xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision a09d2831)
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <asm/unaligned.h>
19 
20 #include "hw.h"
21 #include "rc.h"
22 #include "initvals.h"
23 
24 #define ATH9K_CLOCK_RATE_CCK		22
25 #define ATH9K_CLOCK_RATE_5GHZ_OFDM	40
26 #define ATH9K_CLOCK_RATE_2GHZ_OFDM	44
27 
28 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
29 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
30 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
31 			      struct ar5416_eeprom_def *pEepData,
32 			      u32 reg, u32 value);
33 
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38 
39 static int __init ath9k_init(void)
40 {
41 	return 0;
42 }
43 module_init(ath9k_init);
44 
45 static void __exit ath9k_exit(void)
46 {
47 	return;
48 }
49 module_exit(ath9k_exit);
50 
51 /********************/
52 /* Helper Functions */
53 /********************/
54 
55 static u32 ath9k_hw_mac_usec(struct ath_hw *ah, u32 clks)
56 {
57 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
58 
59 	if (!ah->curchan) /* should really check for CCK instead */
60 		return clks / ATH9K_CLOCK_RATE_CCK;
61 	if (conf->channel->band == IEEE80211_BAND_2GHZ)
62 		return clks / ATH9K_CLOCK_RATE_2GHZ_OFDM;
63 
64 	return clks / ATH9K_CLOCK_RATE_5GHZ_OFDM;
65 }
66 
67 static u32 ath9k_hw_mac_to_usec(struct ath_hw *ah, u32 clks)
68 {
69 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
70 
71 	if (conf_is_ht40(conf))
72 		return ath9k_hw_mac_usec(ah, clks) / 2;
73 	else
74 		return ath9k_hw_mac_usec(ah, clks);
75 }
76 
77 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
78 {
79 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
80 
81 	if (!ah->curchan) /* should really check for CCK instead */
82 		return usecs *ATH9K_CLOCK_RATE_CCK;
83 	if (conf->channel->band == IEEE80211_BAND_2GHZ)
84 		return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
85 	return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
86 }
87 
88 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
89 {
90 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
91 
92 	if (conf_is_ht40(conf))
93 		return ath9k_hw_mac_clks(ah, usecs) * 2;
94 	else
95 		return ath9k_hw_mac_clks(ah, usecs);
96 }
97 
98 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
99 {
100 	int i;
101 
102 	BUG_ON(timeout < AH_TIME_QUANTUM);
103 
104 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
105 		if ((REG_READ(ah, reg) & mask) == val)
106 			return true;
107 
108 		udelay(AH_TIME_QUANTUM);
109 	}
110 
111 	ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
112 		  "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
113 		  timeout, reg, REG_READ(ah, reg), mask, val);
114 
115 	return false;
116 }
117 EXPORT_SYMBOL(ath9k_hw_wait);
118 
119 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
120 {
121 	u32 retval;
122 	int i;
123 
124 	for (i = 0, retval = 0; i < n; i++) {
125 		retval = (retval << 1) | (val & 1);
126 		val >>= 1;
127 	}
128 	return retval;
129 }
130 
131 bool ath9k_get_channel_edges(struct ath_hw *ah,
132 			     u16 flags, u16 *low,
133 			     u16 *high)
134 {
135 	struct ath9k_hw_capabilities *pCap = &ah->caps;
136 
137 	if (flags & CHANNEL_5GHZ) {
138 		*low = pCap->low_5ghz_chan;
139 		*high = pCap->high_5ghz_chan;
140 		return true;
141 	}
142 	if ((flags & CHANNEL_2GHZ)) {
143 		*low = pCap->low_2ghz_chan;
144 		*high = pCap->high_2ghz_chan;
145 		return true;
146 	}
147 	return false;
148 }
149 
150 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
151 			   u8 phy, int kbps,
152 			   u32 frameLen, u16 rateix,
153 			   bool shortPreamble)
154 {
155 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
156 
157 	if (kbps == 0)
158 		return 0;
159 
160 	switch (phy) {
161 	case WLAN_RC_PHY_CCK:
162 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
163 		if (shortPreamble)
164 			phyTime >>= 1;
165 		numBits = frameLen << 3;
166 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
167 		break;
168 	case WLAN_RC_PHY_OFDM:
169 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
170 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
171 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
172 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
173 			txTime = OFDM_SIFS_TIME_QUARTER
174 				+ OFDM_PREAMBLE_TIME_QUARTER
175 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
176 		} else if (ah->curchan &&
177 			   IS_CHAN_HALF_RATE(ah->curchan)) {
178 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
179 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
180 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
181 			txTime = OFDM_SIFS_TIME_HALF +
182 				OFDM_PREAMBLE_TIME_HALF
183 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
184 		} else {
185 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
186 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
187 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
188 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
189 				+ (numSymbols * OFDM_SYMBOL_TIME);
190 		}
191 		break;
192 	default:
193 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
194 			  "Unknown phy %u (rate ix %u)\n", phy, rateix);
195 		txTime = 0;
196 		break;
197 	}
198 
199 	return txTime;
200 }
201 EXPORT_SYMBOL(ath9k_hw_computetxtime);
202 
203 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
204 				  struct ath9k_channel *chan,
205 				  struct chan_centers *centers)
206 {
207 	int8_t extoff;
208 
209 	if (!IS_CHAN_HT40(chan)) {
210 		centers->ctl_center = centers->ext_center =
211 			centers->synth_center = chan->channel;
212 		return;
213 	}
214 
215 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
216 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
217 		centers->synth_center =
218 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
219 		extoff = 1;
220 	} else {
221 		centers->synth_center =
222 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
223 		extoff = -1;
224 	}
225 
226 	centers->ctl_center =
227 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
228 	/* 25 MHz spacing is supported by hw but not on upper layers */
229 	centers->ext_center =
230 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
231 }
232 
233 /******************/
234 /* Chip Revisions */
235 /******************/
236 
237 static void ath9k_hw_read_revisions(struct ath_hw *ah)
238 {
239 	u32 val;
240 
241 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
242 
243 	if (val == 0xFF) {
244 		val = REG_READ(ah, AR_SREV);
245 		ah->hw_version.macVersion =
246 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
247 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
248 		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
249 	} else {
250 		if (!AR_SREV_9100(ah))
251 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
252 
253 		ah->hw_version.macRev = val & AR_SREV_REVISION;
254 
255 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
256 			ah->is_pciexpress = true;
257 	}
258 }
259 
260 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
261 {
262 	u32 val;
263 	int i;
264 
265 	REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
266 
267 	for (i = 0; i < 8; i++)
268 		REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
269 	val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
270 	val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
271 
272 	return ath9k_hw_reverse_bits(val, 8);
273 }
274 
275 /************************************/
276 /* HW Attach, Detach, Init Routines */
277 /************************************/
278 
279 static void ath9k_hw_disablepcie(struct ath_hw *ah)
280 {
281 	if (AR_SREV_9100(ah))
282 		return;
283 
284 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
285 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
286 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
287 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
288 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
289 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
290 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
291 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
292 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
293 
294 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
295 }
296 
297 static bool ath9k_hw_chip_test(struct ath_hw *ah)
298 {
299 	struct ath_common *common = ath9k_hw_common(ah);
300 	u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
301 	u32 regHold[2];
302 	u32 patternData[4] = { 0x55555555,
303 			       0xaaaaaaaa,
304 			       0x66666666,
305 			       0x99999999 };
306 	int i, j;
307 
308 	for (i = 0; i < 2; i++) {
309 		u32 addr = regAddr[i];
310 		u32 wrData, rdData;
311 
312 		regHold[i] = REG_READ(ah, addr);
313 		for (j = 0; j < 0x100; j++) {
314 			wrData = (j << 16) | j;
315 			REG_WRITE(ah, addr, wrData);
316 			rdData = REG_READ(ah, addr);
317 			if (rdData != wrData) {
318 				ath_print(common, ATH_DBG_FATAL,
319 					  "address test failed "
320 					  "addr: 0x%08x - wr:0x%08x != "
321 					  "rd:0x%08x\n",
322 					  addr, wrData, rdData);
323 				return false;
324 			}
325 		}
326 		for (j = 0; j < 4; j++) {
327 			wrData = patternData[j];
328 			REG_WRITE(ah, addr, wrData);
329 			rdData = REG_READ(ah, addr);
330 			if (wrData != rdData) {
331 				ath_print(common, ATH_DBG_FATAL,
332 					  "address test failed "
333 					  "addr: 0x%08x - wr:0x%08x != "
334 					  "rd:0x%08x\n",
335 					  addr, wrData, rdData);
336 				return false;
337 			}
338 		}
339 		REG_WRITE(ah, regAddr[i], regHold[i]);
340 	}
341 	udelay(100);
342 
343 	return true;
344 }
345 
346 static const char *ath9k_hw_devname(u16 devid)
347 {
348 	switch (devid) {
349 	case AR5416_DEVID_PCI:
350 		return "Atheros 5416";
351 	case AR5416_DEVID_PCIE:
352 		return "Atheros 5418";
353 	case AR9160_DEVID_PCI:
354 		return "Atheros 9160";
355 	case AR5416_AR9100_DEVID:
356 		return "Atheros 9100";
357 	case AR9280_DEVID_PCI:
358 	case AR9280_DEVID_PCIE:
359 		return "Atheros 9280";
360 	case AR9285_DEVID_PCIE:
361 		return "Atheros 9285";
362 	case AR5416_DEVID_AR9287_PCI:
363 	case AR5416_DEVID_AR9287_PCIE:
364 		return "Atheros 9287";
365 	}
366 
367 	return NULL;
368 }
369 
370 static void ath9k_hw_init_config(struct ath_hw *ah)
371 {
372 	int i;
373 
374 	ah->config.dma_beacon_response_time = 2;
375 	ah->config.sw_beacon_response_time = 10;
376 	ah->config.additional_swba_backoff = 0;
377 	ah->config.ack_6mb = 0x0;
378 	ah->config.cwm_ignore_extcca = 0;
379 	ah->config.pcie_powersave_enable = 0;
380 	ah->config.pcie_clock_req = 0;
381 	ah->config.pcie_waen = 0;
382 	ah->config.analog_shiftreg = 1;
383 	ah->config.ht_enable = 1;
384 	ah->config.ofdm_trig_low = 200;
385 	ah->config.ofdm_trig_high = 500;
386 	ah->config.cck_trig_high = 200;
387 	ah->config.cck_trig_low = 100;
388 	ah->config.enable_ani = 1;
389 
390 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
391 		ah->config.spurchans[i][0] = AR_NO_SPUR;
392 		ah->config.spurchans[i][1] = AR_NO_SPUR;
393 	}
394 
395 	ah->config.intr_mitigation = true;
396 
397 	/*
398 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
399 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
400 	 * This means we use it for all AR5416 devices, and the few
401 	 * minor PCI AR9280 devices out there.
402 	 *
403 	 * Serialization is required because these devices do not handle
404 	 * well the case of two concurrent reads/writes due to the latency
405 	 * involved. During one read/write another read/write can be issued
406 	 * on another CPU while the previous read/write may still be working
407 	 * on our hardware, if we hit this case the hardware poops in a loop.
408 	 * We prevent this by serializing reads and writes.
409 	 *
410 	 * This issue is not present on PCI-Express devices or pre-AR5416
411 	 * devices (legacy, 802.11abg).
412 	 */
413 	if (num_possible_cpus() > 1)
414 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
415 }
416 EXPORT_SYMBOL(ath9k_hw_init);
417 
418 static void ath9k_hw_init_defaults(struct ath_hw *ah)
419 {
420 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
421 
422 	regulatory->country_code = CTRY_DEFAULT;
423 	regulatory->power_limit = MAX_RATE_POWER;
424 	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
425 
426 	ah->hw_version.magic = AR5416_MAGIC;
427 	ah->hw_version.subvendorid = 0;
428 
429 	ah->ah_flags = 0;
430 	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
431 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
432 	if (!AR_SREV_9100(ah))
433 		ah->ah_flags = AH_USE_EEPROM;
434 
435 	ah->atim_window = 0;
436 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
437 	ah->beacon_interval = 100;
438 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
439 	ah->slottime = (u32) -1;
440 	ah->acktimeout = (u32) -1;
441 	ah->ctstimeout = (u32) -1;
442 	ah->globaltxtimeout = (u32) -1;
443 	ah->power_mode = ATH9K_PM_UNDEFINED;
444 }
445 
446 static int ath9k_hw_rf_claim(struct ath_hw *ah)
447 {
448 	u32 val;
449 
450 	REG_WRITE(ah, AR_PHY(0), 0x00000007);
451 
452 	val = ath9k_hw_get_radiorev(ah);
453 	switch (val & AR_RADIO_SREV_MAJOR) {
454 	case 0:
455 		val = AR_RAD5133_SREV_MAJOR;
456 		break;
457 	case AR_RAD5133_SREV_MAJOR:
458 	case AR_RAD5122_SREV_MAJOR:
459 	case AR_RAD2133_SREV_MAJOR:
460 	case AR_RAD2122_SREV_MAJOR:
461 		break;
462 	default:
463 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
464 			  "Radio Chip Rev 0x%02X not supported\n",
465 			  val & AR_RADIO_SREV_MAJOR);
466 		return -EOPNOTSUPP;
467 	}
468 
469 	ah->hw_version.analog5GhzRev = val;
470 
471 	return 0;
472 }
473 
474 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
475 {
476 	struct ath_common *common = ath9k_hw_common(ah);
477 	u32 sum;
478 	int i;
479 	u16 eeval;
480 
481 	sum = 0;
482 	for (i = 0; i < 3; i++) {
483 		eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
484 		sum += eeval;
485 		common->macaddr[2 * i] = eeval >> 8;
486 		common->macaddr[2 * i + 1] = eeval & 0xff;
487 	}
488 	if (sum == 0 || sum == 0xffff * 3)
489 		return -EADDRNOTAVAIL;
490 
491 	return 0;
492 }
493 
494 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
495 {
496 	u32 rxgain_type;
497 
498 	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
499 		rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
500 
501 		if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
502 			INIT_INI_ARRAY(&ah->iniModesRxGain,
503 			ar9280Modes_backoff_13db_rxgain_9280_2,
504 			ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
505 		else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
506 			INIT_INI_ARRAY(&ah->iniModesRxGain,
507 			ar9280Modes_backoff_23db_rxgain_9280_2,
508 			ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
509 		else
510 			INIT_INI_ARRAY(&ah->iniModesRxGain,
511 			ar9280Modes_original_rxgain_9280_2,
512 			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
513 	} else {
514 		INIT_INI_ARRAY(&ah->iniModesRxGain,
515 			ar9280Modes_original_rxgain_9280_2,
516 			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
517 	}
518 }
519 
520 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
521 {
522 	u32 txgain_type;
523 
524 	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
525 		txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
526 
527 		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
528 			INIT_INI_ARRAY(&ah->iniModesTxGain,
529 			ar9280Modes_high_power_tx_gain_9280_2,
530 			ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
531 		else
532 			INIT_INI_ARRAY(&ah->iniModesTxGain,
533 			ar9280Modes_original_tx_gain_9280_2,
534 			ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
535 	} else {
536 		INIT_INI_ARRAY(&ah->iniModesTxGain,
537 		ar9280Modes_original_tx_gain_9280_2,
538 		ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
539 	}
540 }
541 
542 static int ath9k_hw_post_init(struct ath_hw *ah)
543 {
544 	int ecode;
545 
546 	if (!ath9k_hw_chip_test(ah))
547 		return -ENODEV;
548 
549 	ecode = ath9k_hw_rf_claim(ah);
550 	if (ecode != 0)
551 		return ecode;
552 
553 	ecode = ath9k_hw_eeprom_init(ah);
554 	if (ecode != 0)
555 		return ecode;
556 
557 	ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
558 		  "Eeprom VER: %d, REV: %d\n",
559 		  ah->eep_ops->get_eeprom_ver(ah),
560 		  ah->eep_ops->get_eeprom_rev(ah));
561 
562         if (!AR_SREV_9280_10_OR_LATER(ah)) {
563 		ecode = ath9k_hw_rf_alloc_ext_banks(ah);
564 		if (ecode) {
565 			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
566 				  "Failed allocating banks for "
567 				  "external radio\n");
568 			return ecode;
569 		}
570 	}
571 
572 	if (!AR_SREV_9100(ah)) {
573 		ath9k_hw_ani_setup(ah);
574 		ath9k_hw_ani_init(ah);
575 	}
576 
577 	return 0;
578 }
579 
580 static bool ath9k_hw_devid_supported(u16 devid)
581 {
582 	switch (devid) {
583 	case AR5416_DEVID_PCI:
584 	case AR5416_DEVID_PCIE:
585 	case AR5416_AR9100_DEVID:
586 	case AR9160_DEVID_PCI:
587 	case AR9280_DEVID_PCI:
588 	case AR9280_DEVID_PCIE:
589 	case AR9285_DEVID_PCIE:
590 	case AR5416_DEVID_AR9287_PCI:
591 	case AR5416_DEVID_AR9287_PCIE:
592 	case AR9271_USB:
593 		return true;
594 	default:
595 		break;
596 	}
597 	return false;
598 }
599 
600 static bool ath9k_hw_macversion_supported(u32 macversion)
601 {
602 	switch (macversion) {
603 	case AR_SREV_VERSION_5416_PCI:
604 	case AR_SREV_VERSION_5416_PCIE:
605 	case AR_SREV_VERSION_9160:
606 	case AR_SREV_VERSION_9100:
607 	case AR_SREV_VERSION_9280:
608 	case AR_SREV_VERSION_9285:
609 	case AR_SREV_VERSION_9287:
610 	case AR_SREV_VERSION_9271:
611 		return true;
612 	default:
613 		break;
614 	}
615 	return false;
616 }
617 
618 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
619 {
620 	if (AR_SREV_9160_10_OR_LATER(ah)) {
621 		if (AR_SREV_9280_10_OR_LATER(ah)) {
622 			ah->iq_caldata.calData = &iq_cal_single_sample;
623 			ah->adcgain_caldata.calData =
624 				&adc_gain_cal_single_sample;
625 			ah->adcdc_caldata.calData =
626 				&adc_dc_cal_single_sample;
627 			ah->adcdc_calinitdata.calData =
628 				&adc_init_dc_cal;
629 		} else {
630 			ah->iq_caldata.calData = &iq_cal_multi_sample;
631 			ah->adcgain_caldata.calData =
632 				&adc_gain_cal_multi_sample;
633 			ah->adcdc_caldata.calData =
634 				&adc_dc_cal_multi_sample;
635 			ah->adcdc_calinitdata.calData =
636 				&adc_init_dc_cal;
637 		}
638 		ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
639 	}
640 }
641 
642 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
643 {
644 	if (AR_SREV_9271(ah)) {
645 		INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
646 			       ARRAY_SIZE(ar9271Modes_9271), 6);
647 		INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
648 			       ARRAY_SIZE(ar9271Common_9271), 2);
649 		INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
650 			       ar9271Modes_9271_1_0_only,
651 			       ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
652 		return;
653 	}
654 
655 	if (AR_SREV_9287_11_OR_LATER(ah)) {
656 		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
657 				ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
658 		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
659 				ARRAY_SIZE(ar9287Common_9287_1_1), 2);
660 		if (ah->config.pcie_clock_req)
661 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
662 			ar9287PciePhy_clkreq_off_L1_9287_1_1,
663 			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
664 		else
665 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
666 			ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
667 			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
668 					2);
669 	} else if (AR_SREV_9287_10_OR_LATER(ah)) {
670 		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
671 				ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
672 		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
673 				ARRAY_SIZE(ar9287Common_9287_1_0), 2);
674 
675 		if (ah->config.pcie_clock_req)
676 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
677 			ar9287PciePhy_clkreq_off_L1_9287_1_0,
678 			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
679 		else
680 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
681 			ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
682 			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
683 				  2);
684 	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
685 
686 
687 		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
688 			       ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
689 		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
690 			       ARRAY_SIZE(ar9285Common_9285_1_2), 2);
691 
692 		if (ah->config.pcie_clock_req) {
693 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
694 			ar9285PciePhy_clkreq_off_L1_9285_1_2,
695 			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
696 		} else {
697 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
698 			ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
699 			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
700 				  2);
701 		}
702 	} else if (AR_SREV_9285_10_OR_LATER(ah)) {
703 		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
704 			       ARRAY_SIZE(ar9285Modes_9285), 6);
705 		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
706 			       ARRAY_SIZE(ar9285Common_9285), 2);
707 
708 		if (ah->config.pcie_clock_req) {
709 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
710 			ar9285PciePhy_clkreq_off_L1_9285,
711 			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
712 		} else {
713 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
714 			ar9285PciePhy_clkreq_always_on_L1_9285,
715 			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
716 		}
717 	} else if (AR_SREV_9280_20_OR_LATER(ah)) {
718 		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
719 			       ARRAY_SIZE(ar9280Modes_9280_2), 6);
720 		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
721 			       ARRAY_SIZE(ar9280Common_9280_2), 2);
722 
723 		if (ah->config.pcie_clock_req) {
724 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
725 			       ar9280PciePhy_clkreq_off_L1_9280,
726 			       ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
727 		} else {
728 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
729 			       ar9280PciePhy_clkreq_always_on_L1_9280,
730 			       ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
731 		}
732 		INIT_INI_ARRAY(&ah->iniModesAdditional,
733 			       ar9280Modes_fast_clock_9280_2,
734 			       ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
735 	} else if (AR_SREV_9280_10_OR_LATER(ah)) {
736 		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
737 			       ARRAY_SIZE(ar9280Modes_9280), 6);
738 		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
739 			       ARRAY_SIZE(ar9280Common_9280), 2);
740 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
741 		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
742 			       ARRAY_SIZE(ar5416Modes_9160), 6);
743 		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
744 			       ARRAY_SIZE(ar5416Common_9160), 2);
745 		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
746 			       ARRAY_SIZE(ar5416Bank0_9160), 2);
747 		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
748 			       ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
749 		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
750 			       ARRAY_SIZE(ar5416Bank1_9160), 2);
751 		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
752 			       ARRAY_SIZE(ar5416Bank2_9160), 2);
753 		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
754 			       ARRAY_SIZE(ar5416Bank3_9160), 3);
755 		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
756 			       ARRAY_SIZE(ar5416Bank6_9160), 3);
757 		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
758 			       ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
759 		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
760 			       ARRAY_SIZE(ar5416Bank7_9160), 2);
761 		if (AR_SREV_9160_11(ah)) {
762 			INIT_INI_ARRAY(&ah->iniAddac,
763 				       ar5416Addac_91601_1,
764 				       ARRAY_SIZE(ar5416Addac_91601_1), 2);
765 		} else {
766 			INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
767 				       ARRAY_SIZE(ar5416Addac_9160), 2);
768 		}
769 	} else if (AR_SREV_9100_OR_LATER(ah)) {
770 		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
771 			       ARRAY_SIZE(ar5416Modes_9100), 6);
772 		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
773 			       ARRAY_SIZE(ar5416Common_9100), 2);
774 		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
775 			       ARRAY_SIZE(ar5416Bank0_9100), 2);
776 		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
777 			       ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
778 		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
779 			       ARRAY_SIZE(ar5416Bank1_9100), 2);
780 		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
781 			       ARRAY_SIZE(ar5416Bank2_9100), 2);
782 		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
783 			       ARRAY_SIZE(ar5416Bank3_9100), 3);
784 		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
785 			       ARRAY_SIZE(ar5416Bank6_9100), 3);
786 		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
787 			       ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
788 		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
789 			       ARRAY_SIZE(ar5416Bank7_9100), 2);
790 		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
791 			       ARRAY_SIZE(ar5416Addac_9100), 2);
792 	} else {
793 		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
794 			       ARRAY_SIZE(ar5416Modes), 6);
795 		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
796 			       ARRAY_SIZE(ar5416Common), 2);
797 		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
798 			       ARRAY_SIZE(ar5416Bank0), 2);
799 		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
800 			       ARRAY_SIZE(ar5416BB_RfGain), 3);
801 		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
802 			       ARRAY_SIZE(ar5416Bank1), 2);
803 		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
804 			       ARRAY_SIZE(ar5416Bank2), 2);
805 		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
806 			       ARRAY_SIZE(ar5416Bank3), 3);
807 		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
808 			       ARRAY_SIZE(ar5416Bank6), 3);
809 		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
810 			       ARRAY_SIZE(ar5416Bank6TPC), 3);
811 		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
812 			       ARRAY_SIZE(ar5416Bank7), 2);
813 		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
814 			       ARRAY_SIZE(ar5416Addac), 2);
815 	}
816 }
817 
818 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
819 {
820 	if (AR_SREV_9287_11_OR_LATER(ah))
821 		INIT_INI_ARRAY(&ah->iniModesRxGain,
822 		ar9287Modes_rx_gain_9287_1_1,
823 		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
824 	else if (AR_SREV_9287_10(ah))
825 		INIT_INI_ARRAY(&ah->iniModesRxGain,
826 		ar9287Modes_rx_gain_9287_1_0,
827 		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
828 	else if (AR_SREV_9280_20(ah))
829 		ath9k_hw_init_rxgain_ini(ah);
830 
831 	if (AR_SREV_9287_11_OR_LATER(ah)) {
832 		INIT_INI_ARRAY(&ah->iniModesTxGain,
833 		ar9287Modes_tx_gain_9287_1_1,
834 		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
835 	} else if (AR_SREV_9287_10(ah)) {
836 		INIT_INI_ARRAY(&ah->iniModesTxGain,
837 		ar9287Modes_tx_gain_9287_1_0,
838 		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
839 	} else if (AR_SREV_9280_20(ah)) {
840 		ath9k_hw_init_txgain_ini(ah);
841 	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
842 		u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
843 
844 		/* txgain table */
845 		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
846 			INIT_INI_ARRAY(&ah->iniModesTxGain,
847 			ar9285Modes_high_power_tx_gain_9285_1_2,
848 			ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
849 		} else {
850 			INIT_INI_ARRAY(&ah->iniModesTxGain,
851 			ar9285Modes_original_tx_gain_9285_1_2,
852 			ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
853 		}
854 
855 	}
856 }
857 
858 static void ath9k_hw_init_11a_eeprom_fix(struct ath_hw *ah)
859 {
860 	u32 i, j;
861 
862 	if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
863 	    test_bit(ATH9K_MODE_11A, ah->caps.wireless_modes)) {
864 
865 		/* EEPROM Fixup */
866 		for (i = 0; i < ah->iniModes.ia_rows; i++) {
867 			u32 reg = INI_RA(&ah->iniModes, i, 0);
868 
869 			for (j = 1; j < ah->iniModes.ia_columns; j++) {
870 				u32 val = INI_RA(&ah->iniModes, i, j);
871 
872 				INI_RA(&ah->iniModes, i, j) =
873 					ath9k_hw_ini_fixup(ah,
874 							   &ah->eeprom.def,
875 							   reg, val);
876 			}
877 		}
878 	}
879 }
880 
881 int ath9k_hw_init(struct ath_hw *ah)
882 {
883 	struct ath_common *common = ath9k_hw_common(ah);
884 	int r = 0;
885 
886 	if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
887 		ath_print(common, ATH_DBG_FATAL,
888 			  "Unsupported device ID: 0x%0x\n",
889 			  ah->hw_version.devid);
890 		return -EOPNOTSUPP;
891 	}
892 
893 	ath9k_hw_init_defaults(ah);
894 	ath9k_hw_init_config(ah);
895 
896 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
897 		ath_print(common, ATH_DBG_FATAL,
898 			  "Couldn't reset chip\n");
899 		return -EIO;
900 	}
901 
902 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
903 		ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
904 		return -EIO;
905 	}
906 
907 	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
908 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
909 		    (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
910 			ah->config.serialize_regmode =
911 				SER_REG_MODE_ON;
912 		} else {
913 			ah->config.serialize_regmode =
914 				SER_REG_MODE_OFF;
915 		}
916 	}
917 
918 	ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
919 		ah->config.serialize_regmode);
920 
921 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
922 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
923 	else
924 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
925 
926 	if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
927 		ath_print(common, ATH_DBG_FATAL,
928 			  "Mac Chip Rev 0x%02x.%x is not supported by "
929 			  "this driver\n", ah->hw_version.macVersion,
930 			  ah->hw_version.macRev);
931 		return -EOPNOTSUPP;
932 	}
933 
934 	if (AR_SREV_9100(ah)) {
935 		ah->iq_caldata.calData = &iq_cal_multi_sample;
936 		ah->supp_cals = IQ_MISMATCH_CAL;
937 		ah->is_pciexpress = false;
938 	}
939 
940 	if (AR_SREV_9271(ah))
941 		ah->is_pciexpress = false;
942 
943 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
944 
945 	ath9k_hw_init_cal_settings(ah);
946 
947 	ah->ani_function = ATH9K_ANI_ALL;
948 	if (AR_SREV_9280_10_OR_LATER(ah)) {
949 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
950 		ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
951 		ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
952 	} else {
953 		ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
954 		ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
955 	}
956 
957 	ath9k_hw_init_mode_regs(ah);
958 
959 	if (ah->is_pciexpress)
960 		ath9k_hw_configpcipowersave(ah, 0, 0);
961 	else
962 		ath9k_hw_disablepcie(ah);
963 
964 	/* Support for Japan ch.14 (2484) spread */
965 	if (AR_SREV_9287_11_OR_LATER(ah)) {
966 		INIT_INI_ARRAY(&ah->iniCckfirNormal,
967 		       ar9287Common_normal_cck_fir_coeff_92871_1,
968 		       ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
969 		INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
970 		       ar9287Common_japan_2484_cck_fir_coeff_92871_1,
971 		       ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
972 	}
973 
974 	r = ath9k_hw_post_init(ah);
975 	if (r)
976 		return r;
977 
978 	ath9k_hw_init_mode_gain_regs(ah);
979 	r = ath9k_hw_fill_cap_info(ah);
980 	if (r)
981 		return r;
982 
983 	ath9k_hw_init_11a_eeprom_fix(ah);
984 
985 	r = ath9k_hw_init_macaddr(ah);
986 	if (r) {
987 		ath_print(common, ATH_DBG_FATAL,
988 			  "Failed to initialize MAC address\n");
989 		return r;
990 	}
991 
992 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
993 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
994 	else
995 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
996 
997 	ath9k_init_nfcal_hist_buffer(ah);
998 
999 	common->state = ATH_HW_INITIALIZED;
1000 
1001 	return 0;
1002 }
1003 
1004 static void ath9k_hw_init_bb(struct ath_hw *ah,
1005 			     struct ath9k_channel *chan)
1006 {
1007 	u32 synthDelay;
1008 
1009 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1010 	if (IS_CHAN_B(chan))
1011 		synthDelay = (4 * synthDelay) / 22;
1012 	else
1013 		synthDelay /= 10;
1014 
1015 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
1016 
1017 	udelay(synthDelay + BASE_ACTIVATE_DELAY);
1018 }
1019 
1020 static void ath9k_hw_init_qos(struct ath_hw *ah)
1021 {
1022 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
1023 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
1024 
1025 	REG_WRITE(ah, AR_QOS_NO_ACK,
1026 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
1027 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
1028 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
1029 
1030 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
1031 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
1032 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
1033 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
1034 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
1035 }
1036 
1037 static void ath9k_hw_change_target_baud(struct ath_hw *ah, u32 freq, u32 baud)
1038 {
1039 	u32 lcr;
1040 	u32 baud_divider = freq * 1000 * 1000 / 16 / baud;
1041 
1042 	lcr = REG_READ(ah , 0x5100c);
1043 	lcr |= 0x80;
1044 
1045 	REG_WRITE(ah, 0x5100c, lcr);
1046 	REG_WRITE(ah, 0x51004, (baud_divider >> 8));
1047 	REG_WRITE(ah, 0x51000, (baud_divider & 0xff));
1048 
1049 	lcr &= ~0x80;
1050 	REG_WRITE(ah, 0x5100c, lcr);
1051 }
1052 
1053 static void ath9k_hw_init_pll(struct ath_hw *ah,
1054 			      struct ath9k_channel *chan)
1055 {
1056 	u32 pll;
1057 
1058 	if (AR_SREV_9100(ah)) {
1059 		if (chan && IS_CHAN_5GHZ(chan))
1060 			pll = 0x1450;
1061 		else
1062 			pll = 0x1458;
1063 	} else {
1064 		if (AR_SREV_9280_10_OR_LATER(ah)) {
1065 			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1066 
1067 			if (chan && IS_CHAN_HALF_RATE(chan))
1068 				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1069 			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1070 				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1071 
1072 			if (chan && IS_CHAN_5GHZ(chan)) {
1073 				pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1074 
1075 
1076 				if (AR_SREV_9280_20(ah)) {
1077 					if (((chan->channel % 20) == 0)
1078 					    || ((chan->channel % 10) == 0))
1079 						pll = 0x2850;
1080 					else
1081 						pll = 0x142c;
1082 				}
1083 			} else {
1084 				pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1085 			}
1086 
1087 		} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1088 
1089 			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1090 
1091 			if (chan && IS_CHAN_HALF_RATE(chan))
1092 				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1093 			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1094 				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1095 
1096 			if (chan && IS_CHAN_5GHZ(chan))
1097 				pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1098 			else
1099 				pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1100 		} else {
1101 			pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1102 
1103 			if (chan && IS_CHAN_HALF_RATE(chan))
1104 				pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1105 			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1106 				pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1107 
1108 			if (chan && IS_CHAN_5GHZ(chan))
1109 				pll |= SM(0xa, AR_RTC_PLL_DIV);
1110 			else
1111 				pll |= SM(0xb, AR_RTC_PLL_DIV);
1112 		}
1113 	}
1114 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1115 
1116 	/* Switch the core clock for ar9271 to 117Mhz */
1117 	if (AR_SREV_9271(ah)) {
1118 		if ((pll == 0x142c) || (pll == 0x2850) ) {
1119 			udelay(500);
1120 			/* set CLKOBS to output AHB clock */
1121 			REG_WRITE(ah, 0x7020, 0xe);
1122 			/*
1123 			 * 0x304: 117Mhz, ahb_ratio: 1x1
1124 			 * 0x306: 40Mhz, ahb_ratio: 1x1
1125 			 */
1126 			REG_WRITE(ah, 0x50040, 0x304);
1127 			/*
1128 			 * makes adjustments for the baud dividor to keep the
1129 			 * targetted baud rate based on the used core clock.
1130 			 */
1131 			ath9k_hw_change_target_baud(ah, AR9271_CORE_CLOCK,
1132 						    AR9271_TARGET_BAUD_RATE);
1133 		}
1134 	}
1135 
1136 	udelay(RTC_PLL_SETTLE_DELAY);
1137 
1138 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1139 }
1140 
1141 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1142 {
1143 	int rx_chainmask, tx_chainmask;
1144 
1145 	rx_chainmask = ah->rxchainmask;
1146 	tx_chainmask = ah->txchainmask;
1147 
1148 	switch (rx_chainmask) {
1149 	case 0x5:
1150 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1151 			    AR_PHY_SWAP_ALT_CHAIN);
1152 	case 0x3:
1153 		if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
1154 			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1155 			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1156 			break;
1157 		}
1158 	case 0x1:
1159 	case 0x2:
1160 	case 0x7:
1161 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1162 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1163 		break;
1164 	default:
1165 		break;
1166 	}
1167 
1168 	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1169 	if (tx_chainmask == 0x5) {
1170 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1171 			    AR_PHY_SWAP_ALT_CHAIN);
1172 	}
1173 	if (AR_SREV_9100(ah))
1174 		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1175 			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1176 }
1177 
1178 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1179 					  enum nl80211_iftype opmode)
1180 {
1181 	ah->mask_reg = AR_IMR_TXERR |
1182 		AR_IMR_TXURN |
1183 		AR_IMR_RXERR |
1184 		AR_IMR_RXORN |
1185 		AR_IMR_BCNMISC;
1186 
1187 	if (ah->config.intr_mitigation)
1188 		ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1189 	else
1190 		ah->mask_reg |= AR_IMR_RXOK;
1191 
1192 	ah->mask_reg |= AR_IMR_TXOK;
1193 
1194 	if (opmode == NL80211_IFTYPE_AP)
1195 		ah->mask_reg |= AR_IMR_MIB;
1196 
1197 	REG_WRITE(ah, AR_IMR, ah->mask_reg);
1198 	REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1199 
1200 	if (!AR_SREV_9100(ah)) {
1201 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1202 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1203 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1204 	}
1205 }
1206 
1207 static bool ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1208 {
1209 	if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_ACK))) {
1210 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1211 			  "bad ack timeout %u\n", us);
1212 		ah->acktimeout = (u32) -1;
1213 		return false;
1214 	} else {
1215 		REG_RMW_FIELD(ah, AR_TIME_OUT,
1216 			      AR_TIME_OUT_ACK, ath9k_hw_mac_to_clks(ah, us));
1217 		ah->acktimeout = us;
1218 		return true;
1219 	}
1220 }
1221 
1222 static bool ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1223 {
1224 	if (us > ath9k_hw_mac_to_usec(ah, MS(0xffffffff, AR_TIME_OUT_CTS))) {
1225 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1226 			  "bad cts timeout %u\n", us);
1227 		ah->ctstimeout = (u32) -1;
1228 		return false;
1229 	} else {
1230 		REG_RMW_FIELD(ah, AR_TIME_OUT,
1231 			      AR_TIME_OUT_CTS, ath9k_hw_mac_to_clks(ah, us));
1232 		ah->ctstimeout = us;
1233 		return true;
1234 	}
1235 }
1236 
1237 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1238 {
1239 	if (tu > 0xFFFF) {
1240 		ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1241 			  "bad global tx timeout %u\n", tu);
1242 		ah->globaltxtimeout = (u32) -1;
1243 		return false;
1244 	} else {
1245 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1246 		ah->globaltxtimeout = tu;
1247 		return true;
1248 	}
1249 }
1250 
1251 static void ath9k_hw_init_user_settings(struct ath_hw *ah)
1252 {
1253 	ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1254 		  ah->misc_mode);
1255 
1256 	if (ah->misc_mode != 0)
1257 		REG_WRITE(ah, AR_PCU_MISC,
1258 			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1259 	if (ah->slottime != (u32) -1)
1260 		ath9k_hw_setslottime(ah, ah->slottime);
1261 	if (ah->acktimeout != (u32) -1)
1262 		ath9k_hw_set_ack_timeout(ah, ah->acktimeout);
1263 	if (ah->ctstimeout != (u32) -1)
1264 		ath9k_hw_set_cts_timeout(ah, ah->ctstimeout);
1265 	if (ah->globaltxtimeout != (u32) -1)
1266 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1267 }
1268 
1269 const char *ath9k_hw_probe(u16 vendorid, u16 devid)
1270 {
1271 	return vendorid == ATHEROS_VENDOR_ID ?
1272 		ath9k_hw_devname(devid) : NULL;
1273 }
1274 
1275 void ath9k_hw_detach(struct ath_hw *ah)
1276 {
1277 	struct ath_common *common = ath9k_hw_common(ah);
1278 
1279 	if (common->state <= ATH_HW_INITIALIZED)
1280 		goto free_hw;
1281 
1282 	if (!AR_SREV_9100(ah))
1283 		ath9k_hw_ani_disable(ah);
1284 
1285 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1286 
1287 free_hw:
1288 	if (!AR_SREV_9280_10_OR_LATER(ah))
1289 		ath9k_hw_rf_free_ext_banks(ah);
1290 	kfree(ah);
1291 	ah = NULL;
1292 }
1293 EXPORT_SYMBOL(ath9k_hw_detach);
1294 
1295 /*******/
1296 /* INI */
1297 /*******/
1298 
1299 static void ath9k_hw_override_ini(struct ath_hw *ah,
1300 				  struct ath9k_channel *chan)
1301 {
1302 	u32 val;
1303 
1304 	if (AR_SREV_9271(ah)) {
1305 		/*
1306 		 * Enable spectral scan to solution for issues with stuck
1307 		 * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1308 		 * AR9271 1.1
1309 		 */
1310 		if (AR_SREV_9271_10(ah)) {
1311 			val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) |
1312 			      AR_PHY_SPECTRAL_SCAN_ENABLE;
1313 			REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1314 		}
1315 		else if (AR_SREV_9271_11(ah))
1316 			/*
1317 			 * change AR_PHY_RF_CTL3 setting to fix MAC issue
1318 			 * present on AR9271 1.1
1319 			 */
1320 			REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1321 		return;
1322 	}
1323 
1324 	/*
1325 	 * Set the RX_ABORT and RX_DIS and clear if off only after
1326 	 * RXE is set for MAC. This prevents frames with corrupted
1327 	 * descriptor status.
1328 	 */
1329 	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1330 
1331 	if (AR_SREV_9280_10_OR_LATER(ah)) {
1332 		val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1333 			       (~AR_PCU_MISC_MODE2_HWWAR1);
1334 
1335 		if (AR_SREV_9287_10_OR_LATER(ah))
1336 			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1337 
1338 		REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1339 	}
1340 
1341 	if (!AR_SREV_5416_20_OR_LATER(ah) ||
1342 	    AR_SREV_9280_10_OR_LATER(ah))
1343 		return;
1344 	/*
1345 	 * Disable BB clock gating
1346 	 * Necessary to avoid issues on AR5416 2.0
1347 	 */
1348 	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1349 }
1350 
1351 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1352 			      struct ar5416_eeprom_def *pEepData,
1353 			      u32 reg, u32 value)
1354 {
1355 	struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1356 	struct ath_common *common = ath9k_hw_common(ah);
1357 
1358 	switch (ah->hw_version.devid) {
1359 	case AR9280_DEVID_PCI:
1360 		if (reg == 0x7894) {
1361 			ath_print(common, ATH_DBG_EEPROM,
1362 				"ini VAL: %x  EEPROM: %x\n", value,
1363 				(pBase->version & 0xff));
1364 
1365 			if ((pBase->version & 0xff) > 0x0a) {
1366 				ath_print(common, ATH_DBG_EEPROM,
1367 					  "PWDCLKIND: %d\n",
1368 					  pBase->pwdclkind);
1369 				value &= ~AR_AN_TOP2_PWDCLKIND;
1370 				value |= AR_AN_TOP2_PWDCLKIND &
1371 					(pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1372 			} else {
1373 				ath_print(common, ATH_DBG_EEPROM,
1374 					  "PWDCLKIND Earlier Rev\n");
1375 			}
1376 
1377 			ath_print(common, ATH_DBG_EEPROM,
1378 				  "final ini VAL: %x\n", value);
1379 		}
1380 		break;
1381 	}
1382 
1383 	return value;
1384 }
1385 
1386 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1387 			      struct ar5416_eeprom_def *pEepData,
1388 			      u32 reg, u32 value)
1389 {
1390 	if (ah->eep_map == EEP_MAP_4KBITS)
1391 		return value;
1392 	else
1393 		return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1394 }
1395 
1396 static void ath9k_olc_init(struct ath_hw *ah)
1397 {
1398 	u32 i;
1399 
1400 	if (OLC_FOR_AR9287_10_LATER) {
1401 		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1402 				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1403 		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1404 				AR9287_AN_TXPC0_TXPCMODE,
1405 				AR9287_AN_TXPC0_TXPCMODE_S,
1406 				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1407 		udelay(100);
1408 	} else {
1409 		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1410 			ah->originalGain[i] =
1411 				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1412 						AR_PHY_TX_GAIN);
1413 		ah->PDADCdelta = 0;
1414 	}
1415 }
1416 
1417 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1418 			      struct ath9k_channel *chan)
1419 {
1420 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1421 
1422 	if (IS_CHAN_B(chan))
1423 		ctl |= CTL_11B;
1424 	else if (IS_CHAN_G(chan))
1425 		ctl |= CTL_11G;
1426 	else
1427 		ctl |= CTL_11A;
1428 
1429 	return ctl;
1430 }
1431 
1432 static int ath9k_hw_process_ini(struct ath_hw *ah,
1433 				struct ath9k_channel *chan)
1434 {
1435 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1436 	int i, regWrites = 0;
1437 	struct ieee80211_channel *channel = chan->chan;
1438 	u32 modesIndex, freqIndex;
1439 
1440 	switch (chan->chanmode) {
1441 	case CHANNEL_A:
1442 	case CHANNEL_A_HT20:
1443 		modesIndex = 1;
1444 		freqIndex = 1;
1445 		break;
1446 	case CHANNEL_A_HT40PLUS:
1447 	case CHANNEL_A_HT40MINUS:
1448 		modesIndex = 2;
1449 		freqIndex = 1;
1450 		break;
1451 	case CHANNEL_G:
1452 	case CHANNEL_G_HT20:
1453 	case CHANNEL_B:
1454 		modesIndex = 4;
1455 		freqIndex = 2;
1456 		break;
1457 	case CHANNEL_G_HT40PLUS:
1458 	case CHANNEL_G_HT40MINUS:
1459 		modesIndex = 3;
1460 		freqIndex = 2;
1461 		break;
1462 
1463 	default:
1464 		return -EINVAL;
1465 	}
1466 
1467 	REG_WRITE(ah, AR_PHY(0), 0x00000007);
1468 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1469 	ah->eep_ops->set_addac(ah, chan);
1470 
1471 	if (AR_SREV_5416_22_OR_LATER(ah)) {
1472 		REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1473 	} else {
1474 		struct ar5416IniArray temp;
1475 		u32 addacSize =
1476 			sizeof(u32) * ah->iniAddac.ia_rows *
1477 			ah->iniAddac.ia_columns;
1478 
1479 		memcpy(ah->addac5416_21,
1480 		       ah->iniAddac.ia_array, addacSize);
1481 
1482 		(ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1483 
1484 		temp.ia_array = ah->addac5416_21;
1485 		temp.ia_columns = ah->iniAddac.ia_columns;
1486 		temp.ia_rows = ah->iniAddac.ia_rows;
1487 		REG_WRITE_ARRAY(&temp, 1, regWrites);
1488 	}
1489 
1490 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1491 
1492 	for (i = 0; i < ah->iniModes.ia_rows; i++) {
1493 		u32 reg = INI_RA(&ah->iniModes, i, 0);
1494 		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1495 
1496 		REG_WRITE(ah, reg, val);
1497 
1498 		if (reg >= 0x7800 && reg < 0x78a0
1499 		    && ah->config.analog_shiftreg) {
1500 			udelay(100);
1501 		}
1502 
1503 		DO_DELAY(regWrites);
1504 	}
1505 
1506 	if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1507 		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1508 
1509 	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1510 	    AR_SREV_9287_10_OR_LATER(ah))
1511 		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1512 
1513 	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1514 		u32 reg = INI_RA(&ah->iniCommon, i, 0);
1515 		u32 val = INI_RA(&ah->iniCommon, i, 1);
1516 
1517 		REG_WRITE(ah, reg, val);
1518 
1519 		if (reg >= 0x7800 && reg < 0x78a0
1520 		    && ah->config.analog_shiftreg) {
1521 			udelay(100);
1522 		}
1523 
1524 		DO_DELAY(regWrites);
1525 	}
1526 
1527 	ath9k_hw_write_regs(ah, freqIndex, regWrites);
1528 
1529 	if (AR_SREV_9271_10(ah))
1530 		REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1531 				modesIndex, regWrites);
1532 
1533 	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1534 		REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1535 				regWrites);
1536 	}
1537 
1538 	ath9k_hw_override_ini(ah, chan);
1539 	ath9k_hw_set_regs(ah, chan);
1540 	ath9k_hw_init_chain_masks(ah);
1541 
1542 	if (OLC_FOR_AR9280_20_LATER)
1543 		ath9k_olc_init(ah);
1544 
1545 	ah->eep_ops->set_txpower(ah, chan,
1546 				 ath9k_regd_get_ctl(regulatory, chan),
1547 				 channel->max_antenna_gain * 2,
1548 				 channel->max_power * 2,
1549 				 min((u32) MAX_RATE_POWER,
1550 				 (u32) regulatory->power_limit));
1551 
1552 	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1553 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1554 			  "ar5416SetRfRegs failed\n");
1555 		return -EIO;
1556 	}
1557 
1558 	return 0;
1559 }
1560 
1561 /****************************************/
1562 /* Reset and Channel Switching Routines */
1563 /****************************************/
1564 
1565 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1566 {
1567 	u32 rfMode = 0;
1568 
1569 	if (chan == NULL)
1570 		return;
1571 
1572 	rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1573 		? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1574 
1575 	if (!AR_SREV_9280_10_OR_LATER(ah))
1576 		rfMode |= (IS_CHAN_5GHZ(chan)) ?
1577 			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1578 
1579 	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1580 		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1581 
1582 	REG_WRITE(ah, AR_PHY_MODE, rfMode);
1583 }
1584 
1585 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1586 {
1587 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1588 }
1589 
1590 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1591 {
1592 	u32 regval;
1593 
1594 	/*
1595 	 * set AHB_MODE not to do cacheline prefetches
1596 	*/
1597 	regval = REG_READ(ah, AR_AHB_MODE);
1598 	REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1599 
1600 	/*
1601 	 * let mac dma reads be in 128 byte chunks
1602 	 */
1603 	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1604 	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1605 
1606 	/*
1607 	 * Restore TX Trigger Level to its pre-reset value.
1608 	 * The initial value depends on whether aggregation is enabled, and is
1609 	 * adjusted whenever underruns are detected.
1610 	 */
1611 	REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1612 
1613 	/*
1614 	 * let mac dma writes be in 128 byte chunks
1615 	 */
1616 	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1617 	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1618 
1619 	/*
1620 	 * Setup receive FIFO threshold to hold off TX activities
1621 	 */
1622 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1623 
1624 	/*
1625 	 * reduce the number of usable entries in PCU TXBUF to avoid
1626 	 * wrap around issues.
1627 	 */
1628 	if (AR_SREV_9285(ah)) {
1629 		/* For AR9285 the number of Fifos are reduced to half.
1630 		 * So set the usable tx buf size also to half to
1631 		 * avoid data/delimiter underruns
1632 		 */
1633 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1634 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1635 	} else if (!AR_SREV_9271(ah)) {
1636 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1637 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1638 	}
1639 }
1640 
1641 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1642 {
1643 	u32 val;
1644 
1645 	val = REG_READ(ah, AR_STA_ID1);
1646 	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1647 	switch (opmode) {
1648 	case NL80211_IFTYPE_AP:
1649 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1650 			  | AR_STA_ID1_KSRCH_MODE);
1651 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1652 		break;
1653 	case NL80211_IFTYPE_ADHOC:
1654 	case NL80211_IFTYPE_MESH_POINT:
1655 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1656 			  | AR_STA_ID1_KSRCH_MODE);
1657 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1658 		break;
1659 	case NL80211_IFTYPE_STATION:
1660 	case NL80211_IFTYPE_MONITOR:
1661 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1662 		break;
1663 	}
1664 }
1665 
1666 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1667 						 u32 coef_scaled,
1668 						 u32 *coef_mantissa,
1669 						 u32 *coef_exponent)
1670 {
1671 	u32 coef_exp, coef_man;
1672 
1673 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1674 		if ((coef_scaled >> coef_exp) & 0x1)
1675 			break;
1676 
1677 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1678 
1679 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1680 
1681 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1682 	*coef_exponent = coef_exp - 16;
1683 }
1684 
1685 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1686 				     struct ath9k_channel *chan)
1687 {
1688 	u32 coef_scaled, ds_coef_exp, ds_coef_man;
1689 	u32 clockMhzScaled = 0x64000000;
1690 	struct chan_centers centers;
1691 
1692 	if (IS_CHAN_HALF_RATE(chan))
1693 		clockMhzScaled = clockMhzScaled >> 1;
1694 	else if (IS_CHAN_QUARTER_RATE(chan))
1695 		clockMhzScaled = clockMhzScaled >> 2;
1696 
1697 	ath9k_hw_get_channel_centers(ah, chan, &centers);
1698 	coef_scaled = clockMhzScaled / centers.synth_center;
1699 
1700 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1701 				      &ds_coef_exp);
1702 
1703 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1704 		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1705 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1706 		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1707 
1708 	coef_scaled = (9 * coef_scaled) / 10;
1709 
1710 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1711 				      &ds_coef_exp);
1712 
1713 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1714 		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1715 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1716 		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1717 }
1718 
1719 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1720 {
1721 	u32 rst_flags;
1722 	u32 tmpReg;
1723 
1724 	if (AR_SREV_9100(ah)) {
1725 		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1726 		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1727 		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1728 		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1729 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1730 	}
1731 
1732 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1733 		  AR_RTC_FORCE_WAKE_ON_INT);
1734 
1735 	if (AR_SREV_9100(ah)) {
1736 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1737 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1738 	} else {
1739 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1740 		if (tmpReg &
1741 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1742 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1743 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1744 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1745 		} else {
1746 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1747 		}
1748 
1749 		rst_flags = AR_RTC_RC_MAC_WARM;
1750 		if (type == ATH9K_RESET_COLD)
1751 			rst_flags |= AR_RTC_RC_MAC_COLD;
1752 	}
1753 
1754 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1755 	udelay(50);
1756 
1757 	REG_WRITE(ah, AR_RTC_RC, 0);
1758 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1759 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1760 			  "RTC stuck in MAC reset\n");
1761 		return false;
1762 	}
1763 
1764 	if (!AR_SREV_9100(ah))
1765 		REG_WRITE(ah, AR_RC, 0);
1766 
1767 	if (AR_SREV_9100(ah))
1768 		udelay(50);
1769 
1770 	return true;
1771 }
1772 
1773 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1774 {
1775 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1776 		  AR_RTC_FORCE_WAKE_ON_INT);
1777 
1778 	if (!AR_SREV_9100(ah))
1779 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1780 
1781 	REG_WRITE(ah, AR_RTC_RESET, 0);
1782 	udelay(2);
1783 
1784 	if (!AR_SREV_9100(ah))
1785 		REG_WRITE(ah, AR_RC, 0);
1786 
1787 	REG_WRITE(ah, AR_RTC_RESET, 1);
1788 
1789 	if (!ath9k_hw_wait(ah,
1790 			   AR_RTC_STATUS,
1791 			   AR_RTC_STATUS_M,
1792 			   AR_RTC_STATUS_ON,
1793 			   AH_WAIT_TIMEOUT)) {
1794 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1795 			  "RTC not waking up\n");
1796 		return false;
1797 	}
1798 
1799 	ath9k_hw_read_revisions(ah);
1800 
1801 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1802 }
1803 
1804 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1805 {
1806 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1807 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1808 
1809 	switch (type) {
1810 	case ATH9K_RESET_POWER_ON:
1811 		return ath9k_hw_set_reset_power_on(ah);
1812 	case ATH9K_RESET_WARM:
1813 	case ATH9K_RESET_COLD:
1814 		return ath9k_hw_set_reset(ah, type);
1815 	default:
1816 		return false;
1817 	}
1818 }
1819 
1820 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1821 {
1822 	u32 phymode;
1823 	u32 enableDacFifo = 0;
1824 
1825 	if (AR_SREV_9285_10_OR_LATER(ah))
1826 		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1827 					 AR_PHY_FC_ENABLE_DAC_FIFO);
1828 
1829 	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1830 		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1831 
1832 	if (IS_CHAN_HT40(chan)) {
1833 		phymode |= AR_PHY_FC_DYN2040_EN;
1834 
1835 		if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1836 		    (chan->chanmode == CHANNEL_G_HT40PLUS))
1837 			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1838 
1839 	}
1840 	REG_WRITE(ah, AR_PHY_TURBO, phymode);
1841 
1842 	ath9k_hw_set11nmac2040(ah);
1843 
1844 	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1845 	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1846 }
1847 
1848 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1849 				struct ath9k_channel *chan)
1850 {
1851 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1852 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1853 			return false;
1854 	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1855 		return false;
1856 
1857 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1858 		return false;
1859 
1860 	ah->chip_fullsleep = false;
1861 	ath9k_hw_init_pll(ah, chan);
1862 	ath9k_hw_set_rfmode(ah, chan);
1863 
1864 	return true;
1865 }
1866 
1867 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1868 				    struct ath9k_channel *chan)
1869 {
1870 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1871 	struct ath_common *common = ath9k_hw_common(ah);
1872 	struct ieee80211_channel *channel = chan->chan;
1873 	u32 synthDelay, qnum;
1874 	int r;
1875 
1876 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1877 		if (ath9k_hw_numtxpending(ah, qnum)) {
1878 			ath_print(common, ATH_DBG_QUEUE,
1879 				  "Transmit frames pending on "
1880 				  "queue %d\n", qnum);
1881 			return false;
1882 		}
1883 	}
1884 
1885 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1886 	if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1887 			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1888 		ath_print(common, ATH_DBG_FATAL,
1889 			  "Could not kill baseband RX\n");
1890 		return false;
1891 	}
1892 
1893 	ath9k_hw_set_regs(ah, chan);
1894 
1895 	r = ah->ath9k_hw_rf_set_freq(ah, chan);
1896 	if (r) {
1897 		ath_print(common, ATH_DBG_FATAL,
1898 			  "Failed to set channel\n");
1899 		return false;
1900 	}
1901 
1902 	ah->eep_ops->set_txpower(ah, chan,
1903 			     ath9k_regd_get_ctl(regulatory, chan),
1904 			     channel->max_antenna_gain * 2,
1905 			     channel->max_power * 2,
1906 			     min((u32) MAX_RATE_POWER,
1907 			     (u32) regulatory->power_limit));
1908 
1909 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1910 	if (IS_CHAN_B(chan))
1911 		synthDelay = (4 * synthDelay) / 22;
1912 	else
1913 		synthDelay /= 10;
1914 
1915 	udelay(synthDelay + BASE_ACTIVATE_DELAY);
1916 
1917 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1918 
1919 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1920 		ath9k_hw_set_delta_slope(ah, chan);
1921 
1922 	ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1923 
1924 	if (!chan->oneTimeCalsDone)
1925 		chan->oneTimeCalsDone = true;
1926 
1927 	return true;
1928 }
1929 
1930 static void ath9k_enable_rfkill(struct ath_hw *ah)
1931 {
1932 	REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1933 		    AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1934 
1935 	REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1936 		    AR_GPIO_INPUT_MUX2_RFSILENT);
1937 
1938 	ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1939 	REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1940 }
1941 
1942 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1943 		    bool bChannelChange)
1944 {
1945 	struct ath_common *common = ath9k_hw_common(ah);
1946 	u32 saveLedState;
1947 	struct ath9k_channel *curchan = ah->curchan;
1948 	u32 saveDefAntenna;
1949 	u32 macStaId1;
1950 	u64 tsf = 0;
1951 	int i, rx_chainmask, r;
1952 
1953 	ah->txchainmask = common->tx_chainmask;
1954 	ah->rxchainmask = common->rx_chainmask;
1955 
1956 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1957 		return -EIO;
1958 
1959 	if (curchan && !ah->chip_fullsleep)
1960 		ath9k_hw_getnf(ah, curchan);
1961 
1962 	if (bChannelChange &&
1963 	    (ah->chip_fullsleep != true) &&
1964 	    (ah->curchan != NULL) &&
1965 	    (chan->channel != ah->curchan->channel) &&
1966 	    ((chan->channelFlags & CHANNEL_ALL) ==
1967 	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1968 	     !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1969 	     IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1970 
1971 		if (ath9k_hw_channel_change(ah, chan)) {
1972 			ath9k_hw_loadnf(ah, ah->curchan);
1973 			ath9k_hw_start_nfcal(ah);
1974 			return 0;
1975 		}
1976 	}
1977 
1978 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1979 	if (saveDefAntenna == 0)
1980 		saveDefAntenna = 1;
1981 
1982 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1983 
1984 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1985 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1986 		tsf = ath9k_hw_gettsf64(ah);
1987 
1988 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1989 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1990 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1991 
1992 	ath9k_hw_mark_phy_inactive(ah);
1993 
1994 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1995 		REG_WRITE(ah,
1996 			  AR9271_RESET_POWER_DOWN_CONTROL,
1997 			  AR9271_RADIO_RF_RST);
1998 		udelay(50);
1999 	}
2000 
2001 	if (!ath9k_hw_chip_reset(ah, chan)) {
2002 		ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
2003 		return -EINVAL;
2004 	}
2005 
2006 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
2007 		ah->htc_reset_init = false;
2008 		REG_WRITE(ah,
2009 			  AR9271_RESET_POWER_DOWN_CONTROL,
2010 			  AR9271_GATE_MAC_CTL);
2011 		udelay(50);
2012 	}
2013 
2014 	/* Restore TSF */
2015 	if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
2016 		ath9k_hw_settsf64(ah, tsf);
2017 
2018 	if (AR_SREV_9280_10_OR_LATER(ah))
2019 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
2020 
2021 	if (AR_SREV_9287_12_OR_LATER(ah)) {
2022 		/* Enable ASYNC FIFO */
2023 		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2024 				AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2025 		REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2026 		REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2027 				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2028 		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2029 				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2030 	}
2031 	r = ath9k_hw_process_ini(ah, chan);
2032 	if (r)
2033 		return r;
2034 
2035 	/* Setup MFP options for CCMP */
2036 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2037 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2038 		 * frames when constructing CCMP AAD. */
2039 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2040 			      0xc7ff);
2041 		ah->sw_mgmt_crypto = false;
2042 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
2043 		/* Disable hardware crypto for management frames */
2044 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2045 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2046 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2047 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2048 		ah->sw_mgmt_crypto = true;
2049 	} else
2050 		ah->sw_mgmt_crypto = true;
2051 
2052 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2053 		ath9k_hw_set_delta_slope(ah, chan);
2054 
2055 	ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2056 	ah->eep_ops->set_board_values(ah, chan);
2057 
2058 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2059 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2060 		  | macStaId1
2061 		  | AR_STA_ID1_RTS_USE_DEF
2062 		  | (ah->config.
2063 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2064 		  | ah->sta_id1_defaults);
2065 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2066 
2067 	ath_hw_setbssidmask(common);
2068 
2069 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2070 
2071 	ath9k_hw_write_associd(ah);
2072 
2073 	REG_WRITE(ah, AR_ISR, ~0);
2074 
2075 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2076 
2077 	r = ah->ath9k_hw_rf_set_freq(ah, chan);
2078 	if (r)
2079 		return r;
2080 
2081 	for (i = 0; i < AR_NUM_DCU; i++)
2082 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2083 
2084 	ah->intr_txqs = 0;
2085 	for (i = 0; i < ah->caps.total_queues; i++)
2086 		ath9k_hw_resettxqueue(ah, i);
2087 
2088 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2089 	ath9k_hw_init_qos(ah);
2090 
2091 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2092 		ath9k_enable_rfkill(ah);
2093 
2094 	ath9k_hw_init_user_settings(ah);
2095 
2096 	if (AR_SREV_9287_12_OR_LATER(ah)) {
2097 		REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2098 			  AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2099 		REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2100 			  AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2101 		REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2102 			  AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2103 
2104 		REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2105 		REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2106 
2107 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2108 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2109 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2110 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2111 	}
2112 	if (AR_SREV_9287_12_OR_LATER(ah)) {
2113 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2114 				AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2115 	}
2116 
2117 	REG_WRITE(ah, AR_STA_ID1,
2118 		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2119 
2120 	ath9k_hw_set_dma(ah);
2121 
2122 	REG_WRITE(ah, AR_OBS, 8);
2123 
2124 	if (ah->config.intr_mitigation) {
2125 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2126 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2127 	}
2128 
2129 	ath9k_hw_init_bb(ah, chan);
2130 
2131 	if (!ath9k_hw_init_cal(ah, chan))
2132 		return -EIO;
2133 
2134 	rx_chainmask = ah->rxchainmask;
2135 	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2136 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2137 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2138 	}
2139 
2140 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2141 
2142 	/*
2143 	 * For big endian systems turn on swapping for descriptors
2144 	 */
2145 	if (AR_SREV_9100(ah)) {
2146 		u32 mask;
2147 		mask = REG_READ(ah, AR_CFG);
2148 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2149 			ath_print(common, ATH_DBG_RESET,
2150 				"CFG Byte Swap Set 0x%x\n", mask);
2151 		} else {
2152 			mask =
2153 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2154 			REG_WRITE(ah, AR_CFG, mask);
2155 			ath_print(common, ATH_DBG_RESET,
2156 				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2157 		}
2158 	} else {
2159 		/* Configure AR9271 target WLAN */
2160                 if (AR_SREV_9271(ah))
2161 			REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2162 #ifdef __BIG_ENDIAN
2163                 else
2164 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2165 #endif
2166 	}
2167 
2168 	if (ah->btcoex_hw.enabled)
2169 		ath9k_hw_btcoex_enable(ah);
2170 
2171 	return 0;
2172 }
2173 EXPORT_SYMBOL(ath9k_hw_reset);
2174 
2175 /************************/
2176 /* Key Cache Management */
2177 /************************/
2178 
2179 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2180 {
2181 	u32 keyType;
2182 
2183 	if (entry >= ah->caps.keycache_size) {
2184 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2185 			  "keychache entry %u out of range\n", entry);
2186 		return false;
2187 	}
2188 
2189 	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2190 
2191 	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2192 	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2193 	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2194 	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2195 	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2196 	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2197 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2198 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2199 
2200 	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2201 		u16 micentry = entry + 64;
2202 
2203 		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2204 		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2205 		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2206 		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2207 
2208 	}
2209 
2210 	return true;
2211 }
2212 EXPORT_SYMBOL(ath9k_hw_keyreset);
2213 
2214 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2215 {
2216 	u32 macHi, macLo;
2217 
2218 	if (entry >= ah->caps.keycache_size) {
2219 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2220 			  "keychache entry %u out of range\n", entry);
2221 		return false;
2222 	}
2223 
2224 	if (mac != NULL) {
2225 		macHi = (mac[5] << 8) | mac[4];
2226 		macLo = (mac[3] << 24) |
2227 			(mac[2] << 16) |
2228 			(mac[1] << 8) |
2229 			mac[0];
2230 		macLo >>= 1;
2231 		macLo |= (macHi & 1) << 31;
2232 		macHi >>= 1;
2233 	} else {
2234 		macLo = macHi = 0;
2235 	}
2236 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2237 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2238 
2239 	return true;
2240 }
2241 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2242 
2243 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2244 				 const struct ath9k_keyval *k,
2245 				 const u8 *mac)
2246 {
2247 	const struct ath9k_hw_capabilities *pCap = &ah->caps;
2248 	struct ath_common *common = ath9k_hw_common(ah);
2249 	u32 key0, key1, key2, key3, key4;
2250 	u32 keyType;
2251 
2252 	if (entry >= pCap->keycache_size) {
2253 		ath_print(common, ATH_DBG_FATAL,
2254 			  "keycache entry %u out of range\n", entry);
2255 		return false;
2256 	}
2257 
2258 	switch (k->kv_type) {
2259 	case ATH9K_CIPHER_AES_OCB:
2260 		keyType = AR_KEYTABLE_TYPE_AES;
2261 		break;
2262 	case ATH9K_CIPHER_AES_CCM:
2263 		if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2264 			ath_print(common, ATH_DBG_ANY,
2265 				  "AES-CCM not supported by mac rev 0x%x\n",
2266 				  ah->hw_version.macRev);
2267 			return false;
2268 		}
2269 		keyType = AR_KEYTABLE_TYPE_CCM;
2270 		break;
2271 	case ATH9K_CIPHER_TKIP:
2272 		keyType = AR_KEYTABLE_TYPE_TKIP;
2273 		if (ATH9K_IS_MIC_ENABLED(ah)
2274 		    && entry + 64 >= pCap->keycache_size) {
2275 			ath_print(common, ATH_DBG_ANY,
2276 				  "entry %u inappropriate for TKIP\n", entry);
2277 			return false;
2278 		}
2279 		break;
2280 	case ATH9K_CIPHER_WEP:
2281 		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2282 			ath_print(common, ATH_DBG_ANY,
2283 				  "WEP key length %u too small\n", k->kv_len);
2284 			return false;
2285 		}
2286 		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2287 			keyType = AR_KEYTABLE_TYPE_40;
2288 		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2289 			keyType = AR_KEYTABLE_TYPE_104;
2290 		else
2291 			keyType = AR_KEYTABLE_TYPE_128;
2292 		break;
2293 	case ATH9K_CIPHER_CLR:
2294 		keyType = AR_KEYTABLE_TYPE_CLR;
2295 		break;
2296 	default:
2297 		ath_print(common, ATH_DBG_FATAL,
2298 			  "cipher %u not supported\n", k->kv_type);
2299 		return false;
2300 	}
2301 
2302 	key0 = get_unaligned_le32(k->kv_val + 0);
2303 	key1 = get_unaligned_le16(k->kv_val + 4);
2304 	key2 = get_unaligned_le32(k->kv_val + 6);
2305 	key3 = get_unaligned_le16(k->kv_val + 10);
2306 	key4 = get_unaligned_le32(k->kv_val + 12);
2307 	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2308 		key4 &= 0xff;
2309 
2310 	/*
2311 	 * Note: Key cache registers access special memory area that requires
2312 	 * two 32-bit writes to actually update the values in the internal
2313 	 * memory. Consequently, the exact order and pairs used here must be
2314 	 * maintained.
2315 	 */
2316 
2317 	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2318 		u16 micentry = entry + 64;
2319 
2320 		/*
2321 		 * Write inverted key[47:0] first to avoid Michael MIC errors
2322 		 * on frames that could be sent or received at the same time.
2323 		 * The correct key will be written in the end once everything
2324 		 * else is ready.
2325 		 */
2326 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2327 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2328 
2329 		/* Write key[95:48] */
2330 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2331 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2332 
2333 		/* Write key[127:96] and key type */
2334 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2335 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2336 
2337 		/* Write MAC address for the entry */
2338 		(void) ath9k_hw_keysetmac(ah, entry, mac);
2339 
2340 		if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2341 			/*
2342 			 * TKIP uses two key cache entries:
2343 			 * Michael MIC TX/RX keys in the same key cache entry
2344 			 * (idx = main index + 64):
2345 			 * key0 [31:0] = RX key [31:0]
2346 			 * key1 [15:0] = TX key [31:16]
2347 			 * key1 [31:16] = reserved
2348 			 * key2 [31:0] = RX key [63:32]
2349 			 * key3 [15:0] = TX key [15:0]
2350 			 * key3 [31:16] = reserved
2351 			 * key4 [31:0] = TX key [63:32]
2352 			 */
2353 			u32 mic0, mic1, mic2, mic3, mic4;
2354 
2355 			mic0 = get_unaligned_le32(k->kv_mic + 0);
2356 			mic2 = get_unaligned_le32(k->kv_mic + 4);
2357 			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2358 			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2359 			mic4 = get_unaligned_le32(k->kv_txmic + 4);
2360 
2361 			/* Write RX[31:0] and TX[31:16] */
2362 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2363 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2364 
2365 			/* Write RX[63:32] and TX[15:0] */
2366 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2367 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2368 
2369 			/* Write TX[63:32] and keyType(reserved) */
2370 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2371 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2372 				  AR_KEYTABLE_TYPE_CLR);
2373 
2374 		} else {
2375 			/*
2376 			 * TKIP uses four key cache entries (two for group
2377 			 * keys):
2378 			 * Michael MIC TX/RX keys are in different key cache
2379 			 * entries (idx = main index + 64 for TX and
2380 			 * main index + 32 + 96 for RX):
2381 			 * key0 [31:0] = TX/RX MIC key [31:0]
2382 			 * key1 [31:0] = reserved
2383 			 * key2 [31:0] = TX/RX MIC key [63:32]
2384 			 * key3 [31:0] = reserved
2385 			 * key4 [31:0] = reserved
2386 			 *
2387 			 * Upper layer code will call this function separately
2388 			 * for TX and RX keys when these registers offsets are
2389 			 * used.
2390 			 */
2391 			u32 mic0, mic2;
2392 
2393 			mic0 = get_unaligned_le32(k->kv_mic + 0);
2394 			mic2 = get_unaligned_le32(k->kv_mic + 4);
2395 
2396 			/* Write MIC key[31:0] */
2397 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2398 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2399 
2400 			/* Write MIC key[63:32] */
2401 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2402 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2403 
2404 			/* Write TX[63:32] and keyType(reserved) */
2405 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2406 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2407 				  AR_KEYTABLE_TYPE_CLR);
2408 		}
2409 
2410 		/* MAC address registers are reserved for the MIC entry */
2411 		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2412 		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2413 
2414 		/*
2415 		 * Write the correct (un-inverted) key[47:0] last to enable
2416 		 * TKIP now that all other registers are set with correct
2417 		 * values.
2418 		 */
2419 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2420 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2421 	} else {
2422 		/* Write key[47:0] */
2423 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2424 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2425 
2426 		/* Write key[95:48] */
2427 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2428 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2429 
2430 		/* Write key[127:96] and key type */
2431 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2432 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2433 
2434 		/* Write MAC address for the entry */
2435 		(void) ath9k_hw_keysetmac(ah, entry, mac);
2436 	}
2437 
2438 	return true;
2439 }
2440 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2441 
2442 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2443 {
2444 	if (entry < ah->caps.keycache_size) {
2445 		u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2446 		if (val & AR_KEYTABLE_VALID)
2447 			return true;
2448 	}
2449 	return false;
2450 }
2451 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2452 
2453 /******************************/
2454 /* Power Management (Chipset) */
2455 /******************************/
2456 
2457 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2458 {
2459 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2460 	if (setChip) {
2461 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2462 			    AR_RTC_FORCE_WAKE_EN);
2463 		if (!AR_SREV_9100(ah))
2464 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2465 
2466 		if(!AR_SREV_5416(ah))
2467 			REG_CLR_BIT(ah, (AR_RTC_RESET),
2468 				    AR_RTC_RESET_EN);
2469 	}
2470 }
2471 
2472 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2473 {
2474 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2475 	if (setChip) {
2476 		struct ath9k_hw_capabilities *pCap = &ah->caps;
2477 
2478 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2479 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2480 				  AR_RTC_FORCE_WAKE_ON_INT);
2481 		} else {
2482 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2483 				    AR_RTC_FORCE_WAKE_EN);
2484 		}
2485 	}
2486 }
2487 
2488 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2489 {
2490 	u32 val;
2491 	int i;
2492 
2493 	if (setChip) {
2494 		if ((REG_READ(ah, AR_RTC_STATUS) &
2495 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2496 			if (ath9k_hw_set_reset_reg(ah,
2497 					   ATH9K_RESET_POWER_ON) != true) {
2498 				return false;
2499 			}
2500 			ath9k_hw_init_pll(ah, NULL);
2501 		}
2502 		if (AR_SREV_9100(ah))
2503 			REG_SET_BIT(ah, AR_RTC_RESET,
2504 				    AR_RTC_RESET_EN);
2505 
2506 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2507 			    AR_RTC_FORCE_WAKE_EN);
2508 		udelay(50);
2509 
2510 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2511 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2512 			if (val == AR_RTC_STATUS_ON)
2513 				break;
2514 			udelay(50);
2515 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2516 				    AR_RTC_FORCE_WAKE_EN);
2517 		}
2518 		if (i == 0) {
2519 			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2520 				  "Failed to wakeup in %uus\n",
2521 				  POWER_UP_TIME / 20);
2522 			return false;
2523 		}
2524 	}
2525 
2526 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2527 
2528 	return true;
2529 }
2530 
2531 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2532 {
2533 	struct ath_common *common = ath9k_hw_common(ah);
2534 	int status = true, setChip = true;
2535 	static const char *modes[] = {
2536 		"AWAKE",
2537 		"FULL-SLEEP",
2538 		"NETWORK SLEEP",
2539 		"UNDEFINED"
2540 	};
2541 
2542 	if (ah->power_mode == mode)
2543 		return status;
2544 
2545 	ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2546 		  modes[ah->power_mode], modes[mode]);
2547 
2548 	switch (mode) {
2549 	case ATH9K_PM_AWAKE:
2550 		status = ath9k_hw_set_power_awake(ah, setChip);
2551 		break;
2552 	case ATH9K_PM_FULL_SLEEP:
2553 		ath9k_set_power_sleep(ah, setChip);
2554 		ah->chip_fullsleep = true;
2555 		break;
2556 	case ATH9K_PM_NETWORK_SLEEP:
2557 		ath9k_set_power_network_sleep(ah, setChip);
2558 		break;
2559 	default:
2560 		ath_print(common, ATH_DBG_FATAL,
2561 			  "Unknown power mode %u\n", mode);
2562 		return false;
2563 	}
2564 	ah->power_mode = mode;
2565 
2566 	return status;
2567 }
2568 EXPORT_SYMBOL(ath9k_hw_setpower);
2569 
2570 /*
2571  * Helper for ASPM support.
2572  *
2573  * Disable PLL when in L0s as well as receiver clock when in L1.
2574  * This power saving option must be enabled through the SerDes.
2575  *
2576  * Programming the SerDes must go through the same 288 bit serial shift
2577  * register as the other analog registers.  Hence the 9 writes.
2578  */
2579 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2580 {
2581 	u8 i;
2582 	u32 val;
2583 
2584 	if (ah->is_pciexpress != true)
2585 		return;
2586 
2587 	/* Do not touch SerDes registers */
2588 	if (ah->config.pcie_powersave_enable == 2)
2589 		return;
2590 
2591 	/* Nothing to do on restore for 11N */
2592 	if (!restore) {
2593 		if (AR_SREV_9280_20_OR_LATER(ah)) {
2594 			/*
2595 			 * AR9280 2.0 or later chips use SerDes values from the
2596 			 * initvals.h initialized depending on chipset during
2597 			 * ath9k_hw_init()
2598 			 */
2599 			for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2600 				REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2601 					  INI_RA(&ah->iniPcieSerdes, i, 1));
2602 			}
2603 		} else if (AR_SREV_9280(ah) &&
2604 			   (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2605 			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2606 			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2607 
2608 			/* RX shut off when elecidle is asserted */
2609 			REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2610 			REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2611 			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2612 
2613 			/* Shut off CLKREQ active in L1 */
2614 			if (ah->config.pcie_clock_req)
2615 				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2616 			else
2617 				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2618 
2619 			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2620 			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2621 			REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2622 
2623 			/* Load the new settings */
2624 			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2625 
2626 		} else {
2627 			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2628 			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2629 
2630 			/* RX shut off when elecidle is asserted */
2631 			REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2632 			REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2633 			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2634 
2635 			/*
2636 			 * Ignore ah->ah_config.pcie_clock_req setting for
2637 			 * pre-AR9280 11n
2638 			 */
2639 			REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2640 
2641 			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2642 			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2643 			REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2644 
2645 			/* Load the new settings */
2646 			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2647 		}
2648 
2649 		udelay(1000);
2650 
2651 		/* set bit 19 to allow forcing of pcie core into L1 state */
2652 		REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2653 
2654 		/* Several PCIe massages to ensure proper behaviour */
2655 		if (ah->config.pcie_waen) {
2656 			val = ah->config.pcie_waen;
2657 			if (!power_off)
2658 				val &= (~AR_WA_D3_L1_DISABLE);
2659 		} else {
2660 			if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2661 			    AR_SREV_9287(ah)) {
2662 				val = AR9285_WA_DEFAULT;
2663 				if (!power_off)
2664 					val &= (~AR_WA_D3_L1_DISABLE);
2665 			} else if (AR_SREV_9280(ah)) {
2666 				/*
2667 				 * On AR9280 chips bit 22 of 0x4004 needs to be
2668 				 * set otherwise card may disappear.
2669 				 */
2670 				val = AR9280_WA_DEFAULT;
2671 				if (!power_off)
2672 					val &= (~AR_WA_D3_L1_DISABLE);
2673 			} else
2674 				val = AR_WA_DEFAULT;
2675 		}
2676 
2677 		REG_WRITE(ah, AR_WA, val);
2678 	}
2679 
2680 	if (power_off) {
2681 		/*
2682 		 * Set PCIe workaround bits
2683 		 * bit 14 in WA register (disable L1) should only
2684 		 * be set when device enters D3 and be cleared
2685 		 * when device comes back to D0.
2686 		 */
2687 		if (ah->config.pcie_waen) {
2688 			if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2689 				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2690 		} else {
2691 			if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2692 			      AR_SREV_9287(ah)) &&
2693 			     (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2694 			    (AR_SREV_9280(ah) &&
2695 			     (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2696 				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2697 			}
2698 		}
2699 	}
2700 }
2701 EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2702 
2703 /**********************/
2704 /* Interrupt Handling */
2705 /**********************/
2706 
2707 bool ath9k_hw_intrpend(struct ath_hw *ah)
2708 {
2709 	u32 host_isr;
2710 
2711 	if (AR_SREV_9100(ah))
2712 		return true;
2713 
2714 	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2715 	if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2716 		return true;
2717 
2718 	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2719 	if ((host_isr & AR_INTR_SYNC_DEFAULT)
2720 	    && (host_isr != AR_INTR_SPURIOUS))
2721 		return true;
2722 
2723 	return false;
2724 }
2725 EXPORT_SYMBOL(ath9k_hw_intrpend);
2726 
2727 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2728 {
2729 	u32 isr = 0;
2730 	u32 mask2 = 0;
2731 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2732 	u32 sync_cause = 0;
2733 	bool fatal_int = false;
2734 	struct ath_common *common = ath9k_hw_common(ah);
2735 
2736 	if (!AR_SREV_9100(ah)) {
2737 		if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2738 			if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2739 			    == AR_RTC_STATUS_ON) {
2740 				isr = REG_READ(ah, AR_ISR);
2741 			}
2742 		}
2743 
2744 		sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2745 			AR_INTR_SYNC_DEFAULT;
2746 
2747 		*masked = 0;
2748 
2749 		if (!isr && !sync_cause)
2750 			return false;
2751 	} else {
2752 		*masked = 0;
2753 		isr = REG_READ(ah, AR_ISR);
2754 	}
2755 
2756 	if (isr) {
2757 		if (isr & AR_ISR_BCNMISC) {
2758 			u32 isr2;
2759 			isr2 = REG_READ(ah, AR_ISR_S2);
2760 			if (isr2 & AR_ISR_S2_TIM)
2761 				mask2 |= ATH9K_INT_TIM;
2762 			if (isr2 & AR_ISR_S2_DTIM)
2763 				mask2 |= ATH9K_INT_DTIM;
2764 			if (isr2 & AR_ISR_S2_DTIMSYNC)
2765 				mask2 |= ATH9K_INT_DTIMSYNC;
2766 			if (isr2 & (AR_ISR_S2_CABEND))
2767 				mask2 |= ATH9K_INT_CABEND;
2768 			if (isr2 & AR_ISR_S2_GTT)
2769 				mask2 |= ATH9K_INT_GTT;
2770 			if (isr2 & AR_ISR_S2_CST)
2771 				mask2 |= ATH9K_INT_CST;
2772 			if (isr2 & AR_ISR_S2_TSFOOR)
2773 				mask2 |= ATH9K_INT_TSFOOR;
2774 		}
2775 
2776 		isr = REG_READ(ah, AR_ISR_RAC);
2777 		if (isr == 0xffffffff) {
2778 			*masked = 0;
2779 			return false;
2780 		}
2781 
2782 		*masked = isr & ATH9K_INT_COMMON;
2783 
2784 		if (ah->config.intr_mitigation) {
2785 			if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2786 				*masked |= ATH9K_INT_RX;
2787 		}
2788 
2789 		if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2790 			*masked |= ATH9K_INT_RX;
2791 		if (isr &
2792 		    (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2793 		     AR_ISR_TXEOL)) {
2794 			u32 s0_s, s1_s;
2795 
2796 			*masked |= ATH9K_INT_TX;
2797 
2798 			s0_s = REG_READ(ah, AR_ISR_S0_S);
2799 			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2800 			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2801 
2802 			s1_s = REG_READ(ah, AR_ISR_S1_S);
2803 			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2804 			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2805 		}
2806 
2807 		if (isr & AR_ISR_RXORN) {
2808 			ath_print(common, ATH_DBG_INTERRUPT,
2809 				  "receive FIFO overrun interrupt\n");
2810 		}
2811 
2812 		if (!AR_SREV_9100(ah)) {
2813 			if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2814 				u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2815 				if (isr5 & AR_ISR_S5_TIM_TIMER)
2816 					*masked |= ATH9K_INT_TIM_TIMER;
2817 			}
2818 		}
2819 
2820 		*masked |= mask2;
2821 	}
2822 
2823 	if (AR_SREV_9100(ah))
2824 		return true;
2825 
2826 	if (isr & AR_ISR_GENTMR) {
2827 		u32 s5_s;
2828 
2829 		s5_s = REG_READ(ah, AR_ISR_S5_S);
2830 		if (isr & AR_ISR_GENTMR) {
2831 			ah->intr_gen_timer_trigger =
2832 				MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2833 
2834 			ah->intr_gen_timer_thresh =
2835 				MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2836 
2837 			if (ah->intr_gen_timer_trigger)
2838 				*masked |= ATH9K_INT_GENTIMER;
2839 
2840 		}
2841 	}
2842 
2843 	if (sync_cause) {
2844 		fatal_int =
2845 			(sync_cause &
2846 			 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2847 			? true : false;
2848 
2849 		if (fatal_int) {
2850 			if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2851 				ath_print(common, ATH_DBG_ANY,
2852 					  "received PCI FATAL interrupt\n");
2853 			}
2854 			if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2855 				ath_print(common, ATH_DBG_ANY,
2856 					  "received PCI PERR interrupt\n");
2857 			}
2858 			*masked |= ATH9K_INT_FATAL;
2859 		}
2860 		if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2861 			ath_print(common, ATH_DBG_INTERRUPT,
2862 				  "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2863 			REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2864 			REG_WRITE(ah, AR_RC, 0);
2865 			*masked |= ATH9K_INT_FATAL;
2866 		}
2867 		if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2868 			ath_print(common, ATH_DBG_INTERRUPT,
2869 				  "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2870 		}
2871 
2872 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2873 		(void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2874 	}
2875 
2876 	return true;
2877 }
2878 EXPORT_SYMBOL(ath9k_hw_getisr);
2879 
2880 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2881 {
2882 	u32 omask = ah->mask_reg;
2883 	u32 mask, mask2;
2884 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2885 	struct ath_common *common = ath9k_hw_common(ah);
2886 
2887 	ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2888 
2889 	if (omask & ATH9K_INT_GLOBAL) {
2890 		ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2891 		REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2892 		(void) REG_READ(ah, AR_IER);
2893 		if (!AR_SREV_9100(ah)) {
2894 			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2895 			(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2896 
2897 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2898 			(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2899 		}
2900 	}
2901 
2902 	mask = ints & ATH9K_INT_COMMON;
2903 	mask2 = 0;
2904 
2905 	if (ints & ATH9K_INT_TX) {
2906 		if (ah->txok_interrupt_mask)
2907 			mask |= AR_IMR_TXOK;
2908 		if (ah->txdesc_interrupt_mask)
2909 			mask |= AR_IMR_TXDESC;
2910 		if (ah->txerr_interrupt_mask)
2911 			mask |= AR_IMR_TXERR;
2912 		if (ah->txeol_interrupt_mask)
2913 			mask |= AR_IMR_TXEOL;
2914 	}
2915 	if (ints & ATH9K_INT_RX) {
2916 		mask |= AR_IMR_RXERR;
2917 		if (ah->config.intr_mitigation)
2918 			mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2919 		else
2920 			mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2921 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2922 			mask |= AR_IMR_GENTMR;
2923 	}
2924 
2925 	if (ints & (ATH9K_INT_BMISC)) {
2926 		mask |= AR_IMR_BCNMISC;
2927 		if (ints & ATH9K_INT_TIM)
2928 			mask2 |= AR_IMR_S2_TIM;
2929 		if (ints & ATH9K_INT_DTIM)
2930 			mask2 |= AR_IMR_S2_DTIM;
2931 		if (ints & ATH9K_INT_DTIMSYNC)
2932 			mask2 |= AR_IMR_S2_DTIMSYNC;
2933 		if (ints & ATH9K_INT_CABEND)
2934 			mask2 |= AR_IMR_S2_CABEND;
2935 		if (ints & ATH9K_INT_TSFOOR)
2936 			mask2 |= AR_IMR_S2_TSFOOR;
2937 	}
2938 
2939 	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2940 		mask |= AR_IMR_BCNMISC;
2941 		if (ints & ATH9K_INT_GTT)
2942 			mask2 |= AR_IMR_S2_GTT;
2943 		if (ints & ATH9K_INT_CST)
2944 			mask2 |= AR_IMR_S2_CST;
2945 	}
2946 
2947 	ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2948 	REG_WRITE(ah, AR_IMR, mask);
2949 	mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
2950 					   AR_IMR_S2_DTIM |
2951 					   AR_IMR_S2_DTIMSYNC |
2952 					   AR_IMR_S2_CABEND |
2953 					   AR_IMR_S2_CABTO |
2954 					   AR_IMR_S2_TSFOOR |
2955 					   AR_IMR_S2_GTT | AR_IMR_S2_CST);
2956 	REG_WRITE(ah, AR_IMR_S2, mask | mask2);
2957 	ah->mask_reg = ints;
2958 
2959 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2960 		if (ints & ATH9K_INT_TIM_TIMER)
2961 			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2962 		else
2963 			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2964 	}
2965 
2966 	if (ints & ATH9K_INT_GLOBAL) {
2967 		ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2968 		REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2969 		if (!AR_SREV_9100(ah)) {
2970 			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2971 				  AR_INTR_MAC_IRQ);
2972 			REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2973 
2974 
2975 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2976 				  AR_INTR_SYNC_DEFAULT);
2977 			REG_WRITE(ah, AR_INTR_SYNC_MASK,
2978 				  AR_INTR_SYNC_DEFAULT);
2979 		}
2980 		ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2981 			  REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2982 	}
2983 
2984 	return omask;
2985 }
2986 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2987 
2988 /*******************/
2989 /* Beacon Handling */
2990 /*******************/
2991 
2992 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2993 {
2994 	int flags = 0;
2995 
2996 	ah->beacon_interval = beacon_period;
2997 
2998 	switch (ah->opmode) {
2999 	case NL80211_IFTYPE_STATION:
3000 	case NL80211_IFTYPE_MONITOR:
3001 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3002 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
3003 		REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
3004 		flags |= AR_TBTT_TIMER_EN;
3005 		break;
3006 	case NL80211_IFTYPE_ADHOC:
3007 	case NL80211_IFTYPE_MESH_POINT:
3008 		REG_SET_BIT(ah, AR_TXCFG,
3009 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
3010 		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
3011 			  TU_TO_USEC(next_beacon +
3012 				     (ah->atim_window ? ah->
3013 				      atim_window : 1)));
3014 		flags |= AR_NDP_TIMER_EN;
3015 	case NL80211_IFTYPE_AP:
3016 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
3017 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
3018 			  TU_TO_USEC(next_beacon -
3019 				     ah->config.
3020 				     dma_beacon_response_time));
3021 		REG_WRITE(ah, AR_NEXT_SWBA,
3022 			  TU_TO_USEC(next_beacon -
3023 				     ah->config.
3024 				     sw_beacon_response_time));
3025 		flags |=
3026 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3027 		break;
3028 	default:
3029 		ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3030 			  "%s: unsupported opmode: %d\n",
3031 			  __func__, ah->opmode);
3032 		return;
3033 		break;
3034 	}
3035 
3036 	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3037 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3038 	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3039 	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3040 
3041 	beacon_period &= ~ATH9K_BEACON_ENA;
3042 	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3043 		ath9k_hw_reset_tsf(ah);
3044 	}
3045 
3046 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3047 }
3048 EXPORT_SYMBOL(ath9k_hw_beaconinit);
3049 
3050 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3051 				    const struct ath9k_beacon_state *bs)
3052 {
3053 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3054 	struct ath9k_hw_capabilities *pCap = &ah->caps;
3055 	struct ath_common *common = ath9k_hw_common(ah);
3056 
3057 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3058 
3059 	REG_WRITE(ah, AR_BEACON_PERIOD,
3060 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3061 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3062 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3063 
3064 	REG_RMW_FIELD(ah, AR_RSSI_THR,
3065 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3066 
3067 	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3068 
3069 	if (bs->bs_sleepduration > beaconintval)
3070 		beaconintval = bs->bs_sleepduration;
3071 
3072 	dtimperiod = bs->bs_dtimperiod;
3073 	if (bs->bs_sleepduration > dtimperiod)
3074 		dtimperiod = bs->bs_sleepduration;
3075 
3076 	if (beaconintval == dtimperiod)
3077 		nextTbtt = bs->bs_nextdtim;
3078 	else
3079 		nextTbtt = bs->bs_nexttbtt;
3080 
3081 	ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3082 	ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3083 	ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3084 	ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3085 
3086 	REG_WRITE(ah, AR_NEXT_DTIM,
3087 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3088 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3089 
3090 	REG_WRITE(ah, AR_SLEEP1,
3091 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3092 		  | AR_SLEEP1_ASSUME_DTIM);
3093 
3094 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3095 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3096 	else
3097 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3098 
3099 	REG_WRITE(ah, AR_SLEEP2,
3100 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3101 
3102 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3103 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3104 
3105 	REG_SET_BIT(ah, AR_TIMER_MODE,
3106 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3107 		    AR_DTIM_TIMER_EN);
3108 
3109 	/* TSF Out of Range Threshold */
3110 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3111 }
3112 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3113 
3114 /*******************/
3115 /* HW Capabilities */
3116 /*******************/
3117 
3118 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
3119 {
3120 	struct ath9k_hw_capabilities *pCap = &ah->caps;
3121 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3122 	struct ath_common *common = ath9k_hw_common(ah);
3123 	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3124 
3125 	u16 capField = 0, eeval;
3126 
3127 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3128 	regulatory->current_rd = eeval;
3129 
3130 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3131 	if (AR_SREV_9285_10_OR_LATER(ah))
3132 		eeval |= AR9285_RDEXT_DEFAULT;
3133 	regulatory->current_rd_ext = eeval;
3134 
3135 	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3136 
3137 	if (ah->opmode != NL80211_IFTYPE_AP &&
3138 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3139 		if (regulatory->current_rd == 0x64 ||
3140 		    regulatory->current_rd == 0x65)
3141 			regulatory->current_rd += 5;
3142 		else if (regulatory->current_rd == 0x41)
3143 			regulatory->current_rd = 0x43;
3144 		ath_print(common, ATH_DBG_REGULATORY,
3145 			  "regdomain mapped to 0x%x\n", regulatory->current_rd);
3146 	}
3147 
3148 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3149 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
3150 		ath_print(common, ATH_DBG_FATAL,
3151 			  "no band has been marked as supported in EEPROM.\n");
3152 		return -EINVAL;
3153 	}
3154 
3155 	bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3156 
3157 	if (eeval & AR5416_OPFLAGS_11A) {
3158 		set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3159 		if (ah->config.ht_enable) {
3160 			if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3161 				set_bit(ATH9K_MODE_11NA_HT20,
3162 					pCap->wireless_modes);
3163 			if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3164 				set_bit(ATH9K_MODE_11NA_HT40PLUS,
3165 					pCap->wireless_modes);
3166 				set_bit(ATH9K_MODE_11NA_HT40MINUS,
3167 					pCap->wireless_modes);
3168 			}
3169 		}
3170 	}
3171 
3172 	if (eeval & AR5416_OPFLAGS_11G) {
3173 		set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3174 		if (ah->config.ht_enable) {
3175 			if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3176 				set_bit(ATH9K_MODE_11NG_HT20,
3177 					pCap->wireless_modes);
3178 			if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3179 				set_bit(ATH9K_MODE_11NG_HT40PLUS,
3180 					pCap->wireless_modes);
3181 				set_bit(ATH9K_MODE_11NG_HT40MINUS,
3182 					pCap->wireless_modes);
3183 			}
3184 		}
3185 	}
3186 
3187 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3188 	/*
3189 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
3190 	 * the EEPROM.
3191 	 */
3192 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3193 	    !(eeval & AR5416_OPFLAGS_11A) &&
3194 	    !(AR_SREV_9271(ah)))
3195 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3196 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3197 	else
3198 		/* Use rx_chainmask from EEPROM. */
3199 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3200 
3201 	if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3202 		ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3203 
3204 	pCap->low_2ghz_chan = 2312;
3205 	pCap->high_2ghz_chan = 2732;
3206 
3207 	pCap->low_5ghz_chan = 4920;
3208 	pCap->high_5ghz_chan = 6100;
3209 
3210 	pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3211 	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3212 	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3213 
3214 	pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3215 	pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3216 	pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3217 
3218 	if (ah->config.ht_enable)
3219 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
3220 	else
3221 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3222 
3223 	pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3224 	pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3225 	pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3226 	pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3227 
3228 	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3229 		pCap->total_queues =
3230 			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3231 	else
3232 		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3233 
3234 	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3235 		pCap->keycache_size =
3236 			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3237 	else
3238 		pCap->keycache_size = AR_KEYTABLE_SIZE;
3239 
3240 	pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3241 
3242 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
3243 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
3244 	else
3245 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3246 
3247 	if (AR_SREV_9285_10_OR_LATER(ah))
3248 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
3249 	else if (AR_SREV_9280_10_OR_LATER(ah))
3250 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
3251 	else
3252 		pCap->num_gpio_pins = AR_NUM_GPIO;
3253 
3254 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3255 		pCap->hw_caps |= ATH9K_HW_CAP_CST;
3256 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3257 	} else {
3258 		pCap->rts_aggr_limit = (8 * 1024);
3259 	}
3260 
3261 	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3262 
3263 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3264 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3265 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3266 		ah->rfkill_gpio =
3267 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3268 		ah->rfkill_polarity =
3269 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3270 
3271 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3272 	}
3273 #endif
3274 
3275 	pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3276 
3277 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3278 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3279 	else
3280 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3281 
3282 	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3283 		pCap->reg_cap =
3284 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3285 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3286 			AR_EEPROM_EEREGCAP_EN_KK_U2 |
3287 			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3288 	} else {
3289 		pCap->reg_cap =
3290 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3291 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3292 	}
3293 
3294 	/* Advertise midband for AR5416 with FCC midband set in eeprom */
3295 	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3296 	    AR_SREV_5416(ah))
3297 		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3298 
3299 	pCap->num_antcfg_5ghz =
3300 		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3301 	pCap->num_antcfg_2ghz =
3302 		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3303 
3304 	if (AR_SREV_9280_10_OR_LATER(ah) &&
3305 	    ath9k_hw_btcoex_supported(ah)) {
3306 		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3307 		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3308 
3309 		if (AR_SREV_9285(ah)) {
3310 			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3311 			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3312 		} else {
3313 			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3314 		}
3315 	} else {
3316 		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3317 	}
3318 
3319 	return 0;
3320 }
3321 
3322 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3323 			    u32 capability, u32 *result)
3324 {
3325 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3326 	switch (type) {
3327 	case ATH9K_CAP_CIPHER:
3328 		switch (capability) {
3329 		case ATH9K_CIPHER_AES_CCM:
3330 		case ATH9K_CIPHER_AES_OCB:
3331 		case ATH9K_CIPHER_TKIP:
3332 		case ATH9K_CIPHER_WEP:
3333 		case ATH9K_CIPHER_MIC:
3334 		case ATH9K_CIPHER_CLR:
3335 			return true;
3336 		default:
3337 			return false;
3338 		}
3339 	case ATH9K_CAP_TKIP_MIC:
3340 		switch (capability) {
3341 		case 0:
3342 			return true;
3343 		case 1:
3344 			return (ah->sta_id1_defaults &
3345 				AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3346 			false;
3347 		}
3348 	case ATH9K_CAP_TKIP_SPLIT:
3349 		return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3350 			false : true;
3351 	case ATH9K_CAP_DIVERSITY:
3352 		return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3353 			AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3354 			true : false;
3355 	case ATH9K_CAP_MCAST_KEYSRCH:
3356 		switch (capability) {
3357 		case 0:
3358 			return true;
3359 		case 1:
3360 			if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3361 				return false;
3362 			} else {
3363 				return (ah->sta_id1_defaults &
3364 					AR_STA_ID1_MCAST_KSRCH) ? true :
3365 					false;
3366 			}
3367 		}
3368 		return false;
3369 	case ATH9K_CAP_TXPOW:
3370 		switch (capability) {
3371 		case 0:
3372 			return 0;
3373 		case 1:
3374 			*result = regulatory->power_limit;
3375 			return 0;
3376 		case 2:
3377 			*result = regulatory->max_power_level;
3378 			return 0;
3379 		case 3:
3380 			*result = regulatory->tp_scale;
3381 			return 0;
3382 		}
3383 		return false;
3384 	case ATH9K_CAP_DS:
3385 		return (AR_SREV_9280_20_OR_LATER(ah) &&
3386 			(ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3387 			? false : true;
3388 	default:
3389 		return false;
3390 	}
3391 }
3392 EXPORT_SYMBOL(ath9k_hw_getcapability);
3393 
3394 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3395 			    u32 capability, u32 setting, int *status)
3396 {
3397 	u32 v;
3398 
3399 	switch (type) {
3400 	case ATH9K_CAP_TKIP_MIC:
3401 		if (setting)
3402 			ah->sta_id1_defaults |=
3403 				AR_STA_ID1_CRPT_MIC_ENABLE;
3404 		else
3405 			ah->sta_id1_defaults &=
3406 				~AR_STA_ID1_CRPT_MIC_ENABLE;
3407 		return true;
3408 	case ATH9K_CAP_DIVERSITY:
3409 		v = REG_READ(ah, AR_PHY_CCK_DETECT);
3410 		if (setting)
3411 			v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3412 		else
3413 			v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3414 		REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3415 		return true;
3416 	case ATH9K_CAP_MCAST_KEYSRCH:
3417 		if (setting)
3418 			ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3419 		else
3420 			ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3421 		return true;
3422 	default:
3423 		return false;
3424 	}
3425 }
3426 EXPORT_SYMBOL(ath9k_hw_setcapability);
3427 
3428 /****************************/
3429 /* GPIO / RFKILL / Antennae */
3430 /****************************/
3431 
3432 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3433 					 u32 gpio, u32 type)
3434 {
3435 	int addr;
3436 	u32 gpio_shift, tmp;
3437 
3438 	if (gpio > 11)
3439 		addr = AR_GPIO_OUTPUT_MUX3;
3440 	else if (gpio > 5)
3441 		addr = AR_GPIO_OUTPUT_MUX2;
3442 	else
3443 		addr = AR_GPIO_OUTPUT_MUX1;
3444 
3445 	gpio_shift = (gpio % 6) * 5;
3446 
3447 	if (AR_SREV_9280_20_OR_LATER(ah)
3448 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
3449 		REG_RMW(ah, addr, (type << gpio_shift),
3450 			(0x1f << gpio_shift));
3451 	} else {
3452 		tmp = REG_READ(ah, addr);
3453 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3454 		tmp &= ~(0x1f << gpio_shift);
3455 		tmp |= (type << gpio_shift);
3456 		REG_WRITE(ah, addr, tmp);
3457 	}
3458 }
3459 
3460 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3461 {
3462 	u32 gpio_shift;
3463 
3464 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
3465 
3466 	gpio_shift = gpio << 1;
3467 
3468 	REG_RMW(ah,
3469 		AR_GPIO_OE_OUT,
3470 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3471 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3472 }
3473 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3474 
3475 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3476 {
3477 #define MS_REG_READ(x, y) \
3478 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3479 
3480 	if (gpio >= ah->caps.num_gpio_pins)
3481 		return 0xffffffff;
3482 
3483 	if (AR_SREV_9287_10_OR_LATER(ah))
3484 		return MS_REG_READ(AR9287, gpio) != 0;
3485 	else if (AR_SREV_9285_10_OR_LATER(ah))
3486 		return MS_REG_READ(AR9285, gpio) != 0;
3487 	else if (AR_SREV_9280_10_OR_LATER(ah))
3488 		return MS_REG_READ(AR928X, gpio) != 0;
3489 	else
3490 		return MS_REG_READ(AR, gpio) != 0;
3491 }
3492 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3493 
3494 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3495 			 u32 ah_signal_type)
3496 {
3497 	u32 gpio_shift;
3498 
3499 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3500 
3501 	gpio_shift = 2 * gpio;
3502 
3503 	REG_RMW(ah,
3504 		AR_GPIO_OE_OUT,
3505 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3506 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3507 }
3508 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3509 
3510 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3511 {
3512 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3513 		AR_GPIO_BIT(gpio));
3514 }
3515 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3516 
3517 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3518 {
3519 	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3520 }
3521 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3522 
3523 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3524 {
3525 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3526 }
3527 EXPORT_SYMBOL(ath9k_hw_setantenna);
3528 
3529 /*********************/
3530 /* General Operation */
3531 /*********************/
3532 
3533 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3534 {
3535 	u32 bits = REG_READ(ah, AR_RX_FILTER);
3536 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
3537 
3538 	if (phybits & AR_PHY_ERR_RADAR)
3539 		bits |= ATH9K_RX_FILTER_PHYRADAR;
3540 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3541 		bits |= ATH9K_RX_FILTER_PHYERR;
3542 
3543 	return bits;
3544 }
3545 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3546 
3547 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3548 {
3549 	u32 phybits;
3550 
3551 	REG_WRITE(ah, AR_RX_FILTER, bits);
3552 
3553 	phybits = 0;
3554 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
3555 		phybits |= AR_PHY_ERR_RADAR;
3556 	if (bits & ATH9K_RX_FILTER_PHYERR)
3557 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3558 	REG_WRITE(ah, AR_PHY_ERR, phybits);
3559 
3560 	if (phybits)
3561 		REG_WRITE(ah, AR_RXCFG,
3562 			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3563 	else
3564 		REG_WRITE(ah, AR_RXCFG,
3565 			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3566 }
3567 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3568 
3569 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3570 {
3571 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3572 		return false;
3573 
3574 	ath9k_hw_init_pll(ah, NULL);
3575 	return true;
3576 }
3577 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3578 
3579 bool ath9k_hw_disable(struct ath_hw *ah)
3580 {
3581 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3582 		return false;
3583 
3584 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3585 		return false;
3586 
3587 	ath9k_hw_init_pll(ah, NULL);
3588 	return true;
3589 }
3590 EXPORT_SYMBOL(ath9k_hw_disable);
3591 
3592 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3593 {
3594 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3595 	struct ath9k_channel *chan = ah->curchan;
3596 	struct ieee80211_channel *channel = chan->chan;
3597 
3598 	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3599 
3600 	ah->eep_ops->set_txpower(ah, chan,
3601 				 ath9k_regd_get_ctl(regulatory, chan),
3602 				 channel->max_antenna_gain * 2,
3603 				 channel->max_power * 2,
3604 				 min((u32) MAX_RATE_POWER,
3605 				 (u32) regulatory->power_limit));
3606 }
3607 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3608 
3609 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3610 {
3611 	memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3612 }
3613 EXPORT_SYMBOL(ath9k_hw_setmac);
3614 
3615 void ath9k_hw_setopmode(struct ath_hw *ah)
3616 {
3617 	ath9k_hw_set_operating_mode(ah, ah->opmode);
3618 }
3619 EXPORT_SYMBOL(ath9k_hw_setopmode);
3620 
3621 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3622 {
3623 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3624 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3625 }
3626 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3627 
3628 void ath9k_hw_write_associd(struct ath_hw *ah)
3629 {
3630 	struct ath_common *common = ath9k_hw_common(ah);
3631 
3632 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3633 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3634 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3635 }
3636 EXPORT_SYMBOL(ath9k_hw_write_associd);
3637 
3638 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3639 {
3640 	u64 tsf;
3641 
3642 	tsf = REG_READ(ah, AR_TSF_U32);
3643 	tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3644 
3645 	return tsf;
3646 }
3647 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3648 
3649 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3650 {
3651 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3652 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3653 }
3654 EXPORT_SYMBOL(ath9k_hw_settsf64);
3655 
3656 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3657 {
3658 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3659 			   AH_TSF_WRITE_TIMEOUT))
3660 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3661 			  "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3662 
3663 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3664 }
3665 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3666 
3667 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3668 {
3669 	if (setting)
3670 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3671 	else
3672 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3673 }
3674 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3675 
3676 /*
3677  *  Extend 15-bit time stamp from rx descriptor to
3678  *  a full 64-bit TSF using the current h/w TSF.
3679 */
3680 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3681 {
3682 	u64 tsf;
3683 
3684 	tsf = ath9k_hw_gettsf64(ah);
3685 	if ((tsf & 0x7fff) < rstamp)
3686 		tsf -= 0x8000;
3687 	return (tsf & ~0x7fff) | rstamp;
3688 }
3689 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3690 
3691 bool ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
3692 {
3693 	if (us < ATH9K_SLOT_TIME_9 || us > ath9k_hw_mac_to_usec(ah, 0xffff)) {
3694 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3695 			  "bad slot time %u\n", us);
3696 		ah->slottime = (u32) -1;
3697 		return false;
3698 	} else {
3699 		REG_WRITE(ah, AR_D_GBL_IFS_SLOT, ath9k_hw_mac_to_clks(ah, us));
3700 		ah->slottime = us;
3701 		return true;
3702 	}
3703 }
3704 EXPORT_SYMBOL(ath9k_hw_setslottime);
3705 
3706 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3707 {
3708 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3709 	u32 macmode;
3710 
3711 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3712 		macmode = AR_2040_JOINED_RX_CLEAR;
3713 	else
3714 		macmode = 0;
3715 
3716 	REG_WRITE(ah, AR_2040_MODE, macmode);
3717 }
3718 
3719 /* HW Generic timers configuration */
3720 
3721 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3722 {
3723 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3724 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3725 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3726 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3727 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3728 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3729 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3730 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3731 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3732 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3733 				AR_NDP2_TIMER_MODE, 0x0002},
3734 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3735 				AR_NDP2_TIMER_MODE, 0x0004},
3736 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3737 				AR_NDP2_TIMER_MODE, 0x0008},
3738 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3739 				AR_NDP2_TIMER_MODE, 0x0010},
3740 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3741 				AR_NDP2_TIMER_MODE, 0x0020},
3742 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3743 				AR_NDP2_TIMER_MODE, 0x0040},
3744 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3745 				AR_NDP2_TIMER_MODE, 0x0080}
3746 };
3747 
3748 /* HW generic timer primitives */
3749 
3750 /* compute and clear index of rightmost 1 */
3751 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3752 {
3753 	u32 b;
3754 
3755 	b = *mask;
3756 	b &= (0-b);
3757 	*mask &= ~b;
3758 	b *= debruijn32;
3759 	b >>= 27;
3760 
3761 	return timer_table->gen_timer_index[b];
3762 }
3763 
3764 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3765 {
3766 	return REG_READ(ah, AR_TSF_L32);
3767 }
3768 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3769 
3770 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3771 					  void (*trigger)(void *),
3772 					  void (*overflow)(void *),
3773 					  void *arg,
3774 					  u8 timer_index)
3775 {
3776 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3777 	struct ath_gen_timer *timer;
3778 
3779 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3780 
3781 	if (timer == NULL) {
3782 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3783 			  "Failed to allocate memory"
3784 			  "for hw timer[%d]\n", timer_index);
3785 		return NULL;
3786 	}
3787 
3788 	/* allocate a hardware generic timer slot */
3789 	timer_table->timers[timer_index] = timer;
3790 	timer->index = timer_index;
3791 	timer->trigger = trigger;
3792 	timer->overflow = overflow;
3793 	timer->arg = arg;
3794 
3795 	return timer;
3796 }
3797 EXPORT_SYMBOL(ath_gen_timer_alloc);
3798 
3799 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3800 			      struct ath_gen_timer *timer,
3801 			      u32 timer_next,
3802 			      u32 timer_period)
3803 {
3804 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3805 	u32 tsf;
3806 
3807 	BUG_ON(!timer_period);
3808 
3809 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3810 
3811 	tsf = ath9k_hw_gettsf32(ah);
3812 
3813 	ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3814 		  "curent tsf %x period %x"
3815 		  "timer_next %x\n", tsf, timer_period, timer_next);
3816 
3817 	/*
3818 	 * Pull timer_next forward if the current TSF already passed it
3819 	 * because of software latency
3820 	 */
3821 	if (timer_next < tsf)
3822 		timer_next = tsf + timer_period;
3823 
3824 	/*
3825 	 * Program generic timer registers
3826 	 */
3827 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3828 		 timer_next);
3829 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3830 		  timer_period);
3831 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3832 		    gen_tmr_configuration[timer->index].mode_mask);
3833 
3834 	/* Enable both trigger and thresh interrupt masks */
3835 	REG_SET_BIT(ah, AR_IMR_S5,
3836 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3837 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3838 }
3839 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3840 
3841 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3842 {
3843 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3844 
3845 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3846 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3847 		return;
3848 	}
3849 
3850 	/* Clear generic timer enable bits. */
3851 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3852 			gen_tmr_configuration[timer->index].mode_mask);
3853 
3854 	/* Disable both trigger and thresh interrupt masks */
3855 	REG_CLR_BIT(ah, AR_IMR_S5,
3856 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3857 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3858 
3859 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3860 }
3861 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3862 
3863 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3864 {
3865 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3866 
3867 	/* free the hardware generic timer slot */
3868 	timer_table->timers[timer->index] = NULL;
3869 	kfree(timer);
3870 }
3871 EXPORT_SYMBOL(ath_gen_timer_free);
3872 
3873 /*
3874  * Generic Timer Interrupts handling
3875  */
3876 void ath_gen_timer_isr(struct ath_hw *ah)
3877 {
3878 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3879 	struct ath_gen_timer *timer;
3880 	struct ath_common *common = ath9k_hw_common(ah);
3881 	u32 trigger_mask, thresh_mask, index;
3882 
3883 	/* get hardware generic timer interrupt status */
3884 	trigger_mask = ah->intr_gen_timer_trigger;
3885 	thresh_mask = ah->intr_gen_timer_thresh;
3886 	trigger_mask &= timer_table->timer_mask.val;
3887 	thresh_mask &= timer_table->timer_mask.val;
3888 
3889 	trigger_mask &= ~thresh_mask;
3890 
3891 	while (thresh_mask) {
3892 		index = rightmost_index(timer_table, &thresh_mask);
3893 		timer = timer_table->timers[index];
3894 		BUG_ON(!timer);
3895 		ath_print(common, ATH_DBG_HWTIMER,
3896 			  "TSF overflow for Gen timer %d\n", index);
3897 		timer->overflow(timer->arg);
3898 	}
3899 
3900 	while (trigger_mask) {
3901 		index = rightmost_index(timer_table, &trigger_mask);
3902 		timer = timer_table->timers[index];
3903 		BUG_ON(!timer);
3904 		ath_print(common, ATH_DBG_HWTIMER,
3905 			  "Gen timer[%d] trigger\n", index);
3906 		timer->trigger(timer->arg);
3907 	}
3908 }
3909 EXPORT_SYMBOL(ath_gen_timer_isr);
3910 
3911 static struct {
3912 	u32 version;
3913 	const char * name;
3914 } ath_mac_bb_names[] = {
3915 	/* Devices with external radios */
3916 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3917 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3918 	{ AR_SREV_VERSION_9100,		"9100" },
3919 	{ AR_SREV_VERSION_9160,		"9160" },
3920 	/* Single-chip solutions */
3921 	{ AR_SREV_VERSION_9280,		"9280" },
3922 	{ AR_SREV_VERSION_9285,		"9285" },
3923 	{ AR_SREV_VERSION_9287,         "9287" },
3924 	{ AR_SREV_VERSION_9271,         "9271" },
3925 };
3926 
3927 /* For devices with external radios */
3928 static struct {
3929 	u16 version;
3930 	const char * name;
3931 } ath_rf_names[] = {
3932 	{ 0,				"5133" },
3933 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3934 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3935 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3936 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3937 };
3938 
3939 /*
3940  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3941  */
3942 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3943 {
3944 	int i;
3945 
3946 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3947 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3948 			return ath_mac_bb_names[i].name;
3949 		}
3950 	}
3951 
3952 	return "????";
3953 }
3954 
3955 /*
3956  * Return the RF name. "????" is returned if the RF is unknown.
3957  * Used for devices with external radios.
3958  */
3959 static const char *ath9k_hw_rf_name(u16 rf_version)
3960 {
3961 	int i;
3962 
3963 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3964 		if (ath_rf_names[i].version == rf_version) {
3965 			return ath_rf_names[i].name;
3966 		}
3967 	}
3968 
3969 	return "????";
3970 }
3971 
3972 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3973 {
3974 	int used;
3975 
3976 	/* chipsets >= AR9280 are single-chip */
3977 	if (AR_SREV_9280_10_OR_LATER(ah)) {
3978 		used = snprintf(hw_name, len,
3979 			       "Atheros AR%s Rev:%x",
3980 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3981 			       ah->hw_version.macRev);
3982 	}
3983 	else {
3984 		used = snprintf(hw_name, len,
3985 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3986 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3987 			       ah->hw_version.macRev,
3988 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3989 						AR_RADIO_SREV_MAJOR)),
3990 			       ah->hw_version.phyRev);
3991 	}
3992 
3993 	hw_name[used] = '\0';
3994 }
3995 EXPORT_SYMBOL(ath9k_hw_name);
3996