xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 92a2c6b2)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <asm/unaligned.h>
24 
25 #include "hw.h"
26 #include "hw-ops.h"
27 #include "ar9003_mac.h"
28 #include "ar9003_mci.h"
29 #include "ar9003_phy.h"
30 #include "ath9k.h"
31 
32 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
33 
34 MODULE_AUTHOR("Atheros Communications");
35 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
36 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
37 MODULE_LICENSE("Dual BSD/GPL");
38 
39 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
40 {
41 	struct ath_common *common = ath9k_hw_common(ah);
42 	struct ath9k_channel *chan = ah->curchan;
43 	unsigned int clockrate;
44 
45 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
46 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
47 		clockrate = 117;
48 	else if (!chan) /* should really check for CCK instead */
49 		clockrate = ATH9K_CLOCK_RATE_CCK;
50 	else if (IS_CHAN_2GHZ(chan))
51 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
52 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
53 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
54 	else
55 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
56 
57 	if (chan) {
58 		if (IS_CHAN_HT40(chan))
59 			clockrate *= 2;
60 		if (IS_CHAN_HALF_RATE(chan))
61 			clockrate /= 2;
62 		if (IS_CHAN_QUARTER_RATE(chan))
63 			clockrate /= 4;
64 	}
65 
66 	common->clockrate = clockrate;
67 }
68 
69 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
70 {
71 	struct ath_common *common = ath9k_hw_common(ah);
72 
73 	return usecs * common->clockrate;
74 }
75 
76 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
77 {
78 	int i;
79 
80 	BUG_ON(timeout < AH_TIME_QUANTUM);
81 
82 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
83 		if ((REG_READ(ah, reg) & mask) == val)
84 			return true;
85 
86 		udelay(AH_TIME_QUANTUM);
87 	}
88 
89 	ath_dbg(ath9k_hw_common(ah), ANY,
90 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
91 		timeout, reg, REG_READ(ah, reg), mask, val);
92 
93 	return false;
94 }
95 EXPORT_SYMBOL(ath9k_hw_wait);
96 
97 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
98 			  int hw_delay)
99 {
100 	hw_delay /= 10;
101 
102 	if (IS_CHAN_HALF_RATE(chan))
103 		hw_delay *= 2;
104 	else if (IS_CHAN_QUARTER_RATE(chan))
105 		hw_delay *= 4;
106 
107 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
108 }
109 
110 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
111 			  int column, unsigned int *writecnt)
112 {
113 	int r;
114 
115 	ENABLE_REGWRITE_BUFFER(ah);
116 	for (r = 0; r < array->ia_rows; r++) {
117 		REG_WRITE(ah, INI_RA(array, r, 0),
118 			  INI_RA(array, r, column));
119 		DO_DELAY(*writecnt);
120 	}
121 	REGWRITE_BUFFER_FLUSH(ah);
122 }
123 
124 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
125 {
126 	u32 retval;
127 	int i;
128 
129 	for (i = 0, retval = 0; i < n; i++) {
130 		retval = (retval << 1) | (val & 1);
131 		val >>= 1;
132 	}
133 	return retval;
134 }
135 
136 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
137 			   u8 phy, int kbps,
138 			   u32 frameLen, u16 rateix,
139 			   bool shortPreamble)
140 {
141 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
142 
143 	if (kbps == 0)
144 		return 0;
145 
146 	switch (phy) {
147 	case WLAN_RC_PHY_CCK:
148 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
149 		if (shortPreamble)
150 			phyTime >>= 1;
151 		numBits = frameLen << 3;
152 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
153 		break;
154 	case WLAN_RC_PHY_OFDM:
155 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
156 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
157 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
158 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
159 			txTime = OFDM_SIFS_TIME_QUARTER
160 				+ OFDM_PREAMBLE_TIME_QUARTER
161 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
162 		} else if (ah->curchan &&
163 			   IS_CHAN_HALF_RATE(ah->curchan)) {
164 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
165 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
166 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
167 			txTime = OFDM_SIFS_TIME_HALF +
168 				OFDM_PREAMBLE_TIME_HALF
169 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
170 		} else {
171 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
172 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
173 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
174 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
175 				+ (numSymbols * OFDM_SYMBOL_TIME);
176 		}
177 		break;
178 	default:
179 		ath_err(ath9k_hw_common(ah),
180 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
181 		txTime = 0;
182 		break;
183 	}
184 
185 	return txTime;
186 }
187 EXPORT_SYMBOL(ath9k_hw_computetxtime);
188 
189 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
190 				  struct ath9k_channel *chan,
191 				  struct chan_centers *centers)
192 {
193 	int8_t extoff;
194 
195 	if (!IS_CHAN_HT40(chan)) {
196 		centers->ctl_center = centers->ext_center =
197 			centers->synth_center = chan->channel;
198 		return;
199 	}
200 
201 	if (IS_CHAN_HT40PLUS(chan)) {
202 		centers->synth_center =
203 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
204 		extoff = 1;
205 	} else {
206 		centers->synth_center =
207 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
208 		extoff = -1;
209 	}
210 
211 	centers->ctl_center =
212 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
213 	/* 25 MHz spacing is supported by hw but not on upper layers */
214 	centers->ext_center =
215 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
216 }
217 
218 /******************/
219 /* Chip Revisions */
220 /******************/
221 
222 static void ath9k_hw_read_revisions(struct ath_hw *ah)
223 {
224 	u32 val;
225 
226 	if (ah->get_mac_revision)
227 		ah->hw_version.macRev = ah->get_mac_revision();
228 
229 	switch (ah->hw_version.devid) {
230 	case AR5416_AR9100_DEVID:
231 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
232 		break;
233 	case AR9300_DEVID_AR9330:
234 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
235 		if (!ah->get_mac_revision) {
236 			val = REG_READ(ah, AR_SREV);
237 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
238 		}
239 		return;
240 	case AR9300_DEVID_AR9340:
241 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
242 		return;
243 	case AR9300_DEVID_QCA955X:
244 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
245 		return;
246 	case AR9300_DEVID_AR953X:
247 		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
248 		return;
249 	case AR9300_DEVID_QCA956X:
250 		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
251 	}
252 
253 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
254 
255 	if (val == 0xFF) {
256 		val = REG_READ(ah, AR_SREV);
257 		ah->hw_version.macVersion =
258 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
259 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
260 
261 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
262 			ah->is_pciexpress = true;
263 		else
264 			ah->is_pciexpress = (val &
265 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
266 	} else {
267 		if (!AR_SREV_9100(ah))
268 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
269 
270 		ah->hw_version.macRev = val & AR_SREV_REVISION;
271 
272 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
273 			ah->is_pciexpress = true;
274 	}
275 }
276 
277 /************************************/
278 /* HW Attach, Detach, Init Routines */
279 /************************************/
280 
281 static void ath9k_hw_disablepcie(struct ath_hw *ah)
282 {
283 	if (!AR_SREV_5416(ah))
284 		return;
285 
286 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
287 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
288 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
289 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
290 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
291 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
292 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
293 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
294 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
295 
296 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
297 }
298 
299 /* This should work for all families including legacy */
300 static bool ath9k_hw_chip_test(struct ath_hw *ah)
301 {
302 	struct ath_common *common = ath9k_hw_common(ah);
303 	u32 regAddr[2] = { AR_STA_ID0 };
304 	u32 regHold[2];
305 	static const u32 patternData[4] = {
306 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
307 	};
308 	int i, j, loop_max;
309 
310 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
311 		loop_max = 2;
312 		regAddr[1] = AR_PHY_BASE + (8 << 2);
313 	} else
314 		loop_max = 1;
315 
316 	for (i = 0; i < loop_max; i++) {
317 		u32 addr = regAddr[i];
318 		u32 wrData, rdData;
319 
320 		regHold[i] = REG_READ(ah, addr);
321 		for (j = 0; j < 0x100; j++) {
322 			wrData = (j << 16) | j;
323 			REG_WRITE(ah, addr, wrData);
324 			rdData = REG_READ(ah, addr);
325 			if (rdData != wrData) {
326 				ath_err(common,
327 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
328 					addr, wrData, rdData);
329 				return false;
330 			}
331 		}
332 		for (j = 0; j < 4; j++) {
333 			wrData = patternData[j];
334 			REG_WRITE(ah, addr, wrData);
335 			rdData = REG_READ(ah, addr);
336 			if (wrData != rdData) {
337 				ath_err(common,
338 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
339 					addr, wrData, rdData);
340 				return false;
341 			}
342 		}
343 		REG_WRITE(ah, regAddr[i], regHold[i]);
344 	}
345 	udelay(100);
346 
347 	return true;
348 }
349 
350 static void ath9k_hw_init_config(struct ath_hw *ah)
351 {
352 	struct ath_common *common = ath9k_hw_common(ah);
353 
354 	ah->config.dma_beacon_response_time = 1;
355 	ah->config.sw_beacon_response_time = 6;
356 	ah->config.cwm_ignore_extcca = 0;
357 	ah->config.analog_shiftreg = 1;
358 
359 	ah->config.rx_intr_mitigation = true;
360 
361 	if (AR_SREV_9300_20_OR_LATER(ah)) {
362 		ah->config.rimt_last = 500;
363 		ah->config.rimt_first = 2000;
364 	} else {
365 		ah->config.rimt_last = 250;
366 		ah->config.rimt_first = 700;
367 	}
368 
369 	/*
370 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
371 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
372 	 * This means we use it for all AR5416 devices, and the few
373 	 * minor PCI AR9280 devices out there.
374 	 *
375 	 * Serialization is required because these devices do not handle
376 	 * well the case of two concurrent reads/writes due to the latency
377 	 * involved. During one read/write another read/write can be issued
378 	 * on another CPU while the previous read/write may still be working
379 	 * on our hardware, if we hit this case the hardware poops in a loop.
380 	 * We prevent this by serializing reads and writes.
381 	 *
382 	 * This issue is not present on PCI-Express devices or pre-AR5416
383 	 * devices (legacy, 802.11abg).
384 	 */
385 	if (num_possible_cpus() > 1)
386 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
387 
388 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
389 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
390 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
391 		     !ah->is_pciexpress)) {
392 			ah->config.serialize_regmode = SER_REG_MODE_ON;
393 		} else {
394 			ah->config.serialize_regmode = SER_REG_MODE_OFF;
395 		}
396 	}
397 
398 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
399 		ah->config.serialize_regmode);
400 
401 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
402 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
403 	else
404 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
405 }
406 
407 static void ath9k_hw_init_defaults(struct ath_hw *ah)
408 {
409 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
410 
411 	regulatory->country_code = CTRY_DEFAULT;
412 	regulatory->power_limit = MAX_RATE_POWER;
413 
414 	ah->hw_version.magic = AR5416_MAGIC;
415 	ah->hw_version.subvendorid = 0;
416 
417 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
418 			       AR_STA_ID1_MCAST_KSRCH;
419 	if (AR_SREV_9100(ah))
420 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
421 
422 	ah->slottime = ATH9K_SLOT_TIME_9;
423 	ah->globaltxtimeout = (u32) -1;
424 	ah->power_mode = ATH9K_PM_UNDEFINED;
425 	ah->htc_reset_init = true;
426 
427 	ah->tpc_enabled = true;
428 
429 	ah->ani_function = ATH9K_ANI_ALL;
430 	if (!AR_SREV_9300_20_OR_LATER(ah))
431 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
432 
433 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
434 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
435 	else
436 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
437 }
438 
439 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
440 {
441 	struct ath_common *common = ath9k_hw_common(ah);
442 	u32 sum;
443 	int i;
444 	u16 eeval;
445 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
446 
447 	sum = 0;
448 	for (i = 0; i < 3; i++) {
449 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
450 		sum += eeval;
451 		common->macaddr[2 * i] = eeval >> 8;
452 		common->macaddr[2 * i + 1] = eeval & 0xff;
453 	}
454 	if (!is_valid_ether_addr(common->macaddr)) {
455 		ath_err(common,
456 			"eeprom contains invalid mac address: %pM\n",
457 			common->macaddr);
458 
459 		random_ether_addr(common->macaddr);
460 		ath_err(common,
461 			"random mac address will be used: %pM\n",
462 			common->macaddr);
463 	}
464 
465 	return 0;
466 }
467 
468 static int ath9k_hw_post_init(struct ath_hw *ah)
469 {
470 	struct ath_common *common = ath9k_hw_common(ah);
471 	int ecode;
472 
473 	if (common->bus_ops->ath_bus_type != ATH_USB) {
474 		if (!ath9k_hw_chip_test(ah))
475 			return -ENODEV;
476 	}
477 
478 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
479 		ecode = ar9002_hw_rf_claim(ah);
480 		if (ecode != 0)
481 			return ecode;
482 	}
483 
484 	ecode = ath9k_hw_eeprom_init(ah);
485 	if (ecode != 0)
486 		return ecode;
487 
488 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
489 		ah->eep_ops->get_eeprom_ver(ah),
490 		ah->eep_ops->get_eeprom_rev(ah));
491 
492 	ath9k_hw_ani_init(ah);
493 
494 	/*
495 	 * EEPROM needs to be initialized before we do this.
496 	 * This is required for regulatory compliance.
497 	 */
498 	if (AR_SREV_9300_20_OR_LATER(ah)) {
499 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
500 		if ((regdmn & 0xF0) == CTL_FCC) {
501 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
502 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
503 		}
504 	}
505 
506 	return 0;
507 }
508 
509 static int ath9k_hw_attach_ops(struct ath_hw *ah)
510 {
511 	if (!AR_SREV_9300_20_OR_LATER(ah))
512 		return ar9002_hw_attach_ops(ah);
513 
514 	ar9003_hw_attach_ops(ah);
515 	return 0;
516 }
517 
518 /* Called for all hardware families */
519 static int __ath9k_hw_init(struct ath_hw *ah)
520 {
521 	struct ath_common *common = ath9k_hw_common(ah);
522 	int r = 0;
523 
524 	ath9k_hw_read_revisions(ah);
525 
526 	switch (ah->hw_version.macVersion) {
527 	case AR_SREV_VERSION_5416_PCI:
528 	case AR_SREV_VERSION_5416_PCIE:
529 	case AR_SREV_VERSION_9160:
530 	case AR_SREV_VERSION_9100:
531 	case AR_SREV_VERSION_9280:
532 	case AR_SREV_VERSION_9285:
533 	case AR_SREV_VERSION_9287:
534 	case AR_SREV_VERSION_9271:
535 	case AR_SREV_VERSION_9300:
536 	case AR_SREV_VERSION_9330:
537 	case AR_SREV_VERSION_9485:
538 	case AR_SREV_VERSION_9340:
539 	case AR_SREV_VERSION_9462:
540 	case AR_SREV_VERSION_9550:
541 	case AR_SREV_VERSION_9565:
542 	case AR_SREV_VERSION_9531:
543 	case AR_SREV_VERSION_9561:
544 		break;
545 	default:
546 		ath_err(common,
547 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
548 			ah->hw_version.macVersion, ah->hw_version.macRev);
549 		return -EOPNOTSUPP;
550 	}
551 
552 	/*
553 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
554 	 * We need to do this to avoid RMW of this register. We cannot
555 	 * read the reg when chip is asleep.
556 	 */
557 	if (AR_SREV_9300_20_OR_LATER(ah)) {
558 		ah->WARegVal = REG_READ(ah, AR_WA);
559 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
560 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
561 	}
562 
563 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
564 		ath_err(common, "Couldn't reset chip\n");
565 		return -EIO;
566 	}
567 
568 	if (AR_SREV_9565(ah)) {
569 		ah->WARegVal |= AR_WA_BIT22;
570 		REG_WRITE(ah, AR_WA, ah->WARegVal);
571 	}
572 
573 	ath9k_hw_init_defaults(ah);
574 	ath9k_hw_init_config(ah);
575 
576 	r = ath9k_hw_attach_ops(ah);
577 	if (r)
578 		return r;
579 
580 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
581 		ath_err(common, "Couldn't wakeup chip\n");
582 		return -EIO;
583 	}
584 
585 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
586 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
587 		ah->is_pciexpress = false;
588 
589 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
590 	ath9k_hw_init_cal_settings(ah);
591 
592 	if (!ah->is_pciexpress)
593 		ath9k_hw_disablepcie(ah);
594 
595 	r = ath9k_hw_post_init(ah);
596 	if (r)
597 		return r;
598 
599 	ath9k_hw_init_mode_gain_regs(ah);
600 	r = ath9k_hw_fill_cap_info(ah);
601 	if (r)
602 		return r;
603 
604 	r = ath9k_hw_init_macaddr(ah);
605 	if (r) {
606 		ath_err(common, "Failed to initialize MAC address\n");
607 		return r;
608 	}
609 
610 	ath9k_hw_init_hang_checks(ah);
611 
612 	common->state = ATH_HW_INITIALIZED;
613 
614 	return 0;
615 }
616 
617 int ath9k_hw_init(struct ath_hw *ah)
618 {
619 	int ret;
620 	struct ath_common *common = ath9k_hw_common(ah);
621 
622 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
623 	switch (ah->hw_version.devid) {
624 	case AR5416_DEVID_PCI:
625 	case AR5416_DEVID_PCIE:
626 	case AR5416_AR9100_DEVID:
627 	case AR9160_DEVID_PCI:
628 	case AR9280_DEVID_PCI:
629 	case AR9280_DEVID_PCIE:
630 	case AR9285_DEVID_PCIE:
631 	case AR9287_DEVID_PCI:
632 	case AR9287_DEVID_PCIE:
633 	case AR2427_DEVID_PCIE:
634 	case AR9300_DEVID_PCIE:
635 	case AR9300_DEVID_AR9485_PCIE:
636 	case AR9300_DEVID_AR9330:
637 	case AR9300_DEVID_AR9340:
638 	case AR9300_DEVID_QCA955X:
639 	case AR9300_DEVID_AR9580:
640 	case AR9300_DEVID_AR9462:
641 	case AR9485_DEVID_AR1111:
642 	case AR9300_DEVID_AR9565:
643 	case AR9300_DEVID_AR953X:
644 	case AR9300_DEVID_QCA956X:
645 		break;
646 	default:
647 		if (common->bus_ops->ath_bus_type == ATH_USB)
648 			break;
649 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
650 			ah->hw_version.devid);
651 		return -EOPNOTSUPP;
652 	}
653 
654 	ret = __ath9k_hw_init(ah);
655 	if (ret) {
656 		ath_err(common,
657 			"Unable to initialize hardware; initialization status: %d\n",
658 			ret);
659 		return ret;
660 	}
661 
662 	ath_dynack_init(ah);
663 
664 	return 0;
665 }
666 EXPORT_SYMBOL(ath9k_hw_init);
667 
668 static void ath9k_hw_init_qos(struct ath_hw *ah)
669 {
670 	ENABLE_REGWRITE_BUFFER(ah);
671 
672 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
673 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
674 
675 	REG_WRITE(ah, AR_QOS_NO_ACK,
676 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
677 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
678 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
679 
680 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
681 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
682 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
683 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
684 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
685 
686 	REGWRITE_BUFFER_FLUSH(ah);
687 }
688 
689 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
690 {
691 	struct ath_common *common = ath9k_hw_common(ah);
692 	int i = 0;
693 
694 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
695 	udelay(100);
696 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
697 
698 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
699 
700 		udelay(100);
701 
702 		if (WARN_ON_ONCE(i >= 100)) {
703 			ath_err(common, "PLL4 meaurement not done\n");
704 			break;
705 		}
706 
707 		i++;
708 	}
709 
710 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
711 }
712 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
713 
714 static void ath9k_hw_init_pll(struct ath_hw *ah,
715 			      struct ath9k_channel *chan)
716 {
717 	u32 pll;
718 
719 	pll = ath9k_hw_compute_pll_control(ah, chan);
720 
721 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
722 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
723 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
724 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
725 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
726 			      AR_CH0_DPLL2_KD, 0x40);
727 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
728 			      AR_CH0_DPLL2_KI, 0x4);
729 
730 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
731 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
732 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
733 			      AR_CH0_BB_DPLL1_NINI, 0x58);
734 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
735 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
736 
737 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
738 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
739 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
740 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
741 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
742 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
743 
744 		/* program BB PLL phase_shift to 0x6 */
745 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
746 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
747 
748 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
749 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
750 		udelay(1000);
751 	} else if (AR_SREV_9330(ah)) {
752 		u32 ddr_dpll2, pll_control2, kd;
753 
754 		if (ah->is_clk_25mhz) {
755 			ddr_dpll2 = 0x18e82f01;
756 			pll_control2 = 0xe04a3d;
757 			kd = 0x1d;
758 		} else {
759 			ddr_dpll2 = 0x19e82f01;
760 			pll_control2 = 0x886666;
761 			kd = 0x3d;
762 		}
763 
764 		/* program DDR PLL ki and kd value */
765 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
766 
767 		/* program DDR PLL phase_shift */
768 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
769 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
770 
771 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
772 			  pll | AR_RTC_9300_PLL_BYPASS);
773 		udelay(1000);
774 
775 		/* program refdiv, nint, frac to RTC register */
776 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
777 
778 		/* program BB PLL kd and ki value */
779 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
780 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
781 
782 		/* program BB PLL phase_shift */
783 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
784 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
785 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
786 		   AR_SREV_9561(ah)) {
787 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
788 
789 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
790 			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
791 		udelay(1000);
792 
793 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
794 		udelay(100);
795 
796 		if (ah->is_clk_25mhz) {
797 			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
798 				pll2_divint = 0x1c;
799 				pll2_divfrac = 0xa3d2;
800 				refdiv = 1;
801 			} else {
802 				pll2_divint = 0x54;
803 				pll2_divfrac = 0x1eb85;
804 				refdiv = 3;
805 			}
806 		} else {
807 			if (AR_SREV_9340(ah)) {
808 				pll2_divint = 88;
809 				pll2_divfrac = 0;
810 				refdiv = 5;
811 			} else {
812 				pll2_divint = 0x11;
813 				pll2_divfrac = (AR_SREV_9531(ah) ||
814 						AR_SREV_9561(ah)) ?
815 						0x26665 : 0x26666;
816 				refdiv = 1;
817 			}
818 		}
819 
820 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
821 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
822 			regval |= (0x1 << 22);
823 		else
824 			regval |= (0x1 << 16);
825 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
826 		udelay(100);
827 
828 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
829 			  (pll2_divint << 18) | pll2_divfrac);
830 		udelay(100);
831 
832 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
833 		if (AR_SREV_9340(ah))
834 			regval = (regval & 0x80071fff) |
835 				(0x1 << 30) |
836 				(0x1 << 13) |
837 				(0x4 << 26) |
838 				(0x18 << 19);
839 		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
840 			regval = (regval & 0x01c00fff) |
841 				(0x1 << 31) |
842 				(0x2 << 29) |
843 				(0xa << 25) |
844 				(0x1 << 19);
845 
846 			if (AR_SREV_9531(ah))
847 				regval |= (0x6 << 12);
848 		} else
849 			regval = (regval & 0x80071fff) |
850 				(0x3 << 30) |
851 				(0x1 << 13) |
852 				(0x4 << 26) |
853 				(0x60 << 19);
854 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
855 
856 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
857 			REG_WRITE(ah, AR_PHY_PLL_MODE,
858 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
859 		else
860 			REG_WRITE(ah, AR_PHY_PLL_MODE,
861 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
862 
863 		udelay(1000);
864 	}
865 
866 	if (AR_SREV_9565(ah))
867 		pll |= 0x40000;
868 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
869 
870 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
871 	    AR_SREV_9550(ah))
872 		udelay(1000);
873 
874 	/* Switch the core clock for ar9271 to 117Mhz */
875 	if (AR_SREV_9271(ah)) {
876 		udelay(500);
877 		REG_WRITE(ah, 0x50040, 0x304);
878 	}
879 
880 	udelay(RTC_PLL_SETTLE_DELAY);
881 
882 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
883 }
884 
885 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
886 					  enum nl80211_iftype opmode)
887 {
888 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
889 	u32 imr_reg = AR_IMR_TXERR |
890 		AR_IMR_TXURN |
891 		AR_IMR_RXERR |
892 		AR_IMR_RXORN |
893 		AR_IMR_BCNMISC;
894 
895 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
896 	    AR_SREV_9561(ah))
897 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
898 
899 	if (AR_SREV_9300_20_OR_LATER(ah)) {
900 		imr_reg |= AR_IMR_RXOK_HP;
901 		if (ah->config.rx_intr_mitigation)
902 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
903 		else
904 			imr_reg |= AR_IMR_RXOK_LP;
905 
906 	} else {
907 		if (ah->config.rx_intr_mitigation)
908 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
909 		else
910 			imr_reg |= AR_IMR_RXOK;
911 	}
912 
913 	if (ah->config.tx_intr_mitigation)
914 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
915 	else
916 		imr_reg |= AR_IMR_TXOK;
917 
918 	ENABLE_REGWRITE_BUFFER(ah);
919 
920 	REG_WRITE(ah, AR_IMR, imr_reg);
921 	ah->imrs2_reg |= AR_IMR_S2_GTT;
922 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
923 
924 	if (!AR_SREV_9100(ah)) {
925 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
926 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
927 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
928 	}
929 
930 	REGWRITE_BUFFER_FLUSH(ah);
931 
932 	if (AR_SREV_9300_20_OR_LATER(ah)) {
933 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
934 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
935 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
936 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
937 	}
938 }
939 
940 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
941 {
942 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
943 	val = min(val, (u32) 0xFFFF);
944 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
945 }
946 
947 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
948 {
949 	u32 val = ath9k_hw_mac_to_clks(ah, us);
950 	val = min(val, (u32) 0xFFFF);
951 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
952 }
953 
954 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
955 {
956 	u32 val = ath9k_hw_mac_to_clks(ah, us);
957 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
958 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
959 }
960 
961 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
962 {
963 	u32 val = ath9k_hw_mac_to_clks(ah, us);
964 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
965 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
966 }
967 
968 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
969 {
970 	if (tu > 0xFFFF) {
971 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
972 			tu);
973 		ah->globaltxtimeout = (u32) -1;
974 		return false;
975 	} else {
976 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
977 		ah->globaltxtimeout = tu;
978 		return true;
979 	}
980 }
981 
982 void ath9k_hw_init_global_settings(struct ath_hw *ah)
983 {
984 	struct ath_common *common = ath9k_hw_common(ah);
985 	const struct ath9k_channel *chan = ah->curchan;
986 	int acktimeout, ctstimeout, ack_offset = 0;
987 	int slottime;
988 	int sifstime;
989 	int rx_lat = 0, tx_lat = 0, eifs = 0;
990 	u32 reg;
991 
992 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
993 		ah->misc_mode);
994 
995 	if (!chan)
996 		return;
997 
998 	if (ah->misc_mode != 0)
999 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1000 
1001 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1002 		rx_lat = 41;
1003 	else
1004 		rx_lat = 37;
1005 	tx_lat = 54;
1006 
1007 	if (IS_CHAN_5GHZ(chan))
1008 		sifstime = 16;
1009 	else
1010 		sifstime = 10;
1011 
1012 	if (IS_CHAN_HALF_RATE(chan)) {
1013 		eifs = 175;
1014 		rx_lat *= 2;
1015 		tx_lat *= 2;
1016 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1017 		    tx_lat += 11;
1018 
1019 		sifstime = 32;
1020 		ack_offset = 16;
1021 		slottime = 13;
1022 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1023 		eifs = 340;
1024 		rx_lat = (rx_lat * 4) - 1;
1025 		tx_lat *= 4;
1026 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1027 		    tx_lat += 22;
1028 
1029 		sifstime = 64;
1030 		ack_offset = 32;
1031 		slottime = 21;
1032 	} else {
1033 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1034 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1035 			reg = AR_USEC_ASYNC_FIFO;
1036 		} else {
1037 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1038 				common->clockrate;
1039 			reg = REG_READ(ah, AR_USEC);
1040 		}
1041 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1042 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1043 
1044 		slottime = ah->slottime;
1045 	}
1046 
1047 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1048 	slottime += 3 * ah->coverage_class;
1049 	acktimeout = slottime + sifstime + ack_offset;
1050 	ctstimeout = acktimeout;
1051 
1052 	/*
1053 	 * Workaround for early ACK timeouts, add an offset to match the
1054 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1055 	 * This was initially only meant to work around an issue with delayed
1056 	 * BA frames in some implementations, but it has been found to fix ACK
1057 	 * timeout issues in other cases as well.
1058 	 */
1059 	if (IS_CHAN_2GHZ(chan) &&
1060 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1061 		acktimeout += 64 - sifstime - ah->slottime;
1062 		ctstimeout += 48 - sifstime - ah->slottime;
1063 	}
1064 
1065 	if (ah->dynack.enabled) {
1066 		acktimeout = ah->dynack.ackto;
1067 		ctstimeout = acktimeout;
1068 		slottime = (acktimeout - 3) / 2;
1069 	} else {
1070 		ah->dynack.ackto = acktimeout;
1071 	}
1072 
1073 	ath9k_hw_set_sifs_time(ah, sifstime);
1074 	ath9k_hw_setslottime(ah, slottime);
1075 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1076 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1077 	if (ah->globaltxtimeout != (u32) -1)
1078 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1079 
1080 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1081 	REG_RMW(ah, AR_USEC,
1082 		(common->clockrate - 1) |
1083 		SM(rx_lat, AR_USEC_RX_LAT) |
1084 		SM(tx_lat, AR_USEC_TX_LAT),
1085 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1086 
1087 }
1088 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1089 
1090 void ath9k_hw_deinit(struct ath_hw *ah)
1091 {
1092 	struct ath_common *common = ath9k_hw_common(ah);
1093 
1094 	if (common->state < ATH_HW_INITIALIZED)
1095 		return;
1096 
1097 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1098 }
1099 EXPORT_SYMBOL(ath9k_hw_deinit);
1100 
1101 /*******/
1102 /* INI */
1103 /*******/
1104 
1105 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1106 {
1107 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1108 
1109 	if (IS_CHAN_2GHZ(chan))
1110 		ctl |= CTL_11G;
1111 	else
1112 		ctl |= CTL_11A;
1113 
1114 	return ctl;
1115 }
1116 
1117 /****************************************/
1118 /* Reset and Channel Switching Routines */
1119 /****************************************/
1120 
1121 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1122 {
1123 	struct ath_common *common = ath9k_hw_common(ah);
1124 	int txbuf_size;
1125 
1126 	ENABLE_REGWRITE_BUFFER(ah);
1127 
1128 	/*
1129 	 * set AHB_MODE not to do cacheline prefetches
1130 	*/
1131 	if (!AR_SREV_9300_20_OR_LATER(ah))
1132 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1133 
1134 	/*
1135 	 * let mac dma reads be in 128 byte chunks
1136 	 */
1137 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1138 
1139 	REGWRITE_BUFFER_FLUSH(ah);
1140 
1141 	/*
1142 	 * Restore TX Trigger Level to its pre-reset value.
1143 	 * The initial value depends on whether aggregation is enabled, and is
1144 	 * adjusted whenever underruns are detected.
1145 	 */
1146 	if (!AR_SREV_9300_20_OR_LATER(ah))
1147 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1148 
1149 	ENABLE_REGWRITE_BUFFER(ah);
1150 
1151 	/*
1152 	 * let mac dma writes be in 128 byte chunks
1153 	 */
1154 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1155 
1156 	/*
1157 	 * Setup receive FIFO threshold to hold off TX activities
1158 	 */
1159 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1160 
1161 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1162 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1163 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1164 
1165 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1166 			ah->caps.rx_status_len);
1167 	}
1168 
1169 	/*
1170 	 * reduce the number of usable entries in PCU TXBUF to avoid
1171 	 * wrap around issues.
1172 	 */
1173 	if (AR_SREV_9285(ah)) {
1174 		/* For AR9285 the number of Fifos are reduced to half.
1175 		 * So set the usable tx buf size also to half to
1176 		 * avoid data/delimiter underruns
1177 		 */
1178 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1179 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1180 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1181 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1182 	} else {
1183 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1184 	}
1185 
1186 	if (!AR_SREV_9271(ah))
1187 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1188 
1189 	REGWRITE_BUFFER_FLUSH(ah);
1190 
1191 	if (AR_SREV_9300_20_OR_LATER(ah))
1192 		ath9k_hw_reset_txstatus_ring(ah);
1193 }
1194 
1195 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1196 {
1197 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1198 	u32 set = AR_STA_ID1_KSRCH_MODE;
1199 
1200 	switch (opmode) {
1201 	case NL80211_IFTYPE_ADHOC:
1202 		if (!AR_SREV_9340_13(ah)) {
1203 			set |= AR_STA_ID1_ADHOC;
1204 			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1205 			break;
1206 		}
1207 		/* fall through */
1208 	case NL80211_IFTYPE_MESH_POINT:
1209 	case NL80211_IFTYPE_AP:
1210 		set |= AR_STA_ID1_STA_AP;
1211 		/* fall through */
1212 	case NL80211_IFTYPE_STATION:
1213 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1214 		break;
1215 	default:
1216 		if (!ah->is_monitoring)
1217 			set = 0;
1218 		break;
1219 	}
1220 	REG_RMW(ah, AR_STA_ID1, set, mask);
1221 }
1222 
1223 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1224 				   u32 *coef_mantissa, u32 *coef_exponent)
1225 {
1226 	u32 coef_exp, coef_man;
1227 
1228 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1229 		if ((coef_scaled >> coef_exp) & 0x1)
1230 			break;
1231 
1232 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1233 
1234 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1235 
1236 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1237 	*coef_exponent = coef_exp - 16;
1238 }
1239 
1240 /* AR9330 WAR:
1241  * call external reset function to reset WMAC if:
1242  * - doing a cold reset
1243  * - we have pending frames in the TX queues.
1244  */
1245 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1246 {
1247 	int i, npend = 0;
1248 
1249 	for (i = 0; i < AR_NUM_QCU; i++) {
1250 		npend = ath9k_hw_numtxpending(ah, i);
1251 		if (npend)
1252 			break;
1253 	}
1254 
1255 	if (ah->external_reset &&
1256 	    (npend || type == ATH9K_RESET_COLD)) {
1257 		int reset_err = 0;
1258 
1259 		ath_dbg(ath9k_hw_common(ah), RESET,
1260 			"reset MAC via external reset\n");
1261 
1262 		reset_err = ah->external_reset();
1263 		if (reset_err) {
1264 			ath_err(ath9k_hw_common(ah),
1265 				"External reset failed, err=%d\n",
1266 				reset_err);
1267 			return false;
1268 		}
1269 
1270 		REG_WRITE(ah, AR_RTC_RESET, 1);
1271 	}
1272 
1273 	return true;
1274 }
1275 
1276 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1277 {
1278 	u32 rst_flags;
1279 	u32 tmpReg;
1280 
1281 	if (AR_SREV_9100(ah)) {
1282 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1283 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1284 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1285 	}
1286 
1287 	ENABLE_REGWRITE_BUFFER(ah);
1288 
1289 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1290 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1291 		udelay(10);
1292 	}
1293 
1294 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1295 		  AR_RTC_FORCE_WAKE_ON_INT);
1296 
1297 	if (AR_SREV_9100(ah)) {
1298 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1299 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1300 	} else {
1301 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1302 		if (AR_SREV_9340(ah))
1303 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1304 		else
1305 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1306 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1307 
1308 		if (tmpReg) {
1309 			u32 val;
1310 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1311 
1312 			val = AR_RC_HOSTIF;
1313 			if (!AR_SREV_9300_20_OR_LATER(ah))
1314 				val |= AR_RC_AHB;
1315 			REG_WRITE(ah, AR_RC, val);
1316 
1317 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1318 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1319 
1320 		rst_flags = AR_RTC_RC_MAC_WARM;
1321 		if (type == ATH9K_RESET_COLD)
1322 			rst_flags |= AR_RTC_RC_MAC_COLD;
1323 	}
1324 
1325 	if (AR_SREV_9330(ah)) {
1326 		if (!ath9k_hw_ar9330_reset_war(ah, type))
1327 			return false;
1328 	}
1329 
1330 	if (ath9k_hw_mci_is_enabled(ah))
1331 		ar9003_mci_check_gpm_offset(ah);
1332 
1333 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1334 
1335 	REGWRITE_BUFFER_FLUSH(ah);
1336 
1337 	if (AR_SREV_9300_20_OR_LATER(ah))
1338 		udelay(50);
1339 	else if (AR_SREV_9100(ah))
1340 		mdelay(10);
1341 	else
1342 		udelay(100);
1343 
1344 	REG_WRITE(ah, AR_RTC_RC, 0);
1345 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1346 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1347 		return false;
1348 	}
1349 
1350 	if (!AR_SREV_9100(ah))
1351 		REG_WRITE(ah, AR_RC, 0);
1352 
1353 	if (AR_SREV_9100(ah))
1354 		udelay(50);
1355 
1356 	return true;
1357 }
1358 
1359 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1360 {
1361 	ENABLE_REGWRITE_BUFFER(ah);
1362 
1363 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1364 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1365 		udelay(10);
1366 	}
1367 
1368 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1369 		  AR_RTC_FORCE_WAKE_ON_INT);
1370 
1371 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1372 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1373 
1374 	REG_WRITE(ah, AR_RTC_RESET, 0);
1375 
1376 	REGWRITE_BUFFER_FLUSH(ah);
1377 
1378 	udelay(2);
1379 
1380 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1381 		REG_WRITE(ah, AR_RC, 0);
1382 
1383 	REG_WRITE(ah, AR_RTC_RESET, 1);
1384 
1385 	if (!ath9k_hw_wait(ah,
1386 			   AR_RTC_STATUS,
1387 			   AR_RTC_STATUS_M,
1388 			   AR_RTC_STATUS_ON,
1389 			   AH_WAIT_TIMEOUT)) {
1390 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1391 		return false;
1392 	}
1393 
1394 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1395 }
1396 
1397 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1398 {
1399 	bool ret = false;
1400 
1401 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1402 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1403 		udelay(10);
1404 	}
1405 
1406 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1407 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1408 
1409 	if (!ah->reset_power_on)
1410 		type = ATH9K_RESET_POWER_ON;
1411 
1412 	switch (type) {
1413 	case ATH9K_RESET_POWER_ON:
1414 		ret = ath9k_hw_set_reset_power_on(ah);
1415 		if (ret)
1416 			ah->reset_power_on = true;
1417 		break;
1418 	case ATH9K_RESET_WARM:
1419 	case ATH9K_RESET_COLD:
1420 		ret = ath9k_hw_set_reset(ah, type);
1421 		break;
1422 	default:
1423 		break;
1424 	}
1425 
1426 	return ret;
1427 }
1428 
1429 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1430 				struct ath9k_channel *chan)
1431 {
1432 	int reset_type = ATH9K_RESET_WARM;
1433 
1434 	if (AR_SREV_9280(ah)) {
1435 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1436 			reset_type = ATH9K_RESET_POWER_ON;
1437 		else
1438 			reset_type = ATH9K_RESET_COLD;
1439 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1440 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1441 		reset_type = ATH9K_RESET_COLD;
1442 
1443 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1444 		return false;
1445 
1446 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1447 		return false;
1448 
1449 	ah->chip_fullsleep = false;
1450 
1451 	if (AR_SREV_9330(ah))
1452 		ar9003_hw_internal_regulator_apply(ah);
1453 	ath9k_hw_init_pll(ah, chan);
1454 
1455 	return true;
1456 }
1457 
1458 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1459 				    struct ath9k_channel *chan)
1460 {
1461 	struct ath_common *common = ath9k_hw_common(ah);
1462 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1463 	bool band_switch = false, mode_diff = false;
1464 	u8 ini_reloaded = 0;
1465 	u32 qnum;
1466 	int r;
1467 
1468 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1469 		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1470 		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1471 		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1472 	}
1473 
1474 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1475 		if (ath9k_hw_numtxpending(ah, qnum)) {
1476 			ath_dbg(common, QUEUE,
1477 				"Transmit frames pending on queue %d\n", qnum);
1478 			return false;
1479 		}
1480 	}
1481 
1482 	if (!ath9k_hw_rfbus_req(ah)) {
1483 		ath_err(common, "Could not kill baseband RX\n");
1484 		return false;
1485 	}
1486 
1487 	if (band_switch || mode_diff) {
1488 		ath9k_hw_mark_phy_inactive(ah);
1489 		udelay(5);
1490 
1491 		if (band_switch)
1492 			ath9k_hw_init_pll(ah, chan);
1493 
1494 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1495 			ath_err(common, "Failed to do fast channel change\n");
1496 			return false;
1497 		}
1498 	}
1499 
1500 	ath9k_hw_set_channel_regs(ah, chan);
1501 
1502 	r = ath9k_hw_rf_set_freq(ah, chan);
1503 	if (r) {
1504 		ath_err(common, "Failed to set channel\n");
1505 		return false;
1506 	}
1507 	ath9k_hw_set_clockrate(ah);
1508 	ath9k_hw_apply_txpower(ah, chan, false);
1509 
1510 	ath9k_hw_set_delta_slope(ah, chan);
1511 	ath9k_hw_spur_mitigate_freq(ah, chan);
1512 
1513 	if (band_switch || ini_reloaded)
1514 		ah->eep_ops->set_board_values(ah, chan);
1515 
1516 	ath9k_hw_init_bb(ah, chan);
1517 	ath9k_hw_rfbus_done(ah);
1518 
1519 	if (band_switch || ini_reloaded) {
1520 		ah->ah_flags |= AH_FASTCC;
1521 		ath9k_hw_init_cal(ah, chan);
1522 		ah->ah_flags &= ~AH_FASTCC;
1523 	}
1524 
1525 	return true;
1526 }
1527 
1528 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1529 {
1530 	u32 gpio_mask = ah->gpio_mask;
1531 	int i;
1532 
1533 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1534 		if (!(gpio_mask & 1))
1535 			continue;
1536 
1537 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1538 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1539 	}
1540 }
1541 
1542 void ath9k_hw_check_nav(struct ath_hw *ah)
1543 {
1544 	struct ath_common *common = ath9k_hw_common(ah);
1545 	u32 val;
1546 
1547 	val = REG_READ(ah, AR_NAV);
1548 	if (val != 0xdeadbeef && val > 0x7fff) {
1549 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1550 		REG_WRITE(ah, AR_NAV, 0);
1551 	}
1552 }
1553 EXPORT_SYMBOL(ath9k_hw_check_nav);
1554 
1555 bool ath9k_hw_check_alive(struct ath_hw *ah)
1556 {
1557 	int count = 50;
1558 	u32 reg, last_val;
1559 
1560 	if (AR_SREV_9300(ah))
1561 		return !ath9k_hw_detect_mac_hang(ah);
1562 
1563 	if (AR_SREV_9285_12_OR_LATER(ah))
1564 		return true;
1565 
1566 	last_val = REG_READ(ah, AR_OBS_BUS_1);
1567 	do {
1568 		reg = REG_READ(ah, AR_OBS_BUS_1);
1569 		if (reg != last_val)
1570 			return true;
1571 
1572 		udelay(1);
1573 		last_val = reg;
1574 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1575 			continue;
1576 
1577 		switch (reg & 0x7E000B00) {
1578 		case 0x1E000000:
1579 		case 0x52000B00:
1580 		case 0x18000B00:
1581 			continue;
1582 		default:
1583 			return true;
1584 		}
1585 	} while (count-- > 0);
1586 
1587 	return false;
1588 }
1589 EXPORT_SYMBOL(ath9k_hw_check_alive);
1590 
1591 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1592 {
1593 	/* Setup MFP options for CCMP */
1594 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1595 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1596 		 * frames when constructing CCMP AAD. */
1597 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1598 			      0xc7ff);
1599 		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1600 			ah->sw_mgmt_crypto_tx = true;
1601 		else
1602 			ah->sw_mgmt_crypto_tx = false;
1603 		ah->sw_mgmt_crypto_rx = false;
1604 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1605 		/* Disable hardware crypto for management frames */
1606 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1607 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1608 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1609 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1610 		ah->sw_mgmt_crypto_tx = true;
1611 		ah->sw_mgmt_crypto_rx = true;
1612 	} else {
1613 		ah->sw_mgmt_crypto_tx = true;
1614 		ah->sw_mgmt_crypto_rx = true;
1615 	}
1616 }
1617 
1618 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1619 				  u32 macStaId1, u32 saveDefAntenna)
1620 {
1621 	struct ath_common *common = ath9k_hw_common(ah);
1622 
1623 	ENABLE_REGWRITE_BUFFER(ah);
1624 
1625 	REG_RMW(ah, AR_STA_ID1, macStaId1
1626 		  | AR_STA_ID1_RTS_USE_DEF
1627 		  | ah->sta_id1_defaults,
1628 		  ~AR_STA_ID1_SADH_MASK);
1629 	ath_hw_setbssidmask(common);
1630 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1631 	ath9k_hw_write_associd(ah);
1632 	REG_WRITE(ah, AR_ISR, ~0);
1633 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1634 
1635 	REGWRITE_BUFFER_FLUSH(ah);
1636 
1637 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1638 }
1639 
1640 static void ath9k_hw_init_queues(struct ath_hw *ah)
1641 {
1642 	int i;
1643 
1644 	ENABLE_REGWRITE_BUFFER(ah);
1645 
1646 	for (i = 0; i < AR_NUM_DCU; i++)
1647 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1648 
1649 	REGWRITE_BUFFER_FLUSH(ah);
1650 
1651 	ah->intr_txqs = 0;
1652 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1653 		ath9k_hw_resettxqueue(ah, i);
1654 }
1655 
1656 /*
1657  * For big endian systems turn on swapping for descriptors
1658  */
1659 static void ath9k_hw_init_desc(struct ath_hw *ah)
1660 {
1661 	struct ath_common *common = ath9k_hw_common(ah);
1662 
1663 	if (AR_SREV_9100(ah)) {
1664 		u32 mask;
1665 		mask = REG_READ(ah, AR_CFG);
1666 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1667 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1668 				mask);
1669 		} else {
1670 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1671 			REG_WRITE(ah, AR_CFG, mask);
1672 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1673 				REG_READ(ah, AR_CFG));
1674 		}
1675 	} else {
1676 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1677 			/* Configure AR9271 target WLAN */
1678 			if (AR_SREV_9271(ah))
1679 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1680 			else
1681 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1682 		}
1683 #ifdef __BIG_ENDIAN
1684 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1685 			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1686 			 AR_SREV_9561(ah))
1687 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1688 		else
1689 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1690 #endif
1691 	}
1692 }
1693 
1694 /*
1695  * Fast channel change:
1696  * (Change synthesizer based on channel freq without resetting chip)
1697  */
1698 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1699 {
1700 	struct ath_common *common = ath9k_hw_common(ah);
1701 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1702 	int ret;
1703 
1704 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1705 		goto fail;
1706 
1707 	if (ah->chip_fullsleep)
1708 		goto fail;
1709 
1710 	if (!ah->curchan)
1711 		goto fail;
1712 
1713 	if (chan->channel == ah->curchan->channel)
1714 		goto fail;
1715 
1716 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1717 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1718 		goto fail;
1719 
1720 	/*
1721 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1722 	 */
1723 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1724 	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1725 		goto fail;
1726 
1727 	if (!ath9k_hw_check_alive(ah))
1728 		goto fail;
1729 
1730 	/*
1731 	 * For AR9462, make sure that calibration data for
1732 	 * re-using are present.
1733 	 */
1734 	if (AR_SREV_9462(ah) && (ah->caldata &&
1735 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1736 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1737 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1738 		goto fail;
1739 
1740 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1741 		ah->curchan->channel, chan->channel);
1742 
1743 	ret = ath9k_hw_channel_change(ah, chan);
1744 	if (!ret)
1745 		goto fail;
1746 
1747 	if (ath9k_hw_mci_is_enabled(ah))
1748 		ar9003_mci_2g5g_switch(ah, false);
1749 
1750 	ath9k_hw_loadnf(ah, ah->curchan);
1751 	ath9k_hw_start_nfcal(ah, true);
1752 
1753 	if (AR_SREV_9271(ah))
1754 		ar9002_hw_load_ani_reg(ah, chan);
1755 
1756 	return 0;
1757 fail:
1758 	return -EINVAL;
1759 }
1760 
1761 u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1762 {
1763 	struct timespec ts;
1764 	s64 usec;
1765 
1766 	if (!cur) {
1767 		getrawmonotonic(&ts);
1768 		cur = &ts;
1769 	}
1770 
1771 	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1772 	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1773 
1774 	return (u32) usec;
1775 }
1776 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1777 
1778 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1779 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1780 {
1781 	struct ath_common *common = ath9k_hw_common(ah);
1782 	u32 saveLedState;
1783 	u32 saveDefAntenna;
1784 	u32 macStaId1;
1785 	u64 tsf = 0;
1786 	s64 usec = 0;
1787 	int r;
1788 	bool start_mci_reset = false;
1789 	bool save_fullsleep = ah->chip_fullsleep;
1790 
1791 	if (ath9k_hw_mci_is_enabled(ah)) {
1792 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1793 		if (start_mci_reset)
1794 			return 0;
1795 	}
1796 
1797 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1798 		return -EIO;
1799 
1800 	if (ah->curchan && !ah->chip_fullsleep)
1801 		ath9k_hw_getnf(ah, ah->curchan);
1802 
1803 	ah->caldata = caldata;
1804 	if (caldata && (chan->channel != caldata->channel ||
1805 			chan->channelFlags != caldata->channelFlags)) {
1806 		/* Operating channel changed, reset channel calibration data */
1807 		memset(caldata, 0, sizeof(*caldata));
1808 		ath9k_init_nfcal_hist_buffer(ah, chan);
1809 	} else if (caldata) {
1810 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1811 	}
1812 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1813 
1814 	if (fastcc) {
1815 		r = ath9k_hw_do_fastcc(ah, chan);
1816 		if (!r)
1817 			return r;
1818 	}
1819 
1820 	if (ath9k_hw_mci_is_enabled(ah))
1821 		ar9003_mci_stop_bt(ah, save_fullsleep);
1822 
1823 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1824 	if (saveDefAntenna == 0)
1825 		saveDefAntenna = 1;
1826 
1827 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1828 
1829 	/* Save TSF before chip reset, a cold reset clears it */
1830 	tsf = ath9k_hw_gettsf64(ah);
1831 	usec = ktime_to_us(ktime_get_raw());
1832 
1833 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1834 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1835 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1836 
1837 	ath9k_hw_mark_phy_inactive(ah);
1838 
1839 	ah->paprd_table_write_done = false;
1840 
1841 	/* Only required on the first reset */
1842 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1843 		REG_WRITE(ah,
1844 			  AR9271_RESET_POWER_DOWN_CONTROL,
1845 			  AR9271_RADIO_RF_RST);
1846 		udelay(50);
1847 	}
1848 
1849 	if (!ath9k_hw_chip_reset(ah, chan)) {
1850 		ath_err(common, "Chip reset failed\n");
1851 		return -EINVAL;
1852 	}
1853 
1854 	/* Only required on the first reset */
1855 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1856 		ah->htc_reset_init = false;
1857 		REG_WRITE(ah,
1858 			  AR9271_RESET_POWER_DOWN_CONTROL,
1859 			  AR9271_GATE_MAC_CTL);
1860 		udelay(50);
1861 	}
1862 
1863 	/* Restore TSF */
1864 	usec = ktime_to_us(ktime_get_raw()) - usec;
1865 	ath9k_hw_settsf64(ah, tsf + usec);
1866 
1867 	if (AR_SREV_9280_20_OR_LATER(ah))
1868 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1869 
1870 	if (!AR_SREV_9300_20_OR_LATER(ah))
1871 		ar9002_hw_enable_async_fifo(ah);
1872 
1873 	r = ath9k_hw_process_ini(ah, chan);
1874 	if (r)
1875 		return r;
1876 
1877 	ath9k_hw_set_rfmode(ah, chan);
1878 
1879 	if (ath9k_hw_mci_is_enabled(ah))
1880 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1881 
1882 	/*
1883 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1884 	 * right after the chip reset. When that happens, write a new
1885 	 * value after the initvals have been applied, with an offset
1886 	 * based on measured time difference
1887 	 */
1888 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1889 		tsf += 1500;
1890 		ath9k_hw_settsf64(ah, tsf);
1891 	}
1892 
1893 	ath9k_hw_init_mfp(ah);
1894 
1895 	ath9k_hw_set_delta_slope(ah, chan);
1896 	ath9k_hw_spur_mitigate_freq(ah, chan);
1897 	ah->eep_ops->set_board_values(ah, chan);
1898 
1899 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1900 
1901 	r = ath9k_hw_rf_set_freq(ah, chan);
1902 	if (r)
1903 		return r;
1904 
1905 	ath9k_hw_set_clockrate(ah);
1906 
1907 	ath9k_hw_init_queues(ah);
1908 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1909 	ath9k_hw_ani_cache_ini_regs(ah);
1910 	ath9k_hw_init_qos(ah);
1911 
1912 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1913 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1914 
1915 	ath9k_hw_init_global_settings(ah);
1916 
1917 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1918 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1919 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1920 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1921 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1922 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1923 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1924 	}
1925 
1926 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1927 
1928 	ath9k_hw_set_dma(ah);
1929 
1930 	if (!ath9k_hw_mci_is_enabled(ah))
1931 		REG_WRITE(ah, AR_OBS, 8);
1932 
1933 	if (ah->config.rx_intr_mitigation) {
1934 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1935 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1936 	}
1937 
1938 	if (ah->config.tx_intr_mitigation) {
1939 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1940 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1941 	}
1942 
1943 	ath9k_hw_init_bb(ah, chan);
1944 
1945 	if (caldata) {
1946 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1947 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1948 	}
1949 	if (!ath9k_hw_init_cal(ah, chan))
1950 		return -EIO;
1951 
1952 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1953 		return -EIO;
1954 
1955 	ENABLE_REGWRITE_BUFFER(ah);
1956 
1957 	ath9k_hw_restore_chainmask(ah);
1958 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1959 
1960 	REGWRITE_BUFFER_FLUSH(ah);
1961 
1962 	ath9k_hw_gen_timer_start_tsf2(ah);
1963 
1964 	ath9k_hw_init_desc(ah);
1965 
1966 	if (ath9k_hw_btcoex_is_enabled(ah))
1967 		ath9k_hw_btcoex_enable(ah);
1968 
1969 	if (ath9k_hw_mci_is_enabled(ah))
1970 		ar9003_mci_check_bt(ah);
1971 
1972 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1973 		ath9k_hw_loadnf(ah, chan);
1974 		ath9k_hw_start_nfcal(ah, true);
1975 	}
1976 
1977 	if (AR_SREV_9300_20_OR_LATER(ah))
1978 		ar9003_hw_bb_watchdog_config(ah);
1979 
1980 	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
1981 		ar9003_hw_disable_phy_restart(ah);
1982 
1983 	ath9k_hw_apply_gpio_override(ah);
1984 
1985 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1986 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1987 
1988 	if (ah->hw->conf.radar_enabled) {
1989 		/* set HW specific DFS configuration */
1990 		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
1991 		ath9k_hw_set_radar_params(ah);
1992 	}
1993 
1994 	return 0;
1995 }
1996 EXPORT_SYMBOL(ath9k_hw_reset);
1997 
1998 /******************************/
1999 /* Power Management (Chipset) */
2000 /******************************/
2001 
2002 /*
2003  * Notify Power Mgt is disabled in self-generated frames.
2004  * If requested, force chip to sleep.
2005  */
2006 static void ath9k_set_power_sleep(struct ath_hw *ah)
2007 {
2008 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2009 
2010 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2011 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2012 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2013 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2014 		/* xxx Required for WLAN only case ? */
2015 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2016 		udelay(100);
2017 	}
2018 
2019 	/*
2020 	 * Clear the RTC force wake bit to allow the
2021 	 * mac to go to sleep.
2022 	 */
2023 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2024 
2025 	if (ath9k_hw_mci_is_enabled(ah))
2026 		udelay(100);
2027 
2028 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2029 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2030 
2031 	/* Shutdown chip. Active low */
2032 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2033 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2034 		udelay(2);
2035 	}
2036 
2037 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2038 	if (AR_SREV_9300_20_OR_LATER(ah))
2039 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2040 }
2041 
2042 /*
2043  * Notify Power Management is enabled in self-generating
2044  * frames. If request, set power mode of chip to
2045  * auto/normal.  Duration in units of 128us (1/8 TU).
2046  */
2047 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2048 {
2049 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2050 
2051 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2052 
2053 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2054 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2055 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2056 			  AR_RTC_FORCE_WAKE_ON_INT);
2057 	} else {
2058 
2059 		/* When chip goes into network sleep, it could be waken
2060 		 * up by MCI_INT interrupt caused by BT's HW messages
2061 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2062 		 * rate (~100us). This will cause chip to leave and
2063 		 * re-enter network sleep mode frequently, which in
2064 		 * consequence will have WLAN MCI HW to generate lots of
2065 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2066 		 * BT CPU to busy to process.
2067 		 */
2068 		if (ath9k_hw_mci_is_enabled(ah))
2069 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2070 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2071 		/*
2072 		 * Clear the RTC force wake bit to allow the
2073 		 * mac to go to sleep.
2074 		 */
2075 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2076 
2077 		if (ath9k_hw_mci_is_enabled(ah))
2078 			udelay(30);
2079 	}
2080 
2081 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2082 	if (AR_SREV_9300_20_OR_LATER(ah))
2083 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2084 }
2085 
2086 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2087 {
2088 	u32 val;
2089 	int i;
2090 
2091 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2092 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2093 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2094 		udelay(10);
2095 	}
2096 
2097 	if ((REG_READ(ah, AR_RTC_STATUS) &
2098 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2099 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2100 			return false;
2101 		}
2102 		if (!AR_SREV_9300_20_OR_LATER(ah))
2103 			ath9k_hw_init_pll(ah, NULL);
2104 	}
2105 	if (AR_SREV_9100(ah))
2106 		REG_SET_BIT(ah, AR_RTC_RESET,
2107 			    AR_RTC_RESET_EN);
2108 
2109 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2110 		    AR_RTC_FORCE_WAKE_EN);
2111 	if (AR_SREV_9100(ah))
2112 		mdelay(10);
2113 	else
2114 		udelay(50);
2115 
2116 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2117 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2118 		if (val == AR_RTC_STATUS_ON)
2119 			break;
2120 		udelay(50);
2121 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2122 			    AR_RTC_FORCE_WAKE_EN);
2123 	}
2124 	if (i == 0) {
2125 		ath_err(ath9k_hw_common(ah),
2126 			"Failed to wakeup in %uus\n",
2127 			POWER_UP_TIME / 20);
2128 		return false;
2129 	}
2130 
2131 	if (ath9k_hw_mci_is_enabled(ah))
2132 		ar9003_mci_set_power_awake(ah);
2133 
2134 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2135 
2136 	return true;
2137 }
2138 
2139 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2140 {
2141 	struct ath_common *common = ath9k_hw_common(ah);
2142 	int status = true;
2143 	static const char *modes[] = {
2144 		"AWAKE",
2145 		"FULL-SLEEP",
2146 		"NETWORK SLEEP",
2147 		"UNDEFINED"
2148 	};
2149 
2150 	if (ah->power_mode == mode)
2151 		return status;
2152 
2153 	ath_dbg(common, RESET, "%s -> %s\n",
2154 		modes[ah->power_mode], modes[mode]);
2155 
2156 	switch (mode) {
2157 	case ATH9K_PM_AWAKE:
2158 		status = ath9k_hw_set_power_awake(ah);
2159 		break;
2160 	case ATH9K_PM_FULL_SLEEP:
2161 		if (ath9k_hw_mci_is_enabled(ah))
2162 			ar9003_mci_set_full_sleep(ah);
2163 
2164 		ath9k_set_power_sleep(ah);
2165 		ah->chip_fullsleep = true;
2166 		break;
2167 	case ATH9K_PM_NETWORK_SLEEP:
2168 		ath9k_set_power_network_sleep(ah);
2169 		break;
2170 	default:
2171 		ath_err(common, "Unknown power mode %u\n", mode);
2172 		return false;
2173 	}
2174 	ah->power_mode = mode;
2175 
2176 	/*
2177 	 * XXX: If this warning never comes up after a while then
2178 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2179 	 * ath9k_hw_setpower() return type void.
2180 	 */
2181 
2182 	if (!(ah->ah_flags & AH_UNPLUGGED))
2183 		ATH_DBG_WARN_ON_ONCE(!status);
2184 
2185 	return status;
2186 }
2187 EXPORT_SYMBOL(ath9k_hw_setpower);
2188 
2189 /*******************/
2190 /* Beacon Handling */
2191 /*******************/
2192 
2193 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2194 {
2195 	int flags = 0;
2196 
2197 	ENABLE_REGWRITE_BUFFER(ah);
2198 
2199 	switch (ah->opmode) {
2200 	case NL80211_IFTYPE_ADHOC:
2201 		REG_SET_BIT(ah, AR_TXCFG,
2202 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2203 	case NL80211_IFTYPE_MESH_POINT:
2204 	case NL80211_IFTYPE_AP:
2205 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2206 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2207 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2208 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2209 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2210 		flags |=
2211 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2212 		break;
2213 	default:
2214 		ath_dbg(ath9k_hw_common(ah), BEACON,
2215 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2216 		return;
2217 		break;
2218 	}
2219 
2220 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2221 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2222 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2223 
2224 	REGWRITE_BUFFER_FLUSH(ah);
2225 
2226 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2227 }
2228 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2229 
2230 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2231 				    const struct ath9k_beacon_state *bs)
2232 {
2233 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2234 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2235 	struct ath_common *common = ath9k_hw_common(ah);
2236 
2237 	ENABLE_REGWRITE_BUFFER(ah);
2238 
2239 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2240 	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2241 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2242 
2243 	REGWRITE_BUFFER_FLUSH(ah);
2244 
2245 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2246 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2247 
2248 	beaconintval = bs->bs_intval;
2249 
2250 	if (bs->bs_sleepduration > beaconintval)
2251 		beaconintval = bs->bs_sleepduration;
2252 
2253 	dtimperiod = bs->bs_dtimperiod;
2254 	if (bs->bs_sleepduration > dtimperiod)
2255 		dtimperiod = bs->bs_sleepduration;
2256 
2257 	if (beaconintval == dtimperiod)
2258 		nextTbtt = bs->bs_nextdtim;
2259 	else
2260 		nextTbtt = bs->bs_nexttbtt;
2261 
2262 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2263 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2264 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2265 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2266 
2267 	ENABLE_REGWRITE_BUFFER(ah);
2268 
2269 	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2270 	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2271 
2272 	REG_WRITE(ah, AR_SLEEP1,
2273 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2274 		  | AR_SLEEP1_ASSUME_DTIM);
2275 
2276 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2277 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2278 	else
2279 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2280 
2281 	REG_WRITE(ah, AR_SLEEP2,
2282 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2283 
2284 	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2285 	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2286 
2287 	REGWRITE_BUFFER_FLUSH(ah);
2288 
2289 	REG_SET_BIT(ah, AR_TIMER_MODE,
2290 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2291 		    AR_DTIM_TIMER_EN);
2292 
2293 	/* TSF Out of Range Threshold */
2294 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2295 }
2296 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2297 
2298 /*******************/
2299 /* HW Capabilities */
2300 /*******************/
2301 
2302 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2303 {
2304 	eeprom_chainmask &= chip_chainmask;
2305 	if (eeprom_chainmask)
2306 		return eeprom_chainmask;
2307 	else
2308 		return chip_chainmask;
2309 }
2310 
2311 /**
2312  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2313  * @ah: the atheros hardware data structure
2314  *
2315  * We enable DFS support upstream on chipsets which have passed a series
2316  * of tests. The testing requirements are going to be documented. Desired
2317  * test requirements are documented at:
2318  *
2319  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2320  *
2321  * Once a new chipset gets properly tested an individual commit can be used
2322  * to document the testing for DFS for that chipset.
2323  */
2324 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2325 {
2326 
2327 	switch (ah->hw_version.macVersion) {
2328 	/* for temporary testing DFS with 9280 */
2329 	case AR_SREV_VERSION_9280:
2330 	/* AR9580 will likely be our first target to get testing on */
2331 	case AR_SREV_VERSION_9580:
2332 		return true;
2333 	default:
2334 		return false;
2335 	}
2336 }
2337 
2338 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2339 {
2340 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2341 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2342 	struct ath_common *common = ath9k_hw_common(ah);
2343 
2344 	u16 eeval;
2345 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2346 
2347 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2348 	regulatory->current_rd = eeval;
2349 
2350 	if (ah->opmode != NL80211_IFTYPE_AP &&
2351 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2352 		if (regulatory->current_rd == 0x64 ||
2353 		    regulatory->current_rd == 0x65)
2354 			regulatory->current_rd += 5;
2355 		else if (regulatory->current_rd == 0x41)
2356 			regulatory->current_rd = 0x43;
2357 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2358 			regulatory->current_rd);
2359 	}
2360 
2361 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2362 
2363 	if (eeval & AR5416_OPFLAGS_11A) {
2364 		if (ah->disable_5ghz)
2365 			ath_warn(common, "disabling 5GHz band\n");
2366 		else
2367 			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2368 	}
2369 
2370 	if (eeval & AR5416_OPFLAGS_11G) {
2371 		if (ah->disable_2ghz)
2372 			ath_warn(common, "disabling 2GHz band\n");
2373 		else
2374 			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2375 	}
2376 
2377 	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2378 		ath_err(common, "both bands are disabled\n");
2379 		return -EINVAL;
2380 	}
2381 
2382 	if (AR_SREV_9485(ah) ||
2383 	    AR_SREV_9285(ah) ||
2384 	    AR_SREV_9330(ah) ||
2385 	    AR_SREV_9565(ah))
2386 		pCap->chip_chainmask = 1;
2387 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2388 		pCap->chip_chainmask = 7;
2389 	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2390 		 AR_SREV_9340(ah) ||
2391 		 AR_SREV_9462(ah) ||
2392 		 AR_SREV_9531(ah))
2393 		pCap->chip_chainmask = 3;
2394 	else
2395 		pCap->chip_chainmask = 7;
2396 
2397 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2398 	/*
2399 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2400 	 * the EEPROM.
2401 	 */
2402 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2403 	    !(eeval & AR5416_OPFLAGS_11A) &&
2404 	    !(AR_SREV_9271(ah)))
2405 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2406 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2407 	else if (AR_SREV_9100(ah))
2408 		pCap->rx_chainmask = 0x7;
2409 	else
2410 		/* Use rx_chainmask from EEPROM. */
2411 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2412 
2413 	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2414 	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2415 	ah->txchainmask = pCap->tx_chainmask;
2416 	ah->rxchainmask = pCap->rx_chainmask;
2417 
2418 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2419 
2420 	/* enable key search for every frame in an aggregate */
2421 	if (AR_SREV_9300_20_OR_LATER(ah))
2422 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2423 
2424 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2425 
2426 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2427 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2428 	else
2429 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2430 
2431 	if (AR_SREV_9271(ah))
2432 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2433 	else if (AR_DEVID_7010(ah))
2434 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2435 	else if (AR_SREV_9300_20_OR_LATER(ah))
2436 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2437 	else if (AR_SREV_9287_11_OR_LATER(ah))
2438 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2439 	else if (AR_SREV_9285_12_OR_LATER(ah))
2440 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2441 	else if (AR_SREV_9280_20_OR_LATER(ah))
2442 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2443 	else
2444 		pCap->num_gpio_pins = AR_NUM_GPIO;
2445 
2446 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2447 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2448 	else
2449 		pCap->rts_aggr_limit = (8 * 1024);
2450 
2451 #ifdef CONFIG_ATH9K_RFKILL
2452 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2453 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2454 		ah->rfkill_gpio =
2455 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2456 		ah->rfkill_polarity =
2457 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2458 
2459 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2460 	}
2461 #endif
2462 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2463 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2464 	else
2465 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2466 
2467 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2468 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2469 	else
2470 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2471 
2472 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2473 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2474 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2475 		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2476 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2477 
2478 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2479 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2480 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2481 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2482 		pCap->txs_len = sizeof(struct ar9003_txs);
2483 	} else {
2484 		pCap->tx_desc_len = sizeof(struct ath_desc);
2485 		if (AR_SREV_9280_20(ah))
2486 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2487 	}
2488 
2489 	if (AR_SREV_9300_20_OR_LATER(ah))
2490 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2491 
2492 	if (AR_SREV_9561(ah))
2493 		ah->ent_mode = 0x3BDA000;
2494 	else if (AR_SREV_9300_20_OR_LATER(ah))
2495 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2496 
2497 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2498 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2499 
2500 	if (AR_SREV_9285(ah)) {
2501 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2502 			ant_div_ctl1 =
2503 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2504 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2505 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2506 				ath_info(common, "Enable LNA combining\n");
2507 			}
2508 		}
2509 	}
2510 
2511 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2512 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2513 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2514 	}
2515 
2516 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2517 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2518 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2519 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2520 			ath_info(common, "Enable LNA combining\n");
2521 		}
2522 	}
2523 
2524 	if (ath9k_hw_dfs_tested(ah))
2525 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2526 
2527 	tx_chainmask = pCap->tx_chainmask;
2528 	rx_chainmask = pCap->rx_chainmask;
2529 	while (tx_chainmask || rx_chainmask) {
2530 		if (tx_chainmask & BIT(0))
2531 			pCap->max_txchains++;
2532 		if (rx_chainmask & BIT(0))
2533 			pCap->max_rxchains++;
2534 
2535 		tx_chainmask >>= 1;
2536 		rx_chainmask >>= 1;
2537 	}
2538 
2539 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2540 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2541 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2542 
2543 		if (AR_SREV_9462_20_OR_LATER(ah))
2544 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2545 	}
2546 
2547 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2548 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2549 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2550 
2551 #ifdef CONFIG_ATH9K_WOW
2552 	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2553 		ah->wow.max_patterns = MAX_NUM_PATTERN;
2554 	else
2555 		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2556 #endif
2557 
2558 	return 0;
2559 }
2560 
2561 /****************************/
2562 /* GPIO / RFKILL / Antennae */
2563 /****************************/
2564 
2565 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2566 					 u32 gpio, u32 type)
2567 {
2568 	int addr;
2569 	u32 gpio_shift, tmp;
2570 
2571 	if (gpio > 11)
2572 		addr = AR_GPIO_OUTPUT_MUX3;
2573 	else if (gpio > 5)
2574 		addr = AR_GPIO_OUTPUT_MUX2;
2575 	else
2576 		addr = AR_GPIO_OUTPUT_MUX1;
2577 
2578 	gpio_shift = (gpio % 6) * 5;
2579 
2580 	if (AR_SREV_9280_20_OR_LATER(ah)
2581 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2582 		REG_RMW(ah, addr, (type << gpio_shift),
2583 			(0x1f << gpio_shift));
2584 	} else {
2585 		tmp = REG_READ(ah, addr);
2586 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2587 		tmp &= ~(0x1f << gpio_shift);
2588 		tmp |= (type << gpio_shift);
2589 		REG_WRITE(ah, addr, tmp);
2590 	}
2591 }
2592 
2593 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2594 {
2595 	u32 gpio_shift;
2596 
2597 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2598 
2599 	if (AR_DEVID_7010(ah)) {
2600 		gpio_shift = gpio;
2601 		REG_RMW(ah, AR7010_GPIO_OE,
2602 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2603 			(AR7010_GPIO_OE_MASK << gpio_shift));
2604 		return;
2605 	}
2606 
2607 	gpio_shift = gpio << 1;
2608 	REG_RMW(ah,
2609 		AR_GPIO_OE_OUT,
2610 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2611 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2612 }
2613 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2614 
2615 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2616 {
2617 #define MS_REG_READ(x, y) \
2618 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2619 
2620 	if (gpio >= ah->caps.num_gpio_pins)
2621 		return 0xffffffff;
2622 
2623 	if (AR_DEVID_7010(ah)) {
2624 		u32 val;
2625 		val = REG_READ(ah, AR7010_GPIO_IN);
2626 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2627 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2628 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2629 			AR_GPIO_BIT(gpio)) != 0;
2630 	else if (AR_SREV_9271(ah))
2631 		return MS_REG_READ(AR9271, gpio) != 0;
2632 	else if (AR_SREV_9287_11_OR_LATER(ah))
2633 		return MS_REG_READ(AR9287, gpio) != 0;
2634 	else if (AR_SREV_9285_12_OR_LATER(ah))
2635 		return MS_REG_READ(AR9285, gpio) != 0;
2636 	else if (AR_SREV_9280_20_OR_LATER(ah))
2637 		return MS_REG_READ(AR928X, gpio) != 0;
2638 	else
2639 		return MS_REG_READ(AR, gpio) != 0;
2640 }
2641 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2642 
2643 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2644 			 u32 ah_signal_type)
2645 {
2646 	u32 gpio_shift;
2647 
2648 	if (AR_DEVID_7010(ah)) {
2649 		gpio_shift = gpio;
2650 		REG_RMW(ah, AR7010_GPIO_OE,
2651 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2652 			(AR7010_GPIO_OE_MASK << gpio_shift));
2653 		return;
2654 	}
2655 
2656 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2657 	gpio_shift = 2 * gpio;
2658 	REG_RMW(ah,
2659 		AR_GPIO_OE_OUT,
2660 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2661 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2662 }
2663 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2664 
2665 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2666 {
2667 	if (AR_DEVID_7010(ah)) {
2668 		val = val ? 0 : 1;
2669 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2670 			AR_GPIO_BIT(gpio));
2671 		return;
2672 	}
2673 
2674 	if (AR_SREV_9271(ah))
2675 		val = ~val;
2676 
2677 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2678 		AR_GPIO_BIT(gpio));
2679 }
2680 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2681 
2682 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2683 {
2684 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2685 }
2686 EXPORT_SYMBOL(ath9k_hw_setantenna);
2687 
2688 /*********************/
2689 /* General Operation */
2690 /*********************/
2691 
2692 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2693 {
2694 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2695 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2696 
2697 	if (phybits & AR_PHY_ERR_RADAR)
2698 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2699 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2700 		bits |= ATH9K_RX_FILTER_PHYERR;
2701 
2702 	return bits;
2703 }
2704 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2705 
2706 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2707 {
2708 	u32 phybits;
2709 
2710 	ENABLE_REGWRITE_BUFFER(ah);
2711 
2712 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2713 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2714 
2715 	REG_WRITE(ah, AR_RX_FILTER, bits);
2716 
2717 	phybits = 0;
2718 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2719 		phybits |= AR_PHY_ERR_RADAR;
2720 	if (bits & ATH9K_RX_FILTER_PHYERR)
2721 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2722 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2723 
2724 	if (phybits)
2725 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2726 	else
2727 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2728 
2729 	REGWRITE_BUFFER_FLUSH(ah);
2730 }
2731 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2732 
2733 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2734 {
2735 	if (ath9k_hw_mci_is_enabled(ah))
2736 		ar9003_mci_bt_gain_ctrl(ah);
2737 
2738 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2739 		return false;
2740 
2741 	ath9k_hw_init_pll(ah, NULL);
2742 	ah->htc_reset_init = true;
2743 	return true;
2744 }
2745 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2746 
2747 bool ath9k_hw_disable(struct ath_hw *ah)
2748 {
2749 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2750 		return false;
2751 
2752 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2753 		return false;
2754 
2755 	ath9k_hw_init_pll(ah, NULL);
2756 	return true;
2757 }
2758 EXPORT_SYMBOL(ath9k_hw_disable);
2759 
2760 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2761 {
2762 	enum eeprom_param gain_param;
2763 
2764 	if (IS_CHAN_2GHZ(chan))
2765 		gain_param = EEP_ANTENNA_GAIN_2G;
2766 	else
2767 		gain_param = EEP_ANTENNA_GAIN_5G;
2768 
2769 	return ah->eep_ops->get_eeprom(ah, gain_param);
2770 }
2771 
2772 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2773 			    bool test)
2774 {
2775 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2776 	struct ieee80211_channel *channel;
2777 	int chan_pwr, new_pwr, max_gain;
2778 	int ant_gain, ant_reduction = 0;
2779 
2780 	if (!chan)
2781 		return;
2782 
2783 	channel = chan->chan;
2784 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2785 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2786 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2787 
2788 	ant_gain = get_antenna_gain(ah, chan);
2789 	if (ant_gain > max_gain)
2790 		ant_reduction = ant_gain - max_gain;
2791 
2792 	ah->eep_ops->set_txpower(ah, chan,
2793 				 ath9k_regd_get_ctl(reg, chan),
2794 				 ant_reduction, new_pwr, test);
2795 }
2796 
2797 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2798 {
2799 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2800 	struct ath9k_channel *chan = ah->curchan;
2801 	struct ieee80211_channel *channel = chan->chan;
2802 
2803 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2804 	if (test)
2805 		channel->max_power = MAX_RATE_POWER / 2;
2806 
2807 	ath9k_hw_apply_txpower(ah, chan, test);
2808 
2809 	if (test)
2810 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2811 }
2812 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2813 
2814 void ath9k_hw_setopmode(struct ath_hw *ah)
2815 {
2816 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2817 }
2818 EXPORT_SYMBOL(ath9k_hw_setopmode);
2819 
2820 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2821 {
2822 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2823 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2824 }
2825 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2826 
2827 void ath9k_hw_write_associd(struct ath_hw *ah)
2828 {
2829 	struct ath_common *common = ath9k_hw_common(ah);
2830 
2831 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2832 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2833 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2834 }
2835 EXPORT_SYMBOL(ath9k_hw_write_associd);
2836 
2837 #define ATH9K_MAX_TSF_READ 10
2838 
2839 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2840 {
2841 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2842 	int i;
2843 
2844 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2845 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2846 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2847 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2848 		if (tsf_upper2 == tsf_upper1)
2849 			break;
2850 		tsf_upper1 = tsf_upper2;
2851 	}
2852 
2853 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2854 
2855 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2856 }
2857 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2858 
2859 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2860 {
2861 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2862 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2863 }
2864 EXPORT_SYMBOL(ath9k_hw_settsf64);
2865 
2866 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2867 {
2868 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2869 			   AH_TSF_WRITE_TIMEOUT))
2870 		ath_dbg(ath9k_hw_common(ah), RESET,
2871 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2872 
2873 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2874 }
2875 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2876 
2877 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2878 {
2879 	if (set)
2880 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2881 	else
2882 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2883 }
2884 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2885 
2886 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2887 {
2888 	u32 macmode;
2889 
2890 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2891 		macmode = AR_2040_JOINED_RX_CLEAR;
2892 	else
2893 		macmode = 0;
2894 
2895 	REG_WRITE(ah, AR_2040_MODE, macmode);
2896 }
2897 
2898 /* HW Generic timers configuration */
2899 
2900 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2901 {
2902 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2903 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2904 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2905 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2906 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2907 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2908 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2909 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2910 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2911 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2912 				AR_NDP2_TIMER_MODE, 0x0002},
2913 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2914 				AR_NDP2_TIMER_MODE, 0x0004},
2915 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2916 				AR_NDP2_TIMER_MODE, 0x0008},
2917 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2918 				AR_NDP2_TIMER_MODE, 0x0010},
2919 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2920 				AR_NDP2_TIMER_MODE, 0x0020},
2921 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2922 				AR_NDP2_TIMER_MODE, 0x0040},
2923 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2924 				AR_NDP2_TIMER_MODE, 0x0080}
2925 };
2926 
2927 /* HW generic timer primitives */
2928 
2929 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2930 {
2931 	return REG_READ(ah, AR_TSF_L32);
2932 }
2933 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2934 
2935 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
2936 {
2937 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2938 
2939 	if (timer_table->tsf2_enabled) {
2940 		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
2941 		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
2942 	}
2943 }
2944 
2945 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2946 					  void (*trigger)(void *),
2947 					  void (*overflow)(void *),
2948 					  void *arg,
2949 					  u8 timer_index)
2950 {
2951 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2952 	struct ath_gen_timer *timer;
2953 
2954 	if ((timer_index < AR_FIRST_NDP_TIMER) ||
2955 	    (timer_index >= ATH_MAX_GEN_TIMER))
2956 		return NULL;
2957 
2958 	if ((timer_index > AR_FIRST_NDP_TIMER) &&
2959 	    !AR_SREV_9300_20_OR_LATER(ah))
2960 		return NULL;
2961 
2962 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2963 	if (timer == NULL)
2964 		return NULL;
2965 
2966 	/* allocate a hardware generic timer slot */
2967 	timer_table->timers[timer_index] = timer;
2968 	timer->index = timer_index;
2969 	timer->trigger = trigger;
2970 	timer->overflow = overflow;
2971 	timer->arg = arg;
2972 
2973 	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
2974 		timer_table->tsf2_enabled = true;
2975 		ath9k_hw_gen_timer_start_tsf2(ah);
2976 	}
2977 
2978 	return timer;
2979 }
2980 EXPORT_SYMBOL(ath_gen_timer_alloc);
2981 
2982 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2983 			      struct ath_gen_timer *timer,
2984 			      u32 timer_next,
2985 			      u32 timer_period)
2986 {
2987 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2988 	u32 mask = 0;
2989 
2990 	timer_table->timer_mask |= BIT(timer->index);
2991 
2992 	/*
2993 	 * Program generic timer registers
2994 	 */
2995 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2996 		 timer_next);
2997 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2998 		  timer_period);
2999 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3000 		    gen_tmr_configuration[timer->index].mode_mask);
3001 
3002 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3003 		/*
3004 		 * Starting from AR9462, each generic timer can select which tsf
3005 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3006 		 * 8 - 15  use tsf2.
3007 		 */
3008 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3009 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3010 				       (1 << timer->index));
3011 		else
3012 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3013 				       (1 << timer->index));
3014 	}
3015 
3016 	if (timer->trigger)
3017 		mask |= SM(AR_GENTMR_BIT(timer->index),
3018 			   AR_IMR_S5_GENTIMER_TRIG);
3019 	if (timer->overflow)
3020 		mask |= SM(AR_GENTMR_BIT(timer->index),
3021 			   AR_IMR_S5_GENTIMER_THRESH);
3022 
3023 	REG_SET_BIT(ah, AR_IMR_S5, mask);
3024 
3025 	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3026 		ah->imask |= ATH9K_INT_GENTIMER;
3027 		ath9k_hw_set_interrupts(ah);
3028 	}
3029 }
3030 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3031 
3032 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3033 {
3034 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3035 
3036 	/* Clear generic timer enable bits. */
3037 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3038 			gen_tmr_configuration[timer->index].mode_mask);
3039 
3040 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3041 		/*
3042 		 * Need to switch back to TSF if it was using TSF2.
3043 		 */
3044 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3045 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3046 				    (1 << timer->index));
3047 		}
3048 	}
3049 
3050 	/* Disable both trigger and thresh interrupt masks */
3051 	REG_CLR_BIT(ah, AR_IMR_S5,
3052 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3053 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3054 
3055 	timer_table->timer_mask &= ~BIT(timer->index);
3056 
3057 	if (timer_table->timer_mask == 0) {
3058 		ah->imask &= ~ATH9K_INT_GENTIMER;
3059 		ath9k_hw_set_interrupts(ah);
3060 	}
3061 }
3062 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3063 
3064 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3065 {
3066 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3067 
3068 	/* free the hardware generic timer slot */
3069 	timer_table->timers[timer->index] = NULL;
3070 	kfree(timer);
3071 }
3072 EXPORT_SYMBOL(ath_gen_timer_free);
3073 
3074 /*
3075  * Generic Timer Interrupts handling
3076  */
3077 void ath_gen_timer_isr(struct ath_hw *ah)
3078 {
3079 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3080 	struct ath_gen_timer *timer;
3081 	unsigned long trigger_mask, thresh_mask;
3082 	unsigned int index;
3083 
3084 	/* get hardware generic timer interrupt status */
3085 	trigger_mask = ah->intr_gen_timer_trigger;
3086 	thresh_mask = ah->intr_gen_timer_thresh;
3087 	trigger_mask &= timer_table->timer_mask;
3088 	thresh_mask &= timer_table->timer_mask;
3089 
3090 	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3091 		timer = timer_table->timers[index];
3092 		if (!timer)
3093 		    continue;
3094 		if (!timer->overflow)
3095 		    continue;
3096 
3097 		trigger_mask &= ~BIT(index);
3098 		timer->overflow(timer->arg);
3099 	}
3100 
3101 	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3102 		timer = timer_table->timers[index];
3103 		if (!timer)
3104 		    continue;
3105 		if (!timer->trigger)
3106 		    continue;
3107 		timer->trigger(timer->arg);
3108 	}
3109 }
3110 EXPORT_SYMBOL(ath_gen_timer_isr);
3111 
3112 /********/
3113 /* HTC  */
3114 /********/
3115 
3116 static struct {
3117 	u32 version;
3118 	const char * name;
3119 } ath_mac_bb_names[] = {
3120 	/* Devices with external radios */
3121 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3122 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3123 	{ AR_SREV_VERSION_9100,		"9100" },
3124 	{ AR_SREV_VERSION_9160,		"9160" },
3125 	/* Single-chip solutions */
3126 	{ AR_SREV_VERSION_9280,		"9280" },
3127 	{ AR_SREV_VERSION_9285,		"9285" },
3128 	{ AR_SREV_VERSION_9287,         "9287" },
3129 	{ AR_SREV_VERSION_9271,         "9271" },
3130 	{ AR_SREV_VERSION_9300,         "9300" },
3131 	{ AR_SREV_VERSION_9330,         "9330" },
3132 	{ AR_SREV_VERSION_9340,		"9340" },
3133 	{ AR_SREV_VERSION_9485,         "9485" },
3134 	{ AR_SREV_VERSION_9462,         "9462" },
3135 	{ AR_SREV_VERSION_9550,         "9550" },
3136 	{ AR_SREV_VERSION_9565,         "9565" },
3137 	{ AR_SREV_VERSION_9531,         "9531" },
3138 };
3139 
3140 /* For devices with external radios */
3141 static struct {
3142 	u16 version;
3143 	const char * name;
3144 } ath_rf_names[] = {
3145 	{ 0,				"5133" },
3146 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3147 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3148 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3149 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3150 };
3151 
3152 /*
3153  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3154  */
3155 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3156 {
3157 	int i;
3158 
3159 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3160 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3161 			return ath_mac_bb_names[i].name;
3162 		}
3163 	}
3164 
3165 	return "????";
3166 }
3167 
3168 /*
3169  * Return the RF name. "????" is returned if the RF is unknown.
3170  * Used for devices with external radios.
3171  */
3172 static const char *ath9k_hw_rf_name(u16 rf_version)
3173 {
3174 	int i;
3175 
3176 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3177 		if (ath_rf_names[i].version == rf_version) {
3178 			return ath_rf_names[i].name;
3179 		}
3180 	}
3181 
3182 	return "????";
3183 }
3184 
3185 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3186 {
3187 	int used;
3188 
3189 	/* chipsets >= AR9280 are single-chip */
3190 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3191 		used = scnprintf(hw_name, len,
3192 				 "Atheros AR%s Rev:%x",
3193 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3194 				 ah->hw_version.macRev);
3195 	}
3196 	else {
3197 		used = scnprintf(hw_name, len,
3198 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3199 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3200 				 ah->hw_version.macRev,
3201 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3202 						  & AR_RADIO_SREV_MAJOR)),
3203 				 ah->hw_version.phyRev);
3204 	}
3205 
3206 	hw_name[used] = '\0';
3207 }
3208 EXPORT_SYMBOL(ath9k_hw_name);
3209