah))
1282 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1283 		else
1284 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1285 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1286 
1287 		if (tmpReg) {
1288 			u32 val;
1289 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1290 
1291 			val = AR_RC_HOSTIF;
1292 			if (!AR_SREV_9300_20_OR_LATER(ah))
1293 				val |= AR_RC_AHB;
1294 			REG_WRITE(ah, AR_RC, val);
1295 
1296 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1297 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1298 
1299 		rst_flags = AR_RTC_RC_MAC_WARM;
1300 		if (type == ATH9K_RESET_COLD)
1301 			rst_flags |= AR_RTC_RC_MAC_COLD;
1302 	}
1303 
1304 	if (AR_SREV_9330(ah)) {
1305 		if (!ath9k_hw_ar9330_reset_war(ah, type))
1306 			return false;
1307 	}
1308 
1309 	if (ath9k_hw_mci_is_enabled(ah))
1310 		ar9003_mci_check_gpm_offset(ah);
1311 
1312 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1313 
1314 	REGWRITE_BUFFER_FLUSH(ah);
1315 
1316 	if (AR_SREV_9300_20_OR_LATER(ah))
1317 		udelay(50);
1318 	else if (AR_SREV_9100(ah))
1319 		mdelay(10);
1320 	else
1321 		udelay(100);
1322 
1323 	REG_WRITE(ah, AR_RTC_RC, 0);
1324 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1325 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1326 		return false;
1327 	}
1328 
1329 	if (!AR_SREV_9100(ah))
1330 		REG_WRITE(ah, AR_RC, 0);
1331 
1332 	if (AR_SREV_9100(ah))
1333 		udelay(50);
1334 
1335 	return true;
1336 }
1337 
1338 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1339 {
1340 	ENABLE_REGWRITE_BUFFER(ah);
1341 
1342 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1343 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1344 		udelay(10);
1345 	}
1346 
1347 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1348 		  AR_RTC_FORCE_WAKE_ON_INT);
1349 
1350 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1351 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1352 
1353 	REG_WRITE(ah, AR_RTC_RESET, 0);
1354 
1355 	REGWRITE_BUFFER_FLUSH(ah);
1356 
1357 	udelay(2);
1358 
1359 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1360 		REG_WRITE(ah, AR_RC, 0);
1361 
1362 	REG_WRITE(ah, AR_RTC_RESET, 1);
1363 
1364 	if (!ath9k_hw_wait(ah,
1365 			   AR_RTC_STATUS,
1366 			   AR_RTC_STATUS_M,
1367 			   AR_RTC_STATUS_ON,
1368 			   AH_WAIT_TIMEOUT)) {
1369 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1370 		return false;
1371 	}
1372 
1373 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1374 }
1375 
1376 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1377 {
1378 	bool ret = false;
1379 
1380 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1381 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1382 		udelay(10);
1383 	}
1384 
1385 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1386 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1387 
1388 	if (!ah->reset_power_on)
1389 		type = ATH9K_RESET_POWER_ON;
1390 
1391 	switch (type) {
1392 	case ATH9K_RESET_POWER_ON:
1393 		ret = ath9k_hw_set_reset_power_on(ah);
1394 		if (ret)
1395 			ah->reset_power_on = true;
1396 		break;
1397 	case ATH9K_RESET_WARM:
1398 	case ATH9K_RESET_COLD:
1399 		ret = ath9k_hw_set_reset(ah, type);
1400 		break;
1401 	default:
1402 		break;
1403 	}
1404 
1405 	return ret;
1406 }
1407 
1408 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1409 				struct ath9k_channel *chan)
1410 {
1411 	int reset_type = ATH9K_RESET_WARM;
1412 
1413 	if (AR_SREV_9280(ah)) {
1414 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1415 			reset_type = ATH9K_RESET_POWER_ON;
1416 		else
1417 			reset_type = ATH9K_RESET_COLD;
1418 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1419 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1420 		reset_type = ATH9K_RESET_COLD;
1421 
1422 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1423 		return false;
1424 
1425 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1426 		return false;
1427 
1428 	ah->chip_fullsleep = false;
1429 
1430 	if (AR_SREV_9330(ah))
1431 		ar9003_hw_internal_regulator_apply(ah);
1432 	ath9k_hw_init_pll(ah, chan);
1433 
1434 	return true;
1435 }
1436 
1437 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1438 				    struct ath9k_channel *chan)
1439 {
1440 	struct ath_common *common = ath9k_hw_common(ah);
1441 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1442 	bool band_switch = false, mode_diff = false;
1443 	u8 ini_reloaded = 0;
1444 	u32 qnum;
1445 	int r;
1446 
1447 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1448 		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1449 		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1450 		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1451 	}
1452 
1453 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1454 		if (ath9k_hw_numtxpending(ah, qnum)) {
1455 			ath_dbg(common, QUEUE,
1456 				"Transmit frames pending on queue %d\n", qnum);
1457 			return false;
1458 		}
1459 	}
1460 
1461 	if (!ath9k_hw_rfbus_req(ah)) {
1462 		ath_err(common, "Could not kill baseband RX\n");
1463 		return false;
1464 	}
1465 
1466 	if (band_switch || mode_diff) {
1467 		ath9k_hw_mark_phy_inactive(ah);
1468 		udelay(5);
1469 
1470 		if (band_switch)
1471 			ath9k_hw_init_pll(ah, chan);
1472 
1473 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1474 			ath_err(common, "Failed to do fast channel change\n");
1475 			return false;
1476 		}
1477 	}
1478 
1479 	ath9k_hw_set_channel_regs(ah, chan);
1480 
1481 	r = ath9k_hw_rf_set_freq(ah, chan);
1482 	if (r) {
1483 		ath_err(common, "Failed to set channel\n");
1484 		return false;
1485 	}
1486 	ath9k_hw_set_clockrate(ah);
1487 	ath9k_hw_apply_txpower(ah, chan, false);
1488 
1489 	ath9k_hw_set_delta_slope(ah, chan);
1490 	ath9k_hw_spur_mitigate_freq(ah, chan);
1491 
1492 	if (band_switch || ini_reloaded)
1493 		ah->eep_ops->set_board_values(ah, chan);
1494 
1495 	ath9k_hw_init_bb(ah, chan);
1496 	ath9k_hw_rfbus_done(ah);
1497 
1498 	if (band_switch || ini_reloaded) {
1499 		ah->ah_flags |= AH_FASTCC;
1500 		ath9k_hw_init_cal(ah, chan);
1501 		ah->ah_flags &= ~AH_FASTCC;
1502 	}
1503 
1504 	return true;
1505 }
1506 
1507 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1508 {
1509 	u32 gpio_mask = ah->gpio_mask;
1510 	int i;
1511 
1512 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1513 		if (!(gpio_mask & 1))
1514 			continue;
1515 
1516 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1517 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1518 	}
1519 }
1520 
1521 void ath9k_hw_check_nav(struct ath_hw *ah)
1522 {
1523 	struct ath_common *common = ath9k_hw_common(ah);
1524 	u32 val;
1525 
1526 	val = REG_READ(ah, AR_NAV);
1527 	if (val != 0xdeadbeef && val > 0x7fff) {
1528 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1529 		REG_WRITE(ah, AR_NAV, 0);
1530 	}
1531 }
1532 EXPORT_SYMBOL(ath9k_hw_check_nav);
1533 
1534 bool ath9k_hw_check_alive(struct ath_hw *ah)
1535 {
1536 	int count = 50;
1537 	u32 reg, last_val;
1538 
1539 	if (AR_SREV_9300(ah))
1540 		return !ath9k_hw_detect_mac_hang(ah);
1541 
1542 	if (AR_SREV_9285_12_OR_LATER(ah))
1543 		return true;
1544 
1545 	last_val = REG_READ(ah, AR_OBS_BUS_1);
1546 	do {
1547 		reg = REG_READ(ah, AR_OBS_BUS_1);
1548 		if (reg != last_val)
1549 			return true;
1550 
1551 		last_val = reg;
1552 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1553 			continue;
1554 
1555 		switch (reg & 0x7E000B00) {
1556 		case 0x1E000000:
1557 		case 0x52000B00:
1558 		case 0x18000B00:
1559 			continue;
1560 		default:
1561 			return true;
1562 		}
1563 
1564 		udelay(1);
1565 	} while (count-- > 0);
1566 
1567 	return false;
1568 }
1569 EXPORT_SYMBOL(ath9k_hw_check_alive);
1570 
1571 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1572 {
1573 	/* Setup MFP options for CCMP */
1574 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1575 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1576 		 * frames when constructing CCMP AAD. */
1577 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1578 			      0xc7ff);
1579 		ah->sw_mgmt_crypto = false;
1580 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1581 		/* Disable hardware crypto for management frames */
1582 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1583 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1584 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1585 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1586 		ah->sw_mgmt_crypto = true;
1587 	} else {
1588 		ah->sw_mgmt_crypto = true;
1589 	}
1590 }
1591 
1592 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1593 				  u32 macStaId1, u32 saveDefAntenna)
1594 {
1595 	struct ath_common *common = ath9k_hw_common(ah);
1596 
1597 	ENABLE_REGWRITE_BUFFER(ah);
1598 
1599 	REG_RMW(ah, AR_STA_ID1, macStaId1
1600 		  | AR_STA_ID1_RTS_USE_DEF
1601 		  | ah->sta_id1_defaults,
1602 		  ~AR_STA_ID1_SADH_MASK);
1603 	ath_hw_setbssidmask(common);
1604 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1605 	ath9k_hw_write_associd(ah);
1606 	REG_WRITE(ah, AR_ISR, ~0);
1607 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1608 
1609 	REGWRITE_BUFFER_FLUSH(ah);
1610 
1611 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1612 }
1613 
1614 static void ath9k_hw_init_queues(struct ath_hw *ah)
1615 {
1616 	int i;
1617 
1618 	ENABLE_REGWRITE_BUFFER(ah);
1619 
1620 	for (i = 0; i < AR_NUM_DCU; i++)
1621 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1622 
1623 	REGWRITE_BUFFER_FLUSH(ah);
1624 
1625 	ah->intr_txqs = 0;
1626 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1627 		ath9k_hw_resettxqueue(ah, i);
1628 }
1629 
1630 /*
1631  * For big endian systems turn on swapping for descriptors
1632  */
1633 static void ath9k_hw_init_desc(struct ath_hw *ah)
1634 {
1635 	struct ath_common *common = ath9k_hw_common(ah);
1636 
1637 	if (AR_SREV_9100(ah)) {
1638 		u32 mask;
1639 		mask = REG_READ(ah, AR_CFG);
1640 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1641 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1642 				mask);
1643 		} else {
1644 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1645 			REG_WRITE(ah, AR_CFG, mask);
1646 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1647 				REG_READ(ah, AR_CFG));
1648 		}
1649 	} else {
1650 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1651 			/* Configure AR9271 target WLAN */
1652 			if (AR_SREV_9271(ah))
1653 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1654 			else
1655 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1656 		}
1657 #ifdef __BIG_ENDIAN
1658 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1659 			 AR_SREV_9550(ah) || AR_SREV_9531(ah))
1660 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1661 		else
1662 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1663 #endif
1664 	}
1665 }
1666 
1667 /*
1668  * Fast channel change:
1669  * (Change synthesizer based on channel freq without resetting chip)
1670  */
1671 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1672 {
1673 	struct ath_common *common = ath9k_hw_common(ah);
1674 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1675 	int ret;
1676 
1677 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1678 		goto fail;
1679 
1680 	if (ah->chip_fullsleep)
1681 		goto fail;
1682 
1683 	if (!ah->curchan)
1684 		goto fail;
1685 
1686 	if (chan->channel == ah->curchan->channel)
1687 		goto fail;
1688 
1689 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1690 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1691 		goto fail;
1692 
1693 	/*
1694 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1695 	 */
1696 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1697 	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1698 		goto fail;
1699 
1700 	if (!ath9k_hw_check_alive(ah))
1701 		goto fail;
1702 
1703 	/*
1704 	 * For AR9462, make sure that calibration data for
1705 	 * re-using are present.
1706 	 */
1707 	if (AR_SREV_9462(ah) && (ah->caldata &&
1708 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1709 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1710 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1711 		goto fail;
1712 
1713 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1714 		ah->curchan->channel, chan->channel);
1715 
1716 	ret = ath9k_hw_channel_change(ah, chan);
1717 	if (!ret)
1718 		goto fail;
1719 
1720 	if (ath9k_hw_mci_is_enabled(ah))
1721 		ar9003_mci_2g5g_switch(ah, false);
1722 
1723 	ath9k_hw_loadnf(ah, ah->curchan);
1724 	ath9k_hw_start_nfcal(ah, true);
1725 
1726 	if (AR_SREV_9271(ah))
1727 		ar9002_hw_load_ani_reg(ah, chan);
1728 
1729 	return 0;
1730 fail:
1731 	return -EINVAL;
1732 }
1733 
1734 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1735 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1736 {
1737 	struct ath_common *common = ath9k_hw_common(ah);
1738 	struct timespec ts;
1739 	u32 saveLedState;
1740 	u32 saveDefAntenna;
1741 	u32 macStaId1;
1742 	u64 tsf = 0;
1743 	s64 usec = 0;
1744 	int r;
1745 	bool start_mci_reset = false;
1746 	bool save_fullsleep = ah->chip_fullsleep;
1747 
1748 	if (ath9k_hw_mci_is_enabled(ah)) {
1749 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1750 		if (start_mci_reset)
1751 			return 0;
1752 	}
1753 
1754 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1755 		return -EIO;
1756 
1757 	if (ah->curchan && !ah->chip_fullsleep)
1758 		ath9k_hw_getnf(ah, ah->curchan);
1759 
1760 	ah->caldata = caldata;
1761 	if (caldata && (chan->channel != caldata->channel ||
1762 			chan->channelFlags != caldata->channelFlags)) {
1763 		/* Operating channel changed, reset channel calibration data */
1764 		memset(caldata, 0, sizeof(*caldata));
1765 		ath9k_init_nfcal_hist_buffer(ah, chan);
1766 	} else if (caldata) {
1767 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1768 	}
1769 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1770 
1771 	if (fastcc) {
1772 		r = ath9k_hw_do_fastcc(ah, chan);
1773 		if (!r)
1774 			return r;
1775 	}
1776 
1777 	if (ath9k_hw_mci_is_enabled(ah))
1778 		ar9003_mci_stop_bt(ah, save_fullsleep);
1779 
1780 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1781 	if (saveDefAntenna == 0)
1782 		saveDefAntenna = 1;
1783 
1784 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1785 
1786 	/* Save TSF before chip reset, a cold reset clears it */
1787 	tsf = ath9k_hw_gettsf64(ah);
1788 	getrawmonotonic(&ts);
1789 	usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000;
1790 
1791 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1792 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1793 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1794 
1795 	ath9k_hw_mark_phy_inactive(ah);
1796 
1797 	ah->paprd_table_write_done = false;
1798 
1799 	/* Only required on the first reset */
1800 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1801 		REG_WRITE(ah,
1802 			  AR9271_RESET_POWER_DOWN_CONTROL,
1803 			  AR9271_RADIO_RF_RST);
1804 		udelay(50);
1805 	}
1806 
1807 	if (!ath9k_hw_chip_reset(ah, chan)) {
1808 		ath_err(common, "Chip reset failed\n");
1809 		return -EINVAL;
1810 	}
1811 
1812 	/* Only required on the first reset */
1813 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1814 		ah->htc_reset_init = false;
1815 		REG_WRITE(ah,
1816 			  AR9271_RESET_POWER_DOWN_CONTROL,
1817 			  AR9271_GATE_MAC_CTL);
1818 		udelay(50);
1819 	}
1820 
1821 	/* Restore TSF */
1822 	getrawmonotonic(&ts);
1823 	usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000 - usec;
1824 	ath9k_hw_settsf64(ah, tsf + usec);
1825 
1826 	if (AR_SREV_9280_20_OR_LATER(ah))
1827 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1828 
1829 	if (!AR_SREV_9300_20_OR_LATER(ah))
1830 		ar9002_hw_enable_async_fifo(ah);
1831 
1832 	r = ath9k_hw_process_ini(ah, chan);
1833 	if (r)
1834 		return r;
1835 
1836 	ath9k_hw_set_rfmode(ah, chan);
1837 
1838 	if (ath9k_hw_mci_is_enabled(ah))
1839 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1840 
1841 	/*
1842 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1843 	 * right after the chip reset. When that happens, write a new
1844 	 * value after the initvals have been applied, with an offset
1845 	 * based on measured time difference
1846 	 */
1847 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1848 		tsf += 1500;
1849 		ath9k_hw_settsf64(ah, tsf);
1850 	}
1851 
1852 	ath9k_hw_init_mfp(ah);
1853 
1854 	ath9k_hw_set_delta_slope(ah, chan);
1855 	ath9k_hw_spur_mitigate_freq(ah, chan);
1856 	ah->eep_ops->set_board_values(ah, chan);
1857 
1858 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1859 
1860 	r = ath9k_hw_rf_set_freq(ah, chan);
1861 	if (r)
1862 		return r;
1863 
1864 	ath9k_hw_set_clockrate(ah);
1865 
1866 	ath9k_hw_init_queues(ah);
1867 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1868 	ath9k_hw_ani_cache_ini_regs(ah);
1869 	ath9k_hw_init_qos(ah);
1870 
1871 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1872 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1873 
1874 	ath9k_hw_init_global_settings(ah);
1875 
1876 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1877 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1878 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1879 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1880 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1881 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1882 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1883 	}
1884 
1885 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1886 
1887 	ath9k_hw_set_dma(ah);
1888 
1889 	if (!ath9k_hw_mci_is_enabled(ah))
1890 		REG_WRITE(ah, AR_OBS, 8);
1891 
1892 	if (ah->config.rx_intr_mitigation) {
1893 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1894 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1895 	}
1896 
1897 	if (ah->config.tx_intr_mitigation) {
1898 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1899 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1900 	}
1901 
1902 	ath9k_hw_init_bb(ah, chan);
1903 
1904 	if (caldata) {
1905 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1906 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1907 	}
1908 	if (!ath9k_hw_init_cal(ah, chan))
1909 		return -EIO;
1910 
1911 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1912 		return -EIO;
1913 
1914 	ENABLE_REGWRITE_BUFFER(ah);
1915 
1916 	ath9k_hw_restore_chainmask(ah);
1917 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1918 
1919 	REGWRITE_BUFFER_FLUSH(ah);
1920 
1921 	ath9k_hw_init_desc(ah);
1922 
1923 	if (ath9k_hw_btcoex_is_enabled(ah))
1924 		ath9k_hw_btcoex_enable(ah);
1925 
1926 	if (ath9k_hw_mci_is_enabled(ah))
1927 		ar9003_mci_check_bt(ah);
1928 
1929 	ath9k_hw_loadnf(ah, chan);
1930 	ath9k_hw_start_nfcal(ah, true);
1931 
1932 	if (AR_SREV_9300_20_OR_LATER(ah))
1933 		ar9003_hw_bb_watchdog_config(ah);
1934 
1935 	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
1936 		ar9003_hw_disable_phy_restart(ah);
1937 
1938 	ath9k_hw_apply_gpio_override(ah);
1939 
1940 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1941 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1942 
1943 	return 0;
1944 }
1945 EXPORT_SYMBOL(ath9k_hw_reset);
1946 
1947 /******************************/
1948 /* Power Management (Chipset) */
1949 /******************************/
1950 
1951 /*
1952  * Notify Power Mgt is disabled in self-generated frames.
1953  * If requested, force chip to sleep.
1954  */
1955 static void ath9k_set_power_sleep(struct ath_hw *ah)
1956 {
1957 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1958 
1959 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
1960 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
1961 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
1962 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
1963 		/* xxx Required for WLAN only case ? */
1964 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1965 		udelay(100);
1966 	}
1967 
1968 	/*
1969 	 * Clear the RTC force wake bit to allow the
1970 	 * mac to go to sleep.
1971 	 */
1972 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
1973 
1974 	if (ath9k_hw_mci_is_enabled(ah))
1975 		udelay(100);
1976 
1977 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1978 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1979 
1980 	/* Shutdown chip. Active low */
1981 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
1982 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
1983 		udelay(2);
1984 	}
1985 
1986 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1987 	if (AR_SREV_9300_20_OR_LATER(ah))
1988 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1989 }
1990 
1991 /*
1992  * Notify Power Management is enabled in self-generating
1993  * frames. If request, set power mode of chip to
1994  * auto/normal.  Duration in units of 128us (1/8 TU).
1995  */
1996 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
1997 {
1998 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1999 
2000 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2001 
2002 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2003 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2004 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2005 			  AR_RTC_FORCE_WAKE_ON_INT);
2006 	} else {
2007 
2008 		/* When chip goes into network sleep, it could be waken
2009 		 * up by MCI_INT interrupt caused by BT's HW messages
2010 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2011 		 * rate (~100us). This will cause chip to leave and
2012 		 * re-enter network sleep mode frequently, which in
2013 		 * consequence will have WLAN MCI HW to generate lots of
2014 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2015 		 * BT CPU to busy to process.
2016 		 */
2017 		if (ath9k_hw_mci_is_enabled(ah))
2018 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2019 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2020 		/*
2021 		 * Clear the RTC force wake bit to allow the
2022 		 * mac to go to sleep.
2023 		 */
2024 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2025 
2026 		if (ath9k_hw_mci_is_enabled(ah))
2027 			udelay(30);
2028 	}
2029 
2030 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2031 	if (AR_SREV_9300_20_OR_LATER(ah))
2032 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2033 }
2034 
2035 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2036 {
2037 	u32 val;
2038 	int i;
2039 
2040 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2041 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2042 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2043 		udelay(10);
2044 	}
2045 
2046 	if ((REG_READ(ah, AR_RTC_STATUS) &
2047 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2048 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2049 			return false;
2050 		}
2051 		if (!AR_SREV_9300_20_OR_LATER(ah))
2052 			ath9k_hw_init_pll(ah, NULL);
2053 	}
2054 	if (AR_SREV_9100(ah))
2055 		REG_SET_BIT(ah, AR_RTC_RESET,
2056 			    AR_RTC_RESET_EN);
2057 
2058 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2059 		    AR_RTC_FORCE_WAKE_EN);
2060 	if (AR_SREV_9100(ah))
2061 		mdelay(10);
2062 	else
2063 		udelay(50);
2064 
2065 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2066 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2067 		if (val == AR_RTC_STATUS_ON)
2068 			break;
2069 		udelay(50);
2070 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2071 			    AR_RTC_FORCE_WAKE_EN);
2072 	}
2073 	if (i == 0) {
2074 		ath_err(ath9k_hw_common(ah),
2075 			"Failed to wakeup in %uus\n",
2076 			POWER_UP_TIME / 20);
2077 		return false;
2078 	}
2079 
2080 	if (ath9k_hw_mci_is_enabled(ah))
2081 		ar9003_mci_set_power_awake(ah);
2082 
2083 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2084 
2085 	return true;
2086 }
2087 
2088 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2089 {
2090 	struct ath_common *common = ath9k_hw_common(ah);
2091 	int status = true;
2092 	static const char *modes[] = {
2093 		"AWAKE",
2094 		"FULL-SLEEP",
2095 		"NETWORK SLEEP",
2096 		"UNDEFINED"
2097 	};
2098 
2099 	if (ah->power_mode == mode)
2100 		return status;
2101 
2102 	ath_dbg(common, RESET, "%s -> %s\n",
2103 		modes[ah->power_mode], modes[mode]);
2104 
2105 	switch (mode) {
2106 	case ATH9K_PM_AWAKE:
2107 		status = ath9k_hw_set_power_awake(ah);
2108 		break;
2109 	case ATH9K_PM_FULL_SLEEP:
2110 		if (ath9k_hw_mci_is_enabled(ah))
2111 			ar9003_mci_set_full_sleep(ah);
2112 
2113 		ath9k_set_power_sleep(ah);
2114 		ah->chip_fullsleep = true;
2115 		break;
2116 	case ATH9K_PM_NETWORK_SLEEP:
2117 		ath9k_set_power_network_sleep(ah);
2118 		break;
2119 	default:
2120 		ath_err(common, "Unknown power mode %u\n", mode);
2121 		return false;
2122 	}
2123 	ah->power_mode = mode;
2124 
2125 	/*
2126 	 * XXX: If this warning never comes up after a while then
2127 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2128 	 * ath9k_hw_setpower() return type void.
2129 	 */
2130 
2131 	if (!(ah->ah_flags & AH_UNPLUGGED))
2132 		ATH_DBG_WARN_ON_ONCE(!status);
2133 
2134 	return status;
2135 }
2136 EXPORT_SYMBOL(ath9k_hw_setpower);
2137 
2138 /*******************/
2139 /* Beacon Handling */
2140 /*******************/
2141 
2142 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2143 {
2144 	int flags = 0;
2145 
2146 	ENABLE_REGWRITE_BUFFER(ah);
2147 
2148 	switch (ah->opmode) {
2149 	case NL80211_IFTYPE_ADHOC:
2150 		REG_SET_BIT(ah, AR_TXCFG,
2151 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2152 	case NL80211_IFTYPE_MESH_POINT:
2153 	case NL80211_IFTYPE_AP:
2154 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2155 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2156 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2157 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2158 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2159 		flags |=
2160 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2161 		break;
2162 	default:
2163 		ath_dbg(ath9k_hw_common(ah), BEACON,
2164 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2165 		return;
2166 		break;
2167 	}
2168 
2169 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2170 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2171 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2172 
2173 	REGWRITE_BUFFER_FLUSH(ah);
2174 
2175 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2176 }
2177 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2178 
2179 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2180 				    const struct ath9k_beacon_state *bs)
2181 {
2182 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2183 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2184 	struct ath_common *common = ath9k_hw_common(ah);
2185 
2186 	ENABLE_REGWRITE_BUFFER(ah);
2187 
2188 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2189 	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2190 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2191 
2192 	REGWRITE_BUFFER_FLUSH(ah);
2193 
2194 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2195 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2196 
2197 	beaconintval = bs->bs_intval;
2198 
2199 	if (bs->bs_sleepduration > beaconintval)
2200 		beaconintval = bs->bs_sleepduration;
2201 
2202 	dtimperiod = bs->bs_dtimperiod;
2203 	if (bs->bs_sleepduration > dtimperiod)
2204 		dtimperiod = bs->bs_sleepduration;
2205 
2206 	if (beaconintval == dtimperiod)
2207 		nextTbtt = bs->bs_nextdtim;
2208 	else
2209 		nextTbtt = bs->bs_nexttbtt;
2210 
2211 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2212 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2213 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2214 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2215 
2216 	ENABLE_REGWRITE_BUFFER(ah);
2217 
2218 	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2219 	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2220 
2221 	REG_WRITE(ah, AR_SLEEP1,
2222 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2223 		  | AR_SLEEP1_ASSUME_DTIM);
2224 
2225 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2226 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2227 	else
2228 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2229 
2230 	REG_WRITE(ah, AR_SLEEP2,
2231 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2232 
2233 	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2234 	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2235 
2236 	REGWRITE_BUFFER_FLUSH(ah);
2237 
2238 	REG_SET_BIT(ah, AR_TIMER_MODE,
2239 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2240 		    AR_DTIM_TIMER_EN);
2241 
2242 	/* TSF Out of Range Threshold */
2243 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2244 }
2245 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2246 
2247 /*******************/
2248 /* HW Capabilities */
2249 /*******************/
2250 
2251 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2252 {
2253 	eeprom_chainmask &= chip_chainmask;
2254 	if (eeprom_chainmask)
2255 		return eeprom_chainmask;
2256 	else
2257 		return chip_chainmask;
2258 }
2259 
2260 /**
2261  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2262  * @ah: the atheros hardware data structure
2263  *
2264  * We enable DFS support upstream on chipsets which have passed a series
2265  * of tests. The testing requirements are going to be documented. Desired
2266  * test requirements are documented at:
2267  *
2268  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2269  *
2270  * Once a new chipset gets properly tested an individual commit can be used
2271  * to document the testing for DFS for that chipset.
2272  */
2273 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2274 {
2275 
2276 	switch (ah->hw_version.macVersion) {
2277 	/* for temporary testing DFS with 9280 */
2278 	case AR_SREV_VERSION_9280:
2279 	/* AR9580 will likely be our first target to get testing on */
2280 	case AR_SREV_VERSION_9580:
2281 		return true;
2282 	default:
2283 		return false;
2284 	}
2285 }
2286 
2287 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2288 {
2289 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2290 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2291 	struct ath_common *common = ath9k_hw_common(ah);
2292 	unsigned int chip_chainmask;
2293 
2294 	u16 eeval;
2295 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2296 
2297 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2298 	regulatory->current_rd = eeval;
2299 
2300 	if (ah->opmode != NL80211_IFTYPE_AP &&
2301 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2302 		if (regulatory->current_rd == 0x64 ||
2303 		    regulatory->current_rd == 0x65)
2304 			regulatory->current_rd += 5;
2305 		else if (regulatory->current_rd == 0x41)
2306 			regulatory->current_rd = 0x43;
2307 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2308 			regulatory->current_rd);
2309 	}
2310 
2311 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2312 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2313 		ath_err(common,
2314 			"no band has been marked as supported in EEPROM\n");
2315 		return -EINVAL;
2316 	}
2317 
2318 	if (eeval & AR5416_OPFLAGS_11A)
2319 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2320 
2321 	if (eeval & AR5416_OPFLAGS_11G)
2322 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2323 
2324 	if (AR_SREV_9485(ah) ||
2325 	    AR_SREV_9285(ah) ||
2326 	    AR_SREV_9330(ah) ||
2327 	    AR_SREV_9565(ah))
2328 		chip_chainmask = 1;
2329 	else if (AR_SREV_9462(ah))
2330 		chip_chainmask = 3;
2331 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2332 		chip_chainmask = 7;
2333 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2334 		chip_chainmask = 3;
2335 	else
2336 		chip_chainmask = 7;
2337 
2338 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2339 	/*
2340 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2341 	 * the EEPROM.
2342 	 */
2343 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2344 	    !(eeval & AR5416_OPFLAGS_11A) &&
2345 	    !(AR_SREV_9271(ah)))
2346 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2347 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2348 	else if (AR_SREV_9100(ah))
2349 		pCap->rx_chainmask = 0x7;
2350 	else
2351 		/* Use rx_chainmask from EEPROM. */
2352 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2353 
2354 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2355 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2356 	ah->txchainmask = pCap->tx_chainmask;
2357 	ah->rxchainmask = pCap->rx_chainmask;
2358 
2359 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2360 
2361 	/* enable key search for every frame in an aggregate */
2362 	if (AR_SREV_9300_20_OR_LATER(ah))
2363 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2364 
2365 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2366 
2367 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2368 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2369 	else
2370 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2371 
2372 	if (AR_SREV_9271(ah))
2373 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2374 	else if (AR_DEVID_7010(ah))
2375 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2376 	else if (AR_SREV_9300_20_OR_LATER(ah))
2377 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2378 	else if (AR_SREV_9287_11_OR_LATER(ah))
2379 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2380 	else if (AR_SREV_9285_12_OR_LATER(ah))
2381 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2382 	else if (AR_SREV_9280_20_OR_LATER(ah))
2383 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2384 	else
2385 		pCap->num_gpio_pins = AR_NUM_GPIO;
2386 
2387 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2388 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2389 	else
2390 		pCap->rts_aggr_limit = (8 * 1024);
2391 
2392 #ifdef CONFIG_ATH9K_RFKILL
2393 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2394 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2395 		ah->rfkill_gpio =
2396 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2397 		ah->rfkill_polarity =
2398 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2399 
2400 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2401 	}
2402 #endif
2403 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2404 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2405 	else
2406 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2407 
2408 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2409 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2410 	else
2411 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2412 
2413 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2414 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2415 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2416 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2417 
2418 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2419 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2420 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2421 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2422 		pCap->txs_len = sizeof(struct ar9003_txs);
2423 	} else {
2424 		pCap->tx_desc_len = sizeof(struct ath_desc);
2425 		if (AR_SREV_9280_20(ah))
2426 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2427 	}
2428 
2429 	if (AR_SREV_9300_20_OR_LATER(ah))
2430 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2431 
2432 	if (AR_SREV_9300_20_OR_LATER(ah))
2433 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2434 
2435 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2436 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2437 
2438 	if (AR_SREV_9285(ah)) {
2439 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2440 			ant_div_ctl1 =
2441 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2442 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2443 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2444 				ath_info(common, "Enable LNA combining\n");
2445 			}
2446 		}
2447 	}
2448 
2449 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2450 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2451 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2452 	}
2453 
2454 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2455 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2456 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2457 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2458 			ath_info(common, "Enable LNA combining\n");
2459 		}
2460 	}
2461 
2462 	if (ath9k_hw_dfs_tested(ah))
2463 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2464 
2465 	tx_chainmask = pCap->tx_chainmask;
2466 	rx_chainmask = pCap->rx_chainmask;
2467 	while (tx_chainmask || rx_chainmask) {
2468 		if (tx_chainmask & BIT(0))
2469 			pCap->max_txchains++;
2470 		if (rx_chainmask & BIT(0))
2471 			pCap->max_rxchains++;
2472 
2473 		tx_chainmask >>= 1;
2474 		rx_chainmask >>= 1;
2475 	}
2476 
2477 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2478 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2479 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2480 
2481 		if (AR_SREV_9462_20_OR_LATER(ah))
2482 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2483 	}
2484 
2485 	if (AR_SREV_9462(ah))
2486 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2487 
2488 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2489 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2490 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2491 
2492 	return 0;
2493 }
2494 
2495 /****************************/
2496 /* GPIO / RFKILL / Antennae */
2497 /****************************/
2498 
2499 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2500 					 u32 gpio, u32 type)
2501 {
2502 	int addr;
2503 	u32 gpio_shift, tmp;
2504 
2505 	if (gpio > 11)
2506 		addr = AR_GPIO_OUTPUT_MUX3;
2507 	else if (gpio > 5)
2508 		addr = AR_GPIO_OUTPUT_MUX2;
2509 	else
2510 		addr = AR_GPIO_OUTPUT_MUX1;
2511 
2512 	gpio_shift = (gpio % 6) * 5;
2513 
2514 	if (AR_SREV_9280_20_OR_LATER(ah)
2515 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2516 		REG_RMW(ah, addr, (type << gpio_shift),
2517 			(0x1f << gpio_shift));
2518 	} else {
2519 		tmp = REG_READ(ah, addr);
2520 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2521 		tmp &= ~(0x1f << gpio_shift);
2522 		tmp |= (type << gpio_shift);
2523 		REG_WRITE(ah, addr, tmp);
2524 	}
2525 }
2526 
2527 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2528 {
2529 	u32 gpio_shift;
2530 
2531 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2532 
2533 	if (AR_DEVID_7010(ah)) {
2534 		gpio_shift = gpio;
2535 		REG_RMW(ah, AR7010_GPIO_OE,
2536 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2537 			(AR7010_GPIO_OE_MASK << gpio_shift));
2538 		return;
2539 	}
2540 
2541 	gpio_shift = gpio << 1;
2542 	REG_RMW(ah,
2543 		AR_GPIO_OE_OUT,
2544 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2545 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2546 }
2547 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2548 
2549 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2550 {
2551 #define MS_REG_READ(x, y) \
2552 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2553 
2554 	if (gpio >= ah->caps.num_gpio_pins)
2555 		return 0xffffffff;
2556 
2557 	if (AR_DEVID_7010(ah)) {
2558 		u32 val;
2559 		val = REG_READ(ah, AR7010_GPIO_IN);
2560 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2561 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2562 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2563 			AR_GPIO_BIT(gpio)) != 0;
2564 	else if (AR_SREV_9271(ah))
2565 		return MS_REG_READ(AR9271, gpio) != 0;
2566 	else if (AR_SREV_9287_11_OR_LATER(ah))
2567 		return MS_REG_READ(AR9287, gpio) != 0;
2568 	else if (AR_SREV_9285_12_OR_LATER(ah))
2569 		return MS_REG_READ(AR9285, gpio) != 0;
2570 	else if (AR_SREV_9280_20_OR_LATER(ah))
2571 		return MS_REG_READ(AR928X, gpio) != 0;
2572 	else
2573 		return MS_REG_READ(AR, gpio) != 0;
2574 }
2575 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2576 
2577 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2578 			 u32 ah_signal_type)
2579 {
2580 	u32 gpio_shift;
2581 
2582 	if (AR_DEVID_7010(ah)) {
2583 		gpio_shift = gpio;
2584 		REG_RMW(ah, AR7010_GPIO_OE,
2585 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2586 			(AR7010_GPIO_OE_MASK << gpio_shift));
2587 		return;
2588 	}
2589 
2590 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2591 	gpio_shift = 2 * gpio;
2592 	REG_RMW(ah,
2593 		AR_GPIO_OE_OUT,
2594 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2595 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2596 }
2597 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2598 
2599 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2600 {
2601 	if (AR_DEVID_7010(ah)) {
2602 		val = val ? 0 : 1;
2603 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2604 			AR_GPIO_BIT(gpio));
2605 		return;
2606 	}
2607 
2608 	if (AR_SREV_9271(ah))
2609 		val = ~val;
2610 
2611 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2612 		AR_GPIO_BIT(gpio));
2613 }
2614 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2615 
2616 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2617 {
2618 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2619 }
2620 EXPORT_SYMBOL(ath9k_hw_setantenna);
2621 
2622 /*********************/
2623 /* General Operation */
2624 /*********************/
2625 
2626 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2627 {
2628 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2629 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2630 
2631 	if (phybits & AR_PHY_ERR_RADAR)
2632 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2633 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2634 		bits |= ATH9K_RX_FILTER_PHYERR;
2635 
2636 	return bits;
2637 }
2638 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2639 
2640 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2641 {
2642 	u32 phybits;
2643 
2644 	ENABLE_REGWRITE_BUFFER(ah);
2645 
2646 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2647 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2648 
2649 	REG_WRITE(ah, AR_RX_FILTER, bits);
2650 
2651 	phybits = 0;
2652 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2653 		phybits |= AR_PHY_ERR_RADAR;
2654 	if (bits & ATH9K_RX_FILTER_PHYERR)
2655 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2656 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2657 
2658 	if (phybits)
2659 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2660 	else
2661 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2662 
2663 	REGWRITE_BUFFER_FLUSH(ah);
2664 }
2665 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2666 
2667 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2668 {
2669 	if (ath9k_hw_mci_is_enabled(ah))
2670 		ar9003_mci_bt_gain_ctrl(ah);
2671 
2672 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2673 		return false;
2674 
2675 	ath9k_hw_init_pll(ah, NULL);
2676 	ah->htc_reset_init = true;
2677 	return true;
2678 }
2679 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2680 
2681 bool ath9k_hw_disable(struct ath_hw *ah)
2682 {
2683 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2684 		return false;
2685 
2686 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2687 		return false;
2688 
2689 	ath9k_hw_init_pll(ah, NULL);
2690 	return true;
2691 }
2692 EXPORT_SYMBOL(ath9k_hw_disable);
2693 
2694 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2695 {
2696 	enum eeprom_param gain_param;
2697 
2698 	if (IS_CHAN_2GHZ(chan))
2699 		gain_param = EEP_ANTENNA_GAIN_2G;
2700 	else
2701 		gain_param = EEP_ANTENNA_GAIN_5G;
2702 
2703 	return ah->eep_ops->get_eeprom(ah, gain_param);
2704 }
2705 
2706 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2707 			    bool test)
2708 {
2709 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2710 	struct ieee80211_channel *channel;
2711 	int chan_pwr, new_pwr, max_gain;
2712 	int ant_gain, ant_reduction = 0;
2713 
2714 	if (!chan)
2715 		return;
2716 
2717 	channel = chan->chan;
2718 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2719 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2720 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2721 
2722 	ant_gain = get_antenna_gain(ah, chan);
2723 	if (ant_gain > max_gain)
2724 		ant_reduction = ant_gain - max_gain;
2725 
2726 	ah->eep_ops->set_txpower(ah, chan,
2727 				 ath9k_regd_get_ctl(reg, chan),
2728 				 ant_reduction, new_pwr, test);
2729 }
2730 
2731 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2732 {
2733 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2734 	struct ath9k_channel *chan = ah->curchan;
2735 	struct ieee80211_channel *channel = chan->chan;
2736 
2737 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2738 	if (test)
2739 		channel->max_power = MAX_RATE_POWER / 2;
2740 
2741 	ath9k_hw_apply_txpower(ah, chan, test);
2742 
2743 	if (test)
2744 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2745 }
2746 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2747 
2748 void ath9k_hw_setopmode(struct ath_hw *ah)
2749 {
2750 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2751 }
2752 EXPORT_SYMBOL(ath9k_hw_setopmode);
2753 
2754 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2755 {
2756 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2757 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2758 }
2759 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2760 
2761 void ath9k_hw_write_associd(struct ath_hw *ah)
2762 {
2763 	struct ath_common *common = ath9k_hw_common(ah);
2764 
2765 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2766 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2767 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2768 }
2769 EXPORT_SYMBOL(ath9k_hw_write_associd);
2770 
2771 #define ATH9K_MAX_TSF_READ 10
2772 
2773 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2774 {
2775 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2776 	int i;
2777 
2778 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2779 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2780 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2781 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2782 		if (tsf_upper2 == tsf_upper1)
2783 			break;
2784 		tsf_upper1 = tsf_upper2;
2785 	}
2786 
2787 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2788 
2789 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2790 }
2791 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2792 
2793 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2794 {
2795 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2796 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2797 }
2798 EXPORT_SYMBOL(ath9k_hw_settsf64);
2799 
2800 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2801 {
2802 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2803 			   AH_TSF_WRITE_TIMEOUT))
2804 		ath_dbg(ath9k_hw_common(ah), RESET,
2805 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2806 
2807 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2808 }
2809 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2810 
2811 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2812 {
2813 	if (set)
2814 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2815 	else
2816 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2817 }
2818 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2819 
2820 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2821 {
2822 	u32 macmode;
2823 
2824 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2825 		macmode = AR_2040_JOINED_RX_CLEAR;
2826 	else
2827 		macmode = 0;
2828 
2829 	REG_WRITE(ah, AR_2040_MODE, macmode);
2830 }
2831 
2832 /* HW Generic timers configuration */
2833 
2834 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2835 {
2836 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2837 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2838 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2839 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2840 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2841 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2842 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2843 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2844 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2845 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2846 				AR_NDP2_TIMER_MODE, 0x0002},
2847 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2848 				AR_NDP2_TIMER_MODE, 0x0004},
2849 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2850 				AR_NDP2_TIMER_MODE, 0x0008},
2851 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2852 				AR_NDP2_TIMER_MODE, 0x0010},
2853 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2854 				AR_NDP2_TIMER_MODE, 0x0020},
2855 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2856 				AR_NDP2_TIMER_MODE, 0x0040},
2857 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2858 				AR_NDP2_TIMER_MODE, 0x0080}
2859 };
2860 
2861 /* HW generic timer primitives */
2862 
2863 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2864 {
2865 	return REG_READ(ah, AR_TSF_L32);
2866 }
2867 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2868 
2869 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2870 					  void (*trigger)(void *),
2871 					  void (*overflow)(void *),
2872 					  void *arg,
2873 					  u8 timer_index)
2874 {
2875 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2876 	struct ath_gen_timer *timer;
2877 
2878 	if ((timer_index < AR_FIRST_NDP_TIMER) ||
2879 		(timer_index >= ATH_MAX_GEN_TIMER))
2880 		return NULL;
2881 
2882 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2883 	if (timer == NULL)
2884 		return NULL;
2885 
2886 	/* allocate a hardware generic timer slot */
2887 	timer_table->timers[timer_index] = timer;
2888 	timer->index = timer_index;
2889 	timer->trigger = trigger;
2890 	timer->overflow = overflow;
2891 	timer->arg = arg;
2892 
2893 	return timer;
2894 }
2895 EXPORT_SYMBOL(ath_gen_timer_alloc);
2896 
2897 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2898 			      struct ath_gen_timer *timer,
2899 			      u32 timer_next,
2900 			      u32 timer_period)
2901 {
2902 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2903 	u32 mask = 0;
2904 
2905 	timer_table->timer_mask |= BIT(timer->index);
2906 
2907 	/*
2908 	 * Program generic timer registers
2909 	 */
2910 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2911 		 timer_next);
2912 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2913 		  timer_period);
2914 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2915 		    gen_tmr_configuration[timer->index].mode_mask);
2916 
2917 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2918 		/*
2919 		 * Starting from AR9462, each generic timer can select which tsf
2920 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2921 		 * 8 - 15  use tsf2.
2922 		 */
2923 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2924 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2925 				       (1 << timer->index));
2926 		else
2927 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2928 				       (1 << timer->index));
2929 	}
2930 
2931 	if (timer->trigger)
2932 		mask |= SM(AR_GENTMR_BIT(timer->index),
2933 			   AR_IMR_S5_GENTIMER_TRIG);
2934 	if (timer->overflow)
2935 		mask |= SM(AR_GENTMR_BIT(timer->index),
2936 			   AR_IMR_S5_GENTIMER_THRESH);
2937 
2938 	REG_SET_BIT(ah, AR_IMR_S5, mask);
2939 
2940 	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
2941 		ah->imask |= ATH9K_INT_GENTIMER;
2942 		ath9k_hw_set_interrupts(ah);
2943 	}
2944 }
2945 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2946 
2947 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2948 {
2949 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2950 
2951 	/* Clear generic timer enable bits. */
2952 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2953 			gen_tmr_configuration[timer->index].mode_mask);
2954 
2955 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2956 		/*
2957 		 * Need to switch back to TSF if it was using TSF2.
2958 		 */
2959 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
2960 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2961 				    (1 << timer->index));
2962 		}
2963 	}
2964 
2965 	/* Disable both trigger and thresh interrupt masks */
2966 	REG_CLR_BIT(ah, AR_IMR_S5,
2967 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2968 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2969 
2970 	timer_table->timer_mask &= ~BIT(timer->index);
2971 
2972 	if (timer_table->timer_mask == 0) {
2973 		ah->imask &= ~ATH9K_INT_GENTIMER;
2974 		ath9k_hw_set_interrupts(ah);
2975 	}
2976 }
2977 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2978 
2979 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2980 {
2981 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2982 
2983 	/* free the hardware generic timer slot */
2984 	timer_table->timers[timer->index] = NULL;
2985 	kfree(timer);
2986 }
2987 EXPORT_SYMBOL(ath_gen_timer_free);
2988 
2989 /*
2990  * Generic Timer Interrupts handling
2991  */
2992 void ath_gen_timer_isr(struct ath_hw *ah)
2993 {
2994 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2995 	struct ath_gen_timer *timer;
2996 	unsigned long trigger_mask, thresh_mask;
2997 	unsigned int index;
2998 
2999 	/* get hardware generic timer interrupt status */
3000 	trigger_mask = ah->intr_gen_timer_trigger;
3001 	thresh_mask = ah->intr_gen_timer_thresh;
3002 	trigger_mask &= timer_table->timer_mask;
3003 	thresh_mask &= timer_table->timer_mask;
3004 
3005 	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3006 		timer = timer_table->timers[index];
3007 		if (!timer)
3008 		    continue;
3009 		if (!timer->overflow)
3010 		    continue;
3011 
3012 		trigger_mask &= ~BIT(index);
3013 		timer->overflow(timer->arg);
3014 	}
3015 
3016 	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3017 		timer = timer_table->timers[index];
3018 		if (!timer)
3019 		    continue;
3020 		if (!timer->trigger)
3021 		    continue;
3022 		timer->trigger(timer->arg);
3023 	}
3024 }
3025 EXPORT_SYMBOL(ath_gen_timer_isr);
3026 
3027 /********/
3028 /* HTC  */
3029 /********/
3030 
3031 static struct {
3032 	u32 version;
3033 	const char * name;
3034 } ath_mac_bb_names[] = {
3035 	/* Devices with external radios */
3036 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3037 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3038 	{ AR_SREV_VERSION_9100,		"9100" },
3039 	{ AR_SREV_VERSION_9160,		"9160" },
3040 	/* Single-chip solutions */
3041 	{ AR_SREV_VERSION_9280,		"9280" },
3042 	{ AR_SREV_VERSION_9285,		"9285" },
3043 	{ AR_SREV_VERSION_9287,         "9287" },
3044 	{ AR_SREV_VERSION_9271,         "9271" },
3045 	{ AR_SREV_VERSION_9300,         "9300" },
3046 	{ AR_SREV_VERSION_9330,         "9330" },
3047 	{ AR_SREV_VERSION_9340,		"9340" },
3048 	{ AR_SREV_VERSION_9485,         "9485" },
3049 	{ AR_SREV_VERSION_9462,         "9462" },
3050 	{ AR_SREV_VERSION_9550,         "9550" },
3051 	{ AR_SREV_VERSION_9565,         "9565" },
3052 };
3053 
3054 /* For devices with external radios */
3055 static struct {
3056 	u16 version;
3057 	const char * name;
3058 } ath_rf_names[] = {
3059 	{ 0,				"5133" },
3060 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3061 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3062 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3063 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3064 };
3065 
3066 /*
3067  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3068  */
3069 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3070 {
3071 	int i;
3072 
3073 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3074 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3075 			return ath_mac_bb_names[i].name;
3076 		}
3077 	}
3078 
3079 	return "????";
3080 }
3081 
3082 /*
3083  * Return the RF name. "????" is returned if the RF is unknown.
3084  * Used for devices with external radios.
3085  */
3086 static const char *ath9k_hw_rf_name(u16 rf_version)
3087 {
3088 	int i;
3089 
3090 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3091 		if (ath_rf_names[i].version == rf_version) {
3092 			return ath_rf_names[i].name;
3093 		}
3094 	}
3095 
3096 	return "????";
3097 }
3098 
3099 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3100 {
3101 	int used;
3102 
3103 	/* chipsets >= AR9280 are single-chip */
3104 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3105 		used = scnprintf(hw_name, len,
3106 				 "Atheros AR%s Rev:%x",
3107 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3108 				 ah->hw_version.macRev);
3109 	}
3110 	else {
3111 		used = scnprintf(hw_name, len,
3112 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3113 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3114 				 ah->hw_version.macRev,
3115 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3116 						  & AR_RADIO_SREV_MAJOR)),
3117 				 ah->hw_version.phyRev);
3118 	}
3119 
3120 	hw_name[used] = '\0';
3121 }
3122 EXPORT_SYMBOL(ath9k_hw_name);
3123