xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 81d67439)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
20 
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
25 
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27 
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
32 
33 static int __init ath9k_init(void)
34 {
35 	return 0;
36 }
37 module_init(ath9k_init);
38 
39 static void __exit ath9k_exit(void)
40 {
41 	return;
42 }
43 module_exit(ath9k_exit);
44 
45 /* Private hardware callbacks */
46 
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48 {
49 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50 }
51 
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55 }
56 
57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 					struct ath9k_channel *chan)
59 {
60 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62 
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 		return;
67 
68 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70 
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 	/* You will not have this callback if using the old ANI */
74 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 		return;
76 
77 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79 
80 /********************/
81 /* Helper Functions */
82 /********************/
83 
84 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85 {
86 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87 	struct ath_common *common = ath9k_hw_common(ah);
88 	unsigned int clockrate;
89 
90 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
91 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
92 		clockrate = 117;
93 	else if (!ah->curchan) /* should really check for CCK instead */
94 		clockrate = ATH9K_CLOCK_RATE_CCK;
95 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
96 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
97 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
98 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
99 	else
100 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
101 
102 	if (conf_is_ht40(conf))
103 		clockrate *= 2;
104 
105 	if (ah->curchan) {
106 		if (IS_CHAN_HALF_RATE(ah->curchan))
107 			clockrate /= 2;
108 		if (IS_CHAN_QUARTER_RATE(ah->curchan))
109 			clockrate /= 4;
110 	}
111 
112 	common->clockrate = clockrate;
113 }
114 
115 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
116 {
117 	struct ath_common *common = ath9k_hw_common(ah);
118 
119 	return usecs * common->clockrate;
120 }
121 
122 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
123 {
124 	int i;
125 
126 	BUG_ON(timeout < AH_TIME_QUANTUM);
127 
128 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
129 		if ((REG_READ(ah, reg) & mask) == val)
130 			return true;
131 
132 		udelay(AH_TIME_QUANTUM);
133 	}
134 
135 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
136 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
137 		timeout, reg, REG_READ(ah, reg), mask, val);
138 
139 	return false;
140 }
141 EXPORT_SYMBOL(ath9k_hw_wait);
142 
143 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
144 			  int column, unsigned int *writecnt)
145 {
146 	int r;
147 
148 	ENABLE_REGWRITE_BUFFER(ah);
149 	for (r = 0; r < array->ia_rows; r++) {
150 		REG_WRITE(ah, INI_RA(array, r, 0),
151 			  INI_RA(array, r, column));
152 		DO_DELAY(*writecnt);
153 	}
154 	REGWRITE_BUFFER_FLUSH(ah);
155 }
156 
157 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
158 {
159 	u32 retval;
160 	int i;
161 
162 	for (i = 0, retval = 0; i < n; i++) {
163 		retval = (retval << 1) | (val & 1);
164 		val >>= 1;
165 	}
166 	return retval;
167 }
168 
169 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
170 			   u8 phy, int kbps,
171 			   u32 frameLen, u16 rateix,
172 			   bool shortPreamble)
173 {
174 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
175 
176 	if (kbps == 0)
177 		return 0;
178 
179 	switch (phy) {
180 	case WLAN_RC_PHY_CCK:
181 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
182 		if (shortPreamble)
183 			phyTime >>= 1;
184 		numBits = frameLen << 3;
185 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
186 		break;
187 	case WLAN_RC_PHY_OFDM:
188 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
189 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
190 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
191 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
192 			txTime = OFDM_SIFS_TIME_QUARTER
193 				+ OFDM_PREAMBLE_TIME_QUARTER
194 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
195 		} else if (ah->curchan &&
196 			   IS_CHAN_HALF_RATE(ah->curchan)) {
197 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
198 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
199 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
200 			txTime = OFDM_SIFS_TIME_HALF +
201 				OFDM_PREAMBLE_TIME_HALF
202 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
203 		} else {
204 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
205 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
206 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
207 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
208 				+ (numSymbols * OFDM_SYMBOL_TIME);
209 		}
210 		break;
211 	default:
212 		ath_err(ath9k_hw_common(ah),
213 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
214 		txTime = 0;
215 		break;
216 	}
217 
218 	return txTime;
219 }
220 EXPORT_SYMBOL(ath9k_hw_computetxtime);
221 
222 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
223 				  struct ath9k_channel *chan,
224 				  struct chan_centers *centers)
225 {
226 	int8_t extoff;
227 
228 	if (!IS_CHAN_HT40(chan)) {
229 		centers->ctl_center = centers->ext_center =
230 			centers->synth_center = chan->channel;
231 		return;
232 	}
233 
234 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
235 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
236 		centers->synth_center =
237 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
238 		extoff = 1;
239 	} else {
240 		centers->synth_center =
241 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
242 		extoff = -1;
243 	}
244 
245 	centers->ctl_center =
246 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
247 	/* 25 MHz spacing is supported by hw but not on upper layers */
248 	centers->ext_center =
249 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
250 }
251 
252 /******************/
253 /* Chip Revisions */
254 /******************/
255 
256 static void ath9k_hw_read_revisions(struct ath_hw *ah)
257 {
258 	u32 val;
259 
260 	switch (ah->hw_version.devid) {
261 	case AR5416_AR9100_DEVID:
262 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
263 		break;
264 	case AR9300_DEVID_AR9330:
265 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
266 		if (ah->get_mac_revision) {
267 			ah->hw_version.macRev = ah->get_mac_revision();
268 		} else {
269 			val = REG_READ(ah, AR_SREV);
270 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
271 		}
272 		return;
273 	case AR9300_DEVID_AR9340:
274 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
275 		val = REG_READ(ah, AR_SREV);
276 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
277 		return;
278 	}
279 
280 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
281 
282 	if (val == 0xFF) {
283 		val = REG_READ(ah, AR_SREV);
284 		ah->hw_version.macVersion =
285 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
286 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
287 		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
288 	} else {
289 		if (!AR_SREV_9100(ah))
290 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
291 
292 		ah->hw_version.macRev = val & AR_SREV_REVISION;
293 
294 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
295 			ah->is_pciexpress = true;
296 	}
297 }
298 
299 /************************************/
300 /* HW Attach, Detach, Init Routines */
301 /************************************/
302 
303 static void ath9k_hw_disablepcie(struct ath_hw *ah)
304 {
305 	if (!AR_SREV_5416(ah))
306 		return;
307 
308 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
309 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
310 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
311 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
312 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
313 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
314 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
315 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
316 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
317 
318 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
319 }
320 
321 /* This should work for all families including legacy */
322 static bool ath9k_hw_chip_test(struct ath_hw *ah)
323 {
324 	struct ath_common *common = ath9k_hw_common(ah);
325 	u32 regAddr[2] = { AR_STA_ID0 };
326 	u32 regHold[2];
327 	static const u32 patternData[4] = {
328 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
329 	};
330 	int i, j, loop_max;
331 
332 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
333 		loop_max = 2;
334 		regAddr[1] = AR_PHY_BASE + (8 << 2);
335 	} else
336 		loop_max = 1;
337 
338 	for (i = 0; i < loop_max; i++) {
339 		u32 addr = regAddr[i];
340 		u32 wrData, rdData;
341 
342 		regHold[i] = REG_READ(ah, addr);
343 		for (j = 0; j < 0x100; j++) {
344 			wrData = (j << 16) | j;
345 			REG_WRITE(ah, addr, wrData);
346 			rdData = REG_READ(ah, addr);
347 			if (rdData != wrData) {
348 				ath_err(common,
349 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
350 					addr, wrData, rdData);
351 				return false;
352 			}
353 		}
354 		for (j = 0; j < 4; j++) {
355 			wrData = patternData[j];
356 			REG_WRITE(ah, addr, wrData);
357 			rdData = REG_READ(ah, addr);
358 			if (wrData != rdData) {
359 				ath_err(common,
360 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
361 					addr, wrData, rdData);
362 				return false;
363 			}
364 		}
365 		REG_WRITE(ah, regAddr[i], regHold[i]);
366 	}
367 	udelay(100);
368 
369 	return true;
370 }
371 
372 static void ath9k_hw_init_config(struct ath_hw *ah)
373 {
374 	int i;
375 
376 	ah->config.dma_beacon_response_time = 2;
377 	ah->config.sw_beacon_response_time = 10;
378 	ah->config.additional_swba_backoff = 0;
379 	ah->config.ack_6mb = 0x0;
380 	ah->config.cwm_ignore_extcca = 0;
381 	ah->config.pcie_powersave_enable = 0;
382 	ah->config.pcie_clock_req = 0;
383 	ah->config.pcie_waen = 0;
384 	ah->config.analog_shiftreg = 1;
385 	ah->config.enable_ani = true;
386 
387 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
388 		ah->config.spurchans[i][0] = AR_NO_SPUR;
389 		ah->config.spurchans[i][1] = AR_NO_SPUR;
390 	}
391 
392 	/* PAPRD needs some more work to be enabled */
393 	ah->config.paprd_disable = 1;
394 
395 	ah->config.rx_intr_mitigation = true;
396 	ah->config.pcieSerDesWrite = true;
397 
398 	/*
399 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
400 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
401 	 * This means we use it for all AR5416 devices, and the few
402 	 * minor PCI AR9280 devices out there.
403 	 *
404 	 * Serialization is required because these devices do not handle
405 	 * well the case of two concurrent reads/writes due to the latency
406 	 * involved. During one read/write another read/write can be issued
407 	 * on another CPU while the previous read/write may still be working
408 	 * on our hardware, if we hit this case the hardware poops in a loop.
409 	 * We prevent this by serializing reads and writes.
410 	 *
411 	 * This issue is not present on PCI-Express devices or pre-AR5416
412 	 * devices (legacy, 802.11abg).
413 	 */
414 	if (num_possible_cpus() > 1)
415 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
416 }
417 
418 static void ath9k_hw_init_defaults(struct ath_hw *ah)
419 {
420 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
421 
422 	regulatory->country_code = CTRY_DEFAULT;
423 	regulatory->power_limit = MAX_RATE_POWER;
424 	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
425 
426 	ah->hw_version.magic = AR5416_MAGIC;
427 	ah->hw_version.subvendorid = 0;
428 
429 	ah->atim_window = 0;
430 	ah->sta_id1_defaults =
431 		AR_STA_ID1_CRPT_MIC_ENABLE |
432 		AR_STA_ID1_MCAST_KSRCH;
433 	if (AR_SREV_9100(ah))
434 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
435 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
436 	ah->slottime = 20;
437 	ah->globaltxtimeout = (u32) -1;
438 	ah->power_mode = ATH9K_PM_UNDEFINED;
439 }
440 
441 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
442 {
443 	struct ath_common *common = ath9k_hw_common(ah);
444 	u32 sum;
445 	int i;
446 	u16 eeval;
447 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
448 
449 	sum = 0;
450 	for (i = 0; i < 3; i++) {
451 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
452 		sum += eeval;
453 		common->macaddr[2 * i] = eeval >> 8;
454 		common->macaddr[2 * i + 1] = eeval & 0xff;
455 	}
456 	if (sum == 0 || sum == 0xffff * 3)
457 		return -EADDRNOTAVAIL;
458 
459 	return 0;
460 }
461 
462 static int ath9k_hw_post_init(struct ath_hw *ah)
463 {
464 	struct ath_common *common = ath9k_hw_common(ah);
465 	int ecode;
466 
467 	if (common->bus_ops->ath_bus_type != ATH_USB) {
468 		if (!ath9k_hw_chip_test(ah))
469 			return -ENODEV;
470 	}
471 
472 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
473 		ecode = ar9002_hw_rf_claim(ah);
474 		if (ecode != 0)
475 			return ecode;
476 	}
477 
478 	ecode = ath9k_hw_eeprom_init(ah);
479 	if (ecode != 0)
480 		return ecode;
481 
482 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
483 		"Eeprom VER: %d, REV: %d\n",
484 		ah->eep_ops->get_eeprom_ver(ah),
485 		ah->eep_ops->get_eeprom_rev(ah));
486 
487 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
488 	if (ecode) {
489 		ath_err(ath9k_hw_common(ah),
490 			"Failed allocating banks for external radio\n");
491 		ath9k_hw_rf_free_ext_banks(ah);
492 		return ecode;
493 	}
494 
495 	if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
496 		ath9k_hw_ani_setup(ah);
497 		ath9k_hw_ani_init(ah);
498 	}
499 
500 	return 0;
501 }
502 
503 static void ath9k_hw_attach_ops(struct ath_hw *ah)
504 {
505 	if (AR_SREV_9300_20_OR_LATER(ah))
506 		ar9003_hw_attach_ops(ah);
507 	else
508 		ar9002_hw_attach_ops(ah);
509 }
510 
511 /* Called for all hardware families */
512 static int __ath9k_hw_init(struct ath_hw *ah)
513 {
514 	struct ath_common *common = ath9k_hw_common(ah);
515 	int r = 0;
516 
517 	ath9k_hw_read_revisions(ah);
518 
519 	/*
520 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
521 	 * We need to do this to avoid RMW of this register. We cannot
522 	 * read the reg when chip is asleep.
523 	 */
524 	ah->WARegVal = REG_READ(ah, AR_WA);
525 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
526 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
527 
528 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
529 		ath_err(common, "Couldn't reset chip\n");
530 		return -EIO;
531 	}
532 
533 	ath9k_hw_init_defaults(ah);
534 	ath9k_hw_init_config(ah);
535 
536 	ath9k_hw_attach_ops(ah);
537 
538 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
539 		ath_err(common, "Couldn't wakeup chip\n");
540 		return -EIO;
541 	}
542 
543 	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
544 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
545 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
546 		     !ah->is_pciexpress)) {
547 			ah->config.serialize_regmode =
548 				SER_REG_MODE_ON;
549 		} else {
550 			ah->config.serialize_regmode =
551 				SER_REG_MODE_OFF;
552 		}
553 	}
554 
555 	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
556 		ah->config.serialize_regmode);
557 
558 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
559 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
560 	else
561 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
562 
563 	switch (ah->hw_version.macVersion) {
564 	case AR_SREV_VERSION_5416_PCI:
565 	case AR_SREV_VERSION_5416_PCIE:
566 	case AR_SREV_VERSION_9160:
567 	case AR_SREV_VERSION_9100:
568 	case AR_SREV_VERSION_9280:
569 	case AR_SREV_VERSION_9285:
570 	case AR_SREV_VERSION_9287:
571 	case AR_SREV_VERSION_9271:
572 	case AR_SREV_VERSION_9300:
573 	case AR_SREV_VERSION_9330:
574 	case AR_SREV_VERSION_9485:
575 	case AR_SREV_VERSION_9340:
576 		break;
577 	default:
578 		ath_err(common,
579 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
580 			ah->hw_version.macVersion, ah->hw_version.macRev);
581 		return -EOPNOTSUPP;
582 	}
583 
584 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
585 	    AR_SREV_9330(ah))
586 		ah->is_pciexpress = false;
587 
588 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
589 	ath9k_hw_init_cal_settings(ah);
590 
591 	ah->ani_function = ATH9K_ANI_ALL;
592 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
593 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
594 	if (!AR_SREV_9300_20_OR_LATER(ah))
595 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
596 
597 	ath9k_hw_init_mode_regs(ah);
598 
599 
600 	if (ah->is_pciexpress)
601 		ath9k_hw_configpcipowersave(ah, 0, 0);
602 	else
603 		ath9k_hw_disablepcie(ah);
604 
605 	if (!AR_SREV_9300_20_OR_LATER(ah))
606 		ar9002_hw_cck_chan14_spread(ah);
607 
608 	r = ath9k_hw_post_init(ah);
609 	if (r)
610 		return r;
611 
612 	ath9k_hw_init_mode_gain_regs(ah);
613 	r = ath9k_hw_fill_cap_info(ah);
614 	if (r)
615 		return r;
616 
617 	r = ath9k_hw_init_macaddr(ah);
618 	if (r) {
619 		ath_err(common, "Failed to initialize MAC address\n");
620 		return r;
621 	}
622 
623 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
624 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
625 	else
626 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
627 
628 	if (AR_SREV_9330(ah))
629 		ah->bb_watchdog_timeout_ms = 85;
630 	else
631 		ah->bb_watchdog_timeout_ms = 25;
632 
633 	common->state = ATH_HW_INITIALIZED;
634 
635 	return 0;
636 }
637 
638 int ath9k_hw_init(struct ath_hw *ah)
639 {
640 	int ret;
641 	struct ath_common *common = ath9k_hw_common(ah);
642 
643 	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
644 	switch (ah->hw_version.devid) {
645 	case AR5416_DEVID_PCI:
646 	case AR5416_DEVID_PCIE:
647 	case AR5416_AR9100_DEVID:
648 	case AR9160_DEVID_PCI:
649 	case AR9280_DEVID_PCI:
650 	case AR9280_DEVID_PCIE:
651 	case AR9285_DEVID_PCIE:
652 	case AR9287_DEVID_PCI:
653 	case AR9287_DEVID_PCIE:
654 	case AR2427_DEVID_PCIE:
655 	case AR9300_DEVID_PCIE:
656 	case AR9300_DEVID_AR9485_PCIE:
657 	case AR9300_DEVID_AR9330:
658 	case AR9300_DEVID_AR9340:
659 		break;
660 	default:
661 		if (common->bus_ops->ath_bus_type == ATH_USB)
662 			break;
663 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
664 			ah->hw_version.devid);
665 		return -EOPNOTSUPP;
666 	}
667 
668 	ret = __ath9k_hw_init(ah);
669 	if (ret) {
670 		ath_err(common,
671 			"Unable to initialize hardware; initialization status: %d\n",
672 			ret);
673 		return ret;
674 	}
675 
676 	return 0;
677 }
678 EXPORT_SYMBOL(ath9k_hw_init);
679 
680 static void ath9k_hw_init_qos(struct ath_hw *ah)
681 {
682 	ENABLE_REGWRITE_BUFFER(ah);
683 
684 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
685 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
686 
687 	REG_WRITE(ah, AR_QOS_NO_ACK,
688 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
689 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
690 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
691 
692 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
693 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
694 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
695 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
696 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
697 
698 	REGWRITE_BUFFER_FLUSH(ah);
699 }
700 
701 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
702 {
703 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
704 	udelay(100);
705 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
706 
707 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
708 		udelay(100);
709 
710 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
711 }
712 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
713 
714 static void ath9k_hw_init_pll(struct ath_hw *ah,
715 			      struct ath9k_channel *chan)
716 {
717 	u32 pll;
718 
719 	if (AR_SREV_9485(ah)) {
720 
721 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
722 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
723 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
724 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
725 			      AR_CH0_DPLL2_KD, 0x40);
726 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
727 			      AR_CH0_DPLL2_KI, 0x4);
728 
729 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
730 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
731 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
732 			      AR_CH0_BB_DPLL1_NINI, 0x58);
733 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
734 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
735 
736 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
737 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
738 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
739 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
740 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
741 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
742 
743 		/* program BB PLL phase_shift to 0x6 */
744 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
745 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
746 
747 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
748 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
749 		udelay(1000);
750 	} else if (AR_SREV_9330(ah)) {
751 		u32 ddr_dpll2, pll_control2, kd;
752 
753 		if (ah->is_clk_25mhz) {
754 			ddr_dpll2 = 0x18e82f01;
755 			pll_control2 = 0xe04a3d;
756 			kd = 0x1d;
757 		} else {
758 			ddr_dpll2 = 0x19e82f01;
759 			pll_control2 = 0x886666;
760 			kd = 0x3d;
761 		}
762 
763 		/* program DDR PLL ki and kd value */
764 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
765 
766 		/* program DDR PLL phase_shift */
767 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
768 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
769 
770 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
771 		udelay(1000);
772 
773 		/* program refdiv, nint, frac to RTC register */
774 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
775 
776 		/* program BB PLL kd and ki value */
777 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
778 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
779 
780 		/* program BB PLL phase_shift */
781 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
782 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
783 	} else if (AR_SREV_9340(ah)) {
784 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
785 
786 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
787 		udelay(1000);
788 
789 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
790 		udelay(100);
791 
792 		if (ah->is_clk_25mhz) {
793 			pll2_divint = 0x54;
794 			pll2_divfrac = 0x1eb85;
795 			refdiv = 3;
796 		} else {
797 			pll2_divint = 88;
798 			pll2_divfrac = 0;
799 			refdiv = 5;
800 		}
801 
802 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
803 		regval |= (0x1 << 16);
804 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
805 		udelay(100);
806 
807 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
808 			  (pll2_divint << 18) | pll2_divfrac);
809 		udelay(100);
810 
811 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
812 		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
813 			 (0x4 << 26) | (0x18 << 19);
814 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
815 		REG_WRITE(ah, AR_PHY_PLL_MODE,
816 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
817 		udelay(1000);
818 	}
819 
820 	pll = ath9k_hw_compute_pll_control(ah, chan);
821 
822 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
823 
824 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah))
825 		udelay(1000);
826 
827 	/* Switch the core clock for ar9271 to 117Mhz */
828 	if (AR_SREV_9271(ah)) {
829 		udelay(500);
830 		REG_WRITE(ah, 0x50040, 0x304);
831 	}
832 
833 	udelay(RTC_PLL_SETTLE_DELAY);
834 
835 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
836 
837 	if (AR_SREV_9340(ah)) {
838 		if (ah->is_clk_25mhz) {
839 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
840 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
841 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
842 		} else {
843 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
844 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
845 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
846 		}
847 		udelay(100);
848 	}
849 }
850 
851 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
852 					  enum nl80211_iftype opmode)
853 {
854 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
855 	u32 imr_reg = AR_IMR_TXERR |
856 		AR_IMR_TXURN |
857 		AR_IMR_RXERR |
858 		AR_IMR_RXORN |
859 		AR_IMR_BCNMISC;
860 
861 	if (AR_SREV_9340(ah))
862 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
863 
864 	if (AR_SREV_9300_20_OR_LATER(ah)) {
865 		imr_reg |= AR_IMR_RXOK_HP;
866 		if (ah->config.rx_intr_mitigation)
867 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
868 		else
869 			imr_reg |= AR_IMR_RXOK_LP;
870 
871 	} else {
872 		if (ah->config.rx_intr_mitigation)
873 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
874 		else
875 			imr_reg |= AR_IMR_RXOK;
876 	}
877 
878 	if (ah->config.tx_intr_mitigation)
879 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
880 	else
881 		imr_reg |= AR_IMR_TXOK;
882 
883 	if (opmode == NL80211_IFTYPE_AP)
884 		imr_reg |= AR_IMR_MIB;
885 
886 	ENABLE_REGWRITE_BUFFER(ah);
887 
888 	REG_WRITE(ah, AR_IMR, imr_reg);
889 	ah->imrs2_reg |= AR_IMR_S2_GTT;
890 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
891 
892 	if (!AR_SREV_9100(ah)) {
893 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
894 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
895 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
896 	}
897 
898 	REGWRITE_BUFFER_FLUSH(ah);
899 
900 	if (AR_SREV_9300_20_OR_LATER(ah)) {
901 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
902 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
903 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
904 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
905 	}
906 }
907 
908 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
909 {
910 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
911 	val = min(val, (u32) 0xFFFF);
912 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
913 }
914 
915 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
916 {
917 	u32 val = ath9k_hw_mac_to_clks(ah, us);
918 	val = min(val, (u32) 0xFFFF);
919 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
920 }
921 
922 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
923 {
924 	u32 val = ath9k_hw_mac_to_clks(ah, us);
925 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
926 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
927 }
928 
929 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
930 {
931 	u32 val = ath9k_hw_mac_to_clks(ah, us);
932 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
933 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
934 }
935 
936 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
937 {
938 	if (tu > 0xFFFF) {
939 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
940 			"bad global tx timeout %u\n", tu);
941 		ah->globaltxtimeout = (u32) -1;
942 		return false;
943 	} else {
944 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
945 		ah->globaltxtimeout = tu;
946 		return true;
947 	}
948 }
949 
950 void ath9k_hw_init_global_settings(struct ath_hw *ah)
951 {
952 	struct ath_common *common = ath9k_hw_common(ah);
953 	struct ieee80211_conf *conf = &common->hw->conf;
954 	const struct ath9k_channel *chan = ah->curchan;
955 	int acktimeout;
956 	int slottime;
957 	int sifstime;
958 	int rx_lat = 0, tx_lat = 0, eifs = 0;
959 	u32 reg;
960 
961 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
962 		ah->misc_mode);
963 
964 	if (!chan)
965 		return;
966 
967 	if (ah->misc_mode != 0)
968 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
969 
970 	rx_lat = 37;
971 	tx_lat = 54;
972 
973 	if (IS_CHAN_HALF_RATE(chan)) {
974 		eifs = 175;
975 		rx_lat *= 2;
976 		tx_lat *= 2;
977 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
978 		    tx_lat += 11;
979 
980 		slottime = 13;
981 		sifstime = 32;
982 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
983 		eifs = 340;
984 		rx_lat *= 4;
985 		tx_lat *= 4;
986 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
987 		    tx_lat += 22;
988 
989 		slottime = 21;
990 		sifstime = 64;
991 	} else {
992 		eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS);
993 		reg = REG_READ(ah, AR_USEC);
994 		rx_lat = MS(reg, AR_USEC_RX_LAT);
995 		tx_lat = MS(reg, AR_USEC_TX_LAT);
996 
997 		slottime = ah->slottime;
998 		if (IS_CHAN_5GHZ(chan))
999 			sifstime = 16;
1000 		else
1001 			sifstime = 10;
1002 	}
1003 
1004 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1005 	acktimeout = slottime + sifstime + 3 * ah->coverage_class;
1006 
1007 	/*
1008 	 * Workaround for early ACK timeouts, add an offset to match the
1009 	 * initval's 64us ack timeout value.
1010 	 * This was initially only meant to work around an issue with delayed
1011 	 * BA frames in some implementations, but it has been found to fix ACK
1012 	 * timeout issues in other cases as well.
1013 	 */
1014 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1015 		acktimeout += 64 - sifstime - ah->slottime;
1016 
1017 	ath9k_hw_set_sifs_time(ah, sifstime);
1018 	ath9k_hw_setslottime(ah, slottime);
1019 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1020 	ath9k_hw_set_cts_timeout(ah, acktimeout);
1021 	if (ah->globaltxtimeout != (u32) -1)
1022 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1023 
1024 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1025 	REG_RMW(ah, AR_USEC,
1026 		(common->clockrate - 1) |
1027 		SM(rx_lat, AR_USEC_RX_LAT) |
1028 		SM(tx_lat, AR_USEC_TX_LAT),
1029 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1030 
1031 }
1032 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1033 
1034 void ath9k_hw_deinit(struct ath_hw *ah)
1035 {
1036 	struct ath_common *common = ath9k_hw_common(ah);
1037 
1038 	if (common->state < ATH_HW_INITIALIZED)
1039 		goto free_hw;
1040 
1041 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1042 
1043 free_hw:
1044 	ath9k_hw_rf_free_ext_banks(ah);
1045 }
1046 EXPORT_SYMBOL(ath9k_hw_deinit);
1047 
1048 /*******/
1049 /* INI */
1050 /*******/
1051 
1052 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1053 {
1054 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1055 
1056 	if (IS_CHAN_B(chan))
1057 		ctl |= CTL_11B;
1058 	else if (IS_CHAN_G(chan))
1059 		ctl |= CTL_11G;
1060 	else
1061 		ctl |= CTL_11A;
1062 
1063 	return ctl;
1064 }
1065 
1066 /****************************************/
1067 /* Reset and Channel Switching Routines */
1068 /****************************************/
1069 
1070 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1071 {
1072 	struct ath_common *common = ath9k_hw_common(ah);
1073 
1074 	ENABLE_REGWRITE_BUFFER(ah);
1075 
1076 	/*
1077 	 * set AHB_MODE not to do cacheline prefetches
1078 	*/
1079 	if (!AR_SREV_9300_20_OR_LATER(ah))
1080 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1081 
1082 	/*
1083 	 * let mac dma reads be in 128 byte chunks
1084 	 */
1085 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1086 
1087 	REGWRITE_BUFFER_FLUSH(ah);
1088 
1089 	/*
1090 	 * Restore TX Trigger Level to its pre-reset value.
1091 	 * The initial value depends on whether aggregation is enabled, and is
1092 	 * adjusted whenever underruns are detected.
1093 	 */
1094 	if (!AR_SREV_9300_20_OR_LATER(ah))
1095 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1096 
1097 	ENABLE_REGWRITE_BUFFER(ah);
1098 
1099 	/*
1100 	 * let mac dma writes be in 128 byte chunks
1101 	 */
1102 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1103 
1104 	/*
1105 	 * Setup receive FIFO threshold to hold off TX activities
1106 	 */
1107 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1108 
1109 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1110 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1111 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1112 
1113 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1114 			ah->caps.rx_status_len);
1115 	}
1116 
1117 	/*
1118 	 * reduce the number of usable entries in PCU TXBUF to avoid
1119 	 * wrap around issues.
1120 	 */
1121 	if (AR_SREV_9285(ah)) {
1122 		/* For AR9285 the number of Fifos are reduced to half.
1123 		 * So set the usable tx buf size also to half to
1124 		 * avoid data/delimiter underruns
1125 		 */
1126 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1127 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1128 	} else if (!AR_SREV_9271(ah)) {
1129 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1130 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1131 	}
1132 
1133 	REGWRITE_BUFFER_FLUSH(ah);
1134 
1135 	if (AR_SREV_9300_20_OR_LATER(ah))
1136 		ath9k_hw_reset_txstatus_ring(ah);
1137 }
1138 
1139 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1140 {
1141 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1142 	u32 set = AR_STA_ID1_KSRCH_MODE;
1143 
1144 	switch (opmode) {
1145 	case NL80211_IFTYPE_ADHOC:
1146 	case NL80211_IFTYPE_MESH_POINT:
1147 		set |= AR_STA_ID1_ADHOC;
1148 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1149 		break;
1150 	case NL80211_IFTYPE_AP:
1151 		set |= AR_STA_ID1_STA_AP;
1152 		/* fall through */
1153 	case NL80211_IFTYPE_STATION:
1154 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1155 		break;
1156 	default:
1157 		if (!ah->is_monitoring)
1158 			set = 0;
1159 		break;
1160 	}
1161 	REG_RMW(ah, AR_STA_ID1, set, mask);
1162 }
1163 
1164 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1165 				   u32 *coef_mantissa, u32 *coef_exponent)
1166 {
1167 	u32 coef_exp, coef_man;
1168 
1169 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1170 		if ((coef_scaled >> coef_exp) & 0x1)
1171 			break;
1172 
1173 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1174 
1175 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1176 
1177 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1178 	*coef_exponent = coef_exp - 16;
1179 }
1180 
1181 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1182 {
1183 	u32 rst_flags;
1184 	u32 tmpReg;
1185 
1186 	if (AR_SREV_9100(ah)) {
1187 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1188 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1189 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1190 	}
1191 
1192 	ENABLE_REGWRITE_BUFFER(ah);
1193 
1194 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1195 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1196 		udelay(10);
1197 	}
1198 
1199 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1200 		  AR_RTC_FORCE_WAKE_ON_INT);
1201 
1202 	if (AR_SREV_9100(ah)) {
1203 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1204 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1205 	} else {
1206 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1207 		if (tmpReg &
1208 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1209 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1210 			u32 val;
1211 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1212 
1213 			val = AR_RC_HOSTIF;
1214 			if (!AR_SREV_9300_20_OR_LATER(ah))
1215 				val |= AR_RC_AHB;
1216 			REG_WRITE(ah, AR_RC, val);
1217 
1218 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1219 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1220 
1221 		rst_flags = AR_RTC_RC_MAC_WARM;
1222 		if (type == ATH9K_RESET_COLD)
1223 			rst_flags |= AR_RTC_RC_MAC_COLD;
1224 	}
1225 
1226 	if (AR_SREV_9330(ah)) {
1227 		int npend = 0;
1228 		int i;
1229 
1230 		/* AR9330 WAR:
1231 		 * call external reset function to reset WMAC if:
1232 		 * - doing a cold reset
1233 		 * - we have pending frames in the TX queues
1234 		 */
1235 
1236 		for (i = 0; i < AR_NUM_QCU; i++) {
1237 			npend = ath9k_hw_numtxpending(ah, i);
1238 			if (npend)
1239 				break;
1240 		}
1241 
1242 		if (ah->external_reset &&
1243 		    (npend || type == ATH9K_RESET_COLD)) {
1244 			int reset_err = 0;
1245 
1246 			ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1247 				"reset MAC via external reset\n");
1248 
1249 			reset_err = ah->external_reset();
1250 			if (reset_err) {
1251 				ath_err(ath9k_hw_common(ah),
1252 					"External reset failed, err=%d\n",
1253 					reset_err);
1254 				return false;
1255 			}
1256 
1257 			REG_WRITE(ah, AR_RTC_RESET, 1);
1258 		}
1259 	}
1260 
1261 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1262 
1263 	REGWRITE_BUFFER_FLUSH(ah);
1264 
1265 	udelay(50);
1266 
1267 	REG_WRITE(ah, AR_RTC_RC, 0);
1268 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1269 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1270 			"RTC stuck in MAC reset\n");
1271 		return false;
1272 	}
1273 
1274 	if (!AR_SREV_9100(ah))
1275 		REG_WRITE(ah, AR_RC, 0);
1276 
1277 	if (AR_SREV_9100(ah))
1278 		udelay(50);
1279 
1280 	return true;
1281 }
1282 
1283 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1284 {
1285 	ENABLE_REGWRITE_BUFFER(ah);
1286 
1287 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1288 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1289 		udelay(10);
1290 	}
1291 
1292 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1293 		  AR_RTC_FORCE_WAKE_ON_INT);
1294 
1295 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1296 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1297 
1298 	REG_WRITE(ah, AR_RTC_RESET, 0);
1299 
1300 	REGWRITE_BUFFER_FLUSH(ah);
1301 
1302 	if (!AR_SREV_9300_20_OR_LATER(ah))
1303 		udelay(2);
1304 
1305 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1306 		REG_WRITE(ah, AR_RC, 0);
1307 
1308 	REG_WRITE(ah, AR_RTC_RESET, 1);
1309 
1310 	if (!ath9k_hw_wait(ah,
1311 			   AR_RTC_STATUS,
1312 			   AR_RTC_STATUS_M,
1313 			   AR_RTC_STATUS_ON,
1314 			   AH_WAIT_TIMEOUT)) {
1315 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1316 			"RTC not waking up\n");
1317 		return false;
1318 	}
1319 
1320 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1321 }
1322 
1323 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1324 {
1325 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1326 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1327 		udelay(10);
1328 	}
1329 
1330 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1331 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1332 
1333 	switch (type) {
1334 	case ATH9K_RESET_POWER_ON:
1335 		return ath9k_hw_set_reset_power_on(ah);
1336 	case ATH9K_RESET_WARM:
1337 	case ATH9K_RESET_COLD:
1338 		return ath9k_hw_set_reset(ah, type);
1339 	default:
1340 		return false;
1341 	}
1342 }
1343 
1344 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1345 				struct ath9k_channel *chan)
1346 {
1347 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1348 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1349 			return false;
1350 	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1351 		return false;
1352 
1353 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1354 		return false;
1355 
1356 	ah->chip_fullsleep = false;
1357 	ath9k_hw_init_pll(ah, chan);
1358 	ath9k_hw_set_rfmode(ah, chan);
1359 
1360 	return true;
1361 }
1362 
1363 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1364 				    struct ath9k_channel *chan)
1365 {
1366 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1367 	struct ath_common *common = ath9k_hw_common(ah);
1368 	struct ieee80211_channel *channel = chan->chan;
1369 	u32 qnum;
1370 	int r;
1371 
1372 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1373 		if (ath9k_hw_numtxpending(ah, qnum)) {
1374 			ath_dbg(common, ATH_DBG_QUEUE,
1375 				"Transmit frames pending on queue %d\n", qnum);
1376 			return false;
1377 		}
1378 	}
1379 
1380 	if (!ath9k_hw_rfbus_req(ah)) {
1381 		ath_err(common, "Could not kill baseband RX\n");
1382 		return false;
1383 	}
1384 
1385 	ath9k_hw_set_channel_regs(ah, chan);
1386 
1387 	r = ath9k_hw_rf_set_freq(ah, chan);
1388 	if (r) {
1389 		ath_err(common, "Failed to set channel\n");
1390 		return false;
1391 	}
1392 	ath9k_hw_set_clockrate(ah);
1393 
1394 	ah->eep_ops->set_txpower(ah, chan,
1395 			     ath9k_regd_get_ctl(regulatory, chan),
1396 			     channel->max_antenna_gain * 2,
1397 			     channel->max_power * 2,
1398 			     min((u32) MAX_RATE_POWER,
1399 			     (u32) regulatory->power_limit), false);
1400 
1401 	ath9k_hw_rfbus_done(ah);
1402 
1403 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1404 		ath9k_hw_set_delta_slope(ah, chan);
1405 
1406 	ath9k_hw_spur_mitigate_freq(ah, chan);
1407 
1408 	return true;
1409 }
1410 
1411 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1412 {
1413 	u32 gpio_mask = ah->gpio_mask;
1414 	int i;
1415 
1416 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1417 		if (!(gpio_mask & 1))
1418 			continue;
1419 
1420 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1421 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1422 	}
1423 }
1424 
1425 bool ath9k_hw_check_alive(struct ath_hw *ah)
1426 {
1427 	int count = 50;
1428 	u32 reg;
1429 
1430 	if (AR_SREV_9285_12_OR_LATER(ah))
1431 		return true;
1432 
1433 	do {
1434 		reg = REG_READ(ah, AR_OBS_BUS_1);
1435 
1436 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1437 			continue;
1438 
1439 		switch (reg & 0x7E000B00) {
1440 		case 0x1E000000:
1441 		case 0x52000B00:
1442 		case 0x18000B00:
1443 			continue;
1444 		default:
1445 			return true;
1446 		}
1447 	} while (count-- > 0);
1448 
1449 	return false;
1450 }
1451 EXPORT_SYMBOL(ath9k_hw_check_alive);
1452 
1453 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1454 		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1455 {
1456 	struct ath_common *common = ath9k_hw_common(ah);
1457 	u32 saveLedState;
1458 	struct ath9k_channel *curchan = ah->curchan;
1459 	u32 saveDefAntenna;
1460 	u32 macStaId1;
1461 	u64 tsf = 0;
1462 	int i, r;
1463 
1464 	ah->txchainmask = common->tx_chainmask;
1465 	ah->rxchainmask = common->rx_chainmask;
1466 
1467 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1468 		return -EIO;
1469 
1470 	if (curchan && !ah->chip_fullsleep)
1471 		ath9k_hw_getnf(ah, curchan);
1472 
1473 	ah->caldata = caldata;
1474 	if (caldata &&
1475 	    (chan->channel != caldata->channel ||
1476 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1477 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1478 		/* Operating channel changed, reset channel calibration data */
1479 		memset(caldata, 0, sizeof(*caldata));
1480 		ath9k_init_nfcal_hist_buffer(ah, chan);
1481 	}
1482 
1483 	if (bChannelChange &&
1484 	    (ah->chip_fullsleep != true) &&
1485 	    (ah->curchan != NULL) &&
1486 	    (chan->channel != ah->curchan->channel) &&
1487 	    ((chan->channelFlags & CHANNEL_ALL) ==
1488 	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1489 	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1490 
1491 		if (ath9k_hw_channel_change(ah, chan)) {
1492 			ath9k_hw_loadnf(ah, ah->curchan);
1493 			ath9k_hw_start_nfcal(ah, true);
1494 			if (AR_SREV_9271(ah))
1495 				ar9002_hw_load_ani_reg(ah, chan);
1496 			return 0;
1497 		}
1498 	}
1499 
1500 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1501 	if (saveDefAntenna == 0)
1502 		saveDefAntenna = 1;
1503 
1504 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1505 
1506 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1507 	if (AR_SREV_9100(ah) ||
1508 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1509 		tsf = ath9k_hw_gettsf64(ah);
1510 
1511 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1512 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1513 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1514 
1515 	ath9k_hw_mark_phy_inactive(ah);
1516 
1517 	ah->paprd_table_write_done = false;
1518 
1519 	/* Only required on the first reset */
1520 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1521 		REG_WRITE(ah,
1522 			  AR9271_RESET_POWER_DOWN_CONTROL,
1523 			  AR9271_RADIO_RF_RST);
1524 		udelay(50);
1525 	}
1526 
1527 	if (!ath9k_hw_chip_reset(ah, chan)) {
1528 		ath_err(common, "Chip reset failed\n");
1529 		return -EINVAL;
1530 	}
1531 
1532 	/* Only required on the first reset */
1533 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1534 		ah->htc_reset_init = false;
1535 		REG_WRITE(ah,
1536 			  AR9271_RESET_POWER_DOWN_CONTROL,
1537 			  AR9271_GATE_MAC_CTL);
1538 		udelay(50);
1539 	}
1540 
1541 	/* Restore TSF */
1542 	if (tsf)
1543 		ath9k_hw_settsf64(ah, tsf);
1544 
1545 	if (AR_SREV_9280_20_OR_LATER(ah))
1546 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1547 
1548 	if (!AR_SREV_9300_20_OR_LATER(ah))
1549 		ar9002_hw_enable_async_fifo(ah);
1550 
1551 	r = ath9k_hw_process_ini(ah, chan);
1552 	if (r)
1553 		return r;
1554 
1555 	/*
1556 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1557 	 * right after the chip reset. When that happens, write a new
1558 	 * value after the initvals have been applied, with an offset
1559 	 * based on measured time difference
1560 	 */
1561 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1562 		tsf += 1500;
1563 		ath9k_hw_settsf64(ah, tsf);
1564 	}
1565 
1566 	/* Setup MFP options for CCMP */
1567 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1568 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1569 		 * frames when constructing CCMP AAD. */
1570 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1571 			      0xc7ff);
1572 		ah->sw_mgmt_crypto = false;
1573 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1574 		/* Disable hardware crypto for management frames */
1575 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1576 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1577 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1578 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1579 		ah->sw_mgmt_crypto = true;
1580 	} else
1581 		ah->sw_mgmt_crypto = true;
1582 
1583 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1584 		ath9k_hw_set_delta_slope(ah, chan);
1585 
1586 	ath9k_hw_spur_mitigate_freq(ah, chan);
1587 	ah->eep_ops->set_board_values(ah, chan);
1588 
1589 	ENABLE_REGWRITE_BUFFER(ah);
1590 
1591 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1592 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1593 		  | macStaId1
1594 		  | AR_STA_ID1_RTS_USE_DEF
1595 		  | (ah->config.
1596 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1597 		  | ah->sta_id1_defaults);
1598 	ath_hw_setbssidmask(common);
1599 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1600 	ath9k_hw_write_associd(ah);
1601 	REG_WRITE(ah, AR_ISR, ~0);
1602 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1603 
1604 	REGWRITE_BUFFER_FLUSH(ah);
1605 
1606 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1607 
1608 	r = ath9k_hw_rf_set_freq(ah, chan);
1609 	if (r)
1610 		return r;
1611 
1612 	ath9k_hw_set_clockrate(ah);
1613 
1614 	ENABLE_REGWRITE_BUFFER(ah);
1615 
1616 	for (i = 0; i < AR_NUM_DCU; i++)
1617 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1618 
1619 	REGWRITE_BUFFER_FLUSH(ah);
1620 
1621 	ah->intr_txqs = 0;
1622 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1623 		ath9k_hw_resettxqueue(ah, i);
1624 
1625 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1626 	ath9k_hw_ani_cache_ini_regs(ah);
1627 	ath9k_hw_init_qos(ah);
1628 
1629 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1630 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1631 
1632 	ath9k_hw_init_global_settings(ah);
1633 
1634 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1635 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1636 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1637 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1638 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1639 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1640 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1641 	}
1642 
1643 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1644 
1645 	ath9k_hw_set_dma(ah);
1646 
1647 	REG_WRITE(ah, AR_OBS, 8);
1648 
1649 	if (ah->config.rx_intr_mitigation) {
1650 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1651 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1652 	}
1653 
1654 	if (ah->config.tx_intr_mitigation) {
1655 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1656 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1657 	}
1658 
1659 	ath9k_hw_init_bb(ah, chan);
1660 
1661 	if (!ath9k_hw_init_cal(ah, chan))
1662 		return -EIO;
1663 
1664 	ENABLE_REGWRITE_BUFFER(ah);
1665 
1666 	ath9k_hw_restore_chainmask(ah);
1667 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1668 
1669 	REGWRITE_BUFFER_FLUSH(ah);
1670 
1671 	/*
1672 	 * For big endian systems turn on swapping for descriptors
1673 	 */
1674 	if (AR_SREV_9100(ah)) {
1675 		u32 mask;
1676 		mask = REG_READ(ah, AR_CFG);
1677 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1678 			ath_dbg(common, ATH_DBG_RESET,
1679 				"CFG Byte Swap Set 0x%x\n", mask);
1680 		} else {
1681 			mask =
1682 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1683 			REG_WRITE(ah, AR_CFG, mask);
1684 			ath_dbg(common, ATH_DBG_RESET,
1685 				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1686 		}
1687 	} else {
1688 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1689 			/* Configure AR9271 target WLAN */
1690 			if (AR_SREV_9271(ah))
1691 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1692 			else
1693 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1694 		}
1695 #ifdef __BIG_ENDIAN
1696 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah))
1697 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1698 		else
1699 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1700 #endif
1701 	}
1702 
1703 	if (ah->btcoex_hw.enabled)
1704 		ath9k_hw_btcoex_enable(ah);
1705 
1706 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1707 		ar9003_hw_bb_watchdog_config(ah);
1708 
1709 		ar9003_hw_disable_phy_restart(ah);
1710 	}
1711 
1712 	ath9k_hw_apply_gpio_override(ah);
1713 
1714 	return 0;
1715 }
1716 EXPORT_SYMBOL(ath9k_hw_reset);
1717 
1718 /******************************/
1719 /* Power Management (Chipset) */
1720 /******************************/
1721 
1722 /*
1723  * Notify Power Mgt is disabled in self-generated frames.
1724  * If requested, force chip to sleep.
1725  */
1726 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1727 {
1728 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1729 	if (setChip) {
1730 		/*
1731 		 * Clear the RTC force wake bit to allow the
1732 		 * mac to go to sleep.
1733 		 */
1734 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1735 			    AR_RTC_FORCE_WAKE_EN);
1736 		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1737 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1738 
1739 		/* Shutdown chip. Active low */
1740 		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1741 			REG_CLR_BIT(ah, (AR_RTC_RESET),
1742 				    AR_RTC_RESET_EN);
1743 	}
1744 
1745 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1746 	if (AR_SREV_9300_20_OR_LATER(ah))
1747 		REG_WRITE(ah, AR_WA,
1748 			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1749 }
1750 
1751 /*
1752  * Notify Power Management is enabled in self-generating
1753  * frames. If request, set power mode of chip to
1754  * auto/normal.  Duration in units of 128us (1/8 TU).
1755  */
1756 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1757 {
1758 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1759 	if (setChip) {
1760 		struct ath9k_hw_capabilities *pCap = &ah->caps;
1761 
1762 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1763 			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1764 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1765 				  AR_RTC_FORCE_WAKE_ON_INT);
1766 		} else {
1767 			/*
1768 			 * Clear the RTC force wake bit to allow the
1769 			 * mac to go to sleep.
1770 			 */
1771 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1772 				    AR_RTC_FORCE_WAKE_EN);
1773 		}
1774 	}
1775 
1776 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1777 	if (AR_SREV_9300_20_OR_LATER(ah))
1778 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1779 }
1780 
1781 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1782 {
1783 	u32 val;
1784 	int i;
1785 
1786 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1787 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1788 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1789 		udelay(10);
1790 	}
1791 
1792 	if (setChip) {
1793 		if ((REG_READ(ah, AR_RTC_STATUS) &
1794 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1795 			if (ath9k_hw_set_reset_reg(ah,
1796 					   ATH9K_RESET_POWER_ON) != true) {
1797 				return false;
1798 			}
1799 			if (!AR_SREV_9300_20_OR_LATER(ah))
1800 				ath9k_hw_init_pll(ah, NULL);
1801 		}
1802 		if (AR_SREV_9100(ah))
1803 			REG_SET_BIT(ah, AR_RTC_RESET,
1804 				    AR_RTC_RESET_EN);
1805 
1806 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1807 			    AR_RTC_FORCE_WAKE_EN);
1808 		udelay(50);
1809 
1810 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1811 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1812 			if (val == AR_RTC_STATUS_ON)
1813 				break;
1814 			udelay(50);
1815 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1816 				    AR_RTC_FORCE_WAKE_EN);
1817 		}
1818 		if (i == 0) {
1819 			ath_err(ath9k_hw_common(ah),
1820 				"Failed to wakeup in %uus\n",
1821 				POWER_UP_TIME / 20);
1822 			return false;
1823 		}
1824 	}
1825 
1826 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1827 
1828 	return true;
1829 }
1830 
1831 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1832 {
1833 	struct ath_common *common = ath9k_hw_common(ah);
1834 	int status = true, setChip = true;
1835 	static const char *modes[] = {
1836 		"AWAKE",
1837 		"FULL-SLEEP",
1838 		"NETWORK SLEEP",
1839 		"UNDEFINED"
1840 	};
1841 
1842 	if (ah->power_mode == mode)
1843 		return status;
1844 
1845 	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1846 		modes[ah->power_mode], modes[mode]);
1847 
1848 	switch (mode) {
1849 	case ATH9K_PM_AWAKE:
1850 		status = ath9k_hw_set_power_awake(ah, setChip);
1851 		break;
1852 	case ATH9K_PM_FULL_SLEEP:
1853 		ath9k_set_power_sleep(ah, setChip);
1854 		ah->chip_fullsleep = true;
1855 		break;
1856 	case ATH9K_PM_NETWORK_SLEEP:
1857 		ath9k_set_power_network_sleep(ah, setChip);
1858 		break;
1859 	default:
1860 		ath_err(common, "Unknown power mode %u\n", mode);
1861 		return false;
1862 	}
1863 	ah->power_mode = mode;
1864 
1865 	/*
1866 	 * XXX: If this warning never comes up after a while then
1867 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1868 	 * ath9k_hw_setpower() return type void.
1869 	 */
1870 
1871 	if (!(ah->ah_flags & AH_UNPLUGGED))
1872 		ATH_DBG_WARN_ON_ONCE(!status);
1873 
1874 	return status;
1875 }
1876 EXPORT_SYMBOL(ath9k_hw_setpower);
1877 
1878 /*******************/
1879 /* Beacon Handling */
1880 /*******************/
1881 
1882 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1883 {
1884 	int flags = 0;
1885 
1886 	ENABLE_REGWRITE_BUFFER(ah);
1887 
1888 	switch (ah->opmode) {
1889 	case NL80211_IFTYPE_ADHOC:
1890 	case NL80211_IFTYPE_MESH_POINT:
1891 		REG_SET_BIT(ah, AR_TXCFG,
1892 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1893 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
1894 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
1895 		flags |= AR_NDP_TIMER_EN;
1896 	case NL80211_IFTYPE_AP:
1897 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
1898 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
1899 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
1900 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
1901 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
1902 		flags |=
1903 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1904 		break;
1905 	default:
1906 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1907 			"%s: unsupported opmode: %d\n",
1908 			__func__, ah->opmode);
1909 		return;
1910 		break;
1911 	}
1912 
1913 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
1914 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
1915 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
1916 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
1917 
1918 	REGWRITE_BUFFER_FLUSH(ah);
1919 
1920 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1921 }
1922 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1923 
1924 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1925 				    const struct ath9k_beacon_state *bs)
1926 {
1927 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1928 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1929 	struct ath_common *common = ath9k_hw_common(ah);
1930 
1931 	ENABLE_REGWRITE_BUFFER(ah);
1932 
1933 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1934 
1935 	REG_WRITE(ah, AR_BEACON_PERIOD,
1936 		  TU_TO_USEC(bs->bs_intval));
1937 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1938 		  TU_TO_USEC(bs->bs_intval));
1939 
1940 	REGWRITE_BUFFER_FLUSH(ah);
1941 
1942 	REG_RMW_FIELD(ah, AR_RSSI_THR,
1943 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1944 
1945 	beaconintval = bs->bs_intval;
1946 
1947 	if (bs->bs_sleepduration > beaconintval)
1948 		beaconintval = bs->bs_sleepduration;
1949 
1950 	dtimperiod = bs->bs_dtimperiod;
1951 	if (bs->bs_sleepduration > dtimperiod)
1952 		dtimperiod = bs->bs_sleepduration;
1953 
1954 	if (beaconintval == dtimperiod)
1955 		nextTbtt = bs->bs_nextdtim;
1956 	else
1957 		nextTbtt = bs->bs_nexttbtt;
1958 
1959 	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1960 	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1961 	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1962 	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1963 
1964 	ENABLE_REGWRITE_BUFFER(ah);
1965 
1966 	REG_WRITE(ah, AR_NEXT_DTIM,
1967 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1968 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1969 
1970 	REG_WRITE(ah, AR_SLEEP1,
1971 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1972 		  | AR_SLEEP1_ASSUME_DTIM);
1973 
1974 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1975 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1976 	else
1977 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1978 
1979 	REG_WRITE(ah, AR_SLEEP2,
1980 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1981 
1982 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1983 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1984 
1985 	REGWRITE_BUFFER_FLUSH(ah);
1986 
1987 	REG_SET_BIT(ah, AR_TIMER_MODE,
1988 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1989 		    AR_DTIM_TIMER_EN);
1990 
1991 	/* TSF Out of Range Threshold */
1992 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1993 }
1994 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1995 
1996 /*******************/
1997 /* HW Capabilities */
1998 /*******************/
1999 
2000 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2001 {
2002 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2003 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2004 	struct ath_common *common = ath9k_hw_common(ah);
2005 	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
2006 
2007 	u16 eeval;
2008 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2009 
2010 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2011 	regulatory->current_rd = eeval;
2012 
2013 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
2014 	if (AR_SREV_9285_12_OR_LATER(ah))
2015 		eeval |= AR9285_RDEXT_DEFAULT;
2016 	regulatory->current_rd_ext = eeval;
2017 
2018 	if (ah->opmode != NL80211_IFTYPE_AP &&
2019 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2020 		if (regulatory->current_rd == 0x64 ||
2021 		    regulatory->current_rd == 0x65)
2022 			regulatory->current_rd += 5;
2023 		else if (regulatory->current_rd == 0x41)
2024 			regulatory->current_rd = 0x43;
2025 		ath_dbg(common, ATH_DBG_REGULATORY,
2026 			"regdomain mapped to 0x%x\n", regulatory->current_rd);
2027 	}
2028 
2029 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2030 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2031 		ath_err(common,
2032 			"no band has been marked as supported in EEPROM\n");
2033 		return -EINVAL;
2034 	}
2035 
2036 	if (eeval & AR5416_OPFLAGS_11A)
2037 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2038 
2039 	if (eeval & AR5416_OPFLAGS_11G)
2040 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2041 
2042 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2043 	/*
2044 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2045 	 * the EEPROM.
2046 	 */
2047 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2048 	    !(eeval & AR5416_OPFLAGS_11A) &&
2049 	    !(AR_SREV_9271(ah)))
2050 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2051 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2052 	else if (AR_SREV_9100(ah))
2053 		pCap->rx_chainmask = 0x7;
2054 	else
2055 		/* Use rx_chainmask from EEPROM. */
2056 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2057 
2058 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2059 
2060 	/* enable key search for every frame in an aggregate */
2061 	if (AR_SREV_9300_20_OR_LATER(ah))
2062 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2063 
2064 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2065 
2066 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2067 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2068 	else
2069 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2070 
2071 	if (AR_SREV_9271(ah))
2072 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2073 	else if (AR_DEVID_7010(ah))
2074 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2075 	else if (AR_SREV_9285_12_OR_LATER(ah))
2076 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2077 	else if (AR_SREV_9280_20_OR_LATER(ah))
2078 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2079 	else
2080 		pCap->num_gpio_pins = AR_NUM_GPIO;
2081 
2082 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
2083 		pCap->hw_caps |= ATH9K_HW_CAP_CST;
2084 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2085 	} else {
2086 		pCap->rts_aggr_limit = (8 * 1024);
2087 	}
2088 
2089 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
2090 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2091 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2092 		ah->rfkill_gpio =
2093 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2094 		ah->rfkill_polarity =
2095 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2096 
2097 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2098 	}
2099 #endif
2100 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2101 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2102 	else
2103 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2104 
2105 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2106 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2107 	else
2108 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2109 
2110 	if (common->btcoex_enabled) {
2111 		if (AR_SREV_9300_20_OR_LATER(ah)) {
2112 			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2113 			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
2114 			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
2115 			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
2116 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
2117 			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
2118 			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
2119 
2120 			if (AR_SREV_9285(ah)) {
2121 				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
2122 				btcoex_hw->btpriority_gpio =
2123 						ATH_BTPRIORITY_GPIO_9285;
2124 			} else {
2125 				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
2126 			}
2127 		}
2128 	} else {
2129 		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
2130 	}
2131 
2132 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2133 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2134 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah))
2135 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2136 
2137 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2138 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2139 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2140 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2141 		pCap->txs_len = sizeof(struct ar9003_txs);
2142 		if (!ah->config.paprd_disable &&
2143 		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2144 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2145 	} else {
2146 		pCap->tx_desc_len = sizeof(struct ath_desc);
2147 		if (AR_SREV_9280_20(ah))
2148 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2149 	}
2150 
2151 	if (AR_SREV_9300_20_OR_LATER(ah))
2152 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2153 
2154 	if (AR_SREV_9300_20_OR_LATER(ah))
2155 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2156 
2157 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2158 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2159 
2160 	if (AR_SREV_9285(ah))
2161 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2162 			ant_div_ctl1 =
2163 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2164 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2165 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2166 		}
2167 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2168 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2169 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2170 	}
2171 
2172 
2173 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah)) {
2174 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2175 		/*
2176 		 * enable the diversity-combining algorithm only when
2177 		 * both enable_lna_div and enable_fast_div are set
2178 		 *		Table for Diversity
2179 		 * ant_div_alt_lnaconf		bit 0-1
2180 		 * ant_div_main_lnaconf		bit 2-3
2181 		 * ant_div_alt_gaintb		bit 4
2182 		 * ant_div_main_gaintb		bit 5
2183 		 * enable_ant_div_lnadiv	bit 6
2184 		 * enable_ant_fast_div		bit 7
2185 		 */
2186 		if ((ant_div_ctl1 >> 0x6) == 0x3)
2187 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2188 	}
2189 
2190 	if (AR_SREV_9485_10(ah)) {
2191 		pCap->pcie_lcr_extsync_en = true;
2192 		pCap->pcie_lcr_offset = 0x80;
2193 	}
2194 
2195 	tx_chainmask = pCap->tx_chainmask;
2196 	rx_chainmask = pCap->rx_chainmask;
2197 	while (tx_chainmask || rx_chainmask) {
2198 		if (tx_chainmask & BIT(0))
2199 			pCap->max_txchains++;
2200 		if (rx_chainmask & BIT(0))
2201 			pCap->max_rxchains++;
2202 
2203 		tx_chainmask >>= 1;
2204 		rx_chainmask >>= 1;
2205 	}
2206 
2207 	return 0;
2208 }
2209 
2210 /****************************/
2211 /* GPIO / RFKILL / Antennae */
2212 /****************************/
2213 
2214 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2215 					 u32 gpio, u32 type)
2216 {
2217 	int addr;
2218 	u32 gpio_shift, tmp;
2219 
2220 	if (gpio > 11)
2221 		addr = AR_GPIO_OUTPUT_MUX3;
2222 	else if (gpio > 5)
2223 		addr = AR_GPIO_OUTPUT_MUX2;
2224 	else
2225 		addr = AR_GPIO_OUTPUT_MUX1;
2226 
2227 	gpio_shift = (gpio % 6) * 5;
2228 
2229 	if (AR_SREV_9280_20_OR_LATER(ah)
2230 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2231 		REG_RMW(ah, addr, (type << gpio_shift),
2232 			(0x1f << gpio_shift));
2233 	} else {
2234 		tmp = REG_READ(ah, addr);
2235 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2236 		tmp &= ~(0x1f << gpio_shift);
2237 		tmp |= (type << gpio_shift);
2238 		REG_WRITE(ah, addr, tmp);
2239 	}
2240 }
2241 
2242 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2243 {
2244 	u32 gpio_shift;
2245 
2246 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2247 
2248 	if (AR_DEVID_7010(ah)) {
2249 		gpio_shift = gpio;
2250 		REG_RMW(ah, AR7010_GPIO_OE,
2251 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2252 			(AR7010_GPIO_OE_MASK << gpio_shift));
2253 		return;
2254 	}
2255 
2256 	gpio_shift = gpio << 1;
2257 	REG_RMW(ah,
2258 		AR_GPIO_OE_OUT,
2259 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2260 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2261 }
2262 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2263 
2264 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2265 {
2266 #define MS_REG_READ(x, y) \
2267 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2268 
2269 	if (gpio >= ah->caps.num_gpio_pins)
2270 		return 0xffffffff;
2271 
2272 	if (AR_DEVID_7010(ah)) {
2273 		u32 val;
2274 		val = REG_READ(ah, AR7010_GPIO_IN);
2275 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2276 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2277 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2278 			AR_GPIO_BIT(gpio)) != 0;
2279 	else if (AR_SREV_9271(ah))
2280 		return MS_REG_READ(AR9271, gpio) != 0;
2281 	else if (AR_SREV_9287_11_OR_LATER(ah))
2282 		return MS_REG_READ(AR9287, gpio) != 0;
2283 	else if (AR_SREV_9285_12_OR_LATER(ah))
2284 		return MS_REG_READ(AR9285, gpio) != 0;
2285 	else if (AR_SREV_9280_20_OR_LATER(ah))
2286 		return MS_REG_READ(AR928X, gpio) != 0;
2287 	else
2288 		return MS_REG_READ(AR, gpio) != 0;
2289 }
2290 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2291 
2292 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2293 			 u32 ah_signal_type)
2294 {
2295 	u32 gpio_shift;
2296 
2297 	if (AR_DEVID_7010(ah)) {
2298 		gpio_shift = gpio;
2299 		REG_RMW(ah, AR7010_GPIO_OE,
2300 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2301 			(AR7010_GPIO_OE_MASK << gpio_shift));
2302 		return;
2303 	}
2304 
2305 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2306 	gpio_shift = 2 * gpio;
2307 	REG_RMW(ah,
2308 		AR_GPIO_OE_OUT,
2309 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2310 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2311 }
2312 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2313 
2314 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2315 {
2316 	if (AR_DEVID_7010(ah)) {
2317 		val = val ? 0 : 1;
2318 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2319 			AR_GPIO_BIT(gpio));
2320 		return;
2321 	}
2322 
2323 	if (AR_SREV_9271(ah))
2324 		val = ~val;
2325 
2326 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2327 		AR_GPIO_BIT(gpio));
2328 }
2329 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2330 
2331 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2332 {
2333 	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2334 }
2335 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2336 
2337 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2338 {
2339 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2340 }
2341 EXPORT_SYMBOL(ath9k_hw_setantenna);
2342 
2343 /*********************/
2344 /* General Operation */
2345 /*********************/
2346 
2347 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2348 {
2349 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2350 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2351 
2352 	if (phybits & AR_PHY_ERR_RADAR)
2353 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2354 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2355 		bits |= ATH9K_RX_FILTER_PHYERR;
2356 
2357 	return bits;
2358 }
2359 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2360 
2361 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2362 {
2363 	u32 phybits;
2364 
2365 	ENABLE_REGWRITE_BUFFER(ah);
2366 
2367 	REG_WRITE(ah, AR_RX_FILTER, bits);
2368 
2369 	phybits = 0;
2370 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2371 		phybits |= AR_PHY_ERR_RADAR;
2372 	if (bits & ATH9K_RX_FILTER_PHYERR)
2373 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2374 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2375 
2376 	if (phybits)
2377 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2378 	else
2379 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2380 
2381 	REGWRITE_BUFFER_FLUSH(ah);
2382 }
2383 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2384 
2385 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2386 {
2387 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2388 		return false;
2389 
2390 	ath9k_hw_init_pll(ah, NULL);
2391 	return true;
2392 }
2393 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2394 
2395 bool ath9k_hw_disable(struct ath_hw *ah)
2396 {
2397 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2398 		return false;
2399 
2400 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2401 		return false;
2402 
2403 	ath9k_hw_init_pll(ah, NULL);
2404 	return true;
2405 }
2406 EXPORT_SYMBOL(ath9k_hw_disable);
2407 
2408 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2409 {
2410 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2411 	struct ath9k_channel *chan = ah->curchan;
2412 	struct ieee80211_channel *channel = chan->chan;
2413 
2414 	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2415 
2416 	ah->eep_ops->set_txpower(ah, chan,
2417 				 ath9k_regd_get_ctl(regulatory, chan),
2418 				 channel->max_antenna_gain * 2,
2419 				 channel->max_power * 2,
2420 				 min((u32) MAX_RATE_POWER,
2421 				 (u32) regulatory->power_limit), test);
2422 }
2423 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2424 
2425 void ath9k_hw_setopmode(struct ath_hw *ah)
2426 {
2427 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2428 }
2429 EXPORT_SYMBOL(ath9k_hw_setopmode);
2430 
2431 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2432 {
2433 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2434 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2435 }
2436 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2437 
2438 void ath9k_hw_write_associd(struct ath_hw *ah)
2439 {
2440 	struct ath_common *common = ath9k_hw_common(ah);
2441 
2442 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2443 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2444 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2445 }
2446 EXPORT_SYMBOL(ath9k_hw_write_associd);
2447 
2448 #define ATH9K_MAX_TSF_READ 10
2449 
2450 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2451 {
2452 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2453 	int i;
2454 
2455 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2456 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2457 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2458 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2459 		if (tsf_upper2 == tsf_upper1)
2460 			break;
2461 		tsf_upper1 = tsf_upper2;
2462 	}
2463 
2464 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2465 
2466 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2467 }
2468 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2469 
2470 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2471 {
2472 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2473 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2474 }
2475 EXPORT_SYMBOL(ath9k_hw_settsf64);
2476 
2477 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2478 {
2479 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2480 			   AH_TSF_WRITE_TIMEOUT))
2481 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2482 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2483 
2484 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2485 }
2486 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2487 
2488 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2489 {
2490 	if (setting)
2491 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2492 	else
2493 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2494 }
2495 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2496 
2497 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2498 {
2499 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2500 	u32 macmode;
2501 
2502 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2503 		macmode = AR_2040_JOINED_RX_CLEAR;
2504 	else
2505 		macmode = 0;
2506 
2507 	REG_WRITE(ah, AR_2040_MODE, macmode);
2508 }
2509 
2510 /* HW Generic timers configuration */
2511 
2512 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2513 {
2514 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2515 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2516 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2517 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2518 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2519 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2520 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2521 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2522 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2523 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2524 				AR_NDP2_TIMER_MODE, 0x0002},
2525 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2526 				AR_NDP2_TIMER_MODE, 0x0004},
2527 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2528 				AR_NDP2_TIMER_MODE, 0x0008},
2529 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2530 				AR_NDP2_TIMER_MODE, 0x0010},
2531 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2532 				AR_NDP2_TIMER_MODE, 0x0020},
2533 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2534 				AR_NDP2_TIMER_MODE, 0x0040},
2535 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2536 				AR_NDP2_TIMER_MODE, 0x0080}
2537 };
2538 
2539 /* HW generic timer primitives */
2540 
2541 /* compute and clear index of rightmost 1 */
2542 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2543 {
2544 	u32 b;
2545 
2546 	b = *mask;
2547 	b &= (0-b);
2548 	*mask &= ~b;
2549 	b *= debruijn32;
2550 	b >>= 27;
2551 
2552 	return timer_table->gen_timer_index[b];
2553 }
2554 
2555 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2556 {
2557 	return REG_READ(ah, AR_TSF_L32);
2558 }
2559 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2560 
2561 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2562 					  void (*trigger)(void *),
2563 					  void (*overflow)(void *),
2564 					  void *arg,
2565 					  u8 timer_index)
2566 {
2567 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2568 	struct ath_gen_timer *timer;
2569 
2570 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2571 
2572 	if (timer == NULL) {
2573 		ath_err(ath9k_hw_common(ah),
2574 			"Failed to allocate memory for hw timer[%d]\n",
2575 			timer_index);
2576 		return NULL;
2577 	}
2578 
2579 	/* allocate a hardware generic timer slot */
2580 	timer_table->timers[timer_index] = timer;
2581 	timer->index = timer_index;
2582 	timer->trigger = trigger;
2583 	timer->overflow = overflow;
2584 	timer->arg = arg;
2585 
2586 	return timer;
2587 }
2588 EXPORT_SYMBOL(ath_gen_timer_alloc);
2589 
2590 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2591 			      struct ath_gen_timer *timer,
2592 			      u32 trig_timeout,
2593 			      u32 timer_period)
2594 {
2595 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2596 	u32 tsf, timer_next;
2597 
2598 	BUG_ON(!timer_period);
2599 
2600 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2601 
2602 	tsf = ath9k_hw_gettsf32(ah);
2603 
2604 	timer_next = tsf + trig_timeout;
2605 
2606 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2607 		"current tsf %x period %x timer_next %x\n",
2608 		tsf, timer_period, timer_next);
2609 
2610 	/*
2611 	 * Program generic timer registers
2612 	 */
2613 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2614 		 timer_next);
2615 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2616 		  timer_period);
2617 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2618 		    gen_tmr_configuration[timer->index].mode_mask);
2619 
2620 	/* Enable both trigger and thresh interrupt masks */
2621 	REG_SET_BIT(ah, AR_IMR_S5,
2622 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2623 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2624 }
2625 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2626 
2627 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2628 {
2629 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2630 
2631 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2632 		(timer->index >= ATH_MAX_GEN_TIMER)) {
2633 		return;
2634 	}
2635 
2636 	/* Clear generic timer enable bits. */
2637 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2638 			gen_tmr_configuration[timer->index].mode_mask);
2639 
2640 	/* Disable both trigger and thresh interrupt masks */
2641 	REG_CLR_BIT(ah, AR_IMR_S5,
2642 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2643 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2644 
2645 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2646 }
2647 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2648 
2649 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2650 {
2651 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2652 
2653 	/* free the hardware generic timer slot */
2654 	timer_table->timers[timer->index] = NULL;
2655 	kfree(timer);
2656 }
2657 EXPORT_SYMBOL(ath_gen_timer_free);
2658 
2659 /*
2660  * Generic Timer Interrupts handling
2661  */
2662 void ath_gen_timer_isr(struct ath_hw *ah)
2663 {
2664 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2665 	struct ath_gen_timer *timer;
2666 	struct ath_common *common = ath9k_hw_common(ah);
2667 	u32 trigger_mask, thresh_mask, index;
2668 
2669 	/* get hardware generic timer interrupt status */
2670 	trigger_mask = ah->intr_gen_timer_trigger;
2671 	thresh_mask = ah->intr_gen_timer_thresh;
2672 	trigger_mask &= timer_table->timer_mask.val;
2673 	thresh_mask &= timer_table->timer_mask.val;
2674 
2675 	trigger_mask &= ~thresh_mask;
2676 
2677 	while (thresh_mask) {
2678 		index = rightmost_index(timer_table, &thresh_mask);
2679 		timer = timer_table->timers[index];
2680 		BUG_ON(!timer);
2681 		ath_dbg(common, ATH_DBG_HWTIMER,
2682 			"TSF overflow for Gen timer %d\n", index);
2683 		timer->overflow(timer->arg);
2684 	}
2685 
2686 	while (trigger_mask) {
2687 		index = rightmost_index(timer_table, &trigger_mask);
2688 		timer = timer_table->timers[index];
2689 		BUG_ON(!timer);
2690 		ath_dbg(common, ATH_DBG_HWTIMER,
2691 			"Gen timer[%d] trigger\n", index);
2692 		timer->trigger(timer->arg);
2693 	}
2694 }
2695 EXPORT_SYMBOL(ath_gen_timer_isr);
2696 
2697 /********/
2698 /* HTC  */
2699 /********/
2700 
2701 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2702 {
2703 	ah->htc_reset_init = true;
2704 }
2705 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2706 
2707 static struct {
2708 	u32 version;
2709 	const char * name;
2710 } ath_mac_bb_names[] = {
2711 	/* Devices with external radios */
2712 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2713 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2714 	{ AR_SREV_VERSION_9100,		"9100" },
2715 	{ AR_SREV_VERSION_9160,		"9160" },
2716 	/* Single-chip solutions */
2717 	{ AR_SREV_VERSION_9280,		"9280" },
2718 	{ AR_SREV_VERSION_9285,		"9285" },
2719 	{ AR_SREV_VERSION_9287,         "9287" },
2720 	{ AR_SREV_VERSION_9271,         "9271" },
2721 	{ AR_SREV_VERSION_9300,         "9300" },
2722 	{ AR_SREV_VERSION_9330,         "9330" },
2723 	{ AR_SREV_VERSION_9485,         "9485" },
2724 };
2725 
2726 /* For devices with external radios */
2727 static struct {
2728 	u16 version;
2729 	const char * name;
2730 } ath_rf_names[] = {
2731 	{ 0,				"5133" },
2732 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2733 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2734 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2735 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2736 };
2737 
2738 /*
2739  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2740  */
2741 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2742 {
2743 	int i;
2744 
2745 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2746 		if (ath_mac_bb_names[i].version == mac_bb_version) {
2747 			return ath_mac_bb_names[i].name;
2748 		}
2749 	}
2750 
2751 	return "????";
2752 }
2753 
2754 /*
2755  * Return the RF name. "????" is returned if the RF is unknown.
2756  * Used for devices with external radios.
2757  */
2758 static const char *ath9k_hw_rf_name(u16 rf_version)
2759 {
2760 	int i;
2761 
2762 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2763 		if (ath_rf_names[i].version == rf_version) {
2764 			return ath_rf_names[i].name;
2765 		}
2766 	}
2767 
2768 	return "????";
2769 }
2770 
2771 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2772 {
2773 	int used;
2774 
2775 	/* chipsets >= AR9280 are single-chip */
2776 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2777 		used = snprintf(hw_name, len,
2778 			       "Atheros AR%s Rev:%x",
2779 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2780 			       ah->hw_version.macRev);
2781 	}
2782 	else {
2783 		used = snprintf(hw_name, len,
2784 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2785 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2786 			       ah->hw_version.macRev,
2787 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2788 						AR_RADIO_SREV_MAJOR)),
2789 			       ah->hw_version.phyRev);
2790 	}
2791 
2792 	hw_name[used] = '\0';
2793 }
2794 EXPORT_SYMBOL(ath9k_hw_name);
2795