xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 9c1f8594)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
20 
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
25 
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27 
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
32 
33 static int __init ath9k_init(void)
34 {
35 	return 0;
36 }
37 module_init(ath9k_init);
38 
39 static void __exit ath9k_exit(void)
40 {
41 	return;
42 }
43 module_exit(ath9k_exit);
44 
45 /* Private hardware callbacks */
46 
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48 {
49 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50 }
51 
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55 }
56 
57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 					struct ath9k_channel *chan)
59 {
60 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62 
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 		return;
67 
68 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70 
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 	/* You will not have this callback if using the old ANI */
74 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 		return;
76 
77 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79 
80 /********************/
81 /* Helper Functions */
82 /********************/
83 
84 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85 {
86 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87 	struct ath_common *common = ath9k_hw_common(ah);
88 	unsigned int clockrate;
89 
90 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
91 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
92 		clockrate = 117;
93 	else if (!ah->curchan) /* should really check for CCK instead */
94 		clockrate = ATH9K_CLOCK_RATE_CCK;
95 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
96 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
97 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
98 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
99 	else
100 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
101 
102 	if (conf_is_ht40(conf))
103 		clockrate *= 2;
104 
105 	if (ah->curchan) {
106 		if (IS_CHAN_HALF_RATE(ah->curchan))
107 			clockrate /= 2;
108 		if (IS_CHAN_QUARTER_RATE(ah->curchan))
109 			clockrate /= 4;
110 	}
111 
112 	common->clockrate = clockrate;
113 }
114 
115 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
116 {
117 	struct ath_common *common = ath9k_hw_common(ah);
118 
119 	return usecs * common->clockrate;
120 }
121 
122 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
123 {
124 	int i;
125 
126 	BUG_ON(timeout < AH_TIME_QUANTUM);
127 
128 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
129 		if ((REG_READ(ah, reg) & mask) == val)
130 			return true;
131 
132 		udelay(AH_TIME_QUANTUM);
133 	}
134 
135 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
136 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
137 		timeout, reg, REG_READ(ah, reg), mask, val);
138 
139 	return false;
140 }
141 EXPORT_SYMBOL(ath9k_hw_wait);
142 
143 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
144 			  int column, unsigned int *writecnt)
145 {
146 	int r;
147 
148 	ENABLE_REGWRITE_BUFFER(ah);
149 	for (r = 0; r < array->ia_rows; r++) {
150 		REG_WRITE(ah, INI_RA(array, r, 0),
151 			  INI_RA(array, r, column));
152 		DO_DELAY(*writecnt);
153 	}
154 	REGWRITE_BUFFER_FLUSH(ah);
155 }
156 
157 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
158 {
159 	u32 retval;
160 	int i;
161 
162 	for (i = 0, retval = 0; i < n; i++) {
163 		retval = (retval << 1) | (val & 1);
164 		val >>= 1;
165 	}
166 	return retval;
167 }
168 
169 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
170 			   u8 phy, int kbps,
171 			   u32 frameLen, u16 rateix,
172 			   bool shortPreamble)
173 {
174 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
175 
176 	if (kbps == 0)
177 		return 0;
178 
179 	switch (phy) {
180 	case WLAN_RC_PHY_CCK:
181 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
182 		if (shortPreamble)
183 			phyTime >>= 1;
184 		numBits = frameLen << 3;
185 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
186 		break;
187 	case WLAN_RC_PHY_OFDM:
188 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
189 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
190 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
191 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
192 			txTime = OFDM_SIFS_TIME_QUARTER
193 				+ OFDM_PREAMBLE_TIME_QUARTER
194 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
195 		} else if (ah->curchan &&
196 			   IS_CHAN_HALF_RATE(ah->curchan)) {
197 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
198 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
199 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
200 			txTime = OFDM_SIFS_TIME_HALF +
201 				OFDM_PREAMBLE_TIME_HALF
202 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
203 		} else {
204 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
205 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
206 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
207 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
208 				+ (numSymbols * OFDM_SYMBOL_TIME);
209 		}
210 		break;
211 	default:
212 		ath_err(ath9k_hw_common(ah),
213 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
214 		txTime = 0;
215 		break;
216 	}
217 
218 	return txTime;
219 }
220 EXPORT_SYMBOL(ath9k_hw_computetxtime);
221 
222 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
223 				  struct ath9k_channel *chan,
224 				  struct chan_centers *centers)
225 {
226 	int8_t extoff;
227 
228 	if (!IS_CHAN_HT40(chan)) {
229 		centers->ctl_center = centers->ext_center =
230 			centers->synth_center = chan->channel;
231 		return;
232 	}
233 
234 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
235 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
236 		centers->synth_center =
237 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
238 		extoff = 1;
239 	} else {
240 		centers->synth_center =
241 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
242 		extoff = -1;
243 	}
244 
245 	centers->ctl_center =
246 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
247 	/* 25 MHz spacing is supported by hw but not on upper layers */
248 	centers->ext_center =
249 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
250 }
251 
252 /******************/
253 /* Chip Revisions */
254 /******************/
255 
256 static void ath9k_hw_read_revisions(struct ath_hw *ah)
257 {
258 	u32 val;
259 
260 	switch (ah->hw_version.devid) {
261 	case AR5416_AR9100_DEVID:
262 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
263 		break;
264 	case AR9300_DEVID_AR9330:
265 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
266 		if (ah->get_mac_revision) {
267 			ah->hw_version.macRev = ah->get_mac_revision();
268 		} else {
269 			val = REG_READ(ah, AR_SREV);
270 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
271 		}
272 		return;
273 	case AR9300_DEVID_AR9340:
274 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
275 		val = REG_READ(ah, AR_SREV);
276 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
277 		return;
278 	}
279 
280 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
281 
282 	if (val == 0xFF) {
283 		val = REG_READ(ah, AR_SREV);
284 		ah->hw_version.macVersion =
285 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
286 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
287 		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
288 	} else {
289 		if (!AR_SREV_9100(ah))
290 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
291 
292 		ah->hw_version.macRev = val & AR_SREV_REVISION;
293 
294 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
295 			ah->is_pciexpress = true;
296 	}
297 }
298 
299 /************************************/
300 /* HW Attach, Detach, Init Routines */
301 /************************************/
302 
303 static void ath9k_hw_disablepcie(struct ath_hw *ah)
304 {
305 	if (!AR_SREV_5416(ah))
306 		return;
307 
308 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
309 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
310 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
311 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
312 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
313 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
314 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
315 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
316 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
317 
318 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
319 }
320 
321 static void ath9k_hw_aspm_init(struct ath_hw *ah)
322 {
323 	struct ath_common *common = ath9k_hw_common(ah);
324 
325 	if (common->bus_ops->aspm_init)
326 		common->bus_ops->aspm_init(common);
327 }
328 
329 /* This should work for all families including legacy */
330 static bool ath9k_hw_chip_test(struct ath_hw *ah)
331 {
332 	struct ath_common *common = ath9k_hw_common(ah);
333 	u32 regAddr[2] = { AR_STA_ID0 };
334 	u32 regHold[2];
335 	static const u32 patternData[4] = {
336 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
337 	};
338 	int i, j, loop_max;
339 
340 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
341 		loop_max = 2;
342 		regAddr[1] = AR_PHY_BASE + (8 << 2);
343 	} else
344 		loop_max = 1;
345 
346 	for (i = 0; i < loop_max; i++) {
347 		u32 addr = regAddr[i];
348 		u32 wrData, rdData;
349 
350 		regHold[i] = REG_READ(ah, addr);
351 		for (j = 0; j < 0x100; j++) {
352 			wrData = (j << 16) | j;
353 			REG_WRITE(ah, addr, wrData);
354 			rdData = REG_READ(ah, addr);
355 			if (rdData != wrData) {
356 				ath_err(common,
357 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
358 					addr, wrData, rdData);
359 				return false;
360 			}
361 		}
362 		for (j = 0; j < 4; j++) {
363 			wrData = patternData[j];
364 			REG_WRITE(ah, addr, wrData);
365 			rdData = REG_READ(ah, addr);
366 			if (wrData != rdData) {
367 				ath_err(common,
368 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
369 					addr, wrData, rdData);
370 				return false;
371 			}
372 		}
373 		REG_WRITE(ah, regAddr[i], regHold[i]);
374 	}
375 	udelay(100);
376 
377 	return true;
378 }
379 
380 static void ath9k_hw_init_config(struct ath_hw *ah)
381 {
382 	int i;
383 
384 	ah->config.dma_beacon_response_time = 2;
385 	ah->config.sw_beacon_response_time = 10;
386 	ah->config.additional_swba_backoff = 0;
387 	ah->config.ack_6mb = 0x0;
388 	ah->config.cwm_ignore_extcca = 0;
389 	ah->config.pcie_clock_req = 0;
390 	ah->config.pcie_waen = 0;
391 	ah->config.analog_shiftreg = 1;
392 	ah->config.enable_ani = true;
393 
394 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
395 		ah->config.spurchans[i][0] = AR_NO_SPUR;
396 		ah->config.spurchans[i][1] = AR_NO_SPUR;
397 	}
398 
399 	/* PAPRD needs some more work to be enabled */
400 	ah->config.paprd_disable = 1;
401 
402 	ah->config.rx_intr_mitigation = true;
403 	ah->config.pcieSerDesWrite = true;
404 
405 	/*
406 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
407 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
408 	 * This means we use it for all AR5416 devices, and the few
409 	 * minor PCI AR9280 devices out there.
410 	 *
411 	 * Serialization is required because these devices do not handle
412 	 * well the case of two concurrent reads/writes due to the latency
413 	 * involved. During one read/write another read/write can be issued
414 	 * on another CPU while the previous read/write may still be working
415 	 * on our hardware, if we hit this case the hardware poops in a loop.
416 	 * We prevent this by serializing reads and writes.
417 	 *
418 	 * This issue is not present on PCI-Express devices or pre-AR5416
419 	 * devices (legacy, 802.11abg).
420 	 */
421 	if (num_possible_cpus() > 1)
422 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
423 }
424 
425 static void ath9k_hw_init_defaults(struct ath_hw *ah)
426 {
427 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
428 
429 	regulatory->country_code = CTRY_DEFAULT;
430 	regulatory->power_limit = MAX_RATE_POWER;
431 	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
432 
433 	ah->hw_version.magic = AR5416_MAGIC;
434 	ah->hw_version.subvendorid = 0;
435 
436 	ah->atim_window = 0;
437 	ah->sta_id1_defaults =
438 		AR_STA_ID1_CRPT_MIC_ENABLE |
439 		AR_STA_ID1_MCAST_KSRCH;
440 	if (AR_SREV_9100(ah))
441 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
442 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
443 	ah->slottime = 20;
444 	ah->globaltxtimeout = (u32) -1;
445 	ah->power_mode = ATH9K_PM_UNDEFINED;
446 }
447 
448 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
449 {
450 	struct ath_common *common = ath9k_hw_common(ah);
451 	u32 sum;
452 	int i;
453 	u16 eeval;
454 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
455 
456 	sum = 0;
457 	for (i = 0; i < 3; i++) {
458 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
459 		sum += eeval;
460 		common->macaddr[2 * i] = eeval >> 8;
461 		common->macaddr[2 * i + 1] = eeval & 0xff;
462 	}
463 	if (sum == 0 || sum == 0xffff * 3)
464 		return -EADDRNOTAVAIL;
465 
466 	return 0;
467 }
468 
469 static int ath9k_hw_post_init(struct ath_hw *ah)
470 {
471 	struct ath_common *common = ath9k_hw_common(ah);
472 	int ecode;
473 
474 	if (common->bus_ops->ath_bus_type != ATH_USB) {
475 		if (!ath9k_hw_chip_test(ah))
476 			return -ENODEV;
477 	}
478 
479 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
480 		ecode = ar9002_hw_rf_claim(ah);
481 		if (ecode != 0)
482 			return ecode;
483 	}
484 
485 	ecode = ath9k_hw_eeprom_init(ah);
486 	if (ecode != 0)
487 		return ecode;
488 
489 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
490 		"Eeprom VER: %d, REV: %d\n",
491 		ah->eep_ops->get_eeprom_ver(ah),
492 		ah->eep_ops->get_eeprom_rev(ah));
493 
494 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
495 	if (ecode) {
496 		ath_err(ath9k_hw_common(ah),
497 			"Failed allocating banks for external radio\n");
498 		ath9k_hw_rf_free_ext_banks(ah);
499 		return ecode;
500 	}
501 
502 	if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
503 		ath9k_hw_ani_setup(ah);
504 		ath9k_hw_ani_init(ah);
505 	}
506 
507 	return 0;
508 }
509 
510 static void ath9k_hw_attach_ops(struct ath_hw *ah)
511 {
512 	if (AR_SREV_9300_20_OR_LATER(ah))
513 		ar9003_hw_attach_ops(ah);
514 	else
515 		ar9002_hw_attach_ops(ah);
516 }
517 
518 /* Called for all hardware families */
519 static int __ath9k_hw_init(struct ath_hw *ah)
520 {
521 	struct ath_common *common = ath9k_hw_common(ah);
522 	int r = 0;
523 
524 	ath9k_hw_read_revisions(ah);
525 
526 	/*
527 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
528 	 * We need to do this to avoid RMW of this register. We cannot
529 	 * read the reg when chip is asleep.
530 	 */
531 	ah->WARegVal = REG_READ(ah, AR_WA);
532 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
533 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
534 
535 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
536 		ath_err(common, "Couldn't reset chip\n");
537 		return -EIO;
538 	}
539 
540 	ath9k_hw_init_defaults(ah);
541 	ath9k_hw_init_config(ah);
542 
543 	ath9k_hw_attach_ops(ah);
544 
545 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
546 		ath_err(common, "Couldn't wakeup chip\n");
547 		return -EIO;
548 	}
549 
550 	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
551 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
552 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
553 		     !ah->is_pciexpress)) {
554 			ah->config.serialize_regmode =
555 				SER_REG_MODE_ON;
556 		} else {
557 			ah->config.serialize_regmode =
558 				SER_REG_MODE_OFF;
559 		}
560 	}
561 
562 	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
563 		ah->config.serialize_regmode);
564 
565 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
566 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
567 	else
568 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
569 
570 	switch (ah->hw_version.macVersion) {
571 	case AR_SREV_VERSION_5416_PCI:
572 	case AR_SREV_VERSION_5416_PCIE:
573 	case AR_SREV_VERSION_9160:
574 	case AR_SREV_VERSION_9100:
575 	case AR_SREV_VERSION_9280:
576 	case AR_SREV_VERSION_9285:
577 	case AR_SREV_VERSION_9287:
578 	case AR_SREV_VERSION_9271:
579 	case AR_SREV_VERSION_9300:
580 	case AR_SREV_VERSION_9330:
581 	case AR_SREV_VERSION_9485:
582 	case AR_SREV_VERSION_9340:
583 		break;
584 	default:
585 		ath_err(common,
586 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
587 			ah->hw_version.macVersion, ah->hw_version.macRev);
588 		return -EOPNOTSUPP;
589 	}
590 
591 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
592 	    AR_SREV_9330(ah))
593 		ah->is_pciexpress = false;
594 
595 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
596 	ath9k_hw_init_cal_settings(ah);
597 
598 	ah->ani_function = ATH9K_ANI_ALL;
599 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
600 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
601 	if (!AR_SREV_9300_20_OR_LATER(ah))
602 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
603 
604 	ath9k_hw_init_mode_regs(ah);
605 
606 
607 	if (ah->is_pciexpress)
608 		ath9k_hw_aspm_init(ah);
609 	else
610 		ath9k_hw_disablepcie(ah);
611 
612 	if (!AR_SREV_9300_20_OR_LATER(ah))
613 		ar9002_hw_cck_chan14_spread(ah);
614 
615 	r = ath9k_hw_post_init(ah);
616 	if (r)
617 		return r;
618 
619 	ath9k_hw_init_mode_gain_regs(ah);
620 	r = ath9k_hw_fill_cap_info(ah);
621 	if (r)
622 		return r;
623 
624 	r = ath9k_hw_init_macaddr(ah);
625 	if (r) {
626 		ath_err(common, "Failed to initialize MAC address\n");
627 		return r;
628 	}
629 
630 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
631 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
632 	else
633 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
634 
635 	if (AR_SREV_9330(ah))
636 		ah->bb_watchdog_timeout_ms = 85;
637 	else
638 		ah->bb_watchdog_timeout_ms = 25;
639 
640 	common->state = ATH_HW_INITIALIZED;
641 
642 	return 0;
643 }
644 
645 int ath9k_hw_init(struct ath_hw *ah)
646 {
647 	int ret;
648 	struct ath_common *common = ath9k_hw_common(ah);
649 
650 	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
651 	switch (ah->hw_version.devid) {
652 	case AR5416_DEVID_PCI:
653 	case AR5416_DEVID_PCIE:
654 	case AR5416_AR9100_DEVID:
655 	case AR9160_DEVID_PCI:
656 	case AR9280_DEVID_PCI:
657 	case AR9280_DEVID_PCIE:
658 	case AR9285_DEVID_PCIE:
659 	case AR9287_DEVID_PCI:
660 	case AR9287_DEVID_PCIE:
661 	case AR2427_DEVID_PCIE:
662 	case AR9300_DEVID_PCIE:
663 	case AR9300_DEVID_AR9485_PCIE:
664 	case AR9300_DEVID_AR9330:
665 	case AR9300_DEVID_AR9340:
666 		break;
667 	default:
668 		if (common->bus_ops->ath_bus_type == ATH_USB)
669 			break;
670 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
671 			ah->hw_version.devid);
672 		return -EOPNOTSUPP;
673 	}
674 
675 	ret = __ath9k_hw_init(ah);
676 	if (ret) {
677 		ath_err(common,
678 			"Unable to initialize hardware; initialization status: %d\n",
679 			ret);
680 		return ret;
681 	}
682 
683 	return 0;
684 }
685 EXPORT_SYMBOL(ath9k_hw_init);
686 
687 static void ath9k_hw_init_qos(struct ath_hw *ah)
688 {
689 	ENABLE_REGWRITE_BUFFER(ah);
690 
691 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
692 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
693 
694 	REG_WRITE(ah, AR_QOS_NO_ACK,
695 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
696 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
697 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
698 
699 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
700 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
701 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
702 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
703 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
704 
705 	REGWRITE_BUFFER_FLUSH(ah);
706 }
707 
708 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
709 {
710 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
711 	udelay(100);
712 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
713 
714 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
715 		udelay(100);
716 
717 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
718 }
719 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
720 
721 static void ath9k_hw_init_pll(struct ath_hw *ah,
722 			      struct ath9k_channel *chan)
723 {
724 	u32 pll;
725 
726 	if (AR_SREV_9485(ah)) {
727 
728 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
729 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
730 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
731 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
732 			      AR_CH0_DPLL2_KD, 0x40);
733 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
734 			      AR_CH0_DPLL2_KI, 0x4);
735 
736 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
737 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
738 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
739 			      AR_CH0_BB_DPLL1_NINI, 0x58);
740 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
741 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
742 
743 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
744 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
745 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
746 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
747 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
748 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
749 
750 		/* program BB PLL phase_shift to 0x6 */
751 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
752 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
753 
754 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
755 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
756 		udelay(1000);
757 	} else if (AR_SREV_9330(ah)) {
758 		u32 ddr_dpll2, pll_control2, kd;
759 
760 		if (ah->is_clk_25mhz) {
761 			ddr_dpll2 = 0x18e82f01;
762 			pll_control2 = 0xe04a3d;
763 			kd = 0x1d;
764 		} else {
765 			ddr_dpll2 = 0x19e82f01;
766 			pll_control2 = 0x886666;
767 			kd = 0x3d;
768 		}
769 
770 		/* program DDR PLL ki and kd value */
771 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
772 
773 		/* program DDR PLL phase_shift */
774 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
775 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
776 
777 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
778 		udelay(1000);
779 
780 		/* program refdiv, nint, frac to RTC register */
781 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
782 
783 		/* program BB PLL kd and ki value */
784 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
785 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
786 
787 		/* program BB PLL phase_shift */
788 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
789 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
790 	} else if (AR_SREV_9340(ah)) {
791 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
792 
793 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
794 		udelay(1000);
795 
796 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
797 		udelay(100);
798 
799 		if (ah->is_clk_25mhz) {
800 			pll2_divint = 0x54;
801 			pll2_divfrac = 0x1eb85;
802 			refdiv = 3;
803 		} else {
804 			pll2_divint = 88;
805 			pll2_divfrac = 0;
806 			refdiv = 5;
807 		}
808 
809 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
810 		regval |= (0x1 << 16);
811 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
812 		udelay(100);
813 
814 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
815 			  (pll2_divint << 18) | pll2_divfrac);
816 		udelay(100);
817 
818 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
819 		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
820 			 (0x4 << 26) | (0x18 << 19);
821 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
822 		REG_WRITE(ah, AR_PHY_PLL_MODE,
823 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
824 		udelay(1000);
825 	}
826 
827 	pll = ath9k_hw_compute_pll_control(ah, chan);
828 
829 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
830 
831 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
832 		udelay(1000);
833 
834 	/* Switch the core clock for ar9271 to 117Mhz */
835 	if (AR_SREV_9271(ah)) {
836 		udelay(500);
837 		REG_WRITE(ah, 0x50040, 0x304);
838 	}
839 
840 	udelay(RTC_PLL_SETTLE_DELAY);
841 
842 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
843 
844 	if (AR_SREV_9340(ah)) {
845 		if (ah->is_clk_25mhz) {
846 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
847 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
848 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
849 		} else {
850 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
851 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
852 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
853 		}
854 		udelay(100);
855 	}
856 }
857 
858 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
859 					  enum nl80211_iftype opmode)
860 {
861 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
862 	u32 imr_reg = AR_IMR_TXERR |
863 		AR_IMR_TXURN |
864 		AR_IMR_RXERR |
865 		AR_IMR_RXORN |
866 		AR_IMR_BCNMISC;
867 
868 	if (AR_SREV_9340(ah))
869 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
870 
871 	if (AR_SREV_9300_20_OR_LATER(ah)) {
872 		imr_reg |= AR_IMR_RXOK_HP;
873 		if (ah->config.rx_intr_mitigation)
874 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
875 		else
876 			imr_reg |= AR_IMR_RXOK_LP;
877 
878 	} else {
879 		if (ah->config.rx_intr_mitigation)
880 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
881 		else
882 			imr_reg |= AR_IMR_RXOK;
883 	}
884 
885 	if (ah->config.tx_intr_mitigation)
886 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
887 	else
888 		imr_reg |= AR_IMR_TXOK;
889 
890 	if (opmode == NL80211_IFTYPE_AP)
891 		imr_reg |= AR_IMR_MIB;
892 
893 	ENABLE_REGWRITE_BUFFER(ah);
894 
895 	REG_WRITE(ah, AR_IMR, imr_reg);
896 	ah->imrs2_reg |= AR_IMR_S2_GTT;
897 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
898 
899 	if (!AR_SREV_9100(ah)) {
900 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
901 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
902 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
903 	}
904 
905 	REGWRITE_BUFFER_FLUSH(ah);
906 
907 	if (AR_SREV_9300_20_OR_LATER(ah)) {
908 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
909 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
910 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
911 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
912 	}
913 }
914 
915 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
916 {
917 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
918 	val = min(val, (u32) 0xFFFF);
919 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
920 }
921 
922 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
923 {
924 	u32 val = ath9k_hw_mac_to_clks(ah, us);
925 	val = min(val, (u32) 0xFFFF);
926 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
927 }
928 
929 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
930 {
931 	u32 val = ath9k_hw_mac_to_clks(ah, us);
932 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
933 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
934 }
935 
936 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
937 {
938 	u32 val = ath9k_hw_mac_to_clks(ah, us);
939 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
940 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
941 }
942 
943 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
944 {
945 	if (tu > 0xFFFF) {
946 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
947 			"bad global tx timeout %u\n", tu);
948 		ah->globaltxtimeout = (u32) -1;
949 		return false;
950 	} else {
951 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
952 		ah->globaltxtimeout = tu;
953 		return true;
954 	}
955 }
956 
957 void ath9k_hw_init_global_settings(struct ath_hw *ah)
958 {
959 	struct ath_common *common = ath9k_hw_common(ah);
960 	struct ieee80211_conf *conf = &common->hw->conf;
961 	const struct ath9k_channel *chan = ah->curchan;
962 	int acktimeout;
963 	int slottime;
964 	int sifstime;
965 	int rx_lat = 0, tx_lat = 0, eifs = 0;
966 	u32 reg;
967 
968 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
969 		ah->misc_mode);
970 
971 	if (!chan)
972 		return;
973 
974 	if (ah->misc_mode != 0)
975 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
976 
977 	rx_lat = 37;
978 	tx_lat = 54;
979 
980 	if (IS_CHAN_HALF_RATE(chan)) {
981 		eifs = 175;
982 		rx_lat *= 2;
983 		tx_lat *= 2;
984 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
985 		    tx_lat += 11;
986 
987 		slottime = 13;
988 		sifstime = 32;
989 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
990 		eifs = 340;
991 		rx_lat *= 4;
992 		tx_lat *= 4;
993 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
994 		    tx_lat += 22;
995 
996 		slottime = 21;
997 		sifstime = 64;
998 	} else {
999 		eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS);
1000 		reg = REG_READ(ah, AR_USEC);
1001 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1002 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1003 
1004 		slottime = ah->slottime;
1005 		if (IS_CHAN_5GHZ(chan))
1006 			sifstime = 16;
1007 		else
1008 			sifstime = 10;
1009 	}
1010 
1011 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1012 	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
1013 
1014 	/*
1015 	 * Workaround for early ACK timeouts, add an offset to match the
1016 	 * initval's 64us ack timeout value.
1017 	 * This was initially only meant to work around an issue with delayed
1018 	 * BA frames in some implementations, but it has been found to fix ACK
1019 	 * timeout issues in other cases as well.
1020 	 */
1021 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1022 		acktimeout += 64 - sifstime - ah->slottime;
1023 
1024 	ath9k_hw_set_sifs_time(ah, sifstime);
1025 	ath9k_hw_setslottime(ah, slottime);
1026 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1027 	ath9k_hw_set_cts_timeout(ah, acktimeout);
1028 	if (ah->globaltxtimeout != (u32) -1)
1029 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1030 
1031 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1032 	REG_RMW(ah, AR_USEC,
1033 		(common->clockrate - 1) |
1034 		SM(rx_lat, AR_USEC_RX_LAT) |
1035 		SM(tx_lat, AR_USEC_TX_LAT),
1036 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1037 
1038 }
1039 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1040 
1041 void ath9k_hw_deinit(struct ath_hw *ah)
1042 {
1043 	struct ath_common *common = ath9k_hw_common(ah);
1044 
1045 	if (common->state < ATH_HW_INITIALIZED)
1046 		goto free_hw;
1047 
1048 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1049 
1050 free_hw:
1051 	ath9k_hw_rf_free_ext_banks(ah);
1052 }
1053 EXPORT_SYMBOL(ath9k_hw_deinit);
1054 
1055 /*******/
1056 /* INI */
1057 /*******/
1058 
1059 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1060 {
1061 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1062 
1063 	if (IS_CHAN_B(chan))
1064 		ctl |= CTL_11B;
1065 	else if (IS_CHAN_G(chan))
1066 		ctl |= CTL_11G;
1067 	else
1068 		ctl |= CTL_11A;
1069 
1070 	return ctl;
1071 }
1072 
1073 /****************************************/
1074 /* Reset and Channel Switching Routines */
1075 /****************************************/
1076 
1077 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1078 {
1079 	struct ath_common *common = ath9k_hw_common(ah);
1080 
1081 	ENABLE_REGWRITE_BUFFER(ah);
1082 
1083 	/*
1084 	 * set AHB_MODE not to do cacheline prefetches
1085 	*/
1086 	if (!AR_SREV_9300_20_OR_LATER(ah))
1087 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1088 
1089 	/*
1090 	 * let mac dma reads be in 128 byte chunks
1091 	 */
1092 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1093 
1094 	REGWRITE_BUFFER_FLUSH(ah);
1095 
1096 	/*
1097 	 * Restore TX Trigger Level to its pre-reset value.
1098 	 * The initial value depends on whether aggregation is enabled, and is
1099 	 * adjusted whenever underruns are detected.
1100 	 */
1101 	if (!AR_SREV_9300_20_OR_LATER(ah))
1102 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1103 
1104 	ENABLE_REGWRITE_BUFFER(ah);
1105 
1106 	/*
1107 	 * let mac dma writes be in 128 byte chunks
1108 	 */
1109 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1110 
1111 	/*
1112 	 * Setup receive FIFO threshold to hold off TX activities
1113 	 */
1114 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1115 
1116 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1117 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1118 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1119 
1120 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1121 			ah->caps.rx_status_len);
1122 	}
1123 
1124 	/*
1125 	 * reduce the number of usable entries in PCU TXBUF to avoid
1126 	 * wrap around issues.
1127 	 */
1128 	if (AR_SREV_9285(ah)) {
1129 		/* For AR9285 the number of Fifos are reduced to half.
1130 		 * So set the usable tx buf size also to half to
1131 		 * avoid data/delimiter underruns
1132 		 */
1133 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1134 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1135 	} else if (!AR_SREV_9271(ah)) {
1136 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1137 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1138 	}
1139 
1140 	REGWRITE_BUFFER_FLUSH(ah);
1141 
1142 	if (AR_SREV_9300_20_OR_LATER(ah))
1143 		ath9k_hw_reset_txstatus_ring(ah);
1144 }
1145 
1146 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1147 {
1148 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1149 	u32 set = AR_STA_ID1_KSRCH_MODE;
1150 
1151 	switch (opmode) {
1152 	case NL80211_IFTYPE_ADHOC:
1153 	case NL80211_IFTYPE_MESH_POINT:
1154 		set |= AR_STA_ID1_ADHOC;
1155 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1156 		break;
1157 	case NL80211_IFTYPE_AP:
1158 		set |= AR_STA_ID1_STA_AP;
1159 		/* fall through */
1160 	case NL80211_IFTYPE_STATION:
1161 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1162 		break;
1163 	default:
1164 		if (!ah->is_monitoring)
1165 			set = 0;
1166 		break;
1167 	}
1168 	REG_RMW(ah, AR_STA_ID1, set, mask);
1169 }
1170 
1171 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1172 				   u32 *coef_mantissa, u32 *coef_exponent)
1173 {
1174 	u32 coef_exp, coef_man;
1175 
1176 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1177 		if ((coef_scaled >> coef_exp) & 0x1)
1178 			break;
1179 
1180 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1181 
1182 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1183 
1184 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1185 	*coef_exponent = coef_exp - 16;
1186 }
1187 
1188 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1189 {
1190 	u32 rst_flags;
1191 	u32 tmpReg;
1192 
1193 	if (AR_SREV_9100(ah)) {
1194 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1195 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1196 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1197 	}
1198 
1199 	ENABLE_REGWRITE_BUFFER(ah);
1200 
1201 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1202 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1203 		udelay(10);
1204 	}
1205 
1206 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1207 		  AR_RTC_FORCE_WAKE_ON_INT);
1208 
1209 	if (AR_SREV_9100(ah)) {
1210 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1211 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1212 	} else {
1213 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1214 		if (tmpReg &
1215 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1216 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1217 			u32 val;
1218 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1219 
1220 			val = AR_RC_HOSTIF;
1221 			if (!AR_SREV_9300_20_OR_LATER(ah))
1222 				val |= AR_RC_AHB;
1223 			REG_WRITE(ah, AR_RC, val);
1224 
1225 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1226 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1227 
1228 		rst_flags = AR_RTC_RC_MAC_WARM;
1229 		if (type == ATH9K_RESET_COLD)
1230 			rst_flags |= AR_RTC_RC_MAC_COLD;
1231 	}
1232 
1233 	if (AR_SREV_9330(ah)) {
1234 		int npend = 0;
1235 		int i;
1236 
1237 		/* AR9330 WAR:
1238 		 * call external reset function to reset WMAC if:
1239 		 * - doing a cold reset
1240 		 * - we have pending frames in the TX queues
1241 		 */
1242 
1243 		for (i = 0; i < AR_NUM_QCU; i++) {
1244 			npend = ath9k_hw_numtxpending(ah, i);
1245 			if (npend)
1246 				break;
1247 		}
1248 
1249 		if (ah->external_reset &&
1250 		    (npend || type == ATH9K_RESET_COLD)) {
1251 			int reset_err = 0;
1252 
1253 			ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1254 				"reset MAC via external reset\n");
1255 
1256 			reset_err = ah->external_reset();
1257 			if (reset_err) {
1258 				ath_err(ath9k_hw_common(ah),
1259 					"External reset failed, err=%d\n",
1260 					reset_err);
1261 				return false;
1262 			}
1263 
1264 			REG_WRITE(ah, AR_RTC_RESET, 1);
1265 		}
1266 	}
1267 
1268 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1269 
1270 	REGWRITE_BUFFER_FLUSH(ah);
1271 
1272 	udelay(50);
1273 
1274 	REG_WRITE(ah, AR_RTC_RC, 0);
1275 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1276 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1277 			"RTC stuck in MAC reset\n");
1278 		return false;
1279 	}
1280 
1281 	if (!AR_SREV_9100(ah))
1282 		REG_WRITE(ah, AR_RC, 0);
1283 
1284 	if (AR_SREV_9100(ah))
1285 		udelay(50);
1286 
1287 	return true;
1288 }
1289 
1290 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1291 {
1292 	ENABLE_REGWRITE_BUFFER(ah);
1293 
1294 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1295 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1296 		udelay(10);
1297 	}
1298 
1299 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1300 		  AR_RTC_FORCE_WAKE_ON_INT);
1301 
1302 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1303 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1304 
1305 	REG_WRITE(ah, AR_RTC_RESET, 0);
1306 
1307 	REGWRITE_BUFFER_FLUSH(ah);
1308 
1309 	if (!AR_SREV_9300_20_OR_LATER(ah))
1310 		udelay(2);
1311 
1312 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1313 		REG_WRITE(ah, AR_RC, 0);
1314 
1315 	REG_WRITE(ah, AR_RTC_RESET, 1);
1316 
1317 	if (!ath9k_hw_wait(ah,
1318 			   AR_RTC_STATUS,
1319 			   AR_RTC_STATUS_M,
1320 			   AR_RTC_STATUS_ON,
1321 			   AH_WAIT_TIMEOUT)) {
1322 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1323 			"RTC not waking up\n");
1324 		return false;
1325 	}
1326 
1327 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1328 }
1329 
1330 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1331 {
1332 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1333 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1334 		udelay(10);
1335 	}
1336 
1337 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1338 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1339 
1340 	switch (type) {
1341 	case ATH9K_RESET_POWER_ON:
1342 		return ath9k_hw_set_reset_power_on(ah);
1343 	case ATH9K_RESET_WARM:
1344 	case ATH9K_RESET_COLD:
1345 		return ath9k_hw_set_reset(ah, type);
1346 	default:
1347 		return false;
1348 	}
1349 }
1350 
1351 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1352 				struct ath9k_channel *chan)
1353 {
1354 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1355 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1356 			return false;
1357 	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1358 		return false;
1359 
1360 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1361 		return false;
1362 
1363 	ah->chip_fullsleep = false;
1364 	ath9k_hw_init_pll(ah, chan);
1365 	ath9k_hw_set_rfmode(ah, chan);
1366 
1367 	return true;
1368 }
1369 
1370 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1371 				    struct ath9k_channel *chan)
1372 {
1373 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1374 	struct ath_common *common = ath9k_hw_common(ah);
1375 	struct ieee80211_channel *channel = chan->chan;
1376 	u32 qnum;
1377 	int r;
1378 
1379 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1380 		if (ath9k_hw_numtxpending(ah, qnum)) {
1381 			ath_dbg(common, ATH_DBG_QUEUE,
1382 				"Transmit frames pending on queue %d\n", qnum);
1383 			return false;
1384 		}
1385 	}
1386 
1387 	if (!ath9k_hw_rfbus_req(ah)) {
1388 		ath_err(common, "Could not kill baseband RX\n");
1389 		return false;
1390 	}
1391 
1392 	ath9k_hw_set_channel_regs(ah, chan);
1393 
1394 	r = ath9k_hw_rf_set_freq(ah, chan);
1395 	if (r) {
1396 		ath_err(common, "Failed to set channel\n");
1397 		return false;
1398 	}
1399 	ath9k_hw_set_clockrate(ah);
1400 
1401 	ah->eep_ops->set_txpower(ah, chan,
1402 			     ath9k_regd_get_ctl(regulatory, chan),
1403 			     channel->max_antenna_gain * 2,
1404 			     channel->max_power * 2,
1405 			     min((u32) MAX_RATE_POWER,
1406 			     (u32) regulatory->power_limit), false);
1407 
1408 	ath9k_hw_rfbus_done(ah);
1409 
1410 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1411 		ath9k_hw_set_delta_slope(ah, chan);
1412 
1413 	ath9k_hw_spur_mitigate_freq(ah, chan);
1414 
1415 	return true;
1416 }
1417 
1418 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1419 {
1420 	u32 gpio_mask = ah->gpio_mask;
1421 	int i;
1422 
1423 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1424 		if (!(gpio_mask & 1))
1425 			continue;
1426 
1427 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1428 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1429 	}
1430 }
1431 
1432 bool ath9k_hw_check_alive(struct ath_hw *ah)
1433 {
1434 	int count = 50;
1435 	u32 reg;
1436 
1437 	if (AR_SREV_9285_12_OR_LATER(ah))
1438 		return true;
1439 
1440 	do {
1441 		reg = REG_READ(ah, AR_OBS_BUS_1);
1442 
1443 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1444 			continue;
1445 
1446 		switch (reg & 0x7E000B00) {
1447 		case 0x1E000000:
1448 		case 0x52000B00:
1449 		case 0x18000B00:
1450 			continue;
1451 		default:
1452 			return true;
1453 		}
1454 	} while (count-- > 0);
1455 
1456 	return false;
1457 }
1458 EXPORT_SYMBOL(ath9k_hw_check_alive);
1459 
1460 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1461 		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1462 {
1463 	struct ath_common *common = ath9k_hw_common(ah);
1464 	u32 saveLedState;
1465 	struct ath9k_channel *curchan = ah->curchan;
1466 	u32 saveDefAntenna;
1467 	u32 macStaId1;
1468 	u64 tsf = 0;
1469 	int i, r;
1470 
1471 	ah->txchainmask = common->tx_chainmask;
1472 	ah->rxchainmask = common->rx_chainmask;
1473 
1474 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1475 		return -EIO;
1476 
1477 	if (curchan && !ah->chip_fullsleep)
1478 		ath9k_hw_getnf(ah, curchan);
1479 
1480 	ah->caldata = caldata;
1481 	if (caldata &&
1482 	    (chan->channel != caldata->channel ||
1483 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1484 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1485 		/* Operating channel changed, reset channel calibration data */
1486 		memset(caldata, 0, sizeof(*caldata));
1487 		ath9k_init_nfcal_hist_buffer(ah, chan);
1488 	}
1489 
1490 	if (bChannelChange &&
1491 	    (ah->chip_fullsleep != true) &&
1492 	    (ah->curchan != NULL) &&
1493 	    (chan->channel != ah->curchan->channel) &&
1494 	    ((chan->channelFlags & CHANNEL_ALL) ==
1495 	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1496 	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1497 
1498 		if (ath9k_hw_channel_change(ah, chan)) {
1499 			ath9k_hw_loadnf(ah, ah->curchan);
1500 			ath9k_hw_start_nfcal(ah, true);
1501 			if (AR_SREV_9271(ah))
1502 				ar9002_hw_load_ani_reg(ah, chan);
1503 			return 0;
1504 		}
1505 	}
1506 
1507 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1508 	if (saveDefAntenna == 0)
1509 		saveDefAntenna = 1;
1510 
1511 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1512 
1513 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1514 	if (AR_SREV_9100(ah) ||
1515 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1516 		tsf = ath9k_hw_gettsf64(ah);
1517 
1518 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1519 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1520 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1521 
1522 	ath9k_hw_mark_phy_inactive(ah);
1523 
1524 	ah->paprd_table_write_done = false;
1525 
1526 	/* Only required on the first reset */
1527 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1528 		REG_WRITE(ah,
1529 			  AR9271_RESET_POWER_DOWN_CONTROL,
1530 			  AR9271_RADIO_RF_RST);
1531 		udelay(50);
1532 	}
1533 
1534 	if (!ath9k_hw_chip_reset(ah, chan)) {
1535 		ath_err(common, "Chip reset failed\n");
1536 		return -EINVAL;
1537 	}
1538 
1539 	/* Only required on the first reset */
1540 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1541 		ah->htc_reset_init = false;
1542 		REG_WRITE(ah,
1543 			  AR9271_RESET_POWER_DOWN_CONTROL,
1544 			  AR9271_GATE_MAC_CTL);
1545 		udelay(50);
1546 	}
1547 
1548 	/* Restore TSF */
1549 	if (tsf)
1550 		ath9k_hw_settsf64(ah, tsf);
1551 
1552 	if (AR_SREV_9280_20_OR_LATER(ah))
1553 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1554 
1555 	if (!AR_SREV_9300_20_OR_LATER(ah))
1556 		ar9002_hw_enable_async_fifo(ah);
1557 
1558 	r = ath9k_hw_process_ini(ah, chan);
1559 	if (r)
1560 		return r;
1561 
1562 	/*
1563 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1564 	 * right after the chip reset. When that happens, write a new
1565 	 * value after the initvals have been applied, with an offset
1566 	 * based on measured time difference
1567 	 */
1568 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1569 		tsf += 1500;
1570 		ath9k_hw_settsf64(ah, tsf);
1571 	}
1572 
1573 	/* Setup MFP options for CCMP */
1574 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1575 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1576 		 * frames when constructing CCMP AAD. */
1577 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1578 			      0xc7ff);
1579 		ah->sw_mgmt_crypto = false;
1580 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1581 		/* Disable hardware crypto for management frames */
1582 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1583 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1584 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1585 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1586 		ah->sw_mgmt_crypto = true;
1587 	} else
1588 		ah->sw_mgmt_crypto = true;
1589 
1590 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1591 		ath9k_hw_set_delta_slope(ah, chan);
1592 
1593 	ath9k_hw_spur_mitigate_freq(ah, chan);
1594 	ah->eep_ops->set_board_values(ah, chan);
1595 
1596 	ENABLE_REGWRITE_BUFFER(ah);
1597 
1598 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1599 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1600 		  | macStaId1
1601 		  | AR_STA_ID1_RTS_USE_DEF
1602 		  | (ah->config.
1603 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1604 		  | ah->sta_id1_defaults);
1605 	ath_hw_setbssidmask(common);
1606 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1607 	ath9k_hw_write_associd(ah);
1608 	REG_WRITE(ah, AR_ISR, ~0);
1609 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1610 
1611 	REGWRITE_BUFFER_FLUSH(ah);
1612 
1613 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1614 
1615 	r = ath9k_hw_rf_set_freq(ah, chan);
1616 	if (r)
1617 		return r;
1618 
1619 	ath9k_hw_set_clockrate(ah);
1620 
1621 	ENABLE_REGWRITE_BUFFER(ah);
1622 
1623 	for (i = 0; i < AR_NUM_DCU; i++)
1624 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1625 
1626 	REGWRITE_BUFFER_FLUSH(ah);
1627 
1628 	ah->intr_txqs = 0;
1629 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1630 		ath9k_hw_resettxqueue(ah, i);
1631 
1632 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1633 	ath9k_hw_ani_cache_ini_regs(ah);
1634 	ath9k_hw_init_qos(ah);
1635 
1636 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1637 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1638 
1639 	ath9k_hw_init_global_settings(ah);
1640 
1641 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1642 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1643 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1644 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1645 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1646 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1647 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1648 	}
1649 
1650 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1651 
1652 	ath9k_hw_set_dma(ah);
1653 
1654 	REG_WRITE(ah, AR_OBS, 8);
1655 
1656 	if (ah->config.rx_intr_mitigation) {
1657 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1658 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1659 	}
1660 
1661 	if (ah->config.tx_intr_mitigation) {
1662 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1663 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1664 	}
1665 
1666 	ath9k_hw_init_bb(ah, chan);
1667 
1668 	if (!ath9k_hw_init_cal(ah, chan))
1669 		return -EIO;
1670 
1671 	ENABLE_REGWRITE_BUFFER(ah);
1672 
1673 	ath9k_hw_restore_chainmask(ah);
1674 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1675 
1676 	REGWRITE_BUFFER_FLUSH(ah);
1677 
1678 	/*
1679 	 * For big endian systems turn on swapping for descriptors
1680 	 */
1681 	if (AR_SREV_9100(ah)) {
1682 		u32 mask;
1683 		mask = REG_READ(ah, AR_CFG);
1684 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1685 			ath_dbg(common, ATH_DBG_RESET,
1686 				"CFG Byte Swap Set 0x%x\n", mask);
1687 		} else {
1688 			mask =
1689 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1690 			REG_WRITE(ah, AR_CFG, mask);
1691 			ath_dbg(common, ATH_DBG_RESET,
1692 				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1693 		}
1694 	} else {
1695 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1696 			/* Configure AR9271 target WLAN */
1697 			if (AR_SREV_9271(ah))
1698 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1699 			else
1700 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1701 		}
1702 #ifdef __BIG_ENDIAN
1703 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1704 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1705 		else
1706 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1707 #endif
1708 	}
1709 
1710 	if (ah->btcoex_hw.enabled)
1711 		ath9k_hw_btcoex_enable(ah);
1712 
1713 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1714 		ar9003_hw_bb_watchdog_config(ah);
1715 
1716 		ar9003_hw_disable_phy_restart(ah);
1717 	}
1718 
1719 	ath9k_hw_apply_gpio_override(ah);
1720 
1721 	return 0;
1722 }
1723 EXPORT_SYMBOL(ath9k_hw_reset);
1724 
1725 /******************************/
1726 /* Power Management (Chipset) */
1727 /******************************/
1728 
1729 /*
1730  * Notify Power Mgt is disabled in self-generated frames.
1731  * If requested, force chip to sleep.
1732  */
1733 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1734 {
1735 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1736 	if (setChip) {
1737 		/*
1738 		 * Clear the RTC force wake bit to allow the
1739 		 * mac to go to sleep.
1740 		 */
1741 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1742 			    AR_RTC_FORCE_WAKE_EN);
1743 		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1744 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1745 
1746 		/* Shutdown chip. Active low */
1747 		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1748 			REG_CLR_BIT(ah, (AR_RTC_RESET),
1749 				    AR_RTC_RESET_EN);
1750 	}
1751 
1752 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1753 	if (AR_SREV_9300_20_OR_LATER(ah))
1754 		REG_WRITE(ah, AR_WA,
1755 			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1756 }
1757 
1758 /*
1759  * Notify Power Management is enabled in self-generating
1760  * frames. If request, set power mode of chip to
1761  * auto/normal.  Duration in units of 128us (1/8 TU).
1762  */
1763 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1764 {
1765 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1766 	if (setChip) {
1767 		struct ath9k_hw_capabilities *pCap = &ah->caps;
1768 
1769 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1770 			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1771 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1772 				  AR_RTC_FORCE_WAKE_ON_INT);
1773 		} else {
1774 			/*
1775 			 * Clear the RTC force wake bit to allow the
1776 			 * mac to go to sleep.
1777 			 */
1778 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1779 				    AR_RTC_FORCE_WAKE_EN);
1780 		}
1781 	}
1782 
1783 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1784 	if (AR_SREV_9300_20_OR_LATER(ah))
1785 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1786 }
1787 
1788 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1789 {
1790 	u32 val;
1791 	int i;
1792 
1793 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1794 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1795 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1796 		udelay(10);
1797 	}
1798 
1799 	if (setChip) {
1800 		if ((REG_READ(ah, AR_RTC_STATUS) &
1801 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1802 			if (ath9k_hw_set_reset_reg(ah,
1803 					   ATH9K_RESET_POWER_ON) != true) {
1804 				return false;
1805 			}
1806 			if (!AR_SREV_9300_20_OR_LATER(ah))
1807 				ath9k_hw_init_pll(ah, NULL);
1808 		}
1809 		if (AR_SREV_9100(ah))
1810 			REG_SET_BIT(ah, AR_RTC_RESET,
1811 				    AR_RTC_RESET_EN);
1812 
1813 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1814 			    AR_RTC_FORCE_WAKE_EN);
1815 		udelay(50);
1816 
1817 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1818 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1819 			if (val == AR_RTC_STATUS_ON)
1820 				break;
1821 			udelay(50);
1822 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1823 				    AR_RTC_FORCE_WAKE_EN);
1824 		}
1825 		if (i == 0) {
1826 			ath_err(ath9k_hw_common(ah),
1827 				"Failed to wakeup in %uus\n",
1828 				POWER_UP_TIME / 20);
1829 			return false;
1830 		}
1831 	}
1832 
1833 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1834 
1835 	return true;
1836 }
1837 
1838 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1839 {
1840 	struct ath_common *common = ath9k_hw_common(ah);
1841 	int status = true, setChip = true;
1842 	static const char *modes[] = {
1843 		"AWAKE",
1844 		"FULL-SLEEP",
1845 		"NETWORK SLEEP",
1846 		"UNDEFINED"
1847 	};
1848 
1849 	if (ah->power_mode == mode)
1850 		return status;
1851 
1852 	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1853 		modes[ah->power_mode], modes[mode]);
1854 
1855 	switch (mode) {
1856 	case ATH9K_PM_AWAKE:
1857 		status = ath9k_hw_set_power_awake(ah, setChip);
1858 		break;
1859 	case ATH9K_PM_FULL_SLEEP:
1860 		ath9k_set_power_sleep(ah, setChip);
1861 		ah->chip_fullsleep = true;
1862 		break;
1863 	case ATH9K_PM_NETWORK_SLEEP:
1864 		ath9k_set_power_network_sleep(ah, setChip);
1865 		break;
1866 	default:
1867 		ath_err(common, "Unknown power mode %u\n", mode);
1868 		return false;
1869 	}
1870 	ah->power_mode = mode;
1871 
1872 	/*
1873 	 * XXX: If this warning never comes up after a while then
1874 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1875 	 * ath9k_hw_setpower() return type void.
1876 	 */
1877 
1878 	if (!(ah->ah_flags & AH_UNPLUGGED))
1879 		ATH_DBG_WARN_ON_ONCE(!status);
1880 
1881 	return status;
1882 }
1883 EXPORT_SYMBOL(ath9k_hw_setpower);
1884 
1885 /*******************/
1886 /* Beacon Handling */
1887 /*******************/
1888 
1889 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1890 {
1891 	int flags = 0;
1892 
1893 	ENABLE_REGWRITE_BUFFER(ah);
1894 
1895 	switch (ah->opmode) {
1896 	case NL80211_IFTYPE_ADHOC:
1897 	case NL80211_IFTYPE_MESH_POINT:
1898 		REG_SET_BIT(ah, AR_TXCFG,
1899 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1900 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
1901 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
1902 		flags |= AR_NDP_TIMER_EN;
1903 	case NL80211_IFTYPE_AP:
1904 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
1905 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
1906 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
1907 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
1908 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
1909 		flags |=
1910 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1911 		break;
1912 	default:
1913 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1914 			"%s: unsupported opmode: %d\n",
1915 			__func__, ah->opmode);
1916 		return;
1917 		break;
1918 	}
1919 
1920 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
1921 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
1922 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
1923 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
1924 
1925 	REGWRITE_BUFFER_FLUSH(ah);
1926 
1927 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1928 }
1929 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1930 
1931 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1932 				    const struct ath9k_beacon_state *bs)
1933 {
1934 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1935 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1936 	struct ath_common *common = ath9k_hw_common(ah);
1937 
1938 	ENABLE_REGWRITE_BUFFER(ah);
1939 
1940 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1941 
1942 	REG_WRITE(ah, AR_BEACON_PERIOD,
1943 		  TU_TO_USEC(bs->bs_intval));
1944 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1945 		  TU_TO_USEC(bs->bs_intval));
1946 
1947 	REGWRITE_BUFFER_FLUSH(ah);
1948 
1949 	REG_RMW_FIELD(ah, AR_RSSI_THR,
1950 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1951 
1952 	beaconintval = bs->bs_intval;
1953 
1954 	if (bs->bs_sleepduration > beaconintval)
1955 		beaconintval = bs->bs_sleepduration;
1956 
1957 	dtimperiod = bs->bs_dtimperiod;
1958 	if (bs->bs_sleepduration > dtimperiod)
1959 		dtimperiod = bs->bs_sleepduration;
1960 
1961 	if (beaconintval == dtimperiod)
1962 		nextTbtt = bs->bs_nextdtim;
1963 	else
1964 		nextTbtt = bs->bs_nexttbtt;
1965 
1966 	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1967 	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1968 	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1969 	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1970 
1971 	ENABLE_REGWRITE_BUFFER(ah);
1972 
1973 	REG_WRITE(ah, AR_NEXT_DTIM,
1974 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1975 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1976 
1977 	REG_WRITE(ah, AR_SLEEP1,
1978 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1979 		  | AR_SLEEP1_ASSUME_DTIM);
1980 
1981 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1982 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1983 	else
1984 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1985 
1986 	REG_WRITE(ah, AR_SLEEP2,
1987 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1988 
1989 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1990 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1991 
1992 	REGWRITE_BUFFER_FLUSH(ah);
1993 
1994 	REG_SET_BIT(ah, AR_TIMER_MODE,
1995 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1996 		    AR_DTIM_TIMER_EN);
1997 
1998 	/* TSF Out of Range Threshold */
1999 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2000 }
2001 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2002 
2003 /*******************/
2004 /* HW Capabilities */
2005 /*******************/
2006 
2007 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2008 {
2009 	eeprom_chainmask &= chip_chainmask;
2010 	if (eeprom_chainmask)
2011 		return eeprom_chainmask;
2012 	else
2013 		return chip_chainmask;
2014 }
2015 
2016 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2017 {
2018 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2019 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2020 	struct ath_common *common = ath9k_hw_common(ah);
2021 	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2022 	unsigned int chip_chainmask;
2023 
2024 	u16 eeval;
2025 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2026 
2027 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2028 	regulatory->current_rd = eeval;
2029 
2030 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2031 	if (AR_SREV_9285_12_OR_LATER(ah))
2032 		eeval |= AR9285_RDEXT_DEFAULT;
2033 	regulatory->current_rd_ext = eeval;
2034 
2035 	if (ah->opmode != NL80211_IFTYPE_AP &&
2036 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2037 		if (regulatory->current_rd == 0x64 ||
2038 		    regulatory->current_rd == 0x65)
2039 			regulatory->current_rd += 5;
2040 		else if (regulatory->current_rd == 0x41)
2041 			regulatory->current_rd = 0x43;
2042 		ath_dbg(common, ATH_DBG_REGULATORY,
2043 			"regdomain mapped to 0x%x\n", regulatory->current_rd);
2044 	}
2045 
2046 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2047 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2048 		ath_err(common,
2049 			"no band has been marked as supported in EEPROM\n");
2050 		return -EINVAL;
2051 	}
2052 
2053 	if (eeval & AR5416_OPFLAGS_11A)
2054 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2055 
2056 	if (eeval & AR5416_OPFLAGS_11G)
2057 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2058 
2059 	if (AR_SREV_9485(ah) || AR_SREV_9285(ah) || AR_SREV_9330(ah))
2060 		chip_chainmask = 1;
2061 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2062 		chip_chainmask = 7;
2063 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2064 		chip_chainmask = 3;
2065 	else
2066 		chip_chainmask = 7;
2067 
2068 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2069 	/*
2070 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2071 	 * the EEPROM.
2072 	 */
2073 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2074 	    !(eeval & AR5416_OPFLAGS_11A) &&
2075 	    !(AR_SREV_9271(ah)))
2076 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2077 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2078 	else if (AR_SREV_9100(ah))
2079 		pCap->rx_chainmask = 0x7;
2080 	else
2081 		/* Use rx_chainmask from EEPROM. */
2082 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2083 
2084 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2085 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2086 
2087 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2088 
2089 	/* enable key search for every frame in an aggregate */
2090 	if (AR_SREV_9300_20_OR_LATER(ah))
2091 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2092 
2093 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2094 
2095 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2096 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2097 	else
2098 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2099 
2100 	if (AR_SREV_9271(ah))
2101 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2102 	else if (AR_DEVID_7010(ah))
2103 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2104 	else if (AR_SREV_9285_12_OR_LATER(ah))
2105 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2106 	else if (AR_SREV_9280_20_OR_LATER(ah))
2107 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2108 	else
2109 		pCap->num_gpio_pins = AR_NUM_GPIO;
2110 
2111 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2112 		pCap->hw_caps |= ATH9K_HW_CAP_CST;
2113 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2114 	} else {
2115 		pCap->rts_aggr_limit = (8 * 1024);
2116 	}
2117 
2118 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2119 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2120 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2121 		ah->rfkill_gpio =
2122 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2123 		ah->rfkill_polarity =
2124 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2125 
2126 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2127 	}
2128 #endif
2129 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2130 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2131 	else
2132 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2133 
2134 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2135 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2136 	else
2137 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2138 
2139 	if (common->btcoex_enabled) {
2140 		if (AR_SREV_9300_20_OR_LATER(ah)) {
2141 			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2142 			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
2143 			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
2144 			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
2145 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
2146 			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
2147 			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
2148 
2149 			if (AR_SREV_9285(ah)) {
2150 				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2151 				btcoex_hw->btpriority_gpio =
2152 						ATH_BTPRIORITY_GPIO_9285;
2153 			} else {
2154 				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2155 			}
2156 		}
2157 	} else {
2158 		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2159 	}
2160 
2161 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2162 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2163 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2164 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2165 
2166 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2167 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2168 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2169 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2170 		pCap->txs_len = sizeof(struct ar9003_txs);
2171 		if (!ah->config.paprd_disable &&
2172 		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2173 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2174 	} else {
2175 		pCap->tx_desc_len = sizeof(struct ath_desc);
2176 		if (AR_SREV_9280_20(ah))
2177 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2178 	}
2179 
2180 	if (AR_SREV_9300_20_OR_LATER(ah))
2181 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2182 
2183 	if (AR_SREV_9300_20_OR_LATER(ah))
2184 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2185 
2186 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2187 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2188 
2189 	if (AR_SREV_9285(ah))
2190 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2191 			ant_div_ctl1 =
2192 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2193 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2194 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2195 		}
2196 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2197 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2198 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2199 	}
2200 
2201 
2202 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2203 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2204 		/*
2205 		 * enable the diversity-combining algorithm only when
2206 		 * both enable_lna_div and enable_fast_div are set
2207 		 *		Table for Diversity
2208 		 * ant_div_alt_lnaconf		bit 0-1
2209 		 * ant_div_main_lnaconf		bit 2-3
2210 		 * ant_div_alt_gaintb		bit 4
2211 		 * ant_div_main_gaintb		bit 5
2212 		 * enable_ant_div_lnadiv	bit 6
2213 		 * enable_ant_fast_div		bit 7
2214 		 */
2215 		if ((ant_div_ctl1 >> 0x6) == 0x3)
2216 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2217 	}
2218 
2219 	if (AR_SREV_9485_10(ah)) {
2220 		pCap->pcie_lcr_extsync_en = true;
2221 		pCap->pcie_lcr_offset = 0x80;
2222 	}
2223 
2224 	tx_chainmask = pCap->tx_chainmask;
2225 	rx_chainmask = pCap->rx_chainmask;
2226 	while (tx_chainmask || rx_chainmask) {
2227 		if (tx_chainmask & BIT(0))
2228 			pCap->max_txchains++;
2229 		if (rx_chainmask & BIT(0))
2230 			pCap->max_rxchains++;
2231 
2232 		tx_chainmask >>= 1;
2233 		rx_chainmask >>= 1;
2234 	}
2235 
2236 	return 0;
2237 }
2238 
2239 /****************************/
2240 /* GPIO / RFKILL / Antennae */
2241 /****************************/
2242 
2243 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2244 					 u32 gpio, u32 type)
2245 {
2246 	int addr;
2247 	u32 gpio_shift, tmp;
2248 
2249 	if (gpio > 11)
2250 		addr = AR_GPIO_OUTPUT_MUX3;
2251 	else if (gpio > 5)
2252 		addr = AR_GPIO_OUTPUT_MUX2;
2253 	else
2254 		addr = AR_GPIO_OUTPUT_MUX1;
2255 
2256 	gpio_shift = (gpio % 6) * 5;
2257 
2258 	if (AR_SREV_9280_20_OR_LATER(ah)
2259 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2260 		REG_RMW(ah, addr, (type << gpio_shift),
2261 			(0x1f << gpio_shift));
2262 	} else {
2263 		tmp = REG_READ(ah, addr);
2264 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2265 		tmp &= ~(0x1f << gpio_shift);
2266 		tmp |= (type << gpio_shift);
2267 		REG_WRITE(ah, addr, tmp);
2268 	}
2269 }
2270 
2271 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2272 {
2273 	u32 gpio_shift;
2274 
2275 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2276 
2277 	if (AR_DEVID_7010(ah)) {
2278 		gpio_shift = gpio;
2279 		REG_RMW(ah, AR7010_GPIO_OE,
2280 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2281 			(AR7010_GPIO_OE_MASK << gpio_shift));
2282 		return;
2283 	}
2284 
2285 	gpio_shift = gpio << 1;
2286 	REG_RMW(ah,
2287 		AR_GPIO_OE_OUT,
2288 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2289 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2290 }
2291 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2292 
2293 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2294 {
2295 #define MS_REG_READ(x, y) \
2296 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2297 
2298 	if (gpio >= ah->caps.num_gpio_pins)
2299 		return 0xffffffff;
2300 
2301 	if (AR_DEVID_7010(ah)) {
2302 		u32 val;
2303 		val = REG_READ(ah, AR7010_GPIO_IN);
2304 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2305 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2306 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2307 			AR_GPIO_BIT(gpio)) != 0;
2308 	else if (AR_SREV_9271(ah))
2309 		return MS_REG_READ(AR9271, gpio) != 0;
2310 	else if (AR_SREV_9287_11_OR_LATER(ah))
2311 		return MS_REG_READ(AR9287, gpio) != 0;
2312 	else if (AR_SREV_9285_12_OR_LATER(ah))
2313 		return MS_REG_READ(AR9285, gpio) != 0;
2314 	else if (AR_SREV_9280_20_OR_LATER(ah))
2315 		return MS_REG_READ(AR928X, gpio) != 0;
2316 	else
2317 		return MS_REG_READ(AR, gpio) != 0;
2318 }
2319 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2320 
2321 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2322 			 u32 ah_signal_type)
2323 {
2324 	u32 gpio_shift;
2325 
2326 	if (AR_DEVID_7010(ah)) {
2327 		gpio_shift = gpio;
2328 		REG_RMW(ah, AR7010_GPIO_OE,
2329 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2330 			(AR7010_GPIO_OE_MASK << gpio_shift));
2331 		return;
2332 	}
2333 
2334 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2335 	gpio_shift = 2 * gpio;
2336 	REG_RMW(ah,
2337 		AR_GPIO_OE_OUT,
2338 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2339 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2340 }
2341 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2342 
2343 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2344 {
2345 	if (AR_DEVID_7010(ah)) {
2346 		val = val ? 0 : 1;
2347 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2348 			AR_GPIO_BIT(gpio));
2349 		return;
2350 	}
2351 
2352 	if (AR_SREV_9271(ah))
2353 		val = ~val;
2354 
2355 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2356 		AR_GPIO_BIT(gpio));
2357 }
2358 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2359 
2360 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2361 {
2362 	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2363 }
2364 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2365 
2366 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2367 {
2368 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2369 }
2370 EXPORT_SYMBOL(ath9k_hw_setantenna);
2371 
2372 /*********************/
2373 /* General Operation */
2374 /*********************/
2375 
2376 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2377 {
2378 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2379 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2380 
2381 	if (phybits & AR_PHY_ERR_RADAR)
2382 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2383 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2384 		bits |= ATH9K_RX_FILTER_PHYERR;
2385 
2386 	return bits;
2387 }
2388 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2389 
2390 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2391 {
2392 	u32 phybits;
2393 
2394 	ENABLE_REGWRITE_BUFFER(ah);
2395 
2396 	REG_WRITE(ah, AR_RX_FILTER, bits);
2397 
2398 	phybits = 0;
2399 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2400 		phybits |= AR_PHY_ERR_RADAR;
2401 	if (bits & ATH9K_RX_FILTER_PHYERR)
2402 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2403 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2404 
2405 	if (phybits)
2406 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2407 	else
2408 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2409 
2410 	REGWRITE_BUFFER_FLUSH(ah);
2411 }
2412 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2413 
2414 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2415 {
2416 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2417 		return false;
2418 
2419 	ath9k_hw_init_pll(ah, NULL);
2420 	return true;
2421 }
2422 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2423 
2424 bool ath9k_hw_disable(struct ath_hw *ah)
2425 {
2426 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2427 		return false;
2428 
2429 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2430 		return false;
2431 
2432 	ath9k_hw_init_pll(ah, NULL);
2433 	return true;
2434 }
2435 EXPORT_SYMBOL(ath9k_hw_disable);
2436 
2437 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2438 {
2439 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2440 	struct ath9k_channel *chan = ah->curchan;
2441 	struct ieee80211_channel *channel = chan->chan;
2442 
2443 	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2444 
2445 	ah->eep_ops->set_txpower(ah, chan,
2446 				 ath9k_regd_get_ctl(regulatory, chan),
2447 				 channel->max_antenna_gain * 2,
2448 				 channel->max_power * 2,
2449 				 min((u32) MAX_RATE_POWER,
2450 				 (u32) regulatory->power_limit), test);
2451 }
2452 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2453 
2454 void ath9k_hw_setopmode(struct ath_hw *ah)
2455 {
2456 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2457 }
2458 EXPORT_SYMBOL(ath9k_hw_setopmode);
2459 
2460 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2461 {
2462 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2463 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2464 }
2465 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2466 
2467 void ath9k_hw_write_associd(struct ath_hw *ah)
2468 {
2469 	struct ath_common *common = ath9k_hw_common(ah);
2470 
2471 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2472 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2473 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2474 }
2475 EXPORT_SYMBOL(ath9k_hw_write_associd);
2476 
2477 #define ATH9K_MAX_TSF_READ 10
2478 
2479 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2480 {
2481 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2482 	int i;
2483 
2484 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2485 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2486 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2487 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2488 		if (tsf_upper2 == tsf_upper1)
2489 			break;
2490 		tsf_upper1 = tsf_upper2;
2491 	}
2492 
2493 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2494 
2495 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2496 }
2497 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2498 
2499 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2500 {
2501 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2502 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2503 }
2504 EXPORT_SYMBOL(ath9k_hw_settsf64);
2505 
2506 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2507 {
2508 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2509 			   AH_TSF_WRITE_TIMEOUT))
2510 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2511 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2512 
2513 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2514 }
2515 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2516 
2517 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2518 {
2519 	if (setting)
2520 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2521 	else
2522 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2523 }
2524 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2525 
2526 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2527 {
2528 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2529 	u32 macmode;
2530 
2531 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2532 		macmode = AR_2040_JOINED_RX_CLEAR;
2533 	else
2534 		macmode = 0;
2535 
2536 	REG_WRITE(ah, AR_2040_MODE, macmode);
2537 }
2538 
2539 /* HW Generic timers configuration */
2540 
2541 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2542 {
2543 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2544 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2545 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2546 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2547 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2548 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2549 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2550 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2551 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2552 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2553 				AR_NDP2_TIMER_MODE, 0x0002},
2554 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2555 				AR_NDP2_TIMER_MODE, 0x0004},
2556 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2557 				AR_NDP2_TIMER_MODE, 0x0008},
2558 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2559 				AR_NDP2_TIMER_MODE, 0x0010},
2560 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2561 				AR_NDP2_TIMER_MODE, 0x0020},
2562 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2563 				AR_NDP2_TIMER_MODE, 0x0040},
2564 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2565 				AR_NDP2_TIMER_MODE, 0x0080}
2566 };
2567 
2568 /* HW generic timer primitives */
2569 
2570 /* compute and clear index of rightmost 1 */
2571 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2572 {
2573 	u32 b;
2574 
2575 	b = *mask;
2576 	b &= (0-b);
2577 	*mask &= ~b;
2578 	b *= debruijn32;
2579 	b >>= 27;
2580 
2581 	return timer_table->gen_timer_index[b];
2582 }
2583 
2584 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2585 {
2586 	return REG_READ(ah, AR_TSF_L32);
2587 }
2588 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2589 
2590 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2591 					  void (*trigger)(void *),
2592 					  void (*overflow)(void *),
2593 					  void *arg,
2594 					  u8 timer_index)
2595 {
2596 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2597 	struct ath_gen_timer *timer;
2598 
2599 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2600 
2601 	if (timer == NULL) {
2602 		ath_err(ath9k_hw_common(ah),
2603 			"Failed to allocate memory for hw timer[%d]\n",
2604 			timer_index);
2605 		return NULL;
2606 	}
2607 
2608 	/* allocate a hardware generic timer slot */
2609 	timer_table->timers[timer_index] = timer;
2610 	timer->index = timer_index;
2611 	timer->trigger = trigger;
2612 	timer->overflow = overflow;
2613 	timer->arg = arg;
2614 
2615 	return timer;
2616 }
2617 EXPORT_SYMBOL(ath_gen_timer_alloc);
2618 
2619 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2620 			      struct ath_gen_timer *timer,
2621 			      u32 trig_timeout,
2622 			      u32 timer_period)
2623 {
2624 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2625 	u32 tsf, timer_next;
2626 
2627 	BUG_ON(!timer_period);
2628 
2629 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2630 
2631 	tsf = ath9k_hw_gettsf32(ah);
2632 
2633 	timer_next = tsf + trig_timeout;
2634 
2635 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2636 		"current tsf %x period %x timer_next %x\n",
2637 		tsf, timer_period, timer_next);
2638 
2639 	/*
2640 	 * Program generic timer registers
2641 	 */
2642 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2643 		 timer_next);
2644 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2645 		  timer_period);
2646 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2647 		    gen_tmr_configuration[timer->index].mode_mask);
2648 
2649 	/* Enable both trigger and thresh interrupt masks */
2650 	REG_SET_BIT(ah, AR_IMR_S5,
2651 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2652 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2653 }
2654 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2655 
2656 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2657 {
2658 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2659 
2660 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2661 		(timer->index >= ATH_MAX_GEN_TIMER)) {
2662 		return;
2663 	}
2664 
2665 	/* Clear generic timer enable bits. */
2666 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2667 			gen_tmr_configuration[timer->index].mode_mask);
2668 
2669 	/* Disable both trigger and thresh interrupt masks */
2670 	REG_CLR_BIT(ah, AR_IMR_S5,
2671 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2672 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2673 
2674 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2675 }
2676 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2677 
2678 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2679 {
2680 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2681 
2682 	/* free the hardware generic timer slot */
2683 	timer_table->timers[timer->index] = NULL;
2684 	kfree(timer);
2685 }
2686 EXPORT_SYMBOL(ath_gen_timer_free);
2687 
2688 /*
2689  * Generic Timer Interrupts handling
2690  */
2691 void ath_gen_timer_isr(struct ath_hw *ah)
2692 {
2693 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2694 	struct ath_gen_timer *timer;
2695 	struct ath_common *common = ath9k_hw_common(ah);
2696 	u32 trigger_mask, thresh_mask, index;
2697 
2698 	/* get hardware generic timer interrupt status */
2699 	trigger_mask = ah->intr_gen_timer_trigger;
2700 	thresh_mask = ah->intr_gen_timer_thresh;
2701 	trigger_mask &= timer_table->timer_mask.val;
2702 	thresh_mask &= timer_table->timer_mask.val;
2703 
2704 	trigger_mask &= ~thresh_mask;
2705 
2706 	while (thresh_mask) {
2707 		index = rightmost_index(timer_table, &thresh_mask);
2708 		timer = timer_table->timers[index];
2709 		BUG_ON(!timer);
2710 		ath_dbg(common, ATH_DBG_HWTIMER,
2711 			"TSF overflow for Gen timer %d\n", index);
2712 		timer->overflow(timer->arg);
2713 	}
2714 
2715 	while (trigger_mask) {
2716 		index = rightmost_index(timer_table, &trigger_mask);
2717 		timer = timer_table->timers[index];
2718 		BUG_ON(!timer);
2719 		ath_dbg(common, ATH_DBG_HWTIMER,
2720 			"Gen timer[%d] trigger\n", index);
2721 		timer->trigger(timer->arg);
2722 	}
2723 }
2724 EXPORT_SYMBOL(ath_gen_timer_isr);
2725 
2726 /********/
2727 /* HTC  */
2728 /********/
2729 
2730 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2731 {
2732 	ah->htc_reset_init = true;
2733 }
2734 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2735 
2736 static struct {
2737 	u32 version;
2738 	const char * name;
2739 } ath_mac_bb_names[] = {
2740 	/* Devices with external radios */
2741 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2742 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2743 	{ AR_SREV_VERSION_9100,		"9100" },
2744 	{ AR_SREV_VERSION_9160,		"9160" },
2745 	/* Single-chip solutions */
2746 	{ AR_SREV_VERSION_9280,		"9280" },
2747 	{ AR_SREV_VERSION_9285,		"9285" },
2748 	{ AR_SREV_VERSION_9287,         "9287" },
2749 	{ AR_SREV_VERSION_9271,         "9271" },
2750 	{ AR_SREV_VERSION_9300,         "9300" },
2751 	{ AR_SREV_VERSION_9330,         "9330" },
2752 	{ AR_SREV_VERSION_9485,         "9485" },
2753 };
2754 
2755 /* For devices with external radios */
2756 static struct {
2757 	u16 version;
2758 	const char * name;
2759 } ath_rf_names[] = {
2760 	{ 0,				"5133" },
2761 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2762 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2763 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2764 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2765 };
2766 
2767 /*
2768  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2769  */
2770 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2771 {
2772 	int i;
2773 
2774 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2775 		if (ath_mac_bb_names[i].version == mac_bb_version) {
2776 			return ath_mac_bb_names[i].name;
2777 		}
2778 	}
2779 
2780 	return "????";
2781 }
2782 
2783 /*
2784  * Return the RF name. "????" is returned if the RF is unknown.
2785  * Used for devices with external radios.
2786  */
2787 static const char *ath9k_hw_rf_name(u16 rf_version)
2788 {
2789 	int i;
2790 
2791 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2792 		if (ath_rf_names[i].version == rf_version) {
2793 			return ath_rf_names[i].name;
2794 		}
2795 	}
2796 
2797 	return "????";
2798 }
2799 
2800 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2801 {
2802 	int used;
2803 
2804 	/* chipsets >= AR9280 are single-chip */
2805 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2806 		used = snprintf(hw_name, len,
2807 			       "Atheros AR%s Rev:%x",
2808 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2809 			       ah->hw_version.macRev);
2810 	}
2811 	else {
2812 		used = snprintf(hw_name, len,
2813 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2814 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2815 			       ah->hw_version.macRev,
2816 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2817 						AR_RADIO_SREV_MAJOR)),
2818 			       ah->hw_version.phyRev);
2819 	}
2820 
2821 	hw_name[used] = '\0';
2822 }
2823 EXPORT_SYMBOL(ath9k_hw_name);
2824