1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/io.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/bitops.h> 22 #include <asm/unaligned.h> 23 24 #include "hw.h" 25 #include "hw-ops.h" 26 #include "rc.h" 27 #include "ar9003_mac.h" 28 #include "ar9003_mci.h" 29 #include "ar9003_phy.h" 30 #include "debug.h" 31 #include "ath9k.h" 32 33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); 34 35 MODULE_AUTHOR("Atheros Communications"); 36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); 37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards"); 38 MODULE_LICENSE("Dual BSD/GPL"); 39 40 static void ath9k_hw_set_clockrate(struct ath_hw *ah) 41 { 42 struct ath_common *common = ath9k_hw_common(ah); 43 struct ath9k_channel *chan = ah->curchan; 44 unsigned int clockrate; 45 46 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */ 47 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) 48 clockrate = 117; 49 else if (!chan) /* should really check for CCK instead */ 50 clockrate = ATH9K_CLOCK_RATE_CCK; 51 else if (IS_CHAN_2GHZ(chan)) 52 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM; 53 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK) 54 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM; 55 else 56 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM; 57 58 if (chan) { 59 if (IS_CHAN_HT40(chan)) 60 clockrate *= 2; 61 if (IS_CHAN_HALF_RATE(chan)) 62 clockrate /= 2; 63 if (IS_CHAN_QUARTER_RATE(chan)) 64 clockrate /= 4; 65 } 66 67 common->clockrate = clockrate; 68 } 69 70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) 71 { 72 struct ath_common *common = ath9k_hw_common(ah); 73 74 return usecs * common->clockrate; 75 } 76 77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) 78 { 79 int i; 80 81 BUG_ON(timeout < AH_TIME_QUANTUM); 82 83 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { 84 if ((REG_READ(ah, reg) & mask) == val) 85 return true; 86 87 udelay(AH_TIME_QUANTUM); 88 } 89 90 ath_dbg(ath9k_hw_common(ah), ANY, 91 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", 92 timeout, reg, REG_READ(ah, reg), mask, val); 93 94 return false; 95 } 96 EXPORT_SYMBOL(ath9k_hw_wait); 97 98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan, 99 int hw_delay) 100 { 101 hw_delay /= 10; 102 103 if (IS_CHAN_HALF_RATE(chan)) 104 hw_delay *= 2; 105 else if (IS_CHAN_QUARTER_RATE(chan)) 106 hw_delay *= 4; 107 108 udelay(hw_delay + BASE_ACTIVATE_DELAY); 109 } 110 111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array, 112 int column, unsigned int *writecnt) 113 { 114 int r; 115 116 ENABLE_REGWRITE_BUFFER(ah); 117 for (r = 0; r < array->ia_rows; r++) { 118 REG_WRITE(ah, INI_RA(array, r, 0), 119 INI_RA(array, r, column)); 120 DO_DELAY(*writecnt); 121 } 122 REGWRITE_BUFFER_FLUSH(ah); 123 } 124 125 u32 ath9k_hw_reverse_bits(u32 val, u32 n) 126 { 127 u32 retval; 128 int i; 129 130 for (i = 0, retval = 0; i < n; i++) { 131 retval = (retval << 1) | (val & 1); 132 val >>= 1; 133 } 134 return retval; 135 } 136 137 u16 ath9k_hw_computetxtime(struct ath_hw *ah, 138 u8 phy, int kbps, 139 u32 frameLen, u16 rateix, 140 bool shortPreamble) 141 { 142 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; 143 144 if (kbps == 0) 145 return 0; 146 147 switch (phy) { 148 case WLAN_RC_PHY_CCK: 149 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; 150 if (shortPreamble) 151 phyTime >>= 1; 152 numBits = frameLen << 3; 153 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); 154 break; 155 case WLAN_RC_PHY_OFDM: 156 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { 157 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000; 158 numBits = OFDM_PLCP_BITS + (frameLen << 3); 159 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 160 txTime = OFDM_SIFS_TIME_QUARTER 161 + OFDM_PREAMBLE_TIME_QUARTER 162 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); 163 } else if (ah->curchan && 164 IS_CHAN_HALF_RATE(ah->curchan)) { 165 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME_HALF) / 1000; 166 numBits = OFDM_PLCP_BITS + (frameLen << 3); 167 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 168 txTime = OFDM_SIFS_TIME_HALF + 169 OFDM_PREAMBLE_TIME_HALF 170 + (numSymbols * OFDM_SYMBOL_TIME_HALF); 171 } else { 172 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; 173 numBits = OFDM_PLCP_BITS + (frameLen << 3); 174 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 175 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME 176 + (numSymbols * OFDM_SYMBOL_TIME); 177 } 178 break; 179 default: 180 ath_err(ath9k_hw_common(ah), 181 "Unknown phy %u (rate ix %u)\n", phy, rateix); 182 txTime = 0; 183 break; 184 } 185 186 return txTime; 187 } 188 EXPORT_SYMBOL(ath9k_hw_computetxtime); 189 190 void ath9k_hw_get_channel_centers(struct ath_hw *ah, 191 struct ath9k_channel *chan, 192 struct chan_centers *centers) 193 { 194 int8_t extoff; 195 196 if (!IS_CHAN_HT40(chan)) { 197 centers->ctl_center = centers->ext_center = 198 centers->synth_center = chan->channel; 199 return; 200 } 201 202 if (IS_CHAN_HT40PLUS(chan)) { 203 centers->synth_center = 204 chan->channel + HT40_CHANNEL_CENTER_SHIFT; 205 extoff = 1; 206 } else { 207 centers->synth_center = 208 chan->channel - HT40_CHANNEL_CENTER_SHIFT; 209 extoff = -1; 210 } 211 212 centers->ctl_center = 213 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); 214 /* 25 MHz spacing is supported by hw but not on upper layers */ 215 centers->ext_center = 216 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT); 217 } 218 219 /******************/ 220 /* Chip Revisions */ 221 /******************/ 222 223 static void ath9k_hw_read_revisions(struct ath_hw *ah) 224 { 225 u32 val; 226 227 switch (ah->hw_version.devid) { 228 case AR5416_AR9100_DEVID: 229 ah->hw_version.macVersion = AR_SREV_VERSION_9100; 230 break; 231 case AR9300_DEVID_AR9330: 232 ah->hw_version.macVersion = AR_SREV_VERSION_9330; 233 if (ah->get_mac_revision) { 234 ah->hw_version.macRev = ah->get_mac_revision(); 235 } else { 236 val = REG_READ(ah, AR_SREV); 237 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 238 } 239 return; 240 case AR9300_DEVID_AR9340: 241 ah->hw_version.macVersion = AR_SREV_VERSION_9340; 242 val = REG_READ(ah, AR_SREV); 243 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 244 return; 245 case AR9300_DEVID_QCA955X: 246 ah->hw_version.macVersion = AR_SREV_VERSION_9550; 247 return; 248 case AR9300_DEVID_AR953X: 249 ah->hw_version.macVersion = AR_SREV_VERSION_9531; 250 return; 251 } 252 253 val = REG_READ(ah, AR_SREV) & AR_SREV_ID; 254 255 if (val == 0xFF) { 256 val = REG_READ(ah, AR_SREV); 257 ah->hw_version.macVersion = 258 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; 259 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 260 261 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 262 ah->is_pciexpress = true; 263 else 264 ah->is_pciexpress = (val & 265 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; 266 } else { 267 if (!AR_SREV_9100(ah)) 268 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); 269 270 ah->hw_version.macRev = val & AR_SREV_REVISION; 271 272 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) 273 ah->is_pciexpress = true; 274 } 275 } 276 277 /************************************/ 278 /* HW Attach, Detach, Init Routines */ 279 /************************************/ 280 281 static void ath9k_hw_disablepcie(struct ath_hw *ah) 282 { 283 if (!AR_SREV_5416(ah)) 284 return; 285 286 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); 287 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); 288 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); 289 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); 290 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); 291 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); 292 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); 293 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); 294 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); 295 296 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); 297 } 298 299 /* This should work for all families including legacy */ 300 static bool ath9k_hw_chip_test(struct ath_hw *ah) 301 { 302 struct ath_common *common = ath9k_hw_common(ah); 303 u32 regAddr[2] = { AR_STA_ID0 }; 304 u32 regHold[2]; 305 static const u32 patternData[4] = { 306 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 307 }; 308 int i, j, loop_max; 309 310 if (!AR_SREV_9300_20_OR_LATER(ah)) { 311 loop_max = 2; 312 regAddr[1] = AR_PHY_BASE + (8 << 2); 313 } else 314 loop_max = 1; 315 316 for (i = 0; i < loop_max; i++) { 317 u32 addr = regAddr[i]; 318 u32 wrData, rdData; 319 320 regHold[i] = REG_READ(ah, addr); 321 for (j = 0; j < 0x100; j++) { 322 wrData = (j << 16) | j; 323 REG_WRITE(ah, addr, wrData); 324 rdData = REG_READ(ah, addr); 325 if (rdData != wrData) { 326 ath_err(common, 327 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 328 addr, wrData, rdData); 329 return false; 330 } 331 } 332 for (j = 0; j < 4; j++) { 333 wrData = patternData[j]; 334 REG_WRITE(ah, addr, wrData); 335 rdData = REG_READ(ah, addr); 336 if (wrData != rdData) { 337 ath_err(common, 338 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 339 addr, wrData, rdData); 340 return false; 341 } 342 } 343 REG_WRITE(ah, regAddr[i], regHold[i]); 344 } 345 udelay(100); 346 347 return true; 348 } 349 350 static void ath9k_hw_init_config(struct ath_hw *ah) 351 { 352 struct ath_common *common = ath9k_hw_common(ah); 353 354 ah->config.dma_beacon_response_time = 1; 355 ah->config.sw_beacon_response_time = 6; 356 ah->config.cwm_ignore_extcca = 0; 357 ah->config.analog_shiftreg = 1; 358 359 ah->config.rx_intr_mitigation = true; 360 361 if (AR_SREV_9300_20_OR_LATER(ah)) { 362 ah->config.rimt_last = 500; 363 ah->config.rimt_first = 2000; 364 } else { 365 ah->config.rimt_last = 250; 366 ah->config.rimt_first = 700; 367 } 368 369 /* 370 * We need this for PCI devices only (Cardbus, PCI, miniPCI) 371 * _and_ if on non-uniprocessor systems (Multiprocessor/HT). 372 * This means we use it for all AR5416 devices, and the few 373 * minor PCI AR9280 devices out there. 374 * 375 * Serialization is required because these devices do not handle 376 * well the case of two concurrent reads/writes due to the latency 377 * involved. During one read/write another read/write can be issued 378 * on another CPU while the previous read/write may still be working 379 * on our hardware, if we hit this case the hardware poops in a loop. 380 * We prevent this by serializing reads and writes. 381 * 382 * This issue is not present on PCI-Express devices or pre-AR5416 383 * devices (legacy, 802.11abg). 384 */ 385 if (num_possible_cpus() > 1) 386 ah->config.serialize_regmode = SER_REG_MODE_AUTO; 387 388 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) { 389 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || 390 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) && 391 !ah->is_pciexpress)) { 392 ah->config.serialize_regmode = SER_REG_MODE_ON; 393 } else { 394 ah->config.serialize_regmode = SER_REG_MODE_OFF; 395 } 396 } 397 398 ath_dbg(common, RESET, "serialize_regmode is %d\n", 399 ah->config.serialize_regmode); 400 401 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 402 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1; 403 else 404 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD; 405 } 406 407 static void ath9k_hw_init_defaults(struct ath_hw *ah) 408 { 409 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 410 411 regulatory->country_code = CTRY_DEFAULT; 412 regulatory->power_limit = MAX_RATE_POWER; 413 414 ah->hw_version.magic = AR5416_MAGIC; 415 ah->hw_version.subvendorid = 0; 416 417 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE | 418 AR_STA_ID1_MCAST_KSRCH; 419 if (AR_SREV_9100(ah)) 420 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX; 421 422 ah->slottime = ATH9K_SLOT_TIME_9; 423 ah->globaltxtimeout = (u32) -1; 424 ah->power_mode = ATH9K_PM_UNDEFINED; 425 ah->htc_reset_init = true; 426 427 ah->ani_function = ATH9K_ANI_ALL; 428 if (!AR_SREV_9300_20_OR_LATER(ah)) 429 ah->ani_function &= ~ATH9K_ANI_MRC_CCK; 430 431 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 432 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); 433 else 434 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); 435 } 436 437 static int ath9k_hw_init_macaddr(struct ath_hw *ah) 438 { 439 struct ath_common *common = ath9k_hw_common(ah); 440 u32 sum; 441 int i; 442 u16 eeval; 443 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW }; 444 445 sum = 0; 446 for (i = 0; i < 3; i++) { 447 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]); 448 sum += eeval; 449 common->macaddr[2 * i] = eeval >> 8; 450 common->macaddr[2 * i + 1] = eeval & 0xff; 451 } 452 if (sum == 0 || sum == 0xffff * 3) 453 return -EADDRNOTAVAIL; 454 455 return 0; 456 } 457 458 static int ath9k_hw_post_init(struct ath_hw *ah) 459 { 460 struct ath_common *common = ath9k_hw_common(ah); 461 int ecode; 462 463 if (common->bus_ops->ath_bus_type != ATH_USB) { 464 if (!ath9k_hw_chip_test(ah)) 465 return -ENODEV; 466 } 467 468 if (!AR_SREV_9300_20_OR_LATER(ah)) { 469 ecode = ar9002_hw_rf_claim(ah); 470 if (ecode != 0) 471 return ecode; 472 } 473 474 ecode = ath9k_hw_eeprom_init(ah); 475 if (ecode != 0) 476 return ecode; 477 478 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n", 479 ah->eep_ops->get_eeprom_ver(ah), 480 ah->eep_ops->get_eeprom_rev(ah)); 481 482 ath9k_hw_ani_init(ah); 483 484 /* 485 * EEPROM needs to be initialized before we do this. 486 * This is required for regulatory compliance. 487 */ 488 if (AR_SREV_9300_20_OR_LATER(ah)) { 489 u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 490 if ((regdmn & 0xF0) == CTL_FCC) { 491 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ; 492 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ; 493 } 494 } 495 496 return 0; 497 } 498 499 static int ath9k_hw_attach_ops(struct ath_hw *ah) 500 { 501 if (!AR_SREV_9300_20_OR_LATER(ah)) 502 return ar9002_hw_attach_ops(ah); 503 504 ar9003_hw_attach_ops(ah); 505 return 0; 506 } 507 508 /* Called for all hardware families */ 509 static int __ath9k_hw_init(struct ath_hw *ah) 510 { 511 struct ath_common *common = ath9k_hw_common(ah); 512 int r = 0; 513 514 ath9k_hw_read_revisions(ah); 515 516 switch (ah->hw_version.macVersion) { 517 case AR_SREV_VERSION_5416_PCI: 518 case AR_SREV_VERSION_5416_PCIE: 519 case AR_SREV_VERSION_9160: 520 case AR_SREV_VERSION_9100: 521 case AR_SREV_VERSION_9280: 522 case AR_SREV_VERSION_9285: 523 case AR_SREV_VERSION_9287: 524 case AR_SREV_VERSION_9271: 525 case AR_SREV_VERSION_9300: 526 case AR_SREV_VERSION_9330: 527 case AR_SREV_VERSION_9485: 528 case AR_SREV_VERSION_9340: 529 case AR_SREV_VERSION_9462: 530 case AR_SREV_VERSION_9550: 531 case AR_SREV_VERSION_9565: 532 case AR_SREV_VERSION_9531: 533 break; 534 default: 535 ath_err(common, 536 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n", 537 ah->hw_version.macVersion, ah->hw_version.macRev); 538 return -EOPNOTSUPP; 539 } 540 541 /* 542 * Read back AR_WA into a permanent copy and set bits 14 and 17. 543 * We need to do this to avoid RMW of this register. We cannot 544 * read the reg when chip is asleep. 545 */ 546 if (AR_SREV_9300_20_OR_LATER(ah)) { 547 ah->WARegVal = REG_READ(ah, AR_WA); 548 ah->WARegVal |= (AR_WA_D3_L1_DISABLE | 549 AR_WA_ASPM_TIMER_BASED_DISABLE); 550 } 551 552 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 553 ath_err(common, "Couldn't reset chip\n"); 554 return -EIO; 555 } 556 557 if (AR_SREV_9565(ah)) { 558 ah->WARegVal |= AR_WA_BIT22; 559 REG_WRITE(ah, AR_WA, ah->WARegVal); 560 } 561 562 ath9k_hw_init_defaults(ah); 563 ath9k_hw_init_config(ah); 564 565 r = ath9k_hw_attach_ops(ah); 566 if (r) 567 return r; 568 569 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { 570 ath_err(common, "Couldn't wakeup chip\n"); 571 return -EIO; 572 } 573 574 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) || 575 AR_SREV_9330(ah) || AR_SREV_9550(ah)) 576 ah->is_pciexpress = false; 577 578 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); 579 ath9k_hw_init_cal_settings(ah); 580 581 if (!ah->is_pciexpress) 582 ath9k_hw_disablepcie(ah); 583 584 r = ath9k_hw_post_init(ah); 585 if (r) 586 return r; 587 588 ath9k_hw_init_mode_gain_regs(ah); 589 r = ath9k_hw_fill_cap_info(ah); 590 if (r) 591 return r; 592 593 r = ath9k_hw_init_macaddr(ah); 594 if (r) { 595 ath_err(common, "Failed to initialize MAC address\n"); 596 return r; 597 } 598 599 ath9k_hw_init_hang_checks(ah); 600 601 common->state = ATH_HW_INITIALIZED; 602 603 return 0; 604 } 605 606 int ath9k_hw_init(struct ath_hw *ah) 607 { 608 int ret; 609 struct ath_common *common = ath9k_hw_common(ah); 610 611 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */ 612 switch (ah->hw_version.devid) { 613 case AR5416_DEVID_PCI: 614 case AR5416_DEVID_PCIE: 615 case AR5416_AR9100_DEVID: 616 case AR9160_DEVID_PCI: 617 case AR9280_DEVID_PCI: 618 case AR9280_DEVID_PCIE: 619 case AR9285_DEVID_PCIE: 620 case AR9287_DEVID_PCI: 621 case AR9287_DEVID_PCIE: 622 case AR2427_DEVID_PCIE: 623 case AR9300_DEVID_PCIE: 624 case AR9300_DEVID_AR9485_PCIE: 625 case AR9300_DEVID_AR9330: 626 case AR9300_DEVID_AR9340: 627 case AR9300_DEVID_QCA955X: 628 case AR9300_DEVID_AR9580: 629 case AR9300_DEVID_AR9462: 630 case AR9485_DEVID_AR1111: 631 case AR9300_DEVID_AR9565: 632 case AR9300_DEVID_AR953X: 633 break; 634 default: 635 if (common->bus_ops->ath_bus_type == ATH_USB) 636 break; 637 ath_err(common, "Hardware device ID 0x%04x not supported\n", 638 ah->hw_version.devid); 639 return -EOPNOTSUPP; 640 } 641 642 ret = __ath9k_hw_init(ah); 643 if (ret) { 644 ath_err(common, 645 "Unable to initialize hardware; initialization status: %d\n", 646 ret); 647 return ret; 648 } 649 650 return 0; 651 } 652 EXPORT_SYMBOL(ath9k_hw_init); 653 654 static void ath9k_hw_init_qos(struct ath_hw *ah) 655 { 656 ENABLE_REGWRITE_BUFFER(ah); 657 658 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); 659 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); 660 661 REG_WRITE(ah, AR_QOS_NO_ACK, 662 SM(2, AR_QOS_NO_ACK_TWO_BIT) | 663 SM(5, AR_QOS_NO_ACK_BIT_OFF) | 664 SM(0, AR_QOS_NO_ACK_BYTE_OFF)); 665 666 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 667 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 668 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 669 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 670 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 671 672 REGWRITE_BUFFER_FLUSH(ah); 673 } 674 675 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah) 676 { 677 struct ath_common *common = ath9k_hw_common(ah); 678 int i = 0; 679 680 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 681 udelay(100); 682 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 683 684 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) { 685 686 udelay(100); 687 688 if (WARN_ON_ONCE(i >= 100)) { 689 ath_err(common, "PLL4 meaurement not done\n"); 690 break; 691 } 692 693 i++; 694 } 695 696 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3; 697 } 698 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc); 699 700 static void ath9k_hw_init_pll(struct ath_hw *ah, 701 struct ath9k_channel *chan) 702 { 703 u32 pll; 704 705 if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) { 706 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */ 707 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 708 AR_CH0_BB_DPLL2_PLL_PWD, 0x1); 709 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 710 AR_CH0_DPLL2_KD, 0x40); 711 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 712 AR_CH0_DPLL2_KI, 0x4); 713 714 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 715 AR_CH0_BB_DPLL1_REFDIV, 0x5); 716 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 717 AR_CH0_BB_DPLL1_NINI, 0x58); 718 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 719 AR_CH0_BB_DPLL1_NFRAC, 0x0); 720 721 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 722 AR_CH0_BB_DPLL2_OUTDIV, 0x1); 723 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 724 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1); 725 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 726 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1); 727 728 /* program BB PLL phase_shift to 0x6 */ 729 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 730 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6); 731 732 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 733 AR_CH0_BB_DPLL2_PLL_PWD, 0x0); 734 udelay(1000); 735 } else if (AR_SREV_9330(ah)) { 736 u32 ddr_dpll2, pll_control2, kd; 737 738 if (ah->is_clk_25mhz) { 739 ddr_dpll2 = 0x18e82f01; 740 pll_control2 = 0xe04a3d; 741 kd = 0x1d; 742 } else { 743 ddr_dpll2 = 0x19e82f01; 744 pll_control2 = 0x886666; 745 kd = 0x3d; 746 } 747 748 /* program DDR PLL ki and kd value */ 749 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2); 750 751 /* program DDR PLL phase_shift */ 752 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3, 753 AR_CH0_DPLL3_PHASE_SHIFT, 0x1); 754 755 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); 756 udelay(1000); 757 758 /* program refdiv, nint, frac to RTC register */ 759 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2); 760 761 /* program BB PLL kd and ki value */ 762 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd); 763 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06); 764 765 /* program BB PLL phase_shift */ 766 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 767 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1); 768 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) { 769 u32 regval, pll2_divint, pll2_divfrac, refdiv; 770 771 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c); 772 udelay(1000); 773 774 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16); 775 udelay(100); 776 777 if (ah->is_clk_25mhz) { 778 if (AR_SREV_9531(ah)) { 779 pll2_divint = 0x1c; 780 pll2_divfrac = 0xa3d2; 781 refdiv = 1; 782 } else { 783 pll2_divint = 0x54; 784 pll2_divfrac = 0x1eb85; 785 refdiv = 3; 786 } 787 } else { 788 if (AR_SREV_9340(ah)) { 789 pll2_divint = 88; 790 pll2_divfrac = 0; 791 refdiv = 5; 792 } else { 793 pll2_divint = 0x11; 794 pll2_divfrac = 0x26666; 795 refdiv = 1; 796 } 797 } 798 799 regval = REG_READ(ah, AR_PHY_PLL_MODE); 800 if (AR_SREV_9531(ah)) 801 regval |= (0x1 << 22); 802 else 803 regval |= (0x1 << 16); 804 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 805 udelay(100); 806 807 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) | 808 (pll2_divint << 18) | pll2_divfrac); 809 udelay(100); 810 811 regval = REG_READ(ah, AR_PHY_PLL_MODE); 812 if (AR_SREV_9340(ah)) 813 regval = (regval & 0x80071fff) | 814 (0x1 << 30) | 815 (0x1 << 13) | 816 (0x4 << 26) | 817 (0x18 << 19); 818 else if (AR_SREV_9531(ah)) 819 regval = (regval & 0x01c00fff) | 820 (0x1 << 31) | 821 (0x2 << 29) | 822 (0xa << 25) | 823 (0x1 << 19) | 824 (0x6 << 12); 825 else 826 regval = (regval & 0x80071fff) | 827 (0x3 << 30) | 828 (0x1 << 13) | 829 (0x4 << 26) | 830 (0x60 << 19); 831 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 832 833 if (AR_SREV_9531(ah)) 834 REG_WRITE(ah, AR_PHY_PLL_MODE, 835 REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff); 836 else 837 REG_WRITE(ah, AR_PHY_PLL_MODE, 838 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff); 839 840 udelay(1000); 841 } 842 843 pll = ath9k_hw_compute_pll_control(ah, chan); 844 if (AR_SREV_9565(ah)) 845 pll |= 0x40000; 846 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 847 848 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) || 849 AR_SREV_9550(ah)) 850 udelay(1000); 851 852 /* Switch the core clock for ar9271 to 117Mhz */ 853 if (AR_SREV_9271(ah)) { 854 udelay(500); 855 REG_WRITE(ah, 0x50040, 0x304); 856 } 857 858 udelay(RTC_PLL_SETTLE_DELAY); 859 860 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); 861 862 if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) { 863 if (ah->is_clk_25mhz) { 864 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1); 865 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7); 866 REG_WRITE(ah, AR_SLP32_INC, 0x0001e7ae); 867 } else { 868 REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1); 869 REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400); 870 REG_WRITE(ah, AR_SLP32_INC, 0x0001e800); 871 } 872 udelay(100); 873 } 874 } 875 876 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, 877 enum nl80211_iftype opmode) 878 { 879 u32 sync_default = AR_INTR_SYNC_DEFAULT; 880 u32 imr_reg = AR_IMR_TXERR | 881 AR_IMR_TXURN | 882 AR_IMR_RXERR | 883 AR_IMR_RXORN | 884 AR_IMR_BCNMISC; 885 886 if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) 887 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL; 888 889 if (AR_SREV_9300_20_OR_LATER(ah)) { 890 imr_reg |= AR_IMR_RXOK_HP; 891 if (ah->config.rx_intr_mitigation) 892 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 893 else 894 imr_reg |= AR_IMR_RXOK_LP; 895 896 } else { 897 if (ah->config.rx_intr_mitigation) 898 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 899 else 900 imr_reg |= AR_IMR_RXOK; 901 } 902 903 if (ah->config.tx_intr_mitigation) 904 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR; 905 else 906 imr_reg |= AR_IMR_TXOK; 907 908 ENABLE_REGWRITE_BUFFER(ah); 909 910 REG_WRITE(ah, AR_IMR, imr_reg); 911 ah->imrs2_reg |= AR_IMR_S2_GTT; 912 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); 913 914 if (!AR_SREV_9100(ah)) { 915 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); 916 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default); 917 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); 918 } 919 920 REGWRITE_BUFFER_FLUSH(ah); 921 922 if (AR_SREV_9300_20_OR_LATER(ah)) { 923 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0); 924 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0); 925 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0); 926 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0); 927 } 928 } 929 930 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us) 931 { 932 u32 val = ath9k_hw_mac_to_clks(ah, us - 2); 933 val = min(val, (u32) 0xFFFF); 934 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val); 935 } 936 937 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us) 938 { 939 u32 val = ath9k_hw_mac_to_clks(ah, us); 940 val = min(val, (u32) 0xFFFF); 941 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val); 942 } 943 944 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) 945 { 946 u32 val = ath9k_hw_mac_to_clks(ah, us); 947 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK)); 948 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val); 949 } 950 951 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) 952 { 953 u32 val = ath9k_hw_mac_to_clks(ah, us); 954 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS)); 955 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val); 956 } 957 958 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) 959 { 960 if (tu > 0xFFFF) { 961 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n", 962 tu); 963 ah->globaltxtimeout = (u32) -1; 964 return false; 965 } else { 966 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); 967 ah->globaltxtimeout = tu; 968 return true; 969 } 970 } 971 972 void ath9k_hw_init_global_settings(struct ath_hw *ah) 973 { 974 struct ath_common *common = ath9k_hw_common(ah); 975 const struct ath9k_channel *chan = ah->curchan; 976 int acktimeout, ctstimeout, ack_offset = 0; 977 int slottime; 978 int sifstime; 979 int rx_lat = 0, tx_lat = 0, eifs = 0; 980 u32 reg; 981 982 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n", 983 ah->misc_mode); 984 985 if (!chan) 986 return; 987 988 if (ah->misc_mode != 0) 989 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode); 990 991 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 992 rx_lat = 41; 993 else 994 rx_lat = 37; 995 tx_lat = 54; 996 997 if (IS_CHAN_5GHZ(chan)) 998 sifstime = 16; 999 else 1000 sifstime = 10; 1001 1002 if (IS_CHAN_HALF_RATE(chan)) { 1003 eifs = 175; 1004 rx_lat *= 2; 1005 tx_lat *= 2; 1006 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1007 tx_lat += 11; 1008 1009 sifstime = 32; 1010 ack_offset = 16; 1011 slottime = 13; 1012 } else if (IS_CHAN_QUARTER_RATE(chan)) { 1013 eifs = 340; 1014 rx_lat = (rx_lat * 4) - 1; 1015 tx_lat *= 4; 1016 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1017 tx_lat += 22; 1018 1019 sifstime = 64; 1020 ack_offset = 32; 1021 slottime = 21; 1022 } else { 1023 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { 1024 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO; 1025 reg = AR_USEC_ASYNC_FIFO; 1026 } else { 1027 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/ 1028 common->clockrate; 1029 reg = REG_READ(ah, AR_USEC); 1030 } 1031 rx_lat = MS(reg, AR_USEC_RX_LAT); 1032 tx_lat = MS(reg, AR_USEC_TX_LAT); 1033 1034 slottime = ah->slottime; 1035 } 1036 1037 /* As defined by IEEE 802.11-2007 17.3.8.6 */ 1038 slottime += 3 * ah->coverage_class; 1039 acktimeout = slottime + sifstime + ack_offset; 1040 ctstimeout = acktimeout; 1041 1042 /* 1043 * Workaround for early ACK timeouts, add an offset to match the 1044 * initval's 64us ack timeout value. Use 48us for the CTS timeout. 1045 * This was initially only meant to work around an issue with delayed 1046 * BA frames in some implementations, but it has been found to fix ACK 1047 * timeout issues in other cases as well. 1048 */ 1049 if (IS_CHAN_2GHZ(chan) && 1050 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) { 1051 acktimeout += 64 - sifstime - ah->slottime; 1052 ctstimeout += 48 - sifstime - ah->slottime; 1053 } 1054 1055 ath9k_hw_set_sifs_time(ah, sifstime); 1056 ath9k_hw_setslottime(ah, slottime); 1057 ath9k_hw_set_ack_timeout(ah, acktimeout); 1058 ath9k_hw_set_cts_timeout(ah, ctstimeout); 1059 if (ah->globaltxtimeout != (u32) -1) 1060 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); 1061 1062 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs)); 1063 REG_RMW(ah, AR_USEC, 1064 (common->clockrate - 1) | 1065 SM(rx_lat, AR_USEC_RX_LAT) | 1066 SM(tx_lat, AR_USEC_TX_LAT), 1067 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC); 1068 1069 } 1070 EXPORT_SYMBOL(ath9k_hw_init_global_settings); 1071 1072 void ath9k_hw_deinit(struct ath_hw *ah) 1073 { 1074 struct ath_common *common = ath9k_hw_common(ah); 1075 1076 if (common->state < ATH_HW_INITIALIZED) 1077 return; 1078 1079 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); 1080 } 1081 EXPORT_SYMBOL(ath9k_hw_deinit); 1082 1083 /*******/ 1084 /* INI */ 1085 /*******/ 1086 1087 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan) 1088 { 1089 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); 1090 1091 if (IS_CHAN_2GHZ(chan)) 1092 ctl |= CTL_11G; 1093 else 1094 ctl |= CTL_11A; 1095 1096 return ctl; 1097 } 1098 1099 /****************************************/ 1100 /* Reset and Channel Switching Routines */ 1101 /****************************************/ 1102 1103 static inline void ath9k_hw_set_dma(struct ath_hw *ah) 1104 { 1105 struct ath_common *common = ath9k_hw_common(ah); 1106 int txbuf_size; 1107 1108 ENABLE_REGWRITE_BUFFER(ah); 1109 1110 /* 1111 * set AHB_MODE not to do cacheline prefetches 1112 */ 1113 if (!AR_SREV_9300_20_OR_LATER(ah)) 1114 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); 1115 1116 /* 1117 * let mac dma reads be in 128 byte chunks 1118 */ 1119 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK); 1120 1121 REGWRITE_BUFFER_FLUSH(ah); 1122 1123 /* 1124 * Restore TX Trigger Level to its pre-reset value. 1125 * The initial value depends on whether aggregation is enabled, and is 1126 * adjusted whenever underruns are detected. 1127 */ 1128 if (!AR_SREV_9300_20_OR_LATER(ah)) 1129 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); 1130 1131 ENABLE_REGWRITE_BUFFER(ah); 1132 1133 /* 1134 * let mac dma writes be in 128 byte chunks 1135 */ 1136 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK); 1137 1138 /* 1139 * Setup receive FIFO threshold to hold off TX activities 1140 */ 1141 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 1142 1143 if (AR_SREV_9300_20_OR_LATER(ah)) { 1144 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1); 1145 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1); 1146 1147 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 1148 ah->caps.rx_status_len); 1149 } 1150 1151 /* 1152 * reduce the number of usable entries in PCU TXBUF to avoid 1153 * wrap around issues. 1154 */ 1155 if (AR_SREV_9285(ah)) { 1156 /* For AR9285 the number of Fifos are reduced to half. 1157 * So set the usable tx buf size also to half to 1158 * avoid data/delimiter underruns 1159 */ 1160 txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE; 1161 } else if (AR_SREV_9340_13_OR_LATER(ah)) { 1162 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */ 1163 txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE; 1164 } else { 1165 txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE; 1166 } 1167 1168 if (!AR_SREV_9271(ah)) 1169 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size); 1170 1171 REGWRITE_BUFFER_FLUSH(ah); 1172 1173 if (AR_SREV_9300_20_OR_LATER(ah)) 1174 ath9k_hw_reset_txstatus_ring(ah); 1175 } 1176 1177 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) 1178 { 1179 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC; 1180 u32 set = AR_STA_ID1_KSRCH_MODE; 1181 1182 switch (opmode) { 1183 case NL80211_IFTYPE_ADHOC: 1184 set |= AR_STA_ID1_ADHOC; 1185 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1186 break; 1187 case NL80211_IFTYPE_MESH_POINT: 1188 case NL80211_IFTYPE_AP: 1189 set |= AR_STA_ID1_STA_AP; 1190 /* fall through */ 1191 case NL80211_IFTYPE_STATION: 1192 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1193 break; 1194 default: 1195 if (!ah->is_monitoring) 1196 set = 0; 1197 break; 1198 } 1199 REG_RMW(ah, AR_STA_ID1, set, mask); 1200 } 1201 1202 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled, 1203 u32 *coef_mantissa, u32 *coef_exponent) 1204 { 1205 u32 coef_exp, coef_man; 1206 1207 for (coef_exp = 31; coef_exp > 0; coef_exp--) 1208 if ((coef_scaled >> coef_exp) & 0x1) 1209 break; 1210 1211 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 1212 1213 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 1214 1215 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 1216 *coef_exponent = coef_exp - 16; 1217 } 1218 1219 /* AR9330 WAR: 1220 * call external reset function to reset WMAC if: 1221 * - doing a cold reset 1222 * - we have pending frames in the TX queues. 1223 */ 1224 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type) 1225 { 1226 int i, npend = 0; 1227 1228 for (i = 0; i < AR_NUM_QCU; i++) { 1229 npend = ath9k_hw_numtxpending(ah, i); 1230 if (npend) 1231 break; 1232 } 1233 1234 if (ah->external_reset && 1235 (npend || type == ATH9K_RESET_COLD)) { 1236 int reset_err = 0; 1237 1238 ath_dbg(ath9k_hw_common(ah), RESET, 1239 "reset MAC via external reset\n"); 1240 1241 reset_err = ah->external_reset(); 1242 if (reset_err) { 1243 ath_err(ath9k_hw_common(ah), 1244 "External reset failed, err=%d\n", 1245 reset_err); 1246 return false; 1247 } 1248 1249 REG_WRITE(ah, AR_RTC_RESET, 1); 1250 } 1251 1252 return true; 1253 } 1254 1255 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) 1256 { 1257 u32 rst_flags; 1258 u32 tmpReg; 1259 1260 if (AR_SREV_9100(ah)) { 1261 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK, 1262 AR_RTC_DERIVED_CLK_PERIOD, 1); 1263 (void)REG_READ(ah, AR_RTC_DERIVED_CLK); 1264 } 1265 1266 ENABLE_REGWRITE_BUFFER(ah); 1267 1268 if (AR_SREV_9300_20_OR_LATER(ah)) { 1269 REG_WRITE(ah, AR_WA, ah->WARegVal); 1270 udelay(10); 1271 } 1272 1273 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1274 AR_RTC_FORCE_WAKE_ON_INT); 1275 1276 if (AR_SREV_9100(ah)) { 1277 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | 1278 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; 1279 } else { 1280 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); 1281 if (AR_SREV_9340(ah)) 1282 tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT; 1283 else 1284 tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT | 1285 AR_INTR_SYNC_RADM_CPL_TIMEOUT; 1286 1287 if (tmpReg) { 1288 u32 val; 1289 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 1290 1291 val = AR_RC_HOSTIF; 1292 if (!AR_SREV_9300_20_OR_LATER(ah)) 1293 val |= AR_RC_AHB; 1294 REG_WRITE(ah, AR_RC, val); 1295 1296 } else if (!AR_SREV_9300_20_OR_LATER(ah)) 1297 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1298 1299 rst_flags = AR_RTC_RC_MAC_WARM; 1300 if (type == ATH9K_RESET_COLD) 1301 rst_flags |= AR_RTC_RC_MAC_COLD; 1302 } 1303 1304 if (AR_SREV_9330(ah)) { 1305 if (!ath9k_hw_ar9330_reset_war(ah, type)) 1306 return false; 1307 } 1308 1309 if (ath9k_hw_mci_is_enabled(ah)) 1310 ar9003_mci_check_gpm_offset(ah); 1311 1312 REG_WRITE(ah, AR_RTC_RC, rst_flags); 1313 1314 REGWRITE_BUFFER_FLUSH(ah); 1315 1316 if (AR_SREV_9300_20_OR_LATER(ah)) 1317 udelay(50); 1318 else if (AR_SREV_9100(ah)) 1319 mdelay(10); 1320 else 1321 udelay(100); 1322 1323 REG_WRITE(ah, AR_RTC_RC, 0); 1324 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { 1325 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n"); 1326 return false; 1327 } 1328 1329 if (!AR_SREV_9100(ah)) 1330 REG_WRITE(ah, AR_RC, 0); 1331 1332 if (AR_SREV_9100(ah)) 1333 udelay(50); 1334 1335 return true; 1336 } 1337 1338 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) 1339 { 1340 ENABLE_REGWRITE_BUFFER(ah); 1341 1342 if (AR_SREV_9300_20_OR_LATER(ah)) { 1343 REG_WRITE(ah, AR_WA, ah->WARegVal); 1344 udelay(10); 1345 } 1346 1347 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1348 AR_RTC_FORCE_WAKE_ON_INT); 1349 1350 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1351 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1352 1353 REG_WRITE(ah, AR_RTC_RESET, 0); 1354 1355 REGWRITE_BUFFER_FLUSH(ah); 1356 1357 udelay(2); 1358 1359 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1360 REG_WRITE(ah, AR_RC, 0); 1361 1362 REG_WRITE(ah, AR_RTC_RESET, 1); 1363 1364 if (!ath9k_hw_wait(ah, 1365 AR_RTC_STATUS, 1366 AR_RTC_STATUS_M, 1367 AR_RTC_STATUS_ON, 1368 AH_WAIT_TIMEOUT)) { 1369 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n"); 1370 return false; 1371 } 1372 1373 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); 1374 } 1375 1376 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) 1377 { 1378 bool ret = false; 1379 1380 if (AR_SREV_9300_20_OR_LATER(ah)) { 1381 REG_WRITE(ah, AR_WA, ah->WARegVal); 1382 udelay(10); 1383 } 1384 1385 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1386 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1387 1388 if (!ah->reset_power_on) 1389 type = ATH9K_RESET_POWER_ON; 1390 1391 switch (type) { 1392 case ATH9K_RESET_POWER_ON: 1393 ret = ath9k_hw_set_reset_power_on(ah); 1394 if (ret) 1395 ah->reset_power_on = true; 1396 break; 1397 case ATH9K_RESET_WARM: 1398 case ATH9K_RESET_COLD: 1399 ret = ath9k_hw_set_reset(ah, type); 1400 break; 1401 default: 1402 break; 1403 } 1404 1405 return ret; 1406 } 1407 1408 static bool ath9k_hw_chip_reset(struct ath_hw *ah, 1409 struct ath9k_channel *chan) 1410 { 1411 int reset_type = ATH9K_RESET_WARM; 1412 1413 if (AR_SREV_9280(ah)) { 1414 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) 1415 reset_type = ATH9K_RESET_POWER_ON; 1416 else 1417 reset_type = ATH9K_RESET_COLD; 1418 } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) || 1419 (REG_READ(ah, AR_CR) & AR_CR_RXE)) 1420 reset_type = ATH9K_RESET_COLD; 1421 1422 if (!ath9k_hw_set_reset_reg(ah, reset_type)) 1423 return false; 1424 1425 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1426 return false; 1427 1428 ah->chip_fullsleep = false; 1429 1430 if (AR_SREV_9330(ah)) 1431 ar9003_hw_internal_regulator_apply(ah); 1432 ath9k_hw_init_pll(ah, chan); 1433 1434 return true; 1435 } 1436 1437 static bool ath9k_hw_channel_change(struct ath_hw *ah, 1438 struct ath9k_channel *chan) 1439 { 1440 struct ath_common *common = ath9k_hw_common(ah); 1441 struct ath9k_hw_capabilities *pCap = &ah->caps; 1442 bool band_switch = false, mode_diff = false; 1443 u8 ini_reloaded = 0; 1444 u32 qnum; 1445 int r; 1446 1447 if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) { 1448 u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags; 1449 band_switch = !!(flags_diff & CHANNEL_5GHZ); 1450 mode_diff = !!(flags_diff & ~CHANNEL_HT); 1451 } 1452 1453 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { 1454 if (ath9k_hw_numtxpending(ah, qnum)) { 1455 ath_dbg(common, QUEUE, 1456 "Transmit frames pending on queue %d\n", qnum); 1457 return false; 1458 } 1459 } 1460 1461 if (!ath9k_hw_rfbus_req(ah)) { 1462 ath_err(common, "Could not kill baseband RX\n"); 1463 return false; 1464 } 1465 1466 if (band_switch || mode_diff) { 1467 ath9k_hw_mark_phy_inactive(ah); 1468 udelay(5); 1469 1470 if (band_switch) 1471 ath9k_hw_init_pll(ah, chan); 1472 1473 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) { 1474 ath_err(common, "Failed to do fast channel change\n"); 1475 return false; 1476 } 1477 } 1478 1479 ath9k_hw_set_channel_regs(ah, chan); 1480 1481 r = ath9k_hw_rf_set_freq(ah, chan); 1482 if (r) { 1483 ath_err(common, "Failed to set channel\n"); 1484 return false; 1485 } 1486 ath9k_hw_set_clockrate(ah); 1487 ath9k_hw_apply_txpower(ah, chan, false); 1488 1489 ath9k_hw_set_delta_slope(ah, chan); 1490 ath9k_hw_spur_mitigate_freq(ah, chan); 1491 1492 if (band_switch || ini_reloaded) 1493 ah->eep_ops->set_board_values(ah, chan); 1494 1495 ath9k_hw_init_bb(ah, chan); 1496 ath9k_hw_rfbus_done(ah); 1497 1498 if (band_switch || ini_reloaded) { 1499 ah->ah_flags |= AH_FASTCC; 1500 ath9k_hw_init_cal(ah, chan); 1501 ah->ah_flags &= ~AH_FASTCC; 1502 } 1503 1504 return true; 1505 } 1506 1507 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah) 1508 { 1509 u32 gpio_mask = ah->gpio_mask; 1510 int i; 1511 1512 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) { 1513 if (!(gpio_mask & 1)) 1514 continue; 1515 1516 ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT); 1517 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i))); 1518 } 1519 } 1520 1521 void ath9k_hw_check_nav(struct ath_hw *ah) 1522 { 1523 struct ath_common *common = ath9k_hw_common(ah); 1524 u32 val; 1525 1526 val = REG_READ(ah, AR_NAV); 1527 if (val != 0xdeadbeef && val > 0x7fff) { 1528 ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val); 1529 REG_WRITE(ah, AR_NAV, 0); 1530 } 1531 } 1532 EXPORT_SYMBOL(ath9k_hw_check_nav); 1533 1534 bool ath9k_hw_check_alive(struct ath_hw *ah) 1535 { 1536 int count = 50; 1537 u32 reg, last_val; 1538 1539 if (AR_SREV_9300(ah)) 1540 return !ath9k_hw_detect_mac_hang(ah); 1541 1542 if (AR_SREV_9285_12_OR_LATER(ah)) 1543 return true; 1544 1545 last_val = REG_READ(ah, AR_OBS_BUS_1); 1546 do { 1547 reg = REG_READ(ah, AR_OBS_BUS_1); 1548 if (reg != last_val) 1549 return true; 1550 1551 last_val = reg; 1552 if ((reg & 0x7E7FFFEF) == 0x00702400) 1553 continue; 1554 1555 switch (reg & 0x7E000B00) { 1556 case 0x1E000000: 1557 case 0x52000B00: 1558 case 0x18000B00: 1559 continue; 1560 default: 1561 return true; 1562 } 1563 1564 udelay(1); 1565 } while (count-- > 0); 1566 1567 return false; 1568 } 1569 EXPORT_SYMBOL(ath9k_hw_check_alive); 1570 1571 static void ath9k_hw_init_mfp(struct ath_hw *ah) 1572 { 1573 /* Setup MFP options for CCMP */ 1574 if (AR_SREV_9280_20_OR_LATER(ah)) { 1575 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt 1576 * frames when constructing CCMP AAD. */ 1577 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, 1578 0xc7ff); 1579 ah->sw_mgmt_crypto = false; 1580 } else if (AR_SREV_9160_10_OR_LATER(ah)) { 1581 /* Disable hardware crypto for management frames */ 1582 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, 1583 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); 1584 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1585 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); 1586 ah->sw_mgmt_crypto = true; 1587 } else { 1588 ah->sw_mgmt_crypto = true; 1589 } 1590 } 1591 1592 static void ath9k_hw_reset_opmode(struct ath_hw *ah, 1593 u32 macStaId1, u32 saveDefAntenna) 1594 { 1595 struct ath_common *common = ath9k_hw_common(ah); 1596 1597 ENABLE_REGWRITE_BUFFER(ah); 1598 1599 REG_RMW(ah, AR_STA_ID1, macStaId1 1600 | AR_STA_ID1_RTS_USE_DEF 1601 | ah->sta_id1_defaults, 1602 ~AR_STA_ID1_SADH_MASK); 1603 ath_hw_setbssidmask(common); 1604 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 1605 ath9k_hw_write_associd(ah); 1606 REG_WRITE(ah, AR_ISR, ~0); 1607 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); 1608 1609 REGWRITE_BUFFER_FLUSH(ah); 1610 1611 ath9k_hw_set_operating_mode(ah, ah->opmode); 1612 } 1613 1614 static void ath9k_hw_init_queues(struct ath_hw *ah) 1615 { 1616 int i; 1617 1618 ENABLE_REGWRITE_BUFFER(ah); 1619 1620 for (i = 0; i < AR_NUM_DCU; i++) 1621 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 1622 1623 REGWRITE_BUFFER_FLUSH(ah); 1624 1625 ah->intr_txqs = 0; 1626 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) 1627 ath9k_hw_resettxqueue(ah, i); 1628 } 1629 1630 /* 1631 * For big endian systems turn on swapping for descriptors 1632 */ 1633 static void ath9k_hw_init_desc(struct ath_hw *ah) 1634 { 1635 struct ath_common *common = ath9k_hw_common(ah); 1636 1637 if (AR_SREV_9100(ah)) { 1638 u32 mask; 1639 mask = REG_READ(ah, AR_CFG); 1640 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { 1641 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n", 1642 mask); 1643 } else { 1644 mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; 1645 REG_WRITE(ah, AR_CFG, mask); 1646 ath_dbg(common, RESET, "Setting CFG 0x%x\n", 1647 REG_READ(ah, AR_CFG)); 1648 } 1649 } else { 1650 if (common->bus_ops->ath_bus_type == ATH_USB) { 1651 /* Configure AR9271 target WLAN */ 1652 if (AR_SREV_9271(ah)) 1653 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); 1654 else 1655 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1656 } 1657 #ifdef __BIG_ENDIAN 1658 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) || 1659 AR_SREV_9550(ah) || AR_SREV_9531(ah)) 1660 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0); 1661 else 1662 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1663 #endif 1664 } 1665 } 1666 1667 /* 1668 * Fast channel change: 1669 * (Change synthesizer based on channel freq without resetting chip) 1670 */ 1671 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan) 1672 { 1673 struct ath_common *common = ath9k_hw_common(ah); 1674 struct ath9k_hw_capabilities *pCap = &ah->caps; 1675 int ret; 1676 1677 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI) 1678 goto fail; 1679 1680 if (ah->chip_fullsleep) 1681 goto fail; 1682 1683 if (!ah->curchan) 1684 goto fail; 1685 1686 if (chan->channel == ah->curchan->channel) 1687 goto fail; 1688 1689 if ((ah->curchan->channelFlags | chan->channelFlags) & 1690 (CHANNEL_HALF | CHANNEL_QUARTER)) 1691 goto fail; 1692 1693 /* 1694 * If cross-band fcc is not supoprted, bail out if channelFlags differ. 1695 */ 1696 if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) && 1697 ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT)) 1698 goto fail; 1699 1700 if (!ath9k_hw_check_alive(ah)) 1701 goto fail; 1702 1703 /* 1704 * For AR9462, make sure that calibration data for 1705 * re-using are present. 1706 */ 1707 if (AR_SREV_9462(ah) && (ah->caldata && 1708 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) || 1709 !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) || 1710 !test_bit(RTT_DONE, &ah->caldata->cal_flags)))) 1711 goto fail; 1712 1713 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n", 1714 ah->curchan->channel, chan->channel); 1715 1716 ret = ath9k_hw_channel_change(ah, chan); 1717 if (!ret) 1718 goto fail; 1719 1720 if (ath9k_hw_mci_is_enabled(ah)) 1721 ar9003_mci_2g5g_switch(ah, false); 1722 1723 ath9k_hw_loadnf(ah, ah->curchan); 1724 ath9k_hw_start_nfcal(ah, true); 1725 1726 if (AR_SREV_9271(ah)) 1727 ar9002_hw_load_ani_reg(ah, chan); 1728 1729 return 0; 1730 fail: 1731 return -EINVAL; 1732 } 1733 1734 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, 1735 struct ath9k_hw_cal_data *caldata, bool fastcc) 1736 { 1737 struct ath_common *common = ath9k_hw_common(ah); 1738 struct timespec ts; 1739 u32 saveLedState; 1740 u32 saveDefAntenna; 1741 u32 macStaId1; 1742 u64 tsf = 0; 1743 s64 usec = 0; 1744 int r; 1745 bool start_mci_reset = false; 1746 bool save_fullsleep = ah->chip_fullsleep; 1747 1748 if (ath9k_hw_mci_is_enabled(ah)) { 1749 start_mci_reset = ar9003_mci_start_reset(ah, chan); 1750 if (start_mci_reset) 1751 return 0; 1752 } 1753 1754 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1755 return -EIO; 1756 1757 if (ah->curchan && !ah->chip_fullsleep) 1758 ath9k_hw_getnf(ah, ah->curchan); 1759 1760 ah->caldata = caldata; 1761 if (caldata && (chan->channel != caldata->channel || 1762 chan->channelFlags != caldata->channelFlags)) { 1763 /* Operating channel changed, reset channel calibration data */ 1764 memset(caldata, 0, sizeof(*caldata)); 1765 ath9k_init_nfcal_hist_buffer(ah, chan); 1766 } else if (caldata) { 1767 clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags); 1768 } 1769 ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor); 1770 1771 if (fastcc) { 1772 r = ath9k_hw_do_fastcc(ah, chan); 1773 if (!r) 1774 return r; 1775 } 1776 1777 if (ath9k_hw_mci_is_enabled(ah)) 1778 ar9003_mci_stop_bt(ah, save_fullsleep); 1779 1780 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); 1781 if (saveDefAntenna == 0) 1782 saveDefAntenna = 1; 1783 1784 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; 1785 1786 /* Save TSF before chip reset, a cold reset clears it */ 1787 tsf = ath9k_hw_gettsf64(ah); 1788 getrawmonotonic(&ts); 1789 usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000; 1790 1791 saveLedState = REG_READ(ah, AR_CFG_LED) & 1792 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | 1793 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); 1794 1795 ath9k_hw_mark_phy_inactive(ah); 1796 1797 ah->paprd_table_write_done = false; 1798 1799 /* Only required on the first reset */ 1800 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1801 REG_WRITE(ah, 1802 AR9271_RESET_POWER_DOWN_CONTROL, 1803 AR9271_RADIO_RF_RST); 1804 udelay(50); 1805 } 1806 1807 if (!ath9k_hw_chip_reset(ah, chan)) { 1808 ath_err(common, "Chip reset failed\n"); 1809 return -EINVAL; 1810 } 1811 1812 /* Only required on the first reset */ 1813 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1814 ah->htc_reset_init = false; 1815 REG_WRITE(ah, 1816 AR9271_RESET_POWER_DOWN_CONTROL, 1817 AR9271_GATE_MAC_CTL); 1818 udelay(50); 1819 } 1820 1821 /* Restore TSF */ 1822 getrawmonotonic(&ts); 1823 usec = ts.tv_sec * 1000000ULL + ts.tv_nsec / 1000 - usec; 1824 ath9k_hw_settsf64(ah, tsf + usec); 1825 1826 if (AR_SREV_9280_20_OR_LATER(ah)) 1827 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); 1828 1829 if (!AR_SREV_9300_20_OR_LATER(ah)) 1830 ar9002_hw_enable_async_fifo(ah); 1831 1832 r = ath9k_hw_process_ini(ah, chan); 1833 if (r) 1834 return r; 1835 1836 ath9k_hw_set_rfmode(ah, chan); 1837 1838 if (ath9k_hw_mci_is_enabled(ah)) 1839 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep); 1840 1841 /* 1842 * Some AR91xx SoC devices frequently fail to accept TSF writes 1843 * right after the chip reset. When that happens, write a new 1844 * value after the initvals have been applied, with an offset 1845 * based on measured time difference 1846 */ 1847 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) { 1848 tsf += 1500; 1849 ath9k_hw_settsf64(ah, tsf); 1850 } 1851 1852 ath9k_hw_init_mfp(ah); 1853 1854 ath9k_hw_set_delta_slope(ah, chan); 1855 ath9k_hw_spur_mitigate_freq(ah, chan); 1856 ah->eep_ops->set_board_values(ah, chan); 1857 1858 ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna); 1859 1860 r = ath9k_hw_rf_set_freq(ah, chan); 1861 if (r) 1862 return r; 1863 1864 ath9k_hw_set_clockrate(ah); 1865 1866 ath9k_hw_init_queues(ah); 1867 ath9k_hw_init_interrupt_masks(ah, ah->opmode); 1868 ath9k_hw_ani_cache_ini_regs(ah); 1869 ath9k_hw_init_qos(ah); 1870 1871 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) 1872 ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio); 1873 1874 ath9k_hw_init_global_settings(ah); 1875 1876 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { 1877 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, 1878 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); 1879 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, 1880 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); 1881 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1882 AR_PCU_MISC_MODE2_ENABLE_AGGWEP); 1883 } 1884 1885 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM); 1886 1887 ath9k_hw_set_dma(ah); 1888 1889 if (!ath9k_hw_mci_is_enabled(ah)) 1890 REG_WRITE(ah, AR_OBS, 8); 1891 1892 if (ah->config.rx_intr_mitigation) { 1893 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last); 1894 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first); 1895 } 1896 1897 if (ah->config.tx_intr_mitigation) { 1898 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300); 1899 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750); 1900 } 1901 1902 ath9k_hw_init_bb(ah, chan); 1903 1904 if (caldata) { 1905 clear_bit(TXIQCAL_DONE, &caldata->cal_flags); 1906 clear_bit(TXCLCAL_DONE, &caldata->cal_flags); 1907 } 1908 if (!ath9k_hw_init_cal(ah, chan)) 1909 return -EIO; 1910 1911 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata)) 1912 return -EIO; 1913 1914 ENABLE_REGWRITE_BUFFER(ah); 1915 1916 ath9k_hw_restore_chainmask(ah); 1917 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); 1918 1919 REGWRITE_BUFFER_FLUSH(ah); 1920 1921 ath9k_hw_init_desc(ah); 1922 1923 if (ath9k_hw_btcoex_is_enabled(ah)) 1924 ath9k_hw_btcoex_enable(ah); 1925 1926 if (ath9k_hw_mci_is_enabled(ah)) 1927 ar9003_mci_check_bt(ah); 1928 1929 ath9k_hw_loadnf(ah, chan); 1930 ath9k_hw_start_nfcal(ah, true); 1931 1932 if (AR_SREV_9300_20_OR_LATER(ah)) 1933 ar9003_hw_bb_watchdog_config(ah); 1934 1935 if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR) 1936 ar9003_hw_disable_phy_restart(ah); 1937 1938 ath9k_hw_apply_gpio_override(ah); 1939 1940 if (AR_SREV_9565(ah) && common->bt_ant_diversity) 1941 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON); 1942 1943 return 0; 1944 } 1945 EXPORT_SYMBOL(ath9k_hw_reset); 1946 1947 /******************************/ 1948 /* Power Management (Chipset) */ 1949 /******************************/ 1950 1951 /* 1952 * Notify Power Mgt is disabled in self-generated frames. 1953 * If requested, force chip to sleep. 1954 */ 1955 static void ath9k_set_power_sleep(struct ath_hw *ah) 1956 { 1957 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 1958 1959 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 1960 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff); 1961 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff); 1962 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff); 1963 /* xxx Required for WLAN only case ? */ 1964 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0); 1965 udelay(100); 1966 } 1967 1968 /* 1969 * Clear the RTC force wake bit to allow the 1970 * mac to go to sleep. 1971 */ 1972 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); 1973 1974 if (ath9k_hw_mci_is_enabled(ah)) 1975 udelay(100); 1976 1977 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1978 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); 1979 1980 /* Shutdown chip. Active low */ 1981 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) { 1982 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN); 1983 udelay(2); 1984 } 1985 1986 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */ 1987 if (AR_SREV_9300_20_OR_LATER(ah)) 1988 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 1989 } 1990 1991 /* 1992 * Notify Power Management is enabled in self-generating 1993 * frames. If request, set power mode of chip to 1994 * auto/normal. Duration in units of 128us (1/8 TU). 1995 */ 1996 static void ath9k_set_power_network_sleep(struct ath_hw *ah) 1997 { 1998 struct ath9k_hw_capabilities *pCap = &ah->caps; 1999 2000 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2001 2002 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { 2003 /* Set WakeOnInterrupt bit; clear ForceWake bit */ 2004 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 2005 AR_RTC_FORCE_WAKE_ON_INT); 2006 } else { 2007 2008 /* When chip goes into network sleep, it could be waken 2009 * up by MCI_INT interrupt caused by BT's HW messages 2010 * (LNA_xxx, CONT_xxx) which chould be in a very fast 2011 * rate (~100us). This will cause chip to leave and 2012 * re-enter network sleep mode frequently, which in 2013 * consequence will have WLAN MCI HW to generate lots of 2014 * SYS_WAKING and SYS_SLEEPING messages which will make 2015 * BT CPU to busy to process. 2016 */ 2017 if (ath9k_hw_mci_is_enabled(ah)) 2018 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 2019 AR_MCI_INTERRUPT_RX_HW_MSG_MASK); 2020 /* 2021 * Clear the RTC force wake bit to allow the 2022 * mac to go to sleep. 2023 */ 2024 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); 2025 2026 if (ath9k_hw_mci_is_enabled(ah)) 2027 udelay(30); 2028 } 2029 2030 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */ 2031 if (AR_SREV_9300_20_OR_LATER(ah)) 2032 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 2033 } 2034 2035 static bool ath9k_hw_set_power_awake(struct ath_hw *ah) 2036 { 2037 u32 val; 2038 int i; 2039 2040 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */ 2041 if (AR_SREV_9300_20_OR_LATER(ah)) { 2042 REG_WRITE(ah, AR_WA, ah->WARegVal); 2043 udelay(10); 2044 } 2045 2046 if ((REG_READ(ah, AR_RTC_STATUS) & 2047 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { 2048 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 2049 return false; 2050 } 2051 if (!AR_SREV_9300_20_OR_LATER(ah)) 2052 ath9k_hw_init_pll(ah, NULL); 2053 } 2054 if (AR_SREV_9100(ah)) 2055 REG_SET_BIT(ah, AR_RTC_RESET, 2056 AR_RTC_RESET_EN); 2057 2058 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 2059 AR_RTC_FORCE_WAKE_EN); 2060 if (AR_SREV_9100(ah)) 2061 mdelay(10); 2062 else 2063 udelay(50); 2064 2065 for (i = POWER_UP_TIME / 50; i > 0; i--) { 2066 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; 2067 if (val == AR_RTC_STATUS_ON) 2068 break; 2069 udelay(50); 2070 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 2071 AR_RTC_FORCE_WAKE_EN); 2072 } 2073 if (i == 0) { 2074 ath_err(ath9k_hw_common(ah), 2075 "Failed to wakeup in %uus\n", 2076 POWER_UP_TIME / 20); 2077 return false; 2078 } 2079 2080 if (ath9k_hw_mci_is_enabled(ah)) 2081 ar9003_mci_set_power_awake(ah); 2082 2083 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2084 2085 return true; 2086 } 2087 2088 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) 2089 { 2090 struct ath_common *common = ath9k_hw_common(ah); 2091 int status = true; 2092 static const char *modes[] = { 2093 "AWAKE", 2094 "FULL-SLEEP", 2095 "NETWORK SLEEP", 2096 "UNDEFINED" 2097 }; 2098 2099 if (ah->power_mode == mode) 2100 return status; 2101 2102 ath_dbg(common, RESET, "%s -> %s\n", 2103 modes[ah->power_mode], modes[mode]); 2104 2105 switch (mode) { 2106 case ATH9K_PM_AWAKE: 2107 status = ath9k_hw_set_power_awake(ah); 2108 break; 2109 case ATH9K_PM_FULL_SLEEP: 2110 if (ath9k_hw_mci_is_enabled(ah)) 2111 ar9003_mci_set_full_sleep(ah); 2112 2113 ath9k_set_power_sleep(ah); 2114 ah->chip_fullsleep = true; 2115 break; 2116 case ATH9K_PM_NETWORK_SLEEP: 2117 ath9k_set_power_network_sleep(ah); 2118 break; 2119 default: 2120 ath_err(common, "Unknown power mode %u\n", mode); 2121 return false; 2122 } 2123 ah->power_mode = mode; 2124 2125 /* 2126 * XXX: If this warning never comes up after a while then 2127 * simply keep the ATH_DBG_WARN_ON_ONCE() but make 2128 * ath9k_hw_setpower() return type void. 2129 */ 2130 2131 if (!(ah->ah_flags & AH_UNPLUGGED)) 2132 ATH_DBG_WARN_ON_ONCE(!status); 2133 2134 return status; 2135 } 2136 EXPORT_SYMBOL(ath9k_hw_setpower); 2137 2138 /*******************/ 2139 /* Beacon Handling */ 2140 /*******************/ 2141 2142 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) 2143 { 2144 int flags = 0; 2145 2146 ENABLE_REGWRITE_BUFFER(ah); 2147 2148 switch (ah->opmode) { 2149 case NL80211_IFTYPE_ADHOC: 2150 REG_SET_BIT(ah, AR_TXCFG, 2151 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); 2152 case NL80211_IFTYPE_MESH_POINT: 2153 case NL80211_IFTYPE_AP: 2154 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon); 2155 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon - 2156 TU_TO_USEC(ah->config.dma_beacon_response_time)); 2157 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon - 2158 TU_TO_USEC(ah->config.sw_beacon_response_time)); 2159 flags |= 2160 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; 2161 break; 2162 default: 2163 ath_dbg(ath9k_hw_common(ah), BEACON, 2164 "%s: unsupported opmode: %d\n", __func__, ah->opmode); 2165 return; 2166 break; 2167 } 2168 2169 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period); 2170 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period); 2171 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period); 2172 2173 REGWRITE_BUFFER_FLUSH(ah); 2174 2175 REG_SET_BIT(ah, AR_TIMER_MODE, flags); 2176 } 2177 EXPORT_SYMBOL(ath9k_hw_beaconinit); 2178 2179 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, 2180 const struct ath9k_beacon_state *bs) 2181 { 2182 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; 2183 struct ath9k_hw_capabilities *pCap = &ah->caps; 2184 struct ath_common *common = ath9k_hw_common(ah); 2185 2186 ENABLE_REGWRITE_BUFFER(ah); 2187 2188 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt); 2189 REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval); 2190 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval); 2191 2192 REGWRITE_BUFFER_FLUSH(ah); 2193 2194 REG_RMW_FIELD(ah, AR_RSSI_THR, 2195 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); 2196 2197 beaconintval = bs->bs_intval; 2198 2199 if (bs->bs_sleepduration > beaconintval) 2200 beaconintval = bs->bs_sleepduration; 2201 2202 dtimperiod = bs->bs_dtimperiod; 2203 if (bs->bs_sleepduration > dtimperiod) 2204 dtimperiod = bs->bs_sleepduration; 2205 2206 if (beaconintval == dtimperiod) 2207 nextTbtt = bs->bs_nextdtim; 2208 else 2209 nextTbtt = bs->bs_nexttbtt; 2210 2211 ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim); 2212 ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt); 2213 ath_dbg(common, BEACON, "beacon period %d\n", beaconintval); 2214 ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod); 2215 2216 ENABLE_REGWRITE_BUFFER(ah); 2217 2218 REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP); 2219 REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP); 2220 2221 REG_WRITE(ah, AR_SLEEP1, 2222 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) 2223 | AR_SLEEP1_ASSUME_DTIM); 2224 2225 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) 2226 beacontimeout = (BEACON_TIMEOUT_VAL << 3); 2227 else 2228 beacontimeout = MIN_BEACON_TIMEOUT_VAL; 2229 2230 REG_WRITE(ah, AR_SLEEP2, 2231 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); 2232 2233 REG_WRITE(ah, AR_TIM_PERIOD, beaconintval); 2234 REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod); 2235 2236 REGWRITE_BUFFER_FLUSH(ah); 2237 2238 REG_SET_BIT(ah, AR_TIMER_MODE, 2239 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | 2240 AR_DTIM_TIMER_EN); 2241 2242 /* TSF Out of Range Threshold */ 2243 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); 2244 } 2245 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers); 2246 2247 /*******************/ 2248 /* HW Capabilities */ 2249 /*******************/ 2250 2251 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask) 2252 { 2253 eeprom_chainmask &= chip_chainmask; 2254 if (eeprom_chainmask) 2255 return eeprom_chainmask; 2256 else 2257 return chip_chainmask; 2258 } 2259 2260 /** 2261 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset 2262 * @ah: the atheros hardware data structure 2263 * 2264 * We enable DFS support upstream on chipsets which have passed a series 2265 * of tests. The testing requirements are going to be documented. Desired 2266 * test requirements are documented at: 2267 * 2268 * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs 2269 * 2270 * Once a new chipset gets properly tested an individual commit can be used 2271 * to document the testing for DFS for that chipset. 2272 */ 2273 static bool ath9k_hw_dfs_tested(struct ath_hw *ah) 2274 { 2275 2276 switch (ah->hw_version.macVersion) { 2277 /* for temporary testing DFS with 9280 */ 2278 case AR_SREV_VERSION_9280: 2279 /* AR9580 will likely be our first target to get testing on */ 2280 case AR_SREV_VERSION_9580: 2281 return true; 2282 default: 2283 return false; 2284 } 2285 } 2286 2287 int ath9k_hw_fill_cap_info(struct ath_hw *ah) 2288 { 2289 struct ath9k_hw_capabilities *pCap = &ah->caps; 2290 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 2291 struct ath_common *common = ath9k_hw_common(ah); 2292 unsigned int chip_chainmask; 2293 2294 u16 eeval; 2295 u8 ant_div_ctl1, tx_chainmask, rx_chainmask; 2296 2297 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 2298 regulatory->current_rd = eeval; 2299 2300 if (ah->opmode != NL80211_IFTYPE_AP && 2301 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { 2302 if (regulatory->current_rd == 0x64 || 2303 regulatory->current_rd == 0x65) 2304 regulatory->current_rd += 5; 2305 else if (regulatory->current_rd == 0x41) 2306 regulatory->current_rd = 0x43; 2307 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n", 2308 regulatory->current_rd); 2309 } 2310 2311 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); 2312 if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) { 2313 ath_err(common, 2314 "no band has been marked as supported in EEPROM\n"); 2315 return -EINVAL; 2316 } 2317 2318 if (eeval & AR5416_OPFLAGS_11A) 2319 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ; 2320 2321 if (eeval & AR5416_OPFLAGS_11G) 2322 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ; 2323 2324 if (AR_SREV_9485(ah) || 2325 AR_SREV_9285(ah) || 2326 AR_SREV_9330(ah) || 2327 AR_SREV_9565(ah)) 2328 chip_chainmask = 1; 2329 else if (AR_SREV_9462(ah)) 2330 chip_chainmask = 3; 2331 else if (!AR_SREV_9280_20_OR_LATER(ah)) 2332 chip_chainmask = 7; 2333 else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah)) 2334 chip_chainmask = 3; 2335 else 2336 chip_chainmask = 7; 2337 2338 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); 2339 /* 2340 * For AR9271 we will temporarilly uses the rx chainmax as read from 2341 * the EEPROM. 2342 */ 2343 if ((ah->hw_version.devid == AR5416_DEVID_PCI) && 2344 !(eeval & AR5416_OPFLAGS_11A) && 2345 !(AR_SREV_9271(ah))) 2346 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */ 2347 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; 2348 else if (AR_SREV_9100(ah)) 2349 pCap->rx_chainmask = 0x7; 2350 else 2351 /* Use rx_chainmask from EEPROM. */ 2352 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); 2353 2354 pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask); 2355 pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask); 2356 ah->txchainmask = pCap->tx_chainmask; 2357 ah->rxchainmask = pCap->rx_chainmask; 2358 2359 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; 2360 2361 /* enable key search for every frame in an aggregate */ 2362 if (AR_SREV_9300_20_OR_LATER(ah)) 2363 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH; 2364 2365 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM; 2366 2367 if (ah->hw_version.devid != AR2427_DEVID_PCIE) 2368 pCap->hw_caps |= ATH9K_HW_CAP_HT; 2369 else 2370 pCap->hw_caps &= ~ATH9K_HW_CAP_HT; 2371 2372 if (AR_SREV_9271(ah)) 2373 pCap->num_gpio_pins = AR9271_NUM_GPIO; 2374 else if (AR_DEVID_7010(ah)) 2375 pCap->num_gpio_pins = AR7010_NUM_GPIO; 2376 else if (AR_SREV_9300_20_OR_LATER(ah)) 2377 pCap->num_gpio_pins = AR9300_NUM_GPIO; 2378 else if (AR_SREV_9287_11_OR_LATER(ah)) 2379 pCap->num_gpio_pins = AR9287_NUM_GPIO; 2380 else if (AR_SREV_9285_12_OR_LATER(ah)) 2381 pCap->num_gpio_pins = AR9285_NUM_GPIO; 2382 else if (AR_SREV_9280_20_OR_LATER(ah)) 2383 pCap->num_gpio_pins = AR928X_NUM_GPIO; 2384 else 2385 pCap->num_gpio_pins = AR_NUM_GPIO; 2386 2387 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) 2388 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; 2389 else 2390 pCap->rts_aggr_limit = (8 * 1024); 2391 2392 #ifdef CONFIG_ATH9K_RFKILL 2393 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); 2394 if (ah->rfsilent & EEP_RFSILENT_ENABLED) { 2395 ah->rfkill_gpio = 2396 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); 2397 ah->rfkill_polarity = 2398 MS(ah->rfsilent, EEP_RFSILENT_POLARITY); 2399 2400 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; 2401 } 2402 #endif 2403 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah)) 2404 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; 2405 else 2406 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; 2407 2408 if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) 2409 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; 2410 else 2411 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; 2412 2413 if (AR_SREV_9300_20_OR_LATER(ah)) { 2414 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK; 2415 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah)) 2416 pCap->hw_caps |= ATH9K_HW_CAP_LDPC; 2417 2418 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH; 2419 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH; 2420 pCap->rx_status_len = sizeof(struct ar9003_rxs); 2421 pCap->tx_desc_len = sizeof(struct ar9003_txc); 2422 pCap->txs_len = sizeof(struct ar9003_txs); 2423 } else { 2424 pCap->tx_desc_len = sizeof(struct ath_desc); 2425 if (AR_SREV_9280_20(ah)) 2426 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK; 2427 } 2428 2429 if (AR_SREV_9300_20_OR_LATER(ah)) 2430 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED; 2431 2432 if (AR_SREV_9300_20_OR_LATER(ah)) 2433 ah->ent_mode = REG_READ(ah, AR_ENT_OTP); 2434 2435 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah)) 2436 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20; 2437 2438 if (AR_SREV_9285(ah)) { 2439 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) { 2440 ant_div_ctl1 = 2441 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2442 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) { 2443 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2444 ath_info(common, "Enable LNA combining\n"); 2445 } 2446 } 2447 } 2448 2449 if (AR_SREV_9300_20_OR_LATER(ah)) { 2450 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE)) 2451 pCap->hw_caps |= ATH9K_HW_CAP_APM; 2452 } 2453 2454 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) { 2455 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2456 if ((ant_div_ctl1 >> 0x6) == 0x3) { 2457 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2458 ath_info(common, "Enable LNA combining\n"); 2459 } 2460 } 2461 2462 if (ath9k_hw_dfs_tested(ah)) 2463 pCap->hw_caps |= ATH9K_HW_CAP_DFS; 2464 2465 tx_chainmask = pCap->tx_chainmask; 2466 rx_chainmask = pCap->rx_chainmask; 2467 while (tx_chainmask || rx_chainmask) { 2468 if (tx_chainmask & BIT(0)) 2469 pCap->max_txchains++; 2470 if (rx_chainmask & BIT(0)) 2471 pCap->max_rxchains++; 2472 2473 tx_chainmask >>= 1; 2474 rx_chainmask >>= 1; 2475 } 2476 2477 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 2478 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE)) 2479 pCap->hw_caps |= ATH9K_HW_CAP_MCI; 2480 2481 if (AR_SREV_9462_20_OR_LATER(ah)) 2482 pCap->hw_caps |= ATH9K_HW_CAP_RTT; 2483 } 2484 2485 if (AR_SREV_9462(ah)) 2486 pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE; 2487 2488 if (AR_SREV_9300_20_OR_LATER(ah) && 2489 ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) 2490 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD; 2491 2492 return 0; 2493 } 2494 2495 /****************************/ 2496 /* GPIO / RFKILL / Antennae */ 2497 /****************************/ 2498 2499 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, 2500 u32 gpio, u32 type) 2501 { 2502 int addr; 2503 u32 gpio_shift, tmp; 2504 2505 if (gpio > 11) 2506 addr = AR_GPIO_OUTPUT_MUX3; 2507 else if (gpio > 5) 2508 addr = AR_GPIO_OUTPUT_MUX2; 2509 else 2510 addr = AR_GPIO_OUTPUT_MUX1; 2511 2512 gpio_shift = (gpio % 6) * 5; 2513 2514 if (AR_SREV_9280_20_OR_LATER(ah) 2515 || (addr != AR_GPIO_OUTPUT_MUX1)) { 2516 REG_RMW(ah, addr, (type << gpio_shift), 2517 (0x1f << gpio_shift)); 2518 } else { 2519 tmp = REG_READ(ah, addr); 2520 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); 2521 tmp &= ~(0x1f << gpio_shift); 2522 tmp |= (type << gpio_shift); 2523 REG_WRITE(ah, addr, tmp); 2524 } 2525 } 2526 2527 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio) 2528 { 2529 u32 gpio_shift; 2530 2531 BUG_ON(gpio >= ah->caps.num_gpio_pins); 2532 2533 if (AR_DEVID_7010(ah)) { 2534 gpio_shift = gpio; 2535 REG_RMW(ah, AR7010_GPIO_OE, 2536 (AR7010_GPIO_OE_AS_INPUT << gpio_shift), 2537 (AR7010_GPIO_OE_MASK << gpio_shift)); 2538 return; 2539 } 2540 2541 gpio_shift = gpio << 1; 2542 REG_RMW(ah, 2543 AR_GPIO_OE_OUT, 2544 (AR_GPIO_OE_OUT_DRV_NO << gpio_shift), 2545 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2546 } 2547 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input); 2548 2549 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) 2550 { 2551 #define MS_REG_READ(x, y) \ 2552 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y))) 2553 2554 if (gpio >= ah->caps.num_gpio_pins) 2555 return 0xffffffff; 2556 2557 if (AR_DEVID_7010(ah)) { 2558 u32 val; 2559 val = REG_READ(ah, AR7010_GPIO_IN); 2560 return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0; 2561 } else if (AR_SREV_9300_20_OR_LATER(ah)) 2562 return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) & 2563 AR_GPIO_BIT(gpio)) != 0; 2564 else if (AR_SREV_9271(ah)) 2565 return MS_REG_READ(AR9271, gpio) != 0; 2566 else if (AR_SREV_9287_11_OR_LATER(ah)) 2567 return MS_REG_READ(AR9287, gpio) != 0; 2568 else if (AR_SREV_9285_12_OR_LATER(ah)) 2569 return MS_REG_READ(AR9285, gpio) != 0; 2570 else if (AR_SREV_9280_20_OR_LATER(ah)) 2571 return MS_REG_READ(AR928X, gpio) != 0; 2572 else 2573 return MS_REG_READ(AR, gpio) != 0; 2574 } 2575 EXPORT_SYMBOL(ath9k_hw_gpio_get); 2576 2577 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio, 2578 u32 ah_signal_type) 2579 { 2580 u32 gpio_shift; 2581 2582 if (AR_DEVID_7010(ah)) { 2583 gpio_shift = gpio; 2584 REG_RMW(ah, AR7010_GPIO_OE, 2585 (AR7010_GPIO_OE_AS_OUTPUT << gpio_shift), 2586 (AR7010_GPIO_OE_MASK << gpio_shift)); 2587 return; 2588 } 2589 2590 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); 2591 gpio_shift = 2 * gpio; 2592 REG_RMW(ah, 2593 AR_GPIO_OE_OUT, 2594 (AR_GPIO_OE_OUT_DRV_ALL << gpio_shift), 2595 (AR_GPIO_OE_OUT_DRV << gpio_shift)); 2596 } 2597 EXPORT_SYMBOL(ath9k_hw_cfg_output); 2598 2599 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) 2600 { 2601 if (AR_DEVID_7010(ah)) { 2602 val = val ? 0 : 1; 2603 REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio), 2604 AR_GPIO_BIT(gpio)); 2605 return; 2606 } 2607 2608 if (AR_SREV_9271(ah)) 2609 val = ~val; 2610 2611 REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio), 2612 AR_GPIO_BIT(gpio)); 2613 } 2614 EXPORT_SYMBOL(ath9k_hw_set_gpio); 2615 2616 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) 2617 { 2618 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); 2619 } 2620 EXPORT_SYMBOL(ath9k_hw_setantenna); 2621 2622 /*********************/ 2623 /* General Operation */ 2624 /*********************/ 2625 2626 u32 ath9k_hw_getrxfilter(struct ath_hw *ah) 2627 { 2628 u32 bits = REG_READ(ah, AR_RX_FILTER); 2629 u32 phybits = REG_READ(ah, AR_PHY_ERR); 2630 2631 if (phybits & AR_PHY_ERR_RADAR) 2632 bits |= ATH9K_RX_FILTER_PHYRADAR; 2633 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) 2634 bits |= ATH9K_RX_FILTER_PHYERR; 2635 2636 return bits; 2637 } 2638 EXPORT_SYMBOL(ath9k_hw_getrxfilter); 2639 2640 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) 2641 { 2642 u32 phybits; 2643 2644 ENABLE_REGWRITE_BUFFER(ah); 2645 2646 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 2647 bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER; 2648 2649 REG_WRITE(ah, AR_RX_FILTER, bits); 2650 2651 phybits = 0; 2652 if (bits & ATH9K_RX_FILTER_PHYRADAR) 2653 phybits |= AR_PHY_ERR_RADAR; 2654 if (bits & ATH9K_RX_FILTER_PHYERR) 2655 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; 2656 REG_WRITE(ah, AR_PHY_ERR, phybits); 2657 2658 if (phybits) 2659 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2660 else 2661 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2662 2663 REGWRITE_BUFFER_FLUSH(ah); 2664 } 2665 EXPORT_SYMBOL(ath9k_hw_setrxfilter); 2666 2667 bool ath9k_hw_phy_disable(struct ath_hw *ah) 2668 { 2669 if (ath9k_hw_mci_is_enabled(ah)) 2670 ar9003_mci_bt_gain_ctrl(ah); 2671 2672 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) 2673 return false; 2674 2675 ath9k_hw_init_pll(ah, NULL); 2676 ah->htc_reset_init = true; 2677 return true; 2678 } 2679 EXPORT_SYMBOL(ath9k_hw_phy_disable); 2680 2681 bool ath9k_hw_disable(struct ath_hw *ah) 2682 { 2683 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 2684 return false; 2685 2686 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD)) 2687 return false; 2688 2689 ath9k_hw_init_pll(ah, NULL); 2690 return true; 2691 } 2692 EXPORT_SYMBOL(ath9k_hw_disable); 2693 2694 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan) 2695 { 2696 enum eeprom_param gain_param; 2697 2698 if (IS_CHAN_2GHZ(chan)) 2699 gain_param = EEP_ANTENNA_GAIN_2G; 2700 else 2701 gain_param = EEP_ANTENNA_GAIN_5G; 2702 2703 return ah->eep_ops->get_eeprom(ah, gain_param); 2704 } 2705 2706 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan, 2707 bool test) 2708 { 2709 struct ath_regulatory *reg = ath9k_hw_regulatory(ah); 2710 struct ieee80211_channel *channel; 2711 int chan_pwr, new_pwr, max_gain; 2712 int ant_gain, ant_reduction = 0; 2713 2714 if (!chan) 2715 return; 2716 2717 channel = chan->chan; 2718 chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER); 2719 new_pwr = min_t(int, chan_pwr, reg->power_limit); 2720 max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2; 2721 2722 ant_gain = get_antenna_gain(ah, chan); 2723 if (ant_gain > max_gain) 2724 ant_reduction = ant_gain - max_gain; 2725 2726 ah->eep_ops->set_txpower(ah, chan, 2727 ath9k_regd_get_ctl(reg, chan), 2728 ant_reduction, new_pwr, test); 2729 } 2730 2731 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test) 2732 { 2733 struct ath_regulatory *reg = ath9k_hw_regulatory(ah); 2734 struct ath9k_channel *chan = ah->curchan; 2735 struct ieee80211_channel *channel = chan->chan; 2736 2737 reg->power_limit = min_t(u32, limit, MAX_RATE_POWER); 2738 if (test) 2739 channel->max_power = MAX_RATE_POWER / 2; 2740 2741 ath9k_hw_apply_txpower(ah, chan, test); 2742 2743 if (test) 2744 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2); 2745 } 2746 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit); 2747 2748 void ath9k_hw_setopmode(struct ath_hw *ah) 2749 { 2750 ath9k_hw_set_operating_mode(ah, ah->opmode); 2751 } 2752 EXPORT_SYMBOL(ath9k_hw_setopmode); 2753 2754 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) 2755 { 2756 REG_WRITE(ah, AR_MCAST_FIL0, filter0); 2757 REG_WRITE(ah, AR_MCAST_FIL1, filter1); 2758 } 2759 EXPORT_SYMBOL(ath9k_hw_setmcastfilter); 2760 2761 void ath9k_hw_write_associd(struct ath_hw *ah) 2762 { 2763 struct ath_common *common = ath9k_hw_common(ah); 2764 2765 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid)); 2766 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) | 2767 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); 2768 } 2769 EXPORT_SYMBOL(ath9k_hw_write_associd); 2770 2771 #define ATH9K_MAX_TSF_READ 10 2772 2773 u64 ath9k_hw_gettsf64(struct ath_hw *ah) 2774 { 2775 u32 tsf_lower, tsf_upper1, tsf_upper2; 2776 int i; 2777 2778 tsf_upper1 = REG_READ(ah, AR_TSF_U32); 2779 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) { 2780 tsf_lower = REG_READ(ah, AR_TSF_L32); 2781 tsf_upper2 = REG_READ(ah, AR_TSF_U32); 2782 if (tsf_upper2 == tsf_upper1) 2783 break; 2784 tsf_upper1 = tsf_upper2; 2785 } 2786 2787 WARN_ON( i == ATH9K_MAX_TSF_READ ); 2788 2789 return (((u64)tsf_upper1 << 32) | tsf_lower); 2790 } 2791 EXPORT_SYMBOL(ath9k_hw_gettsf64); 2792 2793 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) 2794 { 2795 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); 2796 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); 2797 } 2798 EXPORT_SYMBOL(ath9k_hw_settsf64); 2799 2800 void ath9k_hw_reset_tsf(struct ath_hw *ah) 2801 { 2802 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0, 2803 AH_TSF_WRITE_TIMEOUT)) 2804 ath_dbg(ath9k_hw_common(ah), RESET, 2805 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); 2806 2807 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); 2808 } 2809 EXPORT_SYMBOL(ath9k_hw_reset_tsf); 2810 2811 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set) 2812 { 2813 if (set) 2814 ah->misc_mode |= AR_PCU_TX_ADD_TSF; 2815 else 2816 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; 2817 } 2818 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust); 2819 2820 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan) 2821 { 2822 u32 macmode; 2823 2824 if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca) 2825 macmode = AR_2040_JOINED_RX_CLEAR; 2826 else 2827 macmode = 0; 2828 2829 REG_WRITE(ah, AR_2040_MODE, macmode); 2830 } 2831 2832 /* HW Generic timers configuration */ 2833 2834 static const struct ath_gen_timer_configuration gen_tmr_configuration[] = 2835 { 2836 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2837 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2838 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2839 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2840 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2841 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2842 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2843 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 2844 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001}, 2845 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4, 2846 AR_NDP2_TIMER_MODE, 0x0002}, 2847 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4, 2848 AR_NDP2_TIMER_MODE, 0x0004}, 2849 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4, 2850 AR_NDP2_TIMER_MODE, 0x0008}, 2851 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4, 2852 AR_NDP2_TIMER_MODE, 0x0010}, 2853 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4, 2854 AR_NDP2_TIMER_MODE, 0x0020}, 2855 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4, 2856 AR_NDP2_TIMER_MODE, 0x0040}, 2857 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4, 2858 AR_NDP2_TIMER_MODE, 0x0080} 2859 }; 2860 2861 /* HW generic timer primitives */ 2862 2863 u32 ath9k_hw_gettsf32(struct ath_hw *ah) 2864 { 2865 return REG_READ(ah, AR_TSF_L32); 2866 } 2867 EXPORT_SYMBOL(ath9k_hw_gettsf32); 2868 2869 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah, 2870 void (*trigger)(void *), 2871 void (*overflow)(void *), 2872 void *arg, 2873 u8 timer_index) 2874 { 2875 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2876 struct ath_gen_timer *timer; 2877 2878 if ((timer_index < AR_FIRST_NDP_TIMER) || 2879 (timer_index >= ATH_MAX_GEN_TIMER)) 2880 return NULL; 2881 2882 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL); 2883 if (timer == NULL) 2884 return NULL; 2885 2886 /* allocate a hardware generic timer slot */ 2887 timer_table->timers[timer_index] = timer; 2888 timer->index = timer_index; 2889 timer->trigger = trigger; 2890 timer->overflow = overflow; 2891 timer->arg = arg; 2892 2893 return timer; 2894 } 2895 EXPORT_SYMBOL(ath_gen_timer_alloc); 2896 2897 void ath9k_hw_gen_timer_start(struct ath_hw *ah, 2898 struct ath_gen_timer *timer, 2899 u32 timer_next, 2900 u32 timer_period) 2901 { 2902 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2903 u32 mask = 0; 2904 2905 timer_table->timer_mask |= BIT(timer->index); 2906 2907 /* 2908 * Program generic timer registers 2909 */ 2910 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr, 2911 timer_next); 2912 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr, 2913 timer_period); 2914 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 2915 gen_tmr_configuration[timer->index].mode_mask); 2916 2917 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 2918 /* 2919 * Starting from AR9462, each generic timer can select which tsf 2920 * to use. But we still follow the old rule, 0 - 7 use tsf and 2921 * 8 - 15 use tsf2. 2922 */ 2923 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN)) 2924 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 2925 (1 << timer->index)); 2926 else 2927 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 2928 (1 << timer->index)); 2929 } 2930 2931 if (timer->trigger) 2932 mask |= SM(AR_GENTMR_BIT(timer->index), 2933 AR_IMR_S5_GENTIMER_TRIG); 2934 if (timer->overflow) 2935 mask |= SM(AR_GENTMR_BIT(timer->index), 2936 AR_IMR_S5_GENTIMER_THRESH); 2937 2938 REG_SET_BIT(ah, AR_IMR_S5, mask); 2939 2940 if ((ah->imask & ATH9K_INT_GENTIMER) == 0) { 2941 ah->imask |= ATH9K_INT_GENTIMER; 2942 ath9k_hw_set_interrupts(ah); 2943 } 2944 } 2945 EXPORT_SYMBOL(ath9k_hw_gen_timer_start); 2946 2947 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) 2948 { 2949 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2950 2951 /* Clear generic timer enable bits. */ 2952 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 2953 gen_tmr_configuration[timer->index].mode_mask); 2954 2955 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 2956 /* 2957 * Need to switch back to TSF if it was using TSF2. 2958 */ 2959 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) { 2960 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 2961 (1 << timer->index)); 2962 } 2963 } 2964 2965 /* Disable both trigger and thresh interrupt masks */ 2966 REG_CLR_BIT(ah, AR_IMR_S5, 2967 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 2968 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 2969 2970 timer_table->timer_mask &= ~BIT(timer->index); 2971 2972 if (timer_table->timer_mask == 0) { 2973 ah->imask &= ~ATH9K_INT_GENTIMER; 2974 ath9k_hw_set_interrupts(ah); 2975 } 2976 } 2977 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop); 2978 2979 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer) 2980 { 2981 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2982 2983 /* free the hardware generic timer slot */ 2984 timer_table->timers[timer->index] = NULL; 2985 kfree(timer); 2986 } 2987 EXPORT_SYMBOL(ath_gen_timer_free); 2988 2989 /* 2990 * Generic Timer Interrupts handling 2991 */ 2992 void ath_gen_timer_isr(struct ath_hw *ah) 2993 { 2994 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 2995 struct ath_gen_timer *timer; 2996 unsigned long trigger_mask, thresh_mask; 2997 unsigned int index; 2998 2999 /* get hardware generic timer interrupt status */ 3000 trigger_mask = ah->intr_gen_timer_trigger; 3001 thresh_mask = ah->intr_gen_timer_thresh; 3002 trigger_mask &= timer_table->timer_mask; 3003 thresh_mask &= timer_table->timer_mask; 3004 3005 for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) { 3006 timer = timer_table->timers[index]; 3007 if (!timer) 3008 continue; 3009 if (!timer->overflow) 3010 continue; 3011 3012 trigger_mask &= ~BIT(index); 3013 timer->overflow(timer->arg); 3014 } 3015 3016 for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) { 3017 timer = timer_table->timers[index]; 3018 if (!timer) 3019 continue; 3020 if (!timer->trigger) 3021 continue; 3022 timer->trigger(timer->arg); 3023 } 3024 } 3025 EXPORT_SYMBOL(ath_gen_timer_isr); 3026 3027 /********/ 3028 /* HTC */ 3029 /********/ 3030 3031 static struct { 3032 u32 version; 3033 const char * name; 3034 } ath_mac_bb_names[] = { 3035 /* Devices with external radios */ 3036 { AR_SREV_VERSION_5416_PCI, "5416" }, 3037 { AR_SREV_VERSION_5416_PCIE, "5418" }, 3038 { AR_SREV_VERSION_9100, "9100" }, 3039 { AR_SREV_VERSION_9160, "9160" }, 3040 /* Single-chip solutions */ 3041 { AR_SREV_VERSION_9280, "9280" }, 3042 { AR_SREV_VERSION_9285, "9285" }, 3043 { AR_SREV_VERSION_9287, "9287" }, 3044 { AR_SREV_VERSION_9271, "9271" }, 3045 { AR_SREV_VERSION_9300, "9300" }, 3046 { AR_SREV_VERSION_9330, "9330" }, 3047 { AR_SREV_VERSION_9340, "9340" }, 3048 { AR_SREV_VERSION_9485, "9485" }, 3049 { AR_SREV_VERSION_9462, "9462" }, 3050 { AR_SREV_VERSION_9550, "9550" }, 3051 { AR_SREV_VERSION_9565, "9565" }, 3052 }; 3053 3054 /* For devices with external radios */ 3055 static struct { 3056 u16 version; 3057 const char * name; 3058 } ath_rf_names[] = { 3059 { 0, "5133" }, 3060 { AR_RAD5133_SREV_MAJOR, "5133" }, 3061 { AR_RAD5122_SREV_MAJOR, "5122" }, 3062 { AR_RAD2133_SREV_MAJOR, "2133" }, 3063 { AR_RAD2122_SREV_MAJOR, "2122" } 3064 }; 3065 3066 /* 3067 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. 3068 */ 3069 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version) 3070 { 3071 int i; 3072 3073 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) { 3074 if (ath_mac_bb_names[i].version == mac_bb_version) { 3075 return ath_mac_bb_names[i].name; 3076 } 3077 } 3078 3079 return "????"; 3080 } 3081 3082 /* 3083 * Return the RF name. "????" is returned if the RF is unknown. 3084 * Used for devices with external radios. 3085 */ 3086 static const char *ath9k_hw_rf_name(u16 rf_version) 3087 { 3088 int i; 3089 3090 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) { 3091 if (ath_rf_names[i].version == rf_version) { 3092 return ath_rf_names[i].name; 3093 } 3094 } 3095 3096 return "????"; 3097 } 3098 3099 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len) 3100 { 3101 int used; 3102 3103 /* chipsets >= AR9280 are single-chip */ 3104 if (AR_SREV_9280_20_OR_LATER(ah)) { 3105 used = scnprintf(hw_name, len, 3106 "Atheros AR%s Rev:%x", 3107 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 3108 ah->hw_version.macRev); 3109 } 3110 else { 3111 used = scnprintf(hw_name, len, 3112 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x", 3113 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 3114 ah->hw_version.macRev, 3115 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev 3116 & AR_RADIO_SREV_MAJOR)), 3117 ah->hw_version.phyRev); 3118 } 3119 3120 hw_name[used] = '\0'; 3121 } 3122 EXPORT_SYMBOL(ath9k_hw_name); 3123