xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 97da55fc)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 #include "ar9003_phy.h"
28 #include "debug.h"
29 #include "ath9k.h"
30 
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37 
38 static int __init ath9k_init(void)
39 {
40 	return 0;
41 }
42 module_init(ath9k_init);
43 
44 static void __exit ath9k_exit(void)
45 {
46 	return;
47 }
48 module_exit(ath9k_exit);
49 
50 /* Private hardware callbacks */
51 
52 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
55 }
56 
57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 					struct ath9k_channel *chan)
59 {
60 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62 
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 		return;
67 
68 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70 
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 	/* You will not have this callback if using the old ANI */
74 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 		return;
76 
77 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79 
80 /********************/
81 /* Helper Functions */
82 /********************/
83 
84 #ifdef CONFIG_ATH9K_DEBUGFS
85 
86 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
87 {
88 	struct ath_softc *sc = common->priv;
89 	if (sync_cause)
90 		sc->debug.stats.istats.sync_cause_all++;
91 	if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
92 		sc->debug.stats.istats.sync_rtc_irq++;
93 	if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
94 		sc->debug.stats.istats.sync_mac_irq++;
95 	if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
96 		sc->debug.stats.istats.eeprom_illegal_access++;
97 	if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
98 		sc->debug.stats.istats.apb_timeout++;
99 	if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
100 		sc->debug.stats.istats.pci_mode_conflict++;
101 	if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
102 		sc->debug.stats.istats.host1_fatal++;
103 	if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
104 		sc->debug.stats.istats.host1_perr++;
105 	if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
106 		sc->debug.stats.istats.trcv_fifo_perr++;
107 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
108 		sc->debug.stats.istats.radm_cpl_ep++;
109 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
110 		sc->debug.stats.istats.radm_cpl_dllp_abort++;
111 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
112 		sc->debug.stats.istats.radm_cpl_tlp_abort++;
113 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
114 		sc->debug.stats.istats.radm_cpl_ecrc_err++;
115 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
116 		sc->debug.stats.istats.radm_cpl_timeout++;
117 	if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
118 		sc->debug.stats.istats.local_timeout++;
119 	if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
120 		sc->debug.stats.istats.pm_access++;
121 	if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
122 		sc->debug.stats.istats.mac_awake++;
123 	if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
124 		sc->debug.stats.istats.mac_asleep++;
125 	if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
126 		sc->debug.stats.istats.mac_sleep_access++;
127 }
128 #endif
129 
130 
131 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
132 {
133 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
134 	struct ath_common *common = ath9k_hw_common(ah);
135 	unsigned int clockrate;
136 
137 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
138 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
139 		clockrate = 117;
140 	else if (!ah->curchan) /* should really check for CCK instead */
141 		clockrate = ATH9K_CLOCK_RATE_CCK;
142 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
143 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
144 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
145 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
146 	else
147 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
148 
149 	if (conf_is_ht40(conf))
150 		clockrate *= 2;
151 
152 	if (ah->curchan) {
153 		if (IS_CHAN_HALF_RATE(ah->curchan))
154 			clockrate /= 2;
155 		if (IS_CHAN_QUARTER_RATE(ah->curchan))
156 			clockrate /= 4;
157 	}
158 
159 	common->clockrate = clockrate;
160 }
161 
162 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
163 {
164 	struct ath_common *common = ath9k_hw_common(ah);
165 
166 	return usecs * common->clockrate;
167 }
168 
169 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
170 {
171 	int i;
172 
173 	BUG_ON(timeout < AH_TIME_QUANTUM);
174 
175 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
176 		if ((REG_READ(ah, reg) & mask) == val)
177 			return true;
178 
179 		udelay(AH_TIME_QUANTUM);
180 	}
181 
182 	ath_dbg(ath9k_hw_common(ah), ANY,
183 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
184 		timeout, reg, REG_READ(ah, reg), mask, val);
185 
186 	return false;
187 }
188 EXPORT_SYMBOL(ath9k_hw_wait);
189 
190 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
191 			  int hw_delay)
192 {
193 	if (IS_CHAN_B(chan))
194 		hw_delay = (4 * hw_delay) / 22;
195 	else
196 		hw_delay /= 10;
197 
198 	if (IS_CHAN_HALF_RATE(chan))
199 		hw_delay *= 2;
200 	else if (IS_CHAN_QUARTER_RATE(chan))
201 		hw_delay *= 4;
202 
203 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
204 }
205 
206 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
207 			  int column, unsigned int *writecnt)
208 {
209 	int r;
210 
211 	ENABLE_REGWRITE_BUFFER(ah);
212 	for (r = 0; r < array->ia_rows; r++) {
213 		REG_WRITE(ah, INI_RA(array, r, 0),
214 			  INI_RA(array, r, column));
215 		DO_DELAY(*writecnt);
216 	}
217 	REGWRITE_BUFFER_FLUSH(ah);
218 }
219 
220 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
221 {
222 	u32 retval;
223 	int i;
224 
225 	for (i = 0, retval = 0; i < n; i++) {
226 		retval = (retval << 1) | (val & 1);
227 		val >>= 1;
228 	}
229 	return retval;
230 }
231 
232 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
233 			   u8 phy, int kbps,
234 			   u32 frameLen, u16 rateix,
235 			   bool shortPreamble)
236 {
237 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
238 
239 	if (kbps == 0)
240 		return 0;
241 
242 	switch (phy) {
243 	case WLAN_RC_PHY_CCK:
244 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
245 		if (shortPreamble)
246 			phyTime >>= 1;
247 		numBits = frameLen << 3;
248 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
249 		break;
250 	case WLAN_RC_PHY_OFDM:
251 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
252 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
253 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
254 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
255 			txTime = OFDM_SIFS_TIME_QUARTER
256 				+ OFDM_PREAMBLE_TIME_QUARTER
257 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
258 		} else if (ah->curchan &&
259 			   IS_CHAN_HALF_RATE(ah->curchan)) {
260 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
261 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
262 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
263 			txTime = OFDM_SIFS_TIME_HALF +
264 				OFDM_PREAMBLE_TIME_HALF
265 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
266 		} else {
267 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
268 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
269 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
270 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
271 				+ (numSymbols * OFDM_SYMBOL_TIME);
272 		}
273 		break;
274 	default:
275 		ath_err(ath9k_hw_common(ah),
276 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
277 		txTime = 0;
278 		break;
279 	}
280 
281 	return txTime;
282 }
283 EXPORT_SYMBOL(ath9k_hw_computetxtime);
284 
285 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
286 				  struct ath9k_channel *chan,
287 				  struct chan_centers *centers)
288 {
289 	int8_t extoff;
290 
291 	if (!IS_CHAN_HT40(chan)) {
292 		centers->ctl_center = centers->ext_center =
293 			centers->synth_center = chan->channel;
294 		return;
295 	}
296 
297 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
298 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
299 		centers->synth_center =
300 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
301 		extoff = 1;
302 	} else {
303 		centers->synth_center =
304 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
305 		extoff = -1;
306 	}
307 
308 	centers->ctl_center =
309 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
310 	/* 25 MHz spacing is supported by hw but not on upper layers */
311 	centers->ext_center =
312 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
313 }
314 
315 /******************/
316 /* Chip Revisions */
317 /******************/
318 
319 static void ath9k_hw_read_revisions(struct ath_hw *ah)
320 {
321 	u32 val;
322 
323 	switch (ah->hw_version.devid) {
324 	case AR5416_AR9100_DEVID:
325 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
326 		break;
327 	case AR9300_DEVID_AR9330:
328 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
329 		if (ah->get_mac_revision) {
330 			ah->hw_version.macRev = ah->get_mac_revision();
331 		} else {
332 			val = REG_READ(ah, AR_SREV);
333 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
334 		}
335 		return;
336 	case AR9300_DEVID_AR9340:
337 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
338 		val = REG_READ(ah, AR_SREV);
339 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
340 		return;
341 	case AR9300_DEVID_QCA955X:
342 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
343 		return;
344 	}
345 
346 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
347 
348 	if (val == 0xFF) {
349 		val = REG_READ(ah, AR_SREV);
350 		ah->hw_version.macVersion =
351 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
352 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
353 
354 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
355 			ah->is_pciexpress = true;
356 		else
357 			ah->is_pciexpress = (val &
358 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
359 	} else {
360 		if (!AR_SREV_9100(ah))
361 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
362 
363 		ah->hw_version.macRev = val & AR_SREV_REVISION;
364 
365 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
366 			ah->is_pciexpress = true;
367 	}
368 }
369 
370 /************************************/
371 /* HW Attach, Detach, Init Routines */
372 /************************************/
373 
374 static void ath9k_hw_disablepcie(struct ath_hw *ah)
375 {
376 	if (!AR_SREV_5416(ah))
377 		return;
378 
379 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
380 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
381 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
382 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
383 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
384 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
385 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
386 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
387 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
388 
389 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
390 }
391 
392 /* This should work for all families including legacy */
393 static bool ath9k_hw_chip_test(struct ath_hw *ah)
394 {
395 	struct ath_common *common = ath9k_hw_common(ah);
396 	u32 regAddr[2] = { AR_STA_ID0 };
397 	u32 regHold[2];
398 	static const u32 patternData[4] = {
399 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
400 	};
401 	int i, j, loop_max;
402 
403 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
404 		loop_max = 2;
405 		regAddr[1] = AR_PHY_BASE + (8 << 2);
406 	} else
407 		loop_max = 1;
408 
409 	for (i = 0; i < loop_max; i++) {
410 		u32 addr = regAddr[i];
411 		u32 wrData, rdData;
412 
413 		regHold[i] = REG_READ(ah, addr);
414 		for (j = 0; j < 0x100; j++) {
415 			wrData = (j << 16) | j;
416 			REG_WRITE(ah, addr, wrData);
417 			rdData = REG_READ(ah, addr);
418 			if (rdData != wrData) {
419 				ath_err(common,
420 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
421 					addr, wrData, rdData);
422 				return false;
423 			}
424 		}
425 		for (j = 0; j < 4; j++) {
426 			wrData = patternData[j];
427 			REG_WRITE(ah, addr, wrData);
428 			rdData = REG_READ(ah, addr);
429 			if (wrData != rdData) {
430 				ath_err(common,
431 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
432 					addr, wrData, rdData);
433 				return false;
434 			}
435 		}
436 		REG_WRITE(ah, regAddr[i], regHold[i]);
437 	}
438 	udelay(100);
439 
440 	return true;
441 }
442 
443 static void ath9k_hw_init_config(struct ath_hw *ah)
444 {
445 	int i;
446 
447 	ah->config.dma_beacon_response_time = 1;
448 	ah->config.sw_beacon_response_time = 6;
449 	ah->config.additional_swba_backoff = 0;
450 	ah->config.ack_6mb = 0x0;
451 	ah->config.cwm_ignore_extcca = 0;
452 	ah->config.pcie_clock_req = 0;
453 	ah->config.pcie_waen = 0;
454 	ah->config.analog_shiftreg = 1;
455 	ah->config.enable_ani = true;
456 
457 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
458 		ah->config.spurchans[i][0] = AR_NO_SPUR;
459 		ah->config.spurchans[i][1] = AR_NO_SPUR;
460 	}
461 
462 	ah->config.rx_intr_mitigation = true;
463 	ah->config.pcieSerDesWrite = true;
464 
465 	/*
466 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
467 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
468 	 * This means we use it for all AR5416 devices, and the few
469 	 * minor PCI AR9280 devices out there.
470 	 *
471 	 * Serialization is required because these devices do not handle
472 	 * well the case of two concurrent reads/writes due to the latency
473 	 * involved. During one read/write another read/write can be issued
474 	 * on another CPU while the previous read/write may still be working
475 	 * on our hardware, if we hit this case the hardware poops in a loop.
476 	 * We prevent this by serializing reads and writes.
477 	 *
478 	 * This issue is not present on PCI-Express devices or pre-AR5416
479 	 * devices (legacy, 802.11abg).
480 	 */
481 	if (num_possible_cpus() > 1)
482 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
483 }
484 
485 static void ath9k_hw_init_defaults(struct ath_hw *ah)
486 {
487 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
488 
489 	regulatory->country_code = CTRY_DEFAULT;
490 	regulatory->power_limit = MAX_RATE_POWER;
491 
492 	ah->hw_version.magic = AR5416_MAGIC;
493 	ah->hw_version.subvendorid = 0;
494 
495 	ah->atim_window = 0;
496 	ah->sta_id1_defaults =
497 		AR_STA_ID1_CRPT_MIC_ENABLE |
498 		AR_STA_ID1_MCAST_KSRCH;
499 	if (AR_SREV_9100(ah))
500 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
501 	ah->slottime = ATH9K_SLOT_TIME_9;
502 	ah->globaltxtimeout = (u32) -1;
503 	ah->power_mode = ATH9K_PM_UNDEFINED;
504 	ah->htc_reset_init = true;
505 }
506 
507 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
508 {
509 	struct ath_common *common = ath9k_hw_common(ah);
510 	u32 sum;
511 	int i;
512 	u16 eeval;
513 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
514 
515 	sum = 0;
516 	for (i = 0; i < 3; i++) {
517 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
518 		sum += eeval;
519 		common->macaddr[2 * i] = eeval >> 8;
520 		common->macaddr[2 * i + 1] = eeval & 0xff;
521 	}
522 	if (sum == 0 || sum == 0xffff * 3)
523 		return -EADDRNOTAVAIL;
524 
525 	return 0;
526 }
527 
528 static int ath9k_hw_post_init(struct ath_hw *ah)
529 {
530 	struct ath_common *common = ath9k_hw_common(ah);
531 	int ecode;
532 
533 	if (common->bus_ops->ath_bus_type != ATH_USB) {
534 		if (!ath9k_hw_chip_test(ah))
535 			return -ENODEV;
536 	}
537 
538 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
539 		ecode = ar9002_hw_rf_claim(ah);
540 		if (ecode != 0)
541 			return ecode;
542 	}
543 
544 	ecode = ath9k_hw_eeprom_init(ah);
545 	if (ecode != 0)
546 		return ecode;
547 
548 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
549 		ah->eep_ops->get_eeprom_ver(ah),
550 		ah->eep_ops->get_eeprom_rev(ah));
551 
552 	if (ah->config.enable_ani)
553 		ath9k_hw_ani_init(ah);
554 
555 	return 0;
556 }
557 
558 static int ath9k_hw_attach_ops(struct ath_hw *ah)
559 {
560 	if (!AR_SREV_9300_20_OR_LATER(ah))
561 		return ar9002_hw_attach_ops(ah);
562 
563 	ar9003_hw_attach_ops(ah);
564 	return 0;
565 }
566 
567 /* Called for all hardware families */
568 static int __ath9k_hw_init(struct ath_hw *ah)
569 {
570 	struct ath_common *common = ath9k_hw_common(ah);
571 	int r = 0;
572 
573 	ath9k_hw_read_revisions(ah);
574 
575 	/*
576 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
577 	 * We need to do this to avoid RMW of this register. We cannot
578 	 * read the reg when chip is asleep.
579 	 */
580 	ah->WARegVal = REG_READ(ah, AR_WA);
581 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
582 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
583 
584 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
585 		ath_err(common, "Couldn't reset chip\n");
586 		return -EIO;
587 	}
588 
589 	if (AR_SREV_9462(ah))
590 		ah->WARegVal &= ~AR_WA_D3_L1_DISABLE;
591 
592 	if (AR_SREV_9565(ah)) {
593 		ah->WARegVal |= AR_WA_BIT22;
594 		REG_WRITE(ah, AR_WA, ah->WARegVal);
595 	}
596 
597 	ath9k_hw_init_defaults(ah);
598 	ath9k_hw_init_config(ah);
599 
600 	r = ath9k_hw_attach_ops(ah);
601 	if (r)
602 		return r;
603 
604 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
605 		ath_err(common, "Couldn't wakeup chip\n");
606 		return -EIO;
607 	}
608 
609 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
610 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
611 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
612 		     !ah->is_pciexpress)) {
613 			ah->config.serialize_regmode =
614 				SER_REG_MODE_ON;
615 		} else {
616 			ah->config.serialize_regmode =
617 				SER_REG_MODE_OFF;
618 		}
619 	}
620 
621 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
622 		ah->config.serialize_regmode);
623 
624 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
625 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
626 	else
627 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
628 
629 	switch (ah->hw_version.macVersion) {
630 	case AR_SREV_VERSION_5416_PCI:
631 	case AR_SREV_VERSION_5416_PCIE:
632 	case AR_SREV_VERSION_9160:
633 	case AR_SREV_VERSION_9100:
634 	case AR_SREV_VERSION_9280:
635 	case AR_SREV_VERSION_9285:
636 	case AR_SREV_VERSION_9287:
637 	case AR_SREV_VERSION_9271:
638 	case AR_SREV_VERSION_9300:
639 	case AR_SREV_VERSION_9330:
640 	case AR_SREV_VERSION_9485:
641 	case AR_SREV_VERSION_9340:
642 	case AR_SREV_VERSION_9462:
643 	case AR_SREV_VERSION_9550:
644 	case AR_SREV_VERSION_9565:
645 		break;
646 	default:
647 		ath_err(common,
648 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
649 			ah->hw_version.macVersion, ah->hw_version.macRev);
650 		return -EOPNOTSUPP;
651 	}
652 
653 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
654 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
655 		ah->is_pciexpress = false;
656 
657 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
658 	ath9k_hw_init_cal_settings(ah);
659 
660 	ah->ani_function = ATH9K_ANI_ALL;
661 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
662 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
663 	if (!AR_SREV_9300_20_OR_LATER(ah))
664 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
665 
666 	if (!ah->is_pciexpress)
667 		ath9k_hw_disablepcie(ah);
668 
669 	r = ath9k_hw_post_init(ah);
670 	if (r)
671 		return r;
672 
673 	ath9k_hw_init_mode_gain_regs(ah);
674 	r = ath9k_hw_fill_cap_info(ah);
675 	if (r)
676 		return r;
677 
678 	r = ath9k_hw_init_macaddr(ah);
679 	if (r) {
680 		ath_err(common, "Failed to initialize MAC address\n");
681 		return r;
682 	}
683 
684 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
685 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
686 	else
687 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
688 
689 	if (AR_SREV_9330(ah))
690 		ah->bb_watchdog_timeout_ms = 85;
691 	else
692 		ah->bb_watchdog_timeout_ms = 25;
693 
694 	common->state = ATH_HW_INITIALIZED;
695 
696 	return 0;
697 }
698 
699 int ath9k_hw_init(struct ath_hw *ah)
700 {
701 	int ret;
702 	struct ath_common *common = ath9k_hw_common(ah);
703 
704 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
705 	switch (ah->hw_version.devid) {
706 	case AR5416_DEVID_PCI:
707 	case AR5416_DEVID_PCIE:
708 	case AR5416_AR9100_DEVID:
709 	case AR9160_DEVID_PCI:
710 	case AR9280_DEVID_PCI:
711 	case AR9280_DEVID_PCIE:
712 	case AR9285_DEVID_PCIE:
713 	case AR9287_DEVID_PCI:
714 	case AR9287_DEVID_PCIE:
715 	case AR2427_DEVID_PCIE:
716 	case AR9300_DEVID_PCIE:
717 	case AR9300_DEVID_AR9485_PCIE:
718 	case AR9300_DEVID_AR9330:
719 	case AR9300_DEVID_AR9340:
720 	case AR9300_DEVID_QCA955X:
721 	case AR9300_DEVID_AR9580:
722 	case AR9300_DEVID_AR9462:
723 	case AR9485_DEVID_AR1111:
724 	case AR9300_DEVID_AR9565:
725 		break;
726 	default:
727 		if (common->bus_ops->ath_bus_type == ATH_USB)
728 			break;
729 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
730 			ah->hw_version.devid);
731 		return -EOPNOTSUPP;
732 	}
733 
734 	ret = __ath9k_hw_init(ah);
735 	if (ret) {
736 		ath_err(common,
737 			"Unable to initialize hardware; initialization status: %d\n",
738 			ret);
739 		return ret;
740 	}
741 
742 	return 0;
743 }
744 EXPORT_SYMBOL(ath9k_hw_init);
745 
746 static void ath9k_hw_init_qos(struct ath_hw *ah)
747 {
748 	ENABLE_REGWRITE_BUFFER(ah);
749 
750 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
751 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
752 
753 	REG_WRITE(ah, AR_QOS_NO_ACK,
754 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
755 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
756 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
757 
758 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
759 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
760 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
761 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
762 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
763 
764 	REGWRITE_BUFFER_FLUSH(ah);
765 }
766 
767 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
768 {
769 	struct ath_common *common = ath9k_hw_common(ah);
770 	int i = 0;
771 
772 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
773 	udelay(100);
774 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
775 
776 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
777 
778 		udelay(100);
779 
780 		if (WARN_ON_ONCE(i >= 100)) {
781 			ath_err(common, "PLL4 meaurement not done\n");
782 			break;
783 		}
784 
785 		i++;
786 	}
787 
788 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
789 }
790 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
791 
792 static void ath9k_hw_init_pll(struct ath_hw *ah,
793 			      struct ath9k_channel *chan)
794 {
795 	u32 pll;
796 
797 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
798 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
799 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
800 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
801 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
802 			      AR_CH0_DPLL2_KD, 0x40);
803 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
804 			      AR_CH0_DPLL2_KI, 0x4);
805 
806 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
807 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
808 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
809 			      AR_CH0_BB_DPLL1_NINI, 0x58);
810 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
811 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
812 
813 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
814 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
815 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
816 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
817 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
818 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
819 
820 		/* program BB PLL phase_shift to 0x6 */
821 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
822 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
823 
824 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
825 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
826 		udelay(1000);
827 	} else if (AR_SREV_9330(ah)) {
828 		u32 ddr_dpll2, pll_control2, kd;
829 
830 		if (ah->is_clk_25mhz) {
831 			ddr_dpll2 = 0x18e82f01;
832 			pll_control2 = 0xe04a3d;
833 			kd = 0x1d;
834 		} else {
835 			ddr_dpll2 = 0x19e82f01;
836 			pll_control2 = 0x886666;
837 			kd = 0x3d;
838 		}
839 
840 		/* program DDR PLL ki and kd value */
841 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
842 
843 		/* program DDR PLL phase_shift */
844 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
845 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
846 
847 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
848 		udelay(1000);
849 
850 		/* program refdiv, nint, frac to RTC register */
851 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
852 
853 		/* program BB PLL kd and ki value */
854 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
855 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
856 
857 		/* program BB PLL phase_shift */
858 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
859 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
860 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
861 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
862 
863 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
864 		udelay(1000);
865 
866 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
867 		udelay(100);
868 
869 		if (ah->is_clk_25mhz) {
870 			pll2_divint = 0x54;
871 			pll2_divfrac = 0x1eb85;
872 			refdiv = 3;
873 		} else {
874 			if (AR_SREV_9340(ah)) {
875 				pll2_divint = 88;
876 				pll2_divfrac = 0;
877 				refdiv = 5;
878 			} else {
879 				pll2_divint = 0x11;
880 				pll2_divfrac = 0x26666;
881 				refdiv = 1;
882 			}
883 		}
884 
885 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
886 		regval |= (0x1 << 16);
887 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
888 		udelay(100);
889 
890 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
891 			  (pll2_divint << 18) | pll2_divfrac);
892 		udelay(100);
893 
894 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
895 		if (AR_SREV_9340(ah))
896 			regval = (regval & 0x80071fff) | (0x1 << 30) |
897 				 (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
898 		else
899 			regval = (regval & 0x80071fff) | (0x3 << 30) |
900 				 (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
901 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
902 		REG_WRITE(ah, AR_PHY_PLL_MODE,
903 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
904 		udelay(1000);
905 	}
906 
907 	pll = ath9k_hw_compute_pll_control(ah, chan);
908 	if (AR_SREV_9565(ah))
909 		pll |= 0x40000;
910 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
911 
912 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
913 	    AR_SREV_9550(ah))
914 		udelay(1000);
915 
916 	/* Switch the core clock for ar9271 to 117Mhz */
917 	if (AR_SREV_9271(ah)) {
918 		udelay(500);
919 		REG_WRITE(ah, 0x50040, 0x304);
920 	}
921 
922 	udelay(RTC_PLL_SETTLE_DELAY);
923 
924 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
925 
926 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
927 		if (ah->is_clk_25mhz) {
928 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
929 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
930 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
931 		} else {
932 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
933 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
934 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
935 		}
936 		udelay(100);
937 	}
938 }
939 
940 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
941 					  enum nl80211_iftype opmode)
942 {
943 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
944 	u32 imr_reg = AR_IMR_TXERR |
945 		AR_IMR_TXURN |
946 		AR_IMR_RXERR |
947 		AR_IMR_RXORN |
948 		AR_IMR_BCNMISC;
949 
950 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
951 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
952 
953 	if (AR_SREV_9300_20_OR_LATER(ah)) {
954 		imr_reg |= AR_IMR_RXOK_HP;
955 		if (ah->config.rx_intr_mitigation)
956 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
957 		else
958 			imr_reg |= AR_IMR_RXOK_LP;
959 
960 	} else {
961 		if (ah->config.rx_intr_mitigation)
962 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
963 		else
964 			imr_reg |= AR_IMR_RXOK;
965 	}
966 
967 	if (ah->config.tx_intr_mitigation)
968 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
969 	else
970 		imr_reg |= AR_IMR_TXOK;
971 
972 	ENABLE_REGWRITE_BUFFER(ah);
973 
974 	REG_WRITE(ah, AR_IMR, imr_reg);
975 	ah->imrs2_reg |= AR_IMR_S2_GTT;
976 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
977 
978 	if (!AR_SREV_9100(ah)) {
979 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
980 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
981 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
982 	}
983 
984 	REGWRITE_BUFFER_FLUSH(ah);
985 
986 	if (AR_SREV_9300_20_OR_LATER(ah)) {
987 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
988 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
989 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
990 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
991 	}
992 }
993 
994 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
995 {
996 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
997 	val = min(val, (u32) 0xFFFF);
998 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
999 }
1000 
1001 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1002 {
1003 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1004 	val = min(val, (u32) 0xFFFF);
1005 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1006 }
1007 
1008 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1009 {
1010 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1011 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1012 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1013 }
1014 
1015 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1016 {
1017 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1018 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1019 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1020 }
1021 
1022 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1023 {
1024 	if (tu > 0xFFFF) {
1025 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1026 			tu);
1027 		ah->globaltxtimeout = (u32) -1;
1028 		return false;
1029 	} else {
1030 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1031 		ah->globaltxtimeout = tu;
1032 		return true;
1033 	}
1034 }
1035 
1036 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1037 {
1038 	struct ath_common *common = ath9k_hw_common(ah);
1039 	struct ieee80211_conf *conf = &common->hw->conf;
1040 	const struct ath9k_channel *chan = ah->curchan;
1041 	int acktimeout, ctstimeout, ack_offset = 0;
1042 	int slottime;
1043 	int sifstime;
1044 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1045 	u32 reg;
1046 
1047 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1048 		ah->misc_mode);
1049 
1050 	if (!chan)
1051 		return;
1052 
1053 	if (ah->misc_mode != 0)
1054 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1055 
1056 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1057 		rx_lat = 41;
1058 	else
1059 		rx_lat = 37;
1060 	tx_lat = 54;
1061 
1062 	if (IS_CHAN_5GHZ(chan))
1063 		sifstime = 16;
1064 	else
1065 		sifstime = 10;
1066 
1067 	if (IS_CHAN_HALF_RATE(chan)) {
1068 		eifs = 175;
1069 		rx_lat *= 2;
1070 		tx_lat *= 2;
1071 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1072 		    tx_lat += 11;
1073 
1074 		sifstime *= 2;
1075 		ack_offset = 16;
1076 		slottime = 13;
1077 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1078 		eifs = 340;
1079 		rx_lat = (rx_lat * 4) - 1;
1080 		tx_lat *= 4;
1081 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1082 		    tx_lat += 22;
1083 
1084 		sifstime *= 4;
1085 		ack_offset = 32;
1086 		slottime = 21;
1087 	} else {
1088 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1089 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1090 			reg = AR_USEC_ASYNC_FIFO;
1091 		} else {
1092 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1093 				common->clockrate;
1094 			reg = REG_READ(ah, AR_USEC);
1095 		}
1096 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1097 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1098 
1099 		slottime = ah->slottime;
1100 	}
1101 
1102 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1103 	acktimeout = slottime + sifstime + 3 * ah->coverage_class + ack_offset;
1104 	ctstimeout = acktimeout;
1105 
1106 	/*
1107 	 * Workaround for early ACK timeouts, add an offset to match the
1108 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1109 	 * This was initially only meant to work around an issue with delayed
1110 	 * BA frames in some implementations, but it has been found to fix ACK
1111 	 * timeout issues in other cases as well.
1112 	 */
1113 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ &&
1114 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1115 		acktimeout += 64 - sifstime - ah->slottime;
1116 		ctstimeout += 48 - sifstime - ah->slottime;
1117 	}
1118 
1119 
1120 	ath9k_hw_set_sifs_time(ah, sifstime);
1121 	ath9k_hw_setslottime(ah, slottime);
1122 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1123 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1124 	if (ah->globaltxtimeout != (u32) -1)
1125 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1126 
1127 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1128 	REG_RMW(ah, AR_USEC,
1129 		(common->clockrate - 1) |
1130 		SM(rx_lat, AR_USEC_RX_LAT) |
1131 		SM(tx_lat, AR_USEC_TX_LAT),
1132 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1133 
1134 }
1135 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1136 
1137 void ath9k_hw_deinit(struct ath_hw *ah)
1138 {
1139 	struct ath_common *common = ath9k_hw_common(ah);
1140 
1141 	if (common->state < ATH_HW_INITIALIZED)
1142 		return;
1143 
1144 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1145 }
1146 EXPORT_SYMBOL(ath9k_hw_deinit);
1147 
1148 /*******/
1149 /* INI */
1150 /*******/
1151 
1152 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1153 {
1154 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1155 
1156 	if (IS_CHAN_B(chan))
1157 		ctl |= CTL_11B;
1158 	else if (IS_CHAN_G(chan))
1159 		ctl |= CTL_11G;
1160 	else
1161 		ctl |= CTL_11A;
1162 
1163 	return ctl;
1164 }
1165 
1166 /****************************************/
1167 /* Reset and Channel Switching Routines */
1168 /****************************************/
1169 
1170 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1171 {
1172 	struct ath_common *common = ath9k_hw_common(ah);
1173 
1174 	ENABLE_REGWRITE_BUFFER(ah);
1175 
1176 	/*
1177 	 * set AHB_MODE not to do cacheline prefetches
1178 	*/
1179 	if (!AR_SREV_9300_20_OR_LATER(ah))
1180 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1181 
1182 	/*
1183 	 * let mac dma reads be in 128 byte chunks
1184 	 */
1185 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1186 
1187 	REGWRITE_BUFFER_FLUSH(ah);
1188 
1189 	/*
1190 	 * Restore TX Trigger Level to its pre-reset value.
1191 	 * The initial value depends on whether aggregation is enabled, and is
1192 	 * adjusted whenever underruns are detected.
1193 	 */
1194 	if (!AR_SREV_9300_20_OR_LATER(ah))
1195 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1196 
1197 	ENABLE_REGWRITE_BUFFER(ah);
1198 
1199 	/*
1200 	 * let mac dma writes be in 128 byte chunks
1201 	 */
1202 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1203 
1204 	/*
1205 	 * Setup receive FIFO threshold to hold off TX activities
1206 	 */
1207 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1208 
1209 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1210 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1211 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1212 
1213 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1214 			ah->caps.rx_status_len);
1215 	}
1216 
1217 	/*
1218 	 * reduce the number of usable entries in PCU TXBUF to avoid
1219 	 * wrap around issues.
1220 	 */
1221 	if (AR_SREV_9285(ah)) {
1222 		/* For AR9285 the number of Fifos are reduced to half.
1223 		 * So set the usable tx buf size also to half to
1224 		 * avoid data/delimiter underruns
1225 		 */
1226 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1227 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1228 	} else if (!AR_SREV_9271(ah)) {
1229 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1230 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1231 	}
1232 
1233 	REGWRITE_BUFFER_FLUSH(ah);
1234 
1235 	if (AR_SREV_9300_20_OR_LATER(ah))
1236 		ath9k_hw_reset_txstatus_ring(ah);
1237 }
1238 
1239 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1240 {
1241 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1242 	u32 set = AR_STA_ID1_KSRCH_MODE;
1243 
1244 	switch (opmode) {
1245 	case NL80211_IFTYPE_ADHOC:
1246 	case NL80211_IFTYPE_MESH_POINT:
1247 		set |= AR_STA_ID1_ADHOC;
1248 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1249 		break;
1250 	case NL80211_IFTYPE_AP:
1251 		set |= AR_STA_ID1_STA_AP;
1252 		/* fall through */
1253 	case NL80211_IFTYPE_STATION:
1254 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1255 		break;
1256 	default:
1257 		if (!ah->is_monitoring)
1258 			set = 0;
1259 		break;
1260 	}
1261 	REG_RMW(ah, AR_STA_ID1, set, mask);
1262 }
1263 
1264 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1265 				   u32 *coef_mantissa, u32 *coef_exponent)
1266 {
1267 	u32 coef_exp, coef_man;
1268 
1269 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1270 		if ((coef_scaled >> coef_exp) & 0x1)
1271 			break;
1272 
1273 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1274 
1275 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1276 
1277 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1278 	*coef_exponent = coef_exp - 16;
1279 }
1280 
1281 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1282 {
1283 	u32 rst_flags;
1284 	u32 tmpReg;
1285 
1286 	if (AR_SREV_9100(ah)) {
1287 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1288 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1289 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1290 	}
1291 
1292 	ENABLE_REGWRITE_BUFFER(ah);
1293 
1294 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1295 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1296 		udelay(10);
1297 	}
1298 
1299 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1300 		  AR_RTC_FORCE_WAKE_ON_INT);
1301 
1302 	if (AR_SREV_9100(ah)) {
1303 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1304 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1305 	} else {
1306 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1307 		if (tmpReg &
1308 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1309 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1310 			u32 val;
1311 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1312 
1313 			val = AR_RC_HOSTIF;
1314 			if (!AR_SREV_9300_20_OR_LATER(ah))
1315 				val |= AR_RC_AHB;
1316 			REG_WRITE(ah, AR_RC, val);
1317 
1318 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1319 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1320 
1321 		rst_flags = AR_RTC_RC_MAC_WARM;
1322 		if (type == ATH9K_RESET_COLD)
1323 			rst_flags |= AR_RTC_RC_MAC_COLD;
1324 	}
1325 
1326 	if (AR_SREV_9330(ah)) {
1327 		int npend = 0;
1328 		int i;
1329 
1330 		/* AR9330 WAR:
1331 		 * call external reset function to reset WMAC if:
1332 		 * - doing a cold reset
1333 		 * - we have pending frames in the TX queues
1334 		 */
1335 
1336 		for (i = 0; i < AR_NUM_QCU; i++) {
1337 			npend = ath9k_hw_numtxpending(ah, i);
1338 			if (npend)
1339 				break;
1340 		}
1341 
1342 		if (ah->external_reset &&
1343 		    (npend || type == ATH9K_RESET_COLD)) {
1344 			int reset_err = 0;
1345 
1346 			ath_dbg(ath9k_hw_common(ah), RESET,
1347 				"reset MAC via external reset\n");
1348 
1349 			reset_err = ah->external_reset();
1350 			if (reset_err) {
1351 				ath_err(ath9k_hw_common(ah),
1352 					"External reset failed, err=%d\n",
1353 					reset_err);
1354 				return false;
1355 			}
1356 
1357 			REG_WRITE(ah, AR_RTC_RESET, 1);
1358 		}
1359 	}
1360 
1361 	if (ath9k_hw_mci_is_enabled(ah))
1362 		ar9003_mci_check_gpm_offset(ah);
1363 
1364 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1365 
1366 	REGWRITE_BUFFER_FLUSH(ah);
1367 
1368 	udelay(50);
1369 
1370 	REG_WRITE(ah, AR_RTC_RC, 0);
1371 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1372 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1373 		return false;
1374 	}
1375 
1376 	if (!AR_SREV_9100(ah))
1377 		REG_WRITE(ah, AR_RC, 0);
1378 
1379 	if (AR_SREV_9100(ah))
1380 		udelay(50);
1381 
1382 	return true;
1383 }
1384 
1385 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1386 {
1387 	ENABLE_REGWRITE_BUFFER(ah);
1388 
1389 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1390 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1391 		udelay(10);
1392 	}
1393 
1394 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1395 		  AR_RTC_FORCE_WAKE_ON_INT);
1396 
1397 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1398 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1399 
1400 	REG_WRITE(ah, AR_RTC_RESET, 0);
1401 
1402 	REGWRITE_BUFFER_FLUSH(ah);
1403 
1404 	if (!AR_SREV_9300_20_OR_LATER(ah))
1405 		udelay(2);
1406 
1407 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1408 		REG_WRITE(ah, AR_RC, 0);
1409 
1410 	REG_WRITE(ah, AR_RTC_RESET, 1);
1411 
1412 	if (!ath9k_hw_wait(ah,
1413 			   AR_RTC_STATUS,
1414 			   AR_RTC_STATUS_M,
1415 			   AR_RTC_STATUS_ON,
1416 			   AH_WAIT_TIMEOUT)) {
1417 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1418 		return false;
1419 	}
1420 
1421 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1422 }
1423 
1424 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1425 {
1426 	bool ret = false;
1427 
1428 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1429 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1430 		udelay(10);
1431 	}
1432 
1433 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1434 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1435 
1436 	if (!ah->reset_power_on)
1437 		type = ATH9K_RESET_POWER_ON;
1438 
1439 	switch (type) {
1440 	case ATH9K_RESET_POWER_ON:
1441 		ret = ath9k_hw_set_reset_power_on(ah);
1442 		if (ret)
1443 			ah->reset_power_on = true;
1444 		break;
1445 	case ATH9K_RESET_WARM:
1446 	case ATH9K_RESET_COLD:
1447 		ret = ath9k_hw_set_reset(ah, type);
1448 		break;
1449 	default:
1450 		break;
1451 	}
1452 
1453 	return ret;
1454 }
1455 
1456 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1457 				struct ath9k_channel *chan)
1458 {
1459 	int reset_type = ATH9K_RESET_WARM;
1460 
1461 	if (AR_SREV_9280(ah)) {
1462 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1463 			reset_type = ATH9K_RESET_POWER_ON;
1464 		else
1465 			reset_type = ATH9K_RESET_COLD;
1466 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1467 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1468 		reset_type = ATH9K_RESET_COLD;
1469 
1470 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1471 		return false;
1472 
1473 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1474 		return false;
1475 
1476 	ah->chip_fullsleep = false;
1477 
1478 	if (AR_SREV_9330(ah))
1479 		ar9003_hw_internal_regulator_apply(ah);
1480 	ath9k_hw_init_pll(ah, chan);
1481 	ath9k_hw_set_rfmode(ah, chan);
1482 
1483 	return true;
1484 }
1485 
1486 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1487 				    struct ath9k_channel *chan)
1488 {
1489 	struct ath_common *common = ath9k_hw_common(ah);
1490 	u32 qnum;
1491 	int r;
1492 	bool edma = !!(ah->caps.hw_caps & ATH9K_HW_CAP_EDMA);
1493 	bool band_switch, mode_diff;
1494 	u8 ini_reloaded;
1495 
1496 	band_switch = (chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ)) !=
1497 		      (ah->curchan->channelFlags & (CHANNEL_2GHZ |
1498 						    CHANNEL_5GHZ));
1499 	mode_diff = (chan->chanmode != ah->curchan->chanmode);
1500 
1501 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1502 		if (ath9k_hw_numtxpending(ah, qnum)) {
1503 			ath_dbg(common, QUEUE,
1504 				"Transmit frames pending on queue %d\n", qnum);
1505 			return false;
1506 		}
1507 	}
1508 
1509 	if (!ath9k_hw_rfbus_req(ah)) {
1510 		ath_err(common, "Could not kill baseband RX\n");
1511 		return false;
1512 	}
1513 
1514 	if (edma && (band_switch || mode_diff)) {
1515 		ath9k_hw_mark_phy_inactive(ah);
1516 		udelay(5);
1517 
1518 		ath9k_hw_init_pll(ah, NULL);
1519 
1520 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1521 			ath_err(common, "Failed to do fast channel change\n");
1522 			return false;
1523 		}
1524 	}
1525 
1526 	ath9k_hw_set_channel_regs(ah, chan);
1527 
1528 	r = ath9k_hw_rf_set_freq(ah, chan);
1529 	if (r) {
1530 		ath_err(common, "Failed to set channel\n");
1531 		return false;
1532 	}
1533 	ath9k_hw_set_clockrate(ah);
1534 	ath9k_hw_apply_txpower(ah, chan, false);
1535 	ath9k_hw_rfbus_done(ah);
1536 
1537 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1538 		ath9k_hw_set_delta_slope(ah, chan);
1539 
1540 	ath9k_hw_spur_mitigate_freq(ah, chan);
1541 
1542 	if (edma && (band_switch || mode_diff)) {
1543 		ah->ah_flags |= AH_FASTCC;
1544 		if (band_switch || ini_reloaded)
1545 			ah->eep_ops->set_board_values(ah, chan);
1546 
1547 		ath9k_hw_init_bb(ah, chan);
1548 
1549 		if (band_switch || ini_reloaded)
1550 			ath9k_hw_init_cal(ah, chan);
1551 		ah->ah_flags &= ~AH_FASTCC;
1552 	}
1553 
1554 	return true;
1555 }
1556 
1557 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1558 {
1559 	u32 gpio_mask = ah->gpio_mask;
1560 	int i;
1561 
1562 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1563 		if (!(gpio_mask & 1))
1564 			continue;
1565 
1566 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1567 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1568 	}
1569 }
1570 
1571 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1572 			       int *hang_state, int *hang_pos)
1573 {
1574 	static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1575 	u32 chain_state, dcs_pos, i;
1576 
1577 	for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1578 		chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1579 		for (i = 0; i < 3; i++) {
1580 			if (chain_state == dcu_chain_state[i]) {
1581 				*hang_state = chain_state;
1582 				*hang_pos = dcs_pos;
1583 				return true;
1584 			}
1585 		}
1586 	}
1587 	return false;
1588 }
1589 
1590 #define DCU_COMPLETE_STATE        1
1591 #define DCU_COMPLETE_STATE_MASK 0x3
1592 #define NUM_STATUS_READS         50
1593 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1594 {
1595 	u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1596 	u32 i, hang_pos, hang_state, num_state = 6;
1597 
1598 	comp_state = REG_READ(ah, AR_DMADBG_6);
1599 
1600 	if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1601 		ath_dbg(ath9k_hw_common(ah), RESET,
1602 			"MAC Hang signature not found at DCU complete\n");
1603 		return false;
1604 	}
1605 
1606 	chain_state = REG_READ(ah, dcs_reg);
1607 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1608 		goto hang_check_iter;
1609 
1610 	dcs_reg = AR_DMADBG_5;
1611 	num_state = 4;
1612 	chain_state = REG_READ(ah, dcs_reg);
1613 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1614 		goto hang_check_iter;
1615 
1616 	ath_dbg(ath9k_hw_common(ah), RESET,
1617 		"MAC Hang signature 1 not found\n");
1618 	return false;
1619 
1620 hang_check_iter:
1621 	ath_dbg(ath9k_hw_common(ah), RESET,
1622 		"DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1623 		chain_state, comp_state, hang_state, hang_pos);
1624 
1625 	for (i = 0; i < NUM_STATUS_READS; i++) {
1626 		chain_state = REG_READ(ah, dcs_reg);
1627 		chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1628 		comp_state = REG_READ(ah, AR_DMADBG_6);
1629 
1630 		if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1631 					DCU_COMPLETE_STATE) ||
1632 		    (chain_state != hang_state))
1633 			return false;
1634 	}
1635 
1636 	ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1637 
1638 	return true;
1639 }
1640 
1641 bool ath9k_hw_check_alive(struct ath_hw *ah)
1642 {
1643 	int count = 50;
1644 	u32 reg;
1645 
1646 	if (AR_SREV_9300(ah))
1647 		return !ath9k_hw_detect_mac_hang(ah);
1648 
1649 	if (AR_SREV_9285_12_OR_LATER(ah))
1650 		return true;
1651 
1652 	do {
1653 		reg = REG_READ(ah, AR_OBS_BUS_1);
1654 
1655 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1656 			continue;
1657 
1658 		switch (reg & 0x7E000B00) {
1659 		case 0x1E000000:
1660 		case 0x52000B00:
1661 		case 0x18000B00:
1662 			continue;
1663 		default:
1664 			return true;
1665 		}
1666 	} while (count-- > 0);
1667 
1668 	return false;
1669 }
1670 EXPORT_SYMBOL(ath9k_hw_check_alive);
1671 
1672 /*
1673  * Fast channel change:
1674  * (Change synthesizer based on channel freq without resetting chip)
1675  *
1676  * Don't do FCC when
1677  *   - Flag is not set
1678  *   - Chip is just coming out of full sleep
1679  *   - Channel to be set is same as current channel
1680  *   - Channel flags are different, (eg.,moving from 2GHz to 5GHz channel)
1681  */
1682 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1683 {
1684 	struct ath_common *common = ath9k_hw_common(ah);
1685 	int ret;
1686 
1687 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1688 		goto fail;
1689 
1690 	if (ah->chip_fullsleep)
1691 		goto fail;
1692 
1693 	if (!ah->curchan)
1694 		goto fail;
1695 
1696 	if (chan->channel == ah->curchan->channel)
1697 		goto fail;
1698 
1699 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1700 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1701 		goto fail;
1702 
1703 	if ((chan->channelFlags & CHANNEL_ALL) !=
1704 	    (ah->curchan->channelFlags & CHANNEL_ALL))
1705 		goto fail;
1706 
1707 	if (!ath9k_hw_check_alive(ah))
1708 		goto fail;
1709 
1710 	/*
1711 	 * For AR9462, make sure that calibration data for
1712 	 * re-using are present.
1713 	 */
1714 	if (AR_SREV_9462(ah) && (ah->caldata &&
1715 				 (!ah->caldata->done_txiqcal_once ||
1716 				  !ah->caldata->done_txclcal_once ||
1717 				  !ah->caldata->rtt_done)))
1718 		goto fail;
1719 
1720 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1721 		ah->curchan->channel, chan->channel);
1722 
1723 	ret = ath9k_hw_channel_change(ah, chan);
1724 	if (!ret)
1725 		goto fail;
1726 
1727 	if (ath9k_hw_mci_is_enabled(ah))
1728 		ar9003_mci_2g5g_switch(ah, false);
1729 
1730 	ath9k_hw_loadnf(ah, ah->curchan);
1731 	ath9k_hw_start_nfcal(ah, true);
1732 
1733 	if (AR_SREV_9271(ah))
1734 		ar9002_hw_load_ani_reg(ah, chan);
1735 
1736 	return 0;
1737 fail:
1738 	return -EINVAL;
1739 }
1740 
1741 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1742 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1743 {
1744 	struct ath_common *common = ath9k_hw_common(ah);
1745 	u32 saveLedState;
1746 	u32 saveDefAntenna;
1747 	u32 macStaId1;
1748 	u64 tsf = 0;
1749 	int i, r;
1750 	bool start_mci_reset = false;
1751 	bool save_fullsleep = ah->chip_fullsleep;
1752 
1753 	if (ath9k_hw_mci_is_enabled(ah)) {
1754 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1755 		if (start_mci_reset)
1756 			return 0;
1757 	}
1758 
1759 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1760 		return -EIO;
1761 
1762 	if (ah->curchan && !ah->chip_fullsleep)
1763 		ath9k_hw_getnf(ah, ah->curchan);
1764 
1765 	ah->caldata = caldata;
1766 	if (caldata &&
1767 	    (chan->channel != caldata->channel ||
1768 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1769 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1770 		/* Operating channel changed, reset channel calibration data */
1771 		memset(caldata, 0, sizeof(*caldata));
1772 		ath9k_init_nfcal_hist_buffer(ah, chan);
1773 	} else if (caldata) {
1774 		caldata->paprd_packet_sent = false;
1775 	}
1776 	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1777 
1778 	if (fastcc) {
1779 		r = ath9k_hw_do_fastcc(ah, chan);
1780 		if (!r)
1781 			return r;
1782 	}
1783 
1784 	if (ath9k_hw_mci_is_enabled(ah))
1785 		ar9003_mci_stop_bt(ah, save_fullsleep);
1786 
1787 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1788 	if (saveDefAntenna == 0)
1789 		saveDefAntenna = 1;
1790 
1791 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1792 
1793 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1794 	if (AR_SREV_9100(ah) ||
1795 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1796 		tsf = ath9k_hw_gettsf64(ah);
1797 
1798 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1799 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1800 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1801 
1802 	ath9k_hw_mark_phy_inactive(ah);
1803 
1804 	ah->paprd_table_write_done = false;
1805 
1806 	/* Only required on the first reset */
1807 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1808 		REG_WRITE(ah,
1809 			  AR9271_RESET_POWER_DOWN_CONTROL,
1810 			  AR9271_RADIO_RF_RST);
1811 		udelay(50);
1812 	}
1813 
1814 	if (!ath9k_hw_chip_reset(ah, chan)) {
1815 		ath_err(common, "Chip reset failed\n");
1816 		return -EINVAL;
1817 	}
1818 
1819 	/* Only required on the first reset */
1820 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1821 		ah->htc_reset_init = false;
1822 		REG_WRITE(ah,
1823 			  AR9271_RESET_POWER_DOWN_CONTROL,
1824 			  AR9271_GATE_MAC_CTL);
1825 		udelay(50);
1826 	}
1827 
1828 	/* Restore TSF */
1829 	if (tsf)
1830 		ath9k_hw_settsf64(ah, tsf);
1831 
1832 	if (AR_SREV_9280_20_OR_LATER(ah))
1833 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1834 
1835 	if (!AR_SREV_9300_20_OR_LATER(ah))
1836 		ar9002_hw_enable_async_fifo(ah);
1837 
1838 	r = ath9k_hw_process_ini(ah, chan);
1839 	if (r)
1840 		return r;
1841 
1842 	if (ath9k_hw_mci_is_enabled(ah))
1843 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1844 
1845 	/*
1846 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1847 	 * right after the chip reset. When that happens, write a new
1848 	 * value after the initvals have been applied, with an offset
1849 	 * based on measured time difference
1850 	 */
1851 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1852 		tsf += 1500;
1853 		ath9k_hw_settsf64(ah, tsf);
1854 	}
1855 
1856 	/* Setup MFP options for CCMP */
1857 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1858 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1859 		 * frames when constructing CCMP AAD. */
1860 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1861 			      0xc7ff);
1862 		ah->sw_mgmt_crypto = false;
1863 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1864 		/* Disable hardware crypto for management frames */
1865 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1866 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1867 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1868 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1869 		ah->sw_mgmt_crypto = true;
1870 	} else
1871 		ah->sw_mgmt_crypto = true;
1872 
1873 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1874 		ath9k_hw_set_delta_slope(ah, chan);
1875 
1876 	ath9k_hw_spur_mitigate_freq(ah, chan);
1877 	ah->eep_ops->set_board_values(ah, chan);
1878 
1879 	ENABLE_REGWRITE_BUFFER(ah);
1880 
1881 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1882 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1883 		  | macStaId1
1884 		  | AR_STA_ID1_RTS_USE_DEF
1885 		  | (ah->config.
1886 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1887 		  | ah->sta_id1_defaults);
1888 	ath_hw_setbssidmask(common);
1889 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1890 	ath9k_hw_write_associd(ah);
1891 	REG_WRITE(ah, AR_ISR, ~0);
1892 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1893 
1894 	REGWRITE_BUFFER_FLUSH(ah);
1895 
1896 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1897 
1898 	r = ath9k_hw_rf_set_freq(ah, chan);
1899 	if (r)
1900 		return r;
1901 
1902 	ath9k_hw_set_clockrate(ah);
1903 
1904 	ENABLE_REGWRITE_BUFFER(ah);
1905 
1906 	for (i = 0; i < AR_NUM_DCU; i++)
1907 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1908 
1909 	REGWRITE_BUFFER_FLUSH(ah);
1910 
1911 	ah->intr_txqs = 0;
1912 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1913 		ath9k_hw_resettxqueue(ah, i);
1914 
1915 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1916 	ath9k_hw_ani_cache_ini_regs(ah);
1917 	ath9k_hw_init_qos(ah);
1918 
1919 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1920 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1921 
1922 	ath9k_hw_init_global_settings(ah);
1923 
1924 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1925 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1926 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1927 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1928 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1929 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1930 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1931 	}
1932 
1933 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1934 
1935 	ath9k_hw_set_dma(ah);
1936 
1937 	if (!ath9k_hw_mci_is_enabled(ah))
1938 		REG_WRITE(ah, AR_OBS, 8);
1939 
1940 	if (ah->config.rx_intr_mitigation) {
1941 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1942 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1943 	}
1944 
1945 	if (ah->config.tx_intr_mitigation) {
1946 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1947 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1948 	}
1949 
1950 	ath9k_hw_init_bb(ah, chan);
1951 
1952 	if (caldata) {
1953 		caldata->done_txiqcal_once = false;
1954 		caldata->done_txclcal_once = false;
1955 	}
1956 	if (!ath9k_hw_init_cal(ah, chan))
1957 		return -EIO;
1958 
1959 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1960 		return -EIO;
1961 
1962 	ENABLE_REGWRITE_BUFFER(ah);
1963 
1964 	ath9k_hw_restore_chainmask(ah);
1965 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1966 
1967 	REGWRITE_BUFFER_FLUSH(ah);
1968 
1969 	/*
1970 	 * For big endian systems turn on swapping for descriptors
1971 	 */
1972 	if (AR_SREV_9100(ah)) {
1973 		u32 mask;
1974 		mask = REG_READ(ah, AR_CFG);
1975 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1976 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1977 				mask);
1978 		} else {
1979 			mask =
1980 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1981 			REG_WRITE(ah, AR_CFG, mask);
1982 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1983 				REG_READ(ah, AR_CFG));
1984 		}
1985 	} else {
1986 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1987 			/* Configure AR9271 target WLAN */
1988 			if (AR_SREV_9271(ah))
1989 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1990 			else
1991 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1992 		}
1993 #ifdef __BIG_ENDIAN
1994 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1995 			 AR_SREV_9550(ah))
1996 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1997 		else
1998 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1999 #endif
2000 	}
2001 
2002 	if (ath9k_hw_btcoex_is_enabled(ah))
2003 		ath9k_hw_btcoex_enable(ah);
2004 
2005 	if (ath9k_hw_mci_is_enabled(ah))
2006 		ar9003_mci_check_bt(ah);
2007 
2008 	ath9k_hw_loadnf(ah, chan);
2009 	ath9k_hw_start_nfcal(ah, true);
2010 
2011 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2012 		ar9003_hw_bb_watchdog_config(ah);
2013 
2014 		ar9003_hw_disable_phy_restart(ah);
2015 	}
2016 
2017 	ath9k_hw_apply_gpio_override(ah);
2018 
2019 	if (AR_SREV_9565(ah) && ah->shared_chain_lnadiv)
2020 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2021 
2022 	return 0;
2023 }
2024 EXPORT_SYMBOL(ath9k_hw_reset);
2025 
2026 /******************************/
2027 /* Power Management (Chipset) */
2028 /******************************/
2029 
2030 /*
2031  * Notify Power Mgt is disabled in self-generated frames.
2032  * If requested, force chip to sleep.
2033  */
2034 static void ath9k_set_power_sleep(struct ath_hw *ah)
2035 {
2036 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2037 
2038 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2039 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2040 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2041 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2042 		/* xxx Required for WLAN only case ? */
2043 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2044 		udelay(100);
2045 	}
2046 
2047 	/*
2048 	 * Clear the RTC force wake bit to allow the
2049 	 * mac to go to sleep.
2050 	 */
2051 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2052 
2053 	if (ath9k_hw_mci_is_enabled(ah))
2054 		udelay(100);
2055 
2056 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2057 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2058 
2059 	/* Shutdown chip. Active low */
2060 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2061 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2062 		udelay(2);
2063 	}
2064 
2065 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2066 	if (AR_SREV_9300_20_OR_LATER(ah))
2067 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2068 }
2069 
2070 /*
2071  * Notify Power Management is enabled in self-generating
2072  * frames. If request, set power mode of chip to
2073  * auto/normal.  Duration in units of 128us (1/8 TU).
2074  */
2075 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2076 {
2077 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2078 
2079 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2080 
2081 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2082 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2083 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2084 			  AR_RTC_FORCE_WAKE_ON_INT);
2085 	} else {
2086 
2087 		/* When chip goes into network sleep, it could be waken
2088 		 * up by MCI_INT interrupt caused by BT's HW messages
2089 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2090 		 * rate (~100us). This will cause chip to leave and
2091 		 * re-enter network sleep mode frequently, which in
2092 		 * consequence will have WLAN MCI HW to generate lots of
2093 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2094 		 * BT CPU to busy to process.
2095 		 */
2096 		if (ath9k_hw_mci_is_enabled(ah))
2097 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2098 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2099 		/*
2100 		 * Clear the RTC force wake bit to allow the
2101 		 * mac to go to sleep.
2102 		 */
2103 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2104 
2105 		if (ath9k_hw_mci_is_enabled(ah))
2106 			udelay(30);
2107 	}
2108 
2109 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2110 	if (AR_SREV_9300_20_OR_LATER(ah))
2111 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2112 }
2113 
2114 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2115 {
2116 	u32 val;
2117 	int i;
2118 
2119 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2120 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2121 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2122 		udelay(10);
2123 	}
2124 
2125 	if ((REG_READ(ah, AR_RTC_STATUS) &
2126 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2127 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2128 			return false;
2129 		}
2130 		if (!AR_SREV_9300_20_OR_LATER(ah))
2131 			ath9k_hw_init_pll(ah, NULL);
2132 	}
2133 	if (AR_SREV_9100(ah))
2134 		REG_SET_BIT(ah, AR_RTC_RESET,
2135 			    AR_RTC_RESET_EN);
2136 
2137 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2138 		    AR_RTC_FORCE_WAKE_EN);
2139 	udelay(50);
2140 
2141 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2142 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2143 		if (val == AR_RTC_STATUS_ON)
2144 			break;
2145 		udelay(50);
2146 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2147 			    AR_RTC_FORCE_WAKE_EN);
2148 	}
2149 	if (i == 0) {
2150 		ath_err(ath9k_hw_common(ah),
2151 			"Failed to wakeup in %uus\n",
2152 			POWER_UP_TIME / 20);
2153 		return false;
2154 	}
2155 
2156 	if (ath9k_hw_mci_is_enabled(ah))
2157 		ar9003_mci_set_power_awake(ah);
2158 
2159 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2160 
2161 	return true;
2162 }
2163 
2164 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2165 {
2166 	struct ath_common *common = ath9k_hw_common(ah);
2167 	int status = true;
2168 	static const char *modes[] = {
2169 		"AWAKE",
2170 		"FULL-SLEEP",
2171 		"NETWORK SLEEP",
2172 		"UNDEFINED"
2173 	};
2174 
2175 	if (ah->power_mode == mode)
2176 		return status;
2177 
2178 	ath_dbg(common, RESET, "%s -> %s\n",
2179 		modes[ah->power_mode], modes[mode]);
2180 
2181 	switch (mode) {
2182 	case ATH9K_PM_AWAKE:
2183 		status = ath9k_hw_set_power_awake(ah);
2184 		break;
2185 	case ATH9K_PM_FULL_SLEEP:
2186 		if (ath9k_hw_mci_is_enabled(ah))
2187 			ar9003_mci_set_full_sleep(ah);
2188 
2189 		ath9k_set_power_sleep(ah);
2190 		ah->chip_fullsleep = true;
2191 		break;
2192 	case ATH9K_PM_NETWORK_SLEEP:
2193 		ath9k_set_power_network_sleep(ah);
2194 		break;
2195 	default:
2196 		ath_err(common, "Unknown power mode %u\n", mode);
2197 		return false;
2198 	}
2199 	ah->power_mode = mode;
2200 
2201 	/*
2202 	 * XXX: If this warning never comes up after a while then
2203 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2204 	 * ath9k_hw_setpower() return type void.
2205 	 */
2206 
2207 	if (!(ah->ah_flags & AH_UNPLUGGED))
2208 		ATH_DBG_WARN_ON_ONCE(!status);
2209 
2210 	return status;
2211 }
2212 EXPORT_SYMBOL(ath9k_hw_setpower);
2213 
2214 /*******************/
2215 /* Beacon Handling */
2216 /*******************/
2217 
2218 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2219 {
2220 	int flags = 0;
2221 
2222 	ENABLE_REGWRITE_BUFFER(ah);
2223 
2224 	switch (ah->opmode) {
2225 	case NL80211_IFTYPE_ADHOC:
2226 	case NL80211_IFTYPE_MESH_POINT:
2227 		REG_SET_BIT(ah, AR_TXCFG,
2228 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2229 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2230 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2231 		flags |= AR_NDP_TIMER_EN;
2232 	case NL80211_IFTYPE_AP:
2233 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2234 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2235 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2236 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2237 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2238 		flags |=
2239 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2240 		break;
2241 	default:
2242 		ath_dbg(ath9k_hw_common(ah), BEACON,
2243 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2244 		return;
2245 		break;
2246 	}
2247 
2248 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2249 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2250 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2251 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2252 
2253 	REGWRITE_BUFFER_FLUSH(ah);
2254 
2255 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2256 }
2257 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2258 
2259 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2260 				    const struct ath9k_beacon_state *bs)
2261 {
2262 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2263 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2264 	struct ath_common *common = ath9k_hw_common(ah);
2265 
2266 	ENABLE_REGWRITE_BUFFER(ah);
2267 
2268 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2269 
2270 	REG_WRITE(ah, AR_BEACON_PERIOD,
2271 		  TU_TO_USEC(bs->bs_intval));
2272 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2273 		  TU_TO_USEC(bs->bs_intval));
2274 
2275 	REGWRITE_BUFFER_FLUSH(ah);
2276 
2277 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2278 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2279 
2280 	beaconintval = bs->bs_intval;
2281 
2282 	if (bs->bs_sleepduration > beaconintval)
2283 		beaconintval = bs->bs_sleepduration;
2284 
2285 	dtimperiod = bs->bs_dtimperiod;
2286 	if (bs->bs_sleepduration > dtimperiod)
2287 		dtimperiod = bs->bs_sleepduration;
2288 
2289 	if (beaconintval == dtimperiod)
2290 		nextTbtt = bs->bs_nextdtim;
2291 	else
2292 		nextTbtt = bs->bs_nexttbtt;
2293 
2294 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2295 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2296 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2297 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2298 
2299 	ENABLE_REGWRITE_BUFFER(ah);
2300 
2301 	REG_WRITE(ah, AR_NEXT_DTIM,
2302 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2303 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2304 
2305 	REG_WRITE(ah, AR_SLEEP1,
2306 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2307 		  | AR_SLEEP1_ASSUME_DTIM);
2308 
2309 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2310 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2311 	else
2312 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2313 
2314 	REG_WRITE(ah, AR_SLEEP2,
2315 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2316 
2317 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2318 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2319 
2320 	REGWRITE_BUFFER_FLUSH(ah);
2321 
2322 	REG_SET_BIT(ah, AR_TIMER_MODE,
2323 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2324 		    AR_DTIM_TIMER_EN);
2325 
2326 	/* TSF Out of Range Threshold */
2327 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2328 }
2329 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2330 
2331 /*******************/
2332 /* HW Capabilities */
2333 /*******************/
2334 
2335 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2336 {
2337 	eeprom_chainmask &= chip_chainmask;
2338 	if (eeprom_chainmask)
2339 		return eeprom_chainmask;
2340 	else
2341 		return chip_chainmask;
2342 }
2343 
2344 /**
2345  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2346  * @ah: the atheros hardware data structure
2347  *
2348  * We enable DFS support upstream on chipsets which have passed a series
2349  * of tests. The testing requirements are going to be documented. Desired
2350  * test requirements are documented at:
2351  *
2352  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2353  *
2354  * Once a new chipset gets properly tested an individual commit can be used
2355  * to document the testing for DFS for that chipset.
2356  */
2357 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2358 {
2359 
2360 	switch (ah->hw_version.macVersion) {
2361 	/* AR9580 will likely be our first target to get testing on */
2362 	case AR_SREV_VERSION_9580:
2363 	default:
2364 		return false;
2365 	}
2366 }
2367 
2368 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2369 {
2370 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2371 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2372 	struct ath_common *common = ath9k_hw_common(ah);
2373 	unsigned int chip_chainmask;
2374 
2375 	u16 eeval;
2376 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2377 
2378 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2379 	regulatory->current_rd = eeval;
2380 
2381 	if (ah->opmode != NL80211_IFTYPE_AP &&
2382 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2383 		if (regulatory->current_rd == 0x64 ||
2384 		    regulatory->current_rd == 0x65)
2385 			regulatory->current_rd += 5;
2386 		else if (regulatory->current_rd == 0x41)
2387 			regulatory->current_rd = 0x43;
2388 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2389 			regulatory->current_rd);
2390 	}
2391 
2392 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2393 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2394 		ath_err(common,
2395 			"no band has been marked as supported in EEPROM\n");
2396 		return -EINVAL;
2397 	}
2398 
2399 	if (eeval & AR5416_OPFLAGS_11A)
2400 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2401 
2402 	if (eeval & AR5416_OPFLAGS_11G)
2403 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2404 
2405 	if (AR_SREV_9485(ah) ||
2406 	    AR_SREV_9285(ah) ||
2407 	    AR_SREV_9330(ah) ||
2408 	    AR_SREV_9565(ah))
2409 		chip_chainmask = 1;
2410 	else if (AR_SREV_9462(ah))
2411 		chip_chainmask = 3;
2412 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2413 		chip_chainmask = 7;
2414 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2415 		chip_chainmask = 3;
2416 	else
2417 		chip_chainmask = 7;
2418 
2419 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2420 	/*
2421 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2422 	 * the EEPROM.
2423 	 */
2424 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2425 	    !(eeval & AR5416_OPFLAGS_11A) &&
2426 	    !(AR_SREV_9271(ah)))
2427 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2428 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2429 	else if (AR_SREV_9100(ah))
2430 		pCap->rx_chainmask = 0x7;
2431 	else
2432 		/* Use rx_chainmask from EEPROM. */
2433 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2434 
2435 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2436 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2437 	ah->txchainmask = pCap->tx_chainmask;
2438 	ah->rxchainmask = pCap->rx_chainmask;
2439 
2440 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2441 
2442 	/* enable key search for every frame in an aggregate */
2443 	if (AR_SREV_9300_20_OR_LATER(ah))
2444 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2445 
2446 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2447 
2448 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2449 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2450 	else
2451 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2452 
2453 	if (AR_SREV_9271(ah))
2454 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2455 	else if (AR_DEVID_7010(ah))
2456 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2457 	else if (AR_SREV_9300_20_OR_LATER(ah))
2458 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2459 	else if (AR_SREV_9287_11_OR_LATER(ah))
2460 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2461 	else if (AR_SREV_9285_12_OR_LATER(ah))
2462 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2463 	else if (AR_SREV_9280_20_OR_LATER(ah))
2464 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2465 	else
2466 		pCap->num_gpio_pins = AR_NUM_GPIO;
2467 
2468 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2469 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2470 	else
2471 		pCap->rts_aggr_limit = (8 * 1024);
2472 
2473 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2474 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2475 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2476 		ah->rfkill_gpio =
2477 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2478 		ah->rfkill_polarity =
2479 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2480 
2481 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2482 	}
2483 #endif
2484 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2485 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2486 	else
2487 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2488 
2489 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2490 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2491 	else
2492 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2493 
2494 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2495 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2496 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2497 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2498 
2499 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2500 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2501 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2502 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2503 		pCap->txs_len = sizeof(struct ar9003_txs);
2504 	} else {
2505 		pCap->tx_desc_len = sizeof(struct ath_desc);
2506 		if (AR_SREV_9280_20(ah))
2507 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2508 	}
2509 
2510 	if (AR_SREV_9300_20_OR_LATER(ah))
2511 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2512 
2513 	if (AR_SREV_9300_20_OR_LATER(ah))
2514 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2515 
2516 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2517 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2518 
2519 	if (AR_SREV_9285(ah))
2520 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2521 			ant_div_ctl1 =
2522 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2523 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2524 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2525 		}
2526 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2527 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2528 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2529 	}
2530 
2531 
2532 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2533 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2534 		/*
2535 		 * enable the diversity-combining algorithm only when
2536 		 * both enable_lna_div and enable_fast_div are set
2537 		 *		Table for Diversity
2538 		 * ant_div_alt_lnaconf		bit 0-1
2539 		 * ant_div_main_lnaconf		bit 2-3
2540 		 * ant_div_alt_gaintb		bit 4
2541 		 * ant_div_main_gaintb		bit 5
2542 		 * enable_ant_div_lnadiv	bit 6
2543 		 * enable_ant_fast_div		bit 7
2544 		 */
2545 		if ((ant_div_ctl1 >> 0x6) == 0x3)
2546 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2547 	}
2548 
2549 	if (ath9k_hw_dfs_tested(ah))
2550 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2551 
2552 	tx_chainmask = pCap->tx_chainmask;
2553 	rx_chainmask = pCap->rx_chainmask;
2554 	while (tx_chainmask || rx_chainmask) {
2555 		if (tx_chainmask & BIT(0))
2556 			pCap->max_txchains++;
2557 		if (rx_chainmask & BIT(0))
2558 			pCap->max_rxchains++;
2559 
2560 		tx_chainmask >>= 1;
2561 		rx_chainmask >>= 1;
2562 	}
2563 
2564 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2565 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2566 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2567 
2568 		if (AR_SREV_9462_20(ah))
2569 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2570 	}
2571 
2572 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2573 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE |
2574 				 ATH9K_HW_WOW_PATTERN_MATCH_EXACT;
2575 
2576 		if (AR_SREV_9280(ah))
2577 			pCap->hw_caps |= ATH9K_HW_WOW_PATTERN_MATCH_DWORD;
2578 	}
2579 
2580 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2581 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2582 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2583 
2584 	return 0;
2585 }
2586 
2587 /****************************/
2588 /* GPIO / RFKILL / Antennae */
2589 /****************************/
2590 
2591 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2592 					 u32 gpio, u32 type)
2593 {
2594 	int addr;
2595 	u32 gpio_shift, tmp;
2596 
2597 	if (gpio > 11)
2598 		addr = AR_GPIO_OUTPUT_MUX3;
2599 	else if (gpio > 5)
2600 		addr = AR_GPIO_OUTPUT_MUX2;
2601 	else
2602 		addr = AR_GPIO_OUTPUT_MUX1;
2603 
2604 	gpio_shift = (gpio % 6) * 5;
2605 
2606 	if (AR_SREV_9280_20_OR_LATER(ah)
2607 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2608 		REG_RMW(ah, addr, (type << gpio_shift),
2609 			(0x1f << gpio_shift));
2610 	} else {
2611 		tmp = REG_READ(ah, addr);
2612 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2613 		tmp &= ~(0x1f << gpio_shift);
2614 		tmp |= (type << gpio_shift);
2615 		REG_WRITE(ah, addr, tmp);
2616 	}
2617 }
2618 
2619 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2620 {
2621 	u32 gpio_shift;
2622 
2623 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2624 
2625 	if (AR_DEVID_7010(ah)) {
2626 		gpio_shift = gpio;
2627 		REG_RMW(ah, AR7010_GPIO_OE,
2628 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2629 			(AR7010_GPIO_OE_MASK << gpio_shift));
2630 		return;
2631 	}
2632 
2633 	gpio_shift = gpio << 1;
2634 	REG_RMW(ah,
2635 		AR_GPIO_OE_OUT,
2636 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2637 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2638 }
2639 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2640 
2641 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2642 {
2643 #define MS_REG_READ(x, y) \
2644 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2645 
2646 	if (gpio >= ah->caps.num_gpio_pins)
2647 		return 0xffffffff;
2648 
2649 	if (AR_DEVID_7010(ah)) {
2650 		u32 val;
2651 		val = REG_READ(ah, AR7010_GPIO_IN);
2652 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2653 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2654 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2655 			AR_GPIO_BIT(gpio)) != 0;
2656 	else if (AR_SREV_9271(ah))
2657 		return MS_REG_READ(AR9271, gpio) != 0;
2658 	else if (AR_SREV_9287_11_OR_LATER(ah))
2659 		return MS_REG_READ(AR9287, gpio) != 0;
2660 	else if (AR_SREV_9285_12_OR_LATER(ah))
2661 		return MS_REG_READ(AR9285, gpio) != 0;
2662 	else if (AR_SREV_9280_20_OR_LATER(ah))
2663 		return MS_REG_READ(AR928X, gpio) != 0;
2664 	else
2665 		return MS_REG_READ(AR, gpio) != 0;
2666 }
2667 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2668 
2669 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2670 			 u32 ah_signal_type)
2671 {
2672 	u32 gpio_shift;
2673 
2674 	if (AR_DEVID_7010(ah)) {
2675 		gpio_shift = gpio;
2676 		REG_RMW(ah, AR7010_GPIO_OE,
2677 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2678 			(AR7010_GPIO_OE_MASK << gpio_shift));
2679 		return;
2680 	}
2681 
2682 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2683 	gpio_shift = 2 * gpio;
2684 	REG_RMW(ah,
2685 		AR_GPIO_OE_OUT,
2686 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2687 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2688 }
2689 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2690 
2691 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2692 {
2693 	if (AR_DEVID_7010(ah)) {
2694 		val = val ? 0 : 1;
2695 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2696 			AR_GPIO_BIT(gpio));
2697 		return;
2698 	}
2699 
2700 	if (AR_SREV_9271(ah))
2701 		val = ~val;
2702 
2703 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2704 		AR_GPIO_BIT(gpio));
2705 }
2706 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2707 
2708 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2709 {
2710 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2711 }
2712 EXPORT_SYMBOL(ath9k_hw_setantenna);
2713 
2714 /*********************/
2715 /* General Operation */
2716 /*********************/
2717 
2718 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2719 {
2720 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2721 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2722 
2723 	if (phybits & AR_PHY_ERR_RADAR)
2724 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2725 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2726 		bits |= ATH9K_RX_FILTER_PHYERR;
2727 
2728 	return bits;
2729 }
2730 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2731 
2732 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2733 {
2734 	u32 phybits;
2735 
2736 	ENABLE_REGWRITE_BUFFER(ah);
2737 
2738 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2739 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2740 
2741 	REG_WRITE(ah, AR_RX_FILTER, bits);
2742 
2743 	phybits = 0;
2744 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2745 		phybits |= AR_PHY_ERR_RADAR;
2746 	if (bits & ATH9K_RX_FILTER_PHYERR)
2747 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2748 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2749 
2750 	if (phybits)
2751 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2752 	else
2753 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2754 
2755 	REGWRITE_BUFFER_FLUSH(ah);
2756 }
2757 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2758 
2759 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2760 {
2761 	if (ath9k_hw_mci_is_enabled(ah))
2762 		ar9003_mci_bt_gain_ctrl(ah);
2763 
2764 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2765 		return false;
2766 
2767 	ath9k_hw_init_pll(ah, NULL);
2768 	ah->htc_reset_init = true;
2769 	return true;
2770 }
2771 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2772 
2773 bool ath9k_hw_disable(struct ath_hw *ah)
2774 {
2775 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2776 		return false;
2777 
2778 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2779 		return false;
2780 
2781 	ath9k_hw_init_pll(ah, NULL);
2782 	return true;
2783 }
2784 EXPORT_SYMBOL(ath9k_hw_disable);
2785 
2786 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2787 {
2788 	enum eeprom_param gain_param;
2789 
2790 	if (IS_CHAN_2GHZ(chan))
2791 		gain_param = EEP_ANTENNA_GAIN_2G;
2792 	else
2793 		gain_param = EEP_ANTENNA_GAIN_5G;
2794 
2795 	return ah->eep_ops->get_eeprom(ah, gain_param);
2796 }
2797 
2798 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2799 			    bool test)
2800 {
2801 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2802 	struct ieee80211_channel *channel;
2803 	int chan_pwr, new_pwr, max_gain;
2804 	int ant_gain, ant_reduction = 0;
2805 
2806 	if (!chan)
2807 		return;
2808 
2809 	channel = chan->chan;
2810 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2811 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2812 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2813 
2814 	ant_gain = get_antenna_gain(ah, chan);
2815 	if (ant_gain > max_gain)
2816 		ant_reduction = ant_gain - max_gain;
2817 
2818 	ah->eep_ops->set_txpower(ah, chan,
2819 				 ath9k_regd_get_ctl(reg, chan),
2820 				 ant_reduction, new_pwr, test);
2821 }
2822 
2823 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2824 {
2825 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2826 	struct ath9k_channel *chan = ah->curchan;
2827 	struct ieee80211_channel *channel = chan->chan;
2828 
2829 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2830 	if (test)
2831 		channel->max_power = MAX_RATE_POWER / 2;
2832 
2833 	ath9k_hw_apply_txpower(ah, chan, test);
2834 
2835 	if (test)
2836 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2837 }
2838 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2839 
2840 void ath9k_hw_setopmode(struct ath_hw *ah)
2841 {
2842 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2843 }
2844 EXPORT_SYMBOL(ath9k_hw_setopmode);
2845 
2846 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2847 {
2848 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2849 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2850 }
2851 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2852 
2853 void ath9k_hw_write_associd(struct ath_hw *ah)
2854 {
2855 	struct ath_common *common = ath9k_hw_common(ah);
2856 
2857 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2858 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2859 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2860 }
2861 EXPORT_SYMBOL(ath9k_hw_write_associd);
2862 
2863 #define ATH9K_MAX_TSF_READ 10
2864 
2865 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2866 {
2867 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2868 	int i;
2869 
2870 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2871 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2872 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2873 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2874 		if (tsf_upper2 == tsf_upper1)
2875 			break;
2876 		tsf_upper1 = tsf_upper2;
2877 	}
2878 
2879 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2880 
2881 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2882 }
2883 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2884 
2885 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2886 {
2887 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2888 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2889 }
2890 EXPORT_SYMBOL(ath9k_hw_settsf64);
2891 
2892 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2893 {
2894 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2895 			   AH_TSF_WRITE_TIMEOUT))
2896 		ath_dbg(ath9k_hw_common(ah), RESET,
2897 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2898 
2899 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2900 }
2901 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2902 
2903 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2904 {
2905 	if (set)
2906 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2907 	else
2908 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2909 }
2910 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2911 
2912 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2913 {
2914 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2915 	u32 macmode;
2916 
2917 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2918 		macmode = AR_2040_JOINED_RX_CLEAR;
2919 	else
2920 		macmode = 0;
2921 
2922 	REG_WRITE(ah, AR_2040_MODE, macmode);
2923 }
2924 
2925 /* HW Generic timers configuration */
2926 
2927 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2928 {
2929 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2930 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2931 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2932 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2933 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2934 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2935 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2936 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2937 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2938 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2939 				AR_NDP2_TIMER_MODE, 0x0002},
2940 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2941 				AR_NDP2_TIMER_MODE, 0x0004},
2942 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2943 				AR_NDP2_TIMER_MODE, 0x0008},
2944 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2945 				AR_NDP2_TIMER_MODE, 0x0010},
2946 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2947 				AR_NDP2_TIMER_MODE, 0x0020},
2948 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2949 				AR_NDP2_TIMER_MODE, 0x0040},
2950 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2951 				AR_NDP2_TIMER_MODE, 0x0080}
2952 };
2953 
2954 /* HW generic timer primitives */
2955 
2956 /* compute and clear index of rightmost 1 */
2957 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2958 {
2959 	u32 b;
2960 
2961 	b = *mask;
2962 	b &= (0-b);
2963 	*mask &= ~b;
2964 	b *= debruijn32;
2965 	b >>= 27;
2966 
2967 	return timer_table->gen_timer_index[b];
2968 }
2969 
2970 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2971 {
2972 	return REG_READ(ah, AR_TSF_L32);
2973 }
2974 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2975 
2976 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2977 					  void (*trigger)(void *),
2978 					  void (*overflow)(void *),
2979 					  void *arg,
2980 					  u8 timer_index)
2981 {
2982 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2983 	struct ath_gen_timer *timer;
2984 
2985 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2986 	if (timer == NULL)
2987 		return NULL;
2988 
2989 	/* allocate a hardware generic timer slot */
2990 	timer_table->timers[timer_index] = timer;
2991 	timer->index = timer_index;
2992 	timer->trigger = trigger;
2993 	timer->overflow = overflow;
2994 	timer->arg = arg;
2995 
2996 	return timer;
2997 }
2998 EXPORT_SYMBOL(ath_gen_timer_alloc);
2999 
3000 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3001 			      struct ath_gen_timer *timer,
3002 			      u32 trig_timeout,
3003 			      u32 timer_period)
3004 {
3005 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3006 	u32 tsf, timer_next;
3007 
3008 	BUG_ON(!timer_period);
3009 
3010 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3011 
3012 	tsf = ath9k_hw_gettsf32(ah);
3013 
3014 	timer_next = tsf + trig_timeout;
3015 
3016 	ath_dbg(ath9k_hw_common(ah), HWTIMER,
3017 		"current tsf %x period %x timer_next %x\n",
3018 		tsf, timer_period, timer_next);
3019 
3020 	/*
3021 	 * Program generic timer registers
3022 	 */
3023 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3024 		 timer_next);
3025 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3026 		  timer_period);
3027 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3028 		    gen_tmr_configuration[timer->index].mode_mask);
3029 
3030 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3031 		/*
3032 		 * Starting from AR9462, each generic timer can select which tsf
3033 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3034 		 * 8 - 15  use tsf2.
3035 		 */
3036 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3037 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3038 				       (1 << timer->index));
3039 		else
3040 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3041 				       (1 << timer->index));
3042 	}
3043 
3044 	/* Enable both trigger and thresh interrupt masks */
3045 	REG_SET_BIT(ah, AR_IMR_S5,
3046 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3047 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3048 }
3049 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3050 
3051 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3052 {
3053 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3054 
3055 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3056 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3057 		return;
3058 	}
3059 
3060 	/* Clear generic timer enable bits. */
3061 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3062 			gen_tmr_configuration[timer->index].mode_mask);
3063 
3064 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3065 		/*
3066 		 * Need to switch back to TSF if it was using TSF2.
3067 		 */
3068 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3069 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3070 				    (1 << timer->index));
3071 		}
3072 	}
3073 
3074 	/* Disable both trigger and thresh interrupt masks */
3075 	REG_CLR_BIT(ah, AR_IMR_S5,
3076 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3077 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3078 
3079 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3080 }
3081 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3082 
3083 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3084 {
3085 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3086 
3087 	/* free the hardware generic timer slot */
3088 	timer_table->timers[timer->index] = NULL;
3089 	kfree(timer);
3090 }
3091 EXPORT_SYMBOL(ath_gen_timer_free);
3092 
3093 /*
3094  * Generic Timer Interrupts handling
3095  */
3096 void ath_gen_timer_isr(struct ath_hw *ah)
3097 {
3098 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3099 	struct ath_gen_timer *timer;
3100 	struct ath_common *common = ath9k_hw_common(ah);
3101 	u32 trigger_mask, thresh_mask, index;
3102 
3103 	/* get hardware generic timer interrupt status */
3104 	trigger_mask = ah->intr_gen_timer_trigger;
3105 	thresh_mask = ah->intr_gen_timer_thresh;
3106 	trigger_mask &= timer_table->timer_mask.val;
3107 	thresh_mask &= timer_table->timer_mask.val;
3108 
3109 	trigger_mask &= ~thresh_mask;
3110 
3111 	while (thresh_mask) {
3112 		index = rightmost_index(timer_table, &thresh_mask);
3113 		timer = timer_table->timers[index];
3114 		BUG_ON(!timer);
3115 		ath_dbg(common, HWTIMER, "TSF overflow for Gen timer %d\n",
3116 			index);
3117 		timer->overflow(timer->arg);
3118 	}
3119 
3120 	while (trigger_mask) {
3121 		index = rightmost_index(timer_table, &trigger_mask);
3122 		timer = timer_table->timers[index];
3123 		BUG_ON(!timer);
3124 		ath_dbg(common, HWTIMER,
3125 			"Gen timer[%d] trigger\n", index);
3126 		timer->trigger(timer->arg);
3127 	}
3128 }
3129 EXPORT_SYMBOL(ath_gen_timer_isr);
3130 
3131 /********/
3132 /* HTC  */
3133 /********/
3134 
3135 static struct {
3136 	u32 version;
3137 	const char * name;
3138 } ath_mac_bb_names[] = {
3139 	/* Devices with external radios */
3140 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3141 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3142 	{ AR_SREV_VERSION_9100,		"9100" },
3143 	{ AR_SREV_VERSION_9160,		"9160" },
3144 	/* Single-chip solutions */
3145 	{ AR_SREV_VERSION_9280,		"9280" },
3146 	{ AR_SREV_VERSION_9285,		"9285" },
3147 	{ AR_SREV_VERSION_9287,         "9287" },
3148 	{ AR_SREV_VERSION_9271,         "9271" },
3149 	{ AR_SREV_VERSION_9300,         "9300" },
3150 	{ AR_SREV_VERSION_9330,         "9330" },
3151 	{ AR_SREV_VERSION_9340,		"9340" },
3152 	{ AR_SREV_VERSION_9485,         "9485" },
3153 	{ AR_SREV_VERSION_9462,         "9462" },
3154 	{ AR_SREV_VERSION_9550,         "9550" },
3155 	{ AR_SREV_VERSION_9565,         "9565" },
3156 };
3157 
3158 /* For devices with external radios */
3159 static struct {
3160 	u16 version;
3161 	const char * name;
3162 } ath_rf_names[] = {
3163 	{ 0,				"5133" },
3164 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3165 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3166 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3167 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3168 };
3169 
3170 /*
3171  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3172  */
3173 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3174 {
3175 	int i;
3176 
3177 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3178 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3179 			return ath_mac_bb_names[i].name;
3180 		}
3181 	}
3182 
3183 	return "????";
3184 }
3185 
3186 /*
3187  * Return the RF name. "????" is returned if the RF is unknown.
3188  * Used for devices with external radios.
3189  */
3190 static const char *ath9k_hw_rf_name(u16 rf_version)
3191 {
3192 	int i;
3193 
3194 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3195 		if (ath_rf_names[i].version == rf_version) {
3196 			return ath_rf_names[i].name;
3197 		}
3198 	}
3199 
3200 	return "????";
3201 }
3202 
3203 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3204 {
3205 	int used;
3206 
3207 	/* chipsets >= AR9280 are single-chip */
3208 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3209 		used = snprintf(hw_name, len,
3210 			       "Atheros AR%s Rev:%x",
3211 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3212 			       ah->hw_version.macRev);
3213 	}
3214 	else {
3215 		used = snprintf(hw_name, len,
3216 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3217 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3218 			       ah->hw_version.macRev,
3219 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3220 						AR_RADIO_SREV_MAJOR)),
3221 			       ah->hw_version.phyRev);
3222 	}
3223 
3224 	hw_name[used] = '\0';
3225 }
3226 EXPORT_SYMBOL(ath9k_hw_name);
3227