xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 79f08d9e)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 #include "ar9003_phy.h"
28 #include "debug.h"
29 #include "ath9k.h"
30 
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37 
38 static int __init ath9k_init(void)
39 {
40 	return 0;
41 }
42 module_init(ath9k_init);
43 
44 static void __exit ath9k_exit(void)
45 {
46 	return;
47 }
48 module_exit(ath9k_exit);
49 
50 /* Private hardware callbacks */
51 
52 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
55 }
56 
57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 					struct ath9k_channel *chan)
59 {
60 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62 
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 		return;
67 
68 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70 
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 	/* You will not have this callback if using the old ANI */
74 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 		return;
76 
77 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79 
80 /********************/
81 /* Helper Functions */
82 /********************/
83 
84 #ifdef CONFIG_ATH9K_DEBUGFS
85 
86 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
87 {
88 	struct ath_softc *sc = common->priv;
89 	if (sync_cause)
90 		sc->debug.stats.istats.sync_cause_all++;
91 	if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
92 		sc->debug.stats.istats.sync_rtc_irq++;
93 	if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
94 		sc->debug.stats.istats.sync_mac_irq++;
95 	if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
96 		sc->debug.stats.istats.eeprom_illegal_access++;
97 	if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
98 		sc->debug.stats.istats.apb_timeout++;
99 	if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
100 		sc->debug.stats.istats.pci_mode_conflict++;
101 	if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
102 		sc->debug.stats.istats.host1_fatal++;
103 	if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
104 		sc->debug.stats.istats.host1_perr++;
105 	if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
106 		sc->debug.stats.istats.trcv_fifo_perr++;
107 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
108 		sc->debug.stats.istats.radm_cpl_ep++;
109 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
110 		sc->debug.stats.istats.radm_cpl_dllp_abort++;
111 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
112 		sc->debug.stats.istats.radm_cpl_tlp_abort++;
113 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
114 		sc->debug.stats.istats.radm_cpl_ecrc_err++;
115 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
116 		sc->debug.stats.istats.radm_cpl_timeout++;
117 	if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
118 		sc->debug.stats.istats.local_timeout++;
119 	if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
120 		sc->debug.stats.istats.pm_access++;
121 	if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
122 		sc->debug.stats.istats.mac_awake++;
123 	if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
124 		sc->debug.stats.istats.mac_asleep++;
125 	if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
126 		sc->debug.stats.istats.mac_sleep_access++;
127 }
128 #endif
129 
130 
131 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
132 {
133 	struct ath_common *common = ath9k_hw_common(ah);
134 	struct ath9k_channel *chan = ah->curchan;
135 	unsigned int clockrate;
136 
137 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
138 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
139 		clockrate = 117;
140 	else if (!chan) /* should really check for CCK instead */
141 		clockrate = ATH9K_CLOCK_RATE_CCK;
142 	else if (IS_CHAN_2GHZ(chan))
143 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
144 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
145 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
146 	else
147 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
148 
149 	if (IS_CHAN_HT40(chan))
150 		clockrate *= 2;
151 
152 	if (ah->curchan) {
153 		if (IS_CHAN_HALF_RATE(chan))
154 			clockrate /= 2;
155 		if (IS_CHAN_QUARTER_RATE(chan))
156 			clockrate /= 4;
157 	}
158 
159 	common->clockrate = clockrate;
160 }
161 
162 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
163 {
164 	struct ath_common *common = ath9k_hw_common(ah);
165 
166 	return usecs * common->clockrate;
167 }
168 
169 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
170 {
171 	int i;
172 
173 	BUG_ON(timeout < AH_TIME_QUANTUM);
174 
175 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
176 		if ((REG_READ(ah, reg) & mask) == val)
177 			return true;
178 
179 		udelay(AH_TIME_QUANTUM);
180 	}
181 
182 	ath_dbg(ath9k_hw_common(ah), ANY,
183 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
184 		timeout, reg, REG_READ(ah, reg), mask, val);
185 
186 	return false;
187 }
188 EXPORT_SYMBOL(ath9k_hw_wait);
189 
190 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
191 			  int hw_delay)
192 {
193 	hw_delay /= 10;
194 
195 	if (IS_CHAN_HALF_RATE(chan))
196 		hw_delay *= 2;
197 	else if (IS_CHAN_QUARTER_RATE(chan))
198 		hw_delay *= 4;
199 
200 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
201 }
202 
203 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
204 			  int column, unsigned int *writecnt)
205 {
206 	int r;
207 
208 	ENABLE_REGWRITE_BUFFER(ah);
209 	for (r = 0; r < array->ia_rows; r++) {
210 		REG_WRITE(ah, INI_RA(array, r, 0),
211 			  INI_RA(array, r, column));
212 		DO_DELAY(*writecnt);
213 	}
214 	REGWRITE_BUFFER_FLUSH(ah);
215 }
216 
217 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
218 {
219 	u32 retval;
220 	int i;
221 
222 	for (i = 0, retval = 0; i < n; i++) {
223 		retval = (retval << 1) | (val & 1);
224 		val >>= 1;
225 	}
226 	return retval;
227 }
228 
229 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
230 			   u8 phy, int kbps,
231 			   u32 frameLen, u16 rateix,
232 			   bool shortPreamble)
233 {
234 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
235 
236 	if (kbps == 0)
237 		return 0;
238 
239 	switch (phy) {
240 	case WLAN_RC_PHY_CCK:
241 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
242 		if (shortPreamble)
243 			phyTime >>= 1;
244 		numBits = frameLen << 3;
245 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
246 		break;
247 	case WLAN_RC_PHY_OFDM:
248 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
249 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
250 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
251 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
252 			txTime = OFDM_SIFS_TIME_QUARTER
253 				+ OFDM_PREAMBLE_TIME_QUARTER
254 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
255 		} else if (ah->curchan &&
256 			   IS_CHAN_HALF_RATE(ah->curchan)) {
257 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
258 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
259 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
260 			txTime = OFDM_SIFS_TIME_HALF +
261 				OFDM_PREAMBLE_TIME_HALF
262 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
263 		} else {
264 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
265 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
266 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
267 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
268 				+ (numSymbols * OFDM_SYMBOL_TIME);
269 		}
270 		break;
271 	default:
272 		ath_err(ath9k_hw_common(ah),
273 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
274 		txTime = 0;
275 		break;
276 	}
277 
278 	return txTime;
279 }
280 EXPORT_SYMBOL(ath9k_hw_computetxtime);
281 
282 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
283 				  struct ath9k_channel *chan,
284 				  struct chan_centers *centers)
285 {
286 	int8_t extoff;
287 
288 	if (!IS_CHAN_HT40(chan)) {
289 		centers->ctl_center = centers->ext_center =
290 			centers->synth_center = chan->channel;
291 		return;
292 	}
293 
294 	if (IS_CHAN_HT40PLUS(chan)) {
295 		centers->synth_center =
296 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
297 		extoff = 1;
298 	} else {
299 		centers->synth_center =
300 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
301 		extoff = -1;
302 	}
303 
304 	centers->ctl_center =
305 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
306 	/* 25 MHz spacing is supported by hw but not on upper layers */
307 	centers->ext_center =
308 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
309 }
310 
311 /******************/
312 /* Chip Revisions */
313 /******************/
314 
315 static void ath9k_hw_read_revisions(struct ath_hw *ah)
316 {
317 	u32 val;
318 
319 	switch (ah->hw_version.devid) {
320 	case AR5416_AR9100_DEVID:
321 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
322 		break;
323 	case AR9300_DEVID_AR9330:
324 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
325 		if (ah->get_mac_revision) {
326 			ah->hw_version.macRev = ah->get_mac_revision();
327 		} else {
328 			val = REG_READ(ah, AR_SREV);
329 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
330 		}
331 		return;
332 	case AR9300_DEVID_AR9340:
333 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
334 		val = REG_READ(ah, AR_SREV);
335 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
336 		return;
337 	case AR9300_DEVID_QCA955X:
338 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
339 		return;
340 	}
341 
342 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
343 
344 	if (val == 0xFF) {
345 		val = REG_READ(ah, AR_SREV);
346 		ah->hw_version.macVersion =
347 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
348 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
349 
350 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
351 			ah->is_pciexpress = true;
352 		else
353 			ah->is_pciexpress = (val &
354 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
355 	} else {
356 		if (!AR_SREV_9100(ah))
357 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
358 
359 		ah->hw_version.macRev = val & AR_SREV_REVISION;
360 
361 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
362 			ah->is_pciexpress = true;
363 	}
364 }
365 
366 /************************************/
367 /* HW Attach, Detach, Init Routines */
368 /************************************/
369 
370 static void ath9k_hw_disablepcie(struct ath_hw *ah)
371 {
372 	if (!AR_SREV_5416(ah))
373 		return;
374 
375 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
376 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
377 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
378 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
379 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
380 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
381 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
382 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
383 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
384 
385 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
386 }
387 
388 /* This should work for all families including legacy */
389 static bool ath9k_hw_chip_test(struct ath_hw *ah)
390 {
391 	struct ath_common *common = ath9k_hw_common(ah);
392 	u32 regAddr[2] = { AR_STA_ID0 };
393 	u32 regHold[2];
394 	static const u32 patternData[4] = {
395 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
396 	};
397 	int i, j, loop_max;
398 
399 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
400 		loop_max = 2;
401 		regAddr[1] = AR_PHY_BASE + (8 << 2);
402 	} else
403 		loop_max = 1;
404 
405 	for (i = 0; i < loop_max; i++) {
406 		u32 addr = regAddr[i];
407 		u32 wrData, rdData;
408 
409 		regHold[i] = REG_READ(ah, addr);
410 		for (j = 0; j < 0x100; j++) {
411 			wrData = (j << 16) | j;
412 			REG_WRITE(ah, addr, wrData);
413 			rdData = REG_READ(ah, addr);
414 			if (rdData != wrData) {
415 				ath_err(common,
416 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
417 					addr, wrData, rdData);
418 				return false;
419 			}
420 		}
421 		for (j = 0; j < 4; j++) {
422 			wrData = patternData[j];
423 			REG_WRITE(ah, addr, wrData);
424 			rdData = REG_READ(ah, addr);
425 			if (wrData != rdData) {
426 				ath_err(common,
427 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
428 					addr, wrData, rdData);
429 				return false;
430 			}
431 		}
432 		REG_WRITE(ah, regAddr[i], regHold[i]);
433 	}
434 	udelay(100);
435 
436 	return true;
437 }
438 
439 static void ath9k_hw_init_config(struct ath_hw *ah)
440 {
441 	int i;
442 
443 	ah->config.dma_beacon_response_time = 1;
444 	ah->config.sw_beacon_response_time = 6;
445 	ah->config.additional_swba_backoff = 0;
446 	ah->config.ack_6mb = 0x0;
447 	ah->config.cwm_ignore_extcca = 0;
448 	ah->config.pcie_clock_req = 0;
449 	ah->config.analog_shiftreg = 1;
450 
451 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
452 		ah->config.spurchans[i][0] = AR_NO_SPUR;
453 		ah->config.spurchans[i][1] = AR_NO_SPUR;
454 	}
455 
456 	ah->config.rx_intr_mitigation = true;
457 	ah->config.pcieSerDesWrite = true;
458 
459 	/*
460 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
461 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
462 	 * This means we use it for all AR5416 devices, and the few
463 	 * minor PCI AR9280 devices out there.
464 	 *
465 	 * Serialization is required because these devices do not handle
466 	 * well the case of two concurrent reads/writes due to the latency
467 	 * involved. During one read/write another read/write can be issued
468 	 * on another CPU while the previous read/write may still be working
469 	 * on our hardware, if we hit this case the hardware poops in a loop.
470 	 * We prevent this by serializing reads and writes.
471 	 *
472 	 * This issue is not present on PCI-Express devices or pre-AR5416
473 	 * devices (legacy, 802.11abg).
474 	 */
475 	if (num_possible_cpus() > 1)
476 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
477 }
478 
479 static void ath9k_hw_init_defaults(struct ath_hw *ah)
480 {
481 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
482 
483 	regulatory->country_code = CTRY_DEFAULT;
484 	regulatory->power_limit = MAX_RATE_POWER;
485 
486 	ah->hw_version.magic = AR5416_MAGIC;
487 	ah->hw_version.subvendorid = 0;
488 
489 	ah->atim_window = 0;
490 	ah->sta_id1_defaults =
491 		AR_STA_ID1_CRPT_MIC_ENABLE |
492 		AR_STA_ID1_MCAST_KSRCH;
493 	if (AR_SREV_9100(ah))
494 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
495 	ah->slottime = ATH9K_SLOT_TIME_9;
496 	ah->globaltxtimeout = (u32) -1;
497 	ah->power_mode = ATH9K_PM_UNDEFINED;
498 	ah->htc_reset_init = true;
499 }
500 
501 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
502 {
503 	struct ath_common *common = ath9k_hw_common(ah);
504 	u32 sum;
505 	int i;
506 	u16 eeval;
507 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
508 
509 	sum = 0;
510 	for (i = 0; i < 3; i++) {
511 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
512 		sum += eeval;
513 		common->macaddr[2 * i] = eeval >> 8;
514 		common->macaddr[2 * i + 1] = eeval & 0xff;
515 	}
516 	if (sum == 0 || sum == 0xffff * 3)
517 		return -EADDRNOTAVAIL;
518 
519 	return 0;
520 }
521 
522 static int ath9k_hw_post_init(struct ath_hw *ah)
523 {
524 	struct ath_common *common = ath9k_hw_common(ah);
525 	int ecode;
526 
527 	if (common->bus_ops->ath_bus_type != ATH_USB) {
528 		if (!ath9k_hw_chip_test(ah))
529 			return -ENODEV;
530 	}
531 
532 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
533 		ecode = ar9002_hw_rf_claim(ah);
534 		if (ecode != 0)
535 			return ecode;
536 	}
537 
538 	ecode = ath9k_hw_eeprom_init(ah);
539 	if (ecode != 0)
540 		return ecode;
541 
542 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
543 		ah->eep_ops->get_eeprom_ver(ah),
544 		ah->eep_ops->get_eeprom_rev(ah));
545 
546 	ath9k_hw_ani_init(ah);
547 
548 	/*
549 	 * EEPROM needs to be initialized before we do this.
550 	 * This is required for regulatory compliance.
551 	 */
552 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
553 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
554 		if ((regdmn & 0xF0) == CTL_FCC) {
555 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9462_FCC_2GHZ;
556 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9462_FCC_5GHZ;
557 		}
558 	}
559 
560 	return 0;
561 }
562 
563 static int ath9k_hw_attach_ops(struct ath_hw *ah)
564 {
565 	if (!AR_SREV_9300_20_OR_LATER(ah))
566 		return ar9002_hw_attach_ops(ah);
567 
568 	ar9003_hw_attach_ops(ah);
569 	return 0;
570 }
571 
572 /* Called for all hardware families */
573 static int __ath9k_hw_init(struct ath_hw *ah)
574 {
575 	struct ath_common *common = ath9k_hw_common(ah);
576 	int r = 0;
577 
578 	ath9k_hw_read_revisions(ah);
579 
580 	/*
581 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
582 	 * We need to do this to avoid RMW of this register. We cannot
583 	 * read the reg when chip is asleep.
584 	 */
585 	if (AR_SREV_9300_20_OR_LATER(ah)) {
586 		ah->WARegVal = REG_READ(ah, AR_WA);
587 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
588 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
589 	}
590 
591 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
592 		ath_err(common, "Couldn't reset chip\n");
593 		return -EIO;
594 	}
595 
596 	if (AR_SREV_9565(ah)) {
597 		ah->WARegVal |= AR_WA_BIT22;
598 		REG_WRITE(ah, AR_WA, ah->WARegVal);
599 	}
600 
601 	ath9k_hw_init_defaults(ah);
602 	ath9k_hw_init_config(ah);
603 
604 	r = ath9k_hw_attach_ops(ah);
605 	if (r)
606 		return r;
607 
608 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
609 		ath_err(common, "Couldn't wakeup chip\n");
610 		return -EIO;
611 	}
612 
613 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
614 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
615 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
616 		     !ah->is_pciexpress)) {
617 			ah->config.serialize_regmode =
618 				SER_REG_MODE_ON;
619 		} else {
620 			ah->config.serialize_regmode =
621 				SER_REG_MODE_OFF;
622 		}
623 	}
624 
625 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
626 		ah->config.serialize_regmode);
627 
628 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
629 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
630 	else
631 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
632 
633 	switch (ah->hw_version.macVersion) {
634 	case AR_SREV_VERSION_5416_PCI:
635 	case AR_SREV_VERSION_5416_PCIE:
636 	case AR_SREV_VERSION_9160:
637 	case AR_SREV_VERSION_9100:
638 	case AR_SREV_VERSION_9280:
639 	case AR_SREV_VERSION_9285:
640 	case AR_SREV_VERSION_9287:
641 	case AR_SREV_VERSION_9271:
642 	case AR_SREV_VERSION_9300:
643 	case AR_SREV_VERSION_9330:
644 	case AR_SREV_VERSION_9485:
645 	case AR_SREV_VERSION_9340:
646 	case AR_SREV_VERSION_9462:
647 	case AR_SREV_VERSION_9550:
648 	case AR_SREV_VERSION_9565:
649 		break;
650 	default:
651 		ath_err(common,
652 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
653 			ah->hw_version.macVersion, ah->hw_version.macRev);
654 		return -EOPNOTSUPP;
655 	}
656 
657 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
658 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
659 		ah->is_pciexpress = false;
660 
661 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
662 	ath9k_hw_init_cal_settings(ah);
663 
664 	ah->ani_function = ATH9K_ANI_ALL;
665 	if (!AR_SREV_9300_20_OR_LATER(ah))
666 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
667 
668 	if (!ah->is_pciexpress)
669 		ath9k_hw_disablepcie(ah);
670 
671 	r = ath9k_hw_post_init(ah);
672 	if (r)
673 		return r;
674 
675 	ath9k_hw_init_mode_gain_regs(ah);
676 	r = ath9k_hw_fill_cap_info(ah);
677 	if (r)
678 		return r;
679 
680 	r = ath9k_hw_init_macaddr(ah);
681 	if (r) {
682 		ath_err(common, "Failed to initialize MAC address\n");
683 		return r;
684 	}
685 
686 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
687 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
688 	else
689 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
690 
691 	if (AR_SREV_9330(ah))
692 		ah->bb_watchdog_timeout_ms = 85;
693 	else
694 		ah->bb_watchdog_timeout_ms = 25;
695 
696 	common->state = ATH_HW_INITIALIZED;
697 
698 	return 0;
699 }
700 
701 int ath9k_hw_init(struct ath_hw *ah)
702 {
703 	int ret;
704 	struct ath_common *common = ath9k_hw_common(ah);
705 
706 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
707 	switch (ah->hw_version.devid) {
708 	case AR5416_DEVID_PCI:
709 	case AR5416_DEVID_PCIE:
710 	case AR5416_AR9100_DEVID:
711 	case AR9160_DEVID_PCI:
712 	case AR9280_DEVID_PCI:
713 	case AR9280_DEVID_PCIE:
714 	case AR9285_DEVID_PCIE:
715 	case AR9287_DEVID_PCI:
716 	case AR9287_DEVID_PCIE:
717 	case AR2427_DEVID_PCIE:
718 	case AR9300_DEVID_PCIE:
719 	case AR9300_DEVID_AR9485_PCIE:
720 	case AR9300_DEVID_AR9330:
721 	case AR9300_DEVID_AR9340:
722 	case AR9300_DEVID_QCA955X:
723 	case AR9300_DEVID_AR9580:
724 	case AR9300_DEVID_AR9462:
725 	case AR9485_DEVID_AR1111:
726 	case AR9300_DEVID_AR9565:
727 		break;
728 	default:
729 		if (common->bus_ops->ath_bus_type == ATH_USB)
730 			break;
731 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
732 			ah->hw_version.devid);
733 		return -EOPNOTSUPP;
734 	}
735 
736 	ret = __ath9k_hw_init(ah);
737 	if (ret) {
738 		ath_err(common,
739 			"Unable to initialize hardware; initialization status: %d\n",
740 			ret);
741 		return ret;
742 	}
743 
744 	return 0;
745 }
746 EXPORT_SYMBOL(ath9k_hw_init);
747 
748 static void ath9k_hw_init_qos(struct ath_hw *ah)
749 {
750 	ENABLE_REGWRITE_BUFFER(ah);
751 
752 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
753 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
754 
755 	REG_WRITE(ah, AR_QOS_NO_ACK,
756 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
757 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
758 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
759 
760 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
761 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
762 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
763 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
764 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
765 
766 	REGWRITE_BUFFER_FLUSH(ah);
767 }
768 
769 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
770 {
771 	struct ath_common *common = ath9k_hw_common(ah);
772 	int i = 0;
773 
774 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
775 	udelay(100);
776 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
777 
778 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
779 
780 		udelay(100);
781 
782 		if (WARN_ON_ONCE(i >= 100)) {
783 			ath_err(common, "PLL4 meaurement not done\n");
784 			break;
785 		}
786 
787 		i++;
788 	}
789 
790 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
791 }
792 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
793 
794 static void ath9k_hw_init_pll(struct ath_hw *ah,
795 			      struct ath9k_channel *chan)
796 {
797 	u32 pll;
798 
799 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
800 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
801 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
802 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
803 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
804 			      AR_CH0_DPLL2_KD, 0x40);
805 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
806 			      AR_CH0_DPLL2_KI, 0x4);
807 
808 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
809 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
810 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
811 			      AR_CH0_BB_DPLL1_NINI, 0x58);
812 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
813 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
814 
815 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
816 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
817 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
818 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
819 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
820 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
821 
822 		/* program BB PLL phase_shift to 0x6 */
823 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
824 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
825 
826 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
827 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
828 		udelay(1000);
829 	} else if (AR_SREV_9330(ah)) {
830 		u32 ddr_dpll2, pll_control2, kd;
831 
832 		if (ah->is_clk_25mhz) {
833 			ddr_dpll2 = 0x18e82f01;
834 			pll_control2 = 0xe04a3d;
835 			kd = 0x1d;
836 		} else {
837 			ddr_dpll2 = 0x19e82f01;
838 			pll_control2 = 0x886666;
839 			kd = 0x3d;
840 		}
841 
842 		/* program DDR PLL ki and kd value */
843 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
844 
845 		/* program DDR PLL phase_shift */
846 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
847 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
848 
849 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
850 		udelay(1000);
851 
852 		/* program refdiv, nint, frac to RTC register */
853 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
854 
855 		/* program BB PLL kd and ki value */
856 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
857 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
858 
859 		/* program BB PLL phase_shift */
860 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
861 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
862 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
863 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
864 
865 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
866 		udelay(1000);
867 
868 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
869 		udelay(100);
870 
871 		if (ah->is_clk_25mhz) {
872 			pll2_divint = 0x54;
873 			pll2_divfrac = 0x1eb85;
874 			refdiv = 3;
875 		} else {
876 			if (AR_SREV_9340(ah)) {
877 				pll2_divint = 88;
878 				pll2_divfrac = 0;
879 				refdiv = 5;
880 			} else {
881 				pll2_divint = 0x11;
882 				pll2_divfrac = 0x26666;
883 				refdiv = 1;
884 			}
885 		}
886 
887 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
888 		regval |= (0x1 << 16);
889 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
890 		udelay(100);
891 
892 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
893 			  (pll2_divint << 18) | pll2_divfrac);
894 		udelay(100);
895 
896 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
897 		if (AR_SREV_9340(ah))
898 			regval = (regval & 0x80071fff) | (0x1 << 30) |
899 				 (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
900 		else
901 			regval = (regval & 0x80071fff) | (0x3 << 30) |
902 				 (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
903 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
904 		REG_WRITE(ah, AR_PHY_PLL_MODE,
905 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
906 		udelay(1000);
907 	}
908 
909 	pll = ath9k_hw_compute_pll_control(ah, chan);
910 	if (AR_SREV_9565(ah))
911 		pll |= 0x40000;
912 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
913 
914 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
915 	    AR_SREV_9550(ah))
916 		udelay(1000);
917 
918 	/* Switch the core clock for ar9271 to 117Mhz */
919 	if (AR_SREV_9271(ah)) {
920 		udelay(500);
921 		REG_WRITE(ah, 0x50040, 0x304);
922 	}
923 
924 	udelay(RTC_PLL_SETTLE_DELAY);
925 
926 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
927 
928 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
929 		if (ah->is_clk_25mhz) {
930 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
931 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
932 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
933 		} else {
934 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
935 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
936 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
937 		}
938 		udelay(100);
939 	}
940 }
941 
942 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
943 					  enum nl80211_iftype opmode)
944 {
945 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
946 	u32 imr_reg = AR_IMR_TXERR |
947 		AR_IMR_TXURN |
948 		AR_IMR_RXERR |
949 		AR_IMR_RXORN |
950 		AR_IMR_BCNMISC;
951 
952 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
953 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
954 
955 	if (AR_SREV_9300_20_OR_LATER(ah)) {
956 		imr_reg |= AR_IMR_RXOK_HP;
957 		if (ah->config.rx_intr_mitigation)
958 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
959 		else
960 			imr_reg |= AR_IMR_RXOK_LP;
961 
962 	} else {
963 		if (ah->config.rx_intr_mitigation)
964 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
965 		else
966 			imr_reg |= AR_IMR_RXOK;
967 	}
968 
969 	if (ah->config.tx_intr_mitigation)
970 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
971 	else
972 		imr_reg |= AR_IMR_TXOK;
973 
974 	ENABLE_REGWRITE_BUFFER(ah);
975 
976 	REG_WRITE(ah, AR_IMR, imr_reg);
977 	ah->imrs2_reg |= AR_IMR_S2_GTT;
978 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
979 
980 	if (!AR_SREV_9100(ah)) {
981 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
982 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
983 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
984 	}
985 
986 	REGWRITE_BUFFER_FLUSH(ah);
987 
988 	if (AR_SREV_9300_20_OR_LATER(ah)) {
989 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
990 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
991 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
992 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
993 	}
994 }
995 
996 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
997 {
998 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
999 	val = min(val, (u32) 0xFFFF);
1000 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
1001 }
1002 
1003 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1004 {
1005 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1006 	val = min(val, (u32) 0xFFFF);
1007 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1008 }
1009 
1010 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1011 {
1012 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1013 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1014 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1015 }
1016 
1017 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1018 {
1019 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1020 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1021 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1022 }
1023 
1024 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1025 {
1026 	if (tu > 0xFFFF) {
1027 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1028 			tu);
1029 		ah->globaltxtimeout = (u32) -1;
1030 		return false;
1031 	} else {
1032 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1033 		ah->globaltxtimeout = tu;
1034 		return true;
1035 	}
1036 }
1037 
1038 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1039 {
1040 	struct ath_common *common = ath9k_hw_common(ah);
1041 	const struct ath9k_channel *chan = ah->curchan;
1042 	int acktimeout, ctstimeout, ack_offset = 0;
1043 	int slottime;
1044 	int sifstime;
1045 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1046 	u32 reg;
1047 
1048 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1049 		ah->misc_mode);
1050 
1051 	if (!chan)
1052 		return;
1053 
1054 	if (ah->misc_mode != 0)
1055 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1056 
1057 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1058 		rx_lat = 41;
1059 	else
1060 		rx_lat = 37;
1061 	tx_lat = 54;
1062 
1063 	if (IS_CHAN_5GHZ(chan))
1064 		sifstime = 16;
1065 	else
1066 		sifstime = 10;
1067 
1068 	if (IS_CHAN_HALF_RATE(chan)) {
1069 		eifs = 175;
1070 		rx_lat *= 2;
1071 		tx_lat *= 2;
1072 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1073 		    tx_lat += 11;
1074 
1075 		sifstime = 32;
1076 		ack_offset = 16;
1077 		slottime = 13;
1078 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1079 		eifs = 340;
1080 		rx_lat = (rx_lat * 4) - 1;
1081 		tx_lat *= 4;
1082 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1083 		    tx_lat += 22;
1084 
1085 		sifstime = 64;
1086 		ack_offset = 32;
1087 		slottime = 21;
1088 	} else {
1089 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1090 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1091 			reg = AR_USEC_ASYNC_FIFO;
1092 		} else {
1093 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1094 				common->clockrate;
1095 			reg = REG_READ(ah, AR_USEC);
1096 		}
1097 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1098 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1099 
1100 		slottime = ah->slottime;
1101 	}
1102 
1103 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1104 	slottime += 3 * ah->coverage_class;
1105 	acktimeout = slottime + sifstime + ack_offset;
1106 	ctstimeout = acktimeout;
1107 
1108 	/*
1109 	 * Workaround for early ACK timeouts, add an offset to match the
1110 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1111 	 * This was initially only meant to work around an issue with delayed
1112 	 * BA frames in some implementations, but it has been found to fix ACK
1113 	 * timeout issues in other cases as well.
1114 	 */
1115 	if (IS_CHAN_2GHZ(chan) &&
1116 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1117 		acktimeout += 64 - sifstime - ah->slottime;
1118 		ctstimeout += 48 - sifstime - ah->slottime;
1119 	}
1120 
1121 	ath9k_hw_set_sifs_time(ah, sifstime);
1122 	ath9k_hw_setslottime(ah, slottime);
1123 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1124 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1125 	if (ah->globaltxtimeout != (u32) -1)
1126 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1127 
1128 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1129 	REG_RMW(ah, AR_USEC,
1130 		(common->clockrate - 1) |
1131 		SM(rx_lat, AR_USEC_RX_LAT) |
1132 		SM(tx_lat, AR_USEC_TX_LAT),
1133 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1134 
1135 }
1136 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1137 
1138 void ath9k_hw_deinit(struct ath_hw *ah)
1139 {
1140 	struct ath_common *common = ath9k_hw_common(ah);
1141 
1142 	if (common->state < ATH_HW_INITIALIZED)
1143 		return;
1144 
1145 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1146 }
1147 EXPORT_SYMBOL(ath9k_hw_deinit);
1148 
1149 /*******/
1150 /* INI */
1151 /*******/
1152 
1153 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1154 {
1155 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1156 
1157 	if (IS_CHAN_2GHZ(chan))
1158 		ctl |= CTL_11G;
1159 	else
1160 		ctl |= CTL_11A;
1161 
1162 	return ctl;
1163 }
1164 
1165 /****************************************/
1166 /* Reset and Channel Switching Routines */
1167 /****************************************/
1168 
1169 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1170 {
1171 	struct ath_common *common = ath9k_hw_common(ah);
1172 	int txbuf_size;
1173 
1174 	ENABLE_REGWRITE_BUFFER(ah);
1175 
1176 	/*
1177 	 * set AHB_MODE not to do cacheline prefetches
1178 	*/
1179 	if (!AR_SREV_9300_20_OR_LATER(ah))
1180 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1181 
1182 	/*
1183 	 * let mac dma reads be in 128 byte chunks
1184 	 */
1185 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1186 
1187 	REGWRITE_BUFFER_FLUSH(ah);
1188 
1189 	/*
1190 	 * Restore TX Trigger Level to its pre-reset value.
1191 	 * The initial value depends on whether aggregation is enabled, and is
1192 	 * adjusted whenever underruns are detected.
1193 	 */
1194 	if (!AR_SREV_9300_20_OR_LATER(ah))
1195 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1196 
1197 	ENABLE_REGWRITE_BUFFER(ah);
1198 
1199 	/*
1200 	 * let mac dma writes be in 128 byte chunks
1201 	 */
1202 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1203 
1204 	/*
1205 	 * Setup receive FIFO threshold to hold off TX activities
1206 	 */
1207 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1208 
1209 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1210 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1211 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1212 
1213 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1214 			ah->caps.rx_status_len);
1215 	}
1216 
1217 	/*
1218 	 * reduce the number of usable entries in PCU TXBUF to avoid
1219 	 * wrap around issues.
1220 	 */
1221 	if (AR_SREV_9285(ah)) {
1222 		/* For AR9285 the number of Fifos are reduced to half.
1223 		 * So set the usable tx buf size also to half to
1224 		 * avoid data/delimiter underruns
1225 		 */
1226 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1227 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1228 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1229 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1230 	} else {
1231 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1232 	}
1233 
1234 	if (!AR_SREV_9271(ah))
1235 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1236 
1237 	REGWRITE_BUFFER_FLUSH(ah);
1238 
1239 	if (AR_SREV_9300_20_OR_LATER(ah))
1240 		ath9k_hw_reset_txstatus_ring(ah);
1241 }
1242 
1243 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1244 {
1245 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1246 	u32 set = AR_STA_ID1_KSRCH_MODE;
1247 
1248 	switch (opmode) {
1249 	case NL80211_IFTYPE_ADHOC:
1250 		set |= AR_STA_ID1_ADHOC;
1251 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1252 		break;
1253 	case NL80211_IFTYPE_MESH_POINT:
1254 	case NL80211_IFTYPE_AP:
1255 		set |= AR_STA_ID1_STA_AP;
1256 		/* fall through */
1257 	case NL80211_IFTYPE_STATION:
1258 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1259 		break;
1260 	default:
1261 		if (!ah->is_monitoring)
1262 			set = 0;
1263 		break;
1264 	}
1265 	REG_RMW(ah, AR_STA_ID1, set, mask);
1266 }
1267 
1268 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1269 				   u32 *coef_mantissa, u32 *coef_exponent)
1270 {
1271 	u32 coef_exp, coef_man;
1272 
1273 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1274 		if ((coef_scaled >> coef_exp) & 0x1)
1275 			break;
1276 
1277 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1278 
1279 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1280 
1281 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1282 	*coef_exponent = coef_exp - 16;
1283 }
1284 
1285 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1286 {
1287 	u32 rst_flags;
1288 	u32 tmpReg;
1289 
1290 	if (AR_SREV_9100(ah)) {
1291 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1292 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1293 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1294 	}
1295 
1296 	ENABLE_REGWRITE_BUFFER(ah);
1297 
1298 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1299 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1300 		udelay(10);
1301 	}
1302 
1303 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1304 		  AR_RTC_FORCE_WAKE_ON_INT);
1305 
1306 	if (AR_SREV_9100(ah)) {
1307 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1308 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1309 	} else {
1310 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1311 		if (AR_SREV_9340(ah))
1312 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1313 		else
1314 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1315 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1316 
1317 		if (tmpReg) {
1318 			u32 val;
1319 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1320 
1321 			val = AR_RC_HOSTIF;
1322 			if (!AR_SREV_9300_20_OR_LATER(ah))
1323 				val |= AR_RC_AHB;
1324 			REG_WRITE(ah, AR_RC, val);
1325 
1326 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1327 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1328 
1329 		rst_flags = AR_RTC_RC_MAC_WARM;
1330 		if (type == ATH9K_RESET_COLD)
1331 			rst_flags |= AR_RTC_RC_MAC_COLD;
1332 	}
1333 
1334 	if (AR_SREV_9330(ah)) {
1335 		int npend = 0;
1336 		int i;
1337 
1338 		/* AR9330 WAR:
1339 		 * call external reset function to reset WMAC if:
1340 		 * - doing a cold reset
1341 		 * - we have pending frames in the TX queues
1342 		 */
1343 
1344 		for (i = 0; i < AR_NUM_QCU; i++) {
1345 			npend = ath9k_hw_numtxpending(ah, i);
1346 			if (npend)
1347 				break;
1348 		}
1349 
1350 		if (ah->external_reset &&
1351 		    (npend || type == ATH9K_RESET_COLD)) {
1352 			int reset_err = 0;
1353 
1354 			ath_dbg(ath9k_hw_common(ah), RESET,
1355 				"reset MAC via external reset\n");
1356 
1357 			reset_err = ah->external_reset();
1358 			if (reset_err) {
1359 				ath_err(ath9k_hw_common(ah),
1360 					"External reset failed, err=%d\n",
1361 					reset_err);
1362 				return false;
1363 			}
1364 
1365 			REG_WRITE(ah, AR_RTC_RESET, 1);
1366 		}
1367 	}
1368 
1369 	if (ath9k_hw_mci_is_enabled(ah))
1370 		ar9003_mci_check_gpm_offset(ah);
1371 
1372 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1373 
1374 	REGWRITE_BUFFER_FLUSH(ah);
1375 
1376 	udelay(50);
1377 
1378 	REG_WRITE(ah, AR_RTC_RC, 0);
1379 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1380 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1381 		return false;
1382 	}
1383 
1384 	if (!AR_SREV_9100(ah))
1385 		REG_WRITE(ah, AR_RC, 0);
1386 
1387 	if (AR_SREV_9100(ah))
1388 		udelay(50);
1389 
1390 	return true;
1391 }
1392 
1393 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1394 {
1395 	ENABLE_REGWRITE_BUFFER(ah);
1396 
1397 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1398 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1399 		udelay(10);
1400 	}
1401 
1402 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1403 		  AR_RTC_FORCE_WAKE_ON_INT);
1404 
1405 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1406 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1407 
1408 	REG_WRITE(ah, AR_RTC_RESET, 0);
1409 
1410 	REGWRITE_BUFFER_FLUSH(ah);
1411 
1412 	if (!AR_SREV_9300_20_OR_LATER(ah))
1413 		udelay(2);
1414 
1415 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1416 		REG_WRITE(ah, AR_RC, 0);
1417 
1418 	REG_WRITE(ah, AR_RTC_RESET, 1);
1419 
1420 	if (!ath9k_hw_wait(ah,
1421 			   AR_RTC_STATUS,
1422 			   AR_RTC_STATUS_M,
1423 			   AR_RTC_STATUS_ON,
1424 			   AH_WAIT_TIMEOUT)) {
1425 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1426 		return false;
1427 	}
1428 
1429 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1430 }
1431 
1432 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1433 {
1434 	bool ret = false;
1435 
1436 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1437 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1438 		udelay(10);
1439 	}
1440 
1441 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1442 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1443 
1444 	if (!ah->reset_power_on)
1445 		type = ATH9K_RESET_POWER_ON;
1446 
1447 	switch (type) {
1448 	case ATH9K_RESET_POWER_ON:
1449 		ret = ath9k_hw_set_reset_power_on(ah);
1450 		if (ret)
1451 			ah->reset_power_on = true;
1452 		break;
1453 	case ATH9K_RESET_WARM:
1454 	case ATH9K_RESET_COLD:
1455 		ret = ath9k_hw_set_reset(ah, type);
1456 		break;
1457 	default:
1458 		break;
1459 	}
1460 
1461 	return ret;
1462 }
1463 
1464 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1465 				struct ath9k_channel *chan)
1466 {
1467 	int reset_type = ATH9K_RESET_WARM;
1468 
1469 	if (AR_SREV_9280(ah)) {
1470 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1471 			reset_type = ATH9K_RESET_POWER_ON;
1472 		else
1473 			reset_type = ATH9K_RESET_COLD;
1474 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1475 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1476 		reset_type = ATH9K_RESET_COLD;
1477 
1478 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1479 		return false;
1480 
1481 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1482 		return false;
1483 
1484 	ah->chip_fullsleep = false;
1485 
1486 	if (AR_SREV_9330(ah))
1487 		ar9003_hw_internal_regulator_apply(ah);
1488 	ath9k_hw_init_pll(ah, chan);
1489 	ath9k_hw_set_rfmode(ah, chan);
1490 
1491 	return true;
1492 }
1493 
1494 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1495 				    struct ath9k_channel *chan)
1496 {
1497 	struct ath_common *common = ath9k_hw_common(ah);
1498 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1499 	bool band_switch = false, mode_diff = false;
1500 	u8 ini_reloaded = 0;
1501 	u32 qnum;
1502 	int r;
1503 
1504 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1505 		band_switch = IS_CHAN_5GHZ(ah->curchan) != IS_CHAN_5GHZ(chan);
1506 		mode_diff = (chan->channelFlags != ah->curchan->channelFlags);
1507 	}
1508 
1509 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1510 		if (ath9k_hw_numtxpending(ah, qnum)) {
1511 			ath_dbg(common, QUEUE,
1512 				"Transmit frames pending on queue %d\n", qnum);
1513 			return false;
1514 		}
1515 	}
1516 
1517 	if (!ath9k_hw_rfbus_req(ah)) {
1518 		ath_err(common, "Could not kill baseband RX\n");
1519 		return false;
1520 	}
1521 
1522 	if (band_switch || mode_diff) {
1523 		ath9k_hw_mark_phy_inactive(ah);
1524 		udelay(5);
1525 
1526 		if (band_switch)
1527 			ath9k_hw_init_pll(ah, chan);
1528 
1529 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1530 			ath_err(common, "Failed to do fast channel change\n");
1531 			return false;
1532 		}
1533 	}
1534 
1535 	ath9k_hw_set_channel_regs(ah, chan);
1536 
1537 	r = ath9k_hw_rf_set_freq(ah, chan);
1538 	if (r) {
1539 		ath_err(common, "Failed to set channel\n");
1540 		return false;
1541 	}
1542 	ath9k_hw_set_clockrate(ah);
1543 	ath9k_hw_apply_txpower(ah, chan, false);
1544 
1545 	ath9k_hw_set_delta_slope(ah, chan);
1546 	ath9k_hw_spur_mitigate_freq(ah, chan);
1547 
1548 	if (band_switch || ini_reloaded)
1549 		ah->eep_ops->set_board_values(ah, chan);
1550 
1551 	ath9k_hw_init_bb(ah, chan);
1552 	ath9k_hw_rfbus_done(ah);
1553 
1554 	if (band_switch || ini_reloaded) {
1555 		ah->ah_flags |= AH_FASTCC;
1556 		ath9k_hw_init_cal(ah, chan);
1557 		ah->ah_flags &= ~AH_FASTCC;
1558 	}
1559 
1560 	return true;
1561 }
1562 
1563 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1564 {
1565 	u32 gpio_mask = ah->gpio_mask;
1566 	int i;
1567 
1568 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1569 		if (!(gpio_mask & 1))
1570 			continue;
1571 
1572 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1573 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1574 	}
1575 }
1576 
1577 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1578 			       int *hang_state, int *hang_pos)
1579 {
1580 	static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1581 	u32 chain_state, dcs_pos, i;
1582 
1583 	for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1584 		chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1585 		for (i = 0; i < 3; i++) {
1586 			if (chain_state == dcu_chain_state[i]) {
1587 				*hang_state = chain_state;
1588 				*hang_pos = dcs_pos;
1589 				return true;
1590 			}
1591 		}
1592 	}
1593 	return false;
1594 }
1595 
1596 #define DCU_COMPLETE_STATE        1
1597 #define DCU_COMPLETE_STATE_MASK 0x3
1598 #define NUM_STATUS_READS         50
1599 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1600 {
1601 	u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1602 	u32 i, hang_pos, hang_state, num_state = 6;
1603 
1604 	comp_state = REG_READ(ah, AR_DMADBG_6);
1605 
1606 	if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1607 		ath_dbg(ath9k_hw_common(ah), RESET,
1608 			"MAC Hang signature not found at DCU complete\n");
1609 		return false;
1610 	}
1611 
1612 	chain_state = REG_READ(ah, dcs_reg);
1613 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1614 		goto hang_check_iter;
1615 
1616 	dcs_reg = AR_DMADBG_5;
1617 	num_state = 4;
1618 	chain_state = REG_READ(ah, dcs_reg);
1619 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1620 		goto hang_check_iter;
1621 
1622 	ath_dbg(ath9k_hw_common(ah), RESET,
1623 		"MAC Hang signature 1 not found\n");
1624 	return false;
1625 
1626 hang_check_iter:
1627 	ath_dbg(ath9k_hw_common(ah), RESET,
1628 		"DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1629 		chain_state, comp_state, hang_state, hang_pos);
1630 
1631 	for (i = 0; i < NUM_STATUS_READS; i++) {
1632 		chain_state = REG_READ(ah, dcs_reg);
1633 		chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1634 		comp_state = REG_READ(ah, AR_DMADBG_6);
1635 
1636 		if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1637 					DCU_COMPLETE_STATE) ||
1638 		    (chain_state != hang_state))
1639 			return false;
1640 	}
1641 
1642 	ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1643 
1644 	return true;
1645 }
1646 
1647 void ath9k_hw_check_nav(struct ath_hw *ah)
1648 {
1649 	struct ath_common *common = ath9k_hw_common(ah);
1650 	u32 val;
1651 
1652 	val = REG_READ(ah, AR_NAV);
1653 	if (val != 0xdeadbeef && val > 0x7fff) {
1654 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1655 		REG_WRITE(ah, AR_NAV, 0);
1656 	}
1657 }
1658 EXPORT_SYMBOL(ath9k_hw_check_nav);
1659 
1660 bool ath9k_hw_check_alive(struct ath_hw *ah)
1661 {
1662 	int count = 50;
1663 	u32 reg;
1664 
1665 	if (AR_SREV_9300(ah))
1666 		return !ath9k_hw_detect_mac_hang(ah);
1667 
1668 	if (AR_SREV_9285_12_OR_LATER(ah))
1669 		return true;
1670 
1671 	do {
1672 		reg = REG_READ(ah, AR_OBS_BUS_1);
1673 
1674 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1675 			continue;
1676 
1677 		switch (reg & 0x7E000B00) {
1678 		case 0x1E000000:
1679 		case 0x52000B00:
1680 		case 0x18000B00:
1681 			continue;
1682 		default:
1683 			return true;
1684 		}
1685 	} while (count-- > 0);
1686 
1687 	return false;
1688 }
1689 EXPORT_SYMBOL(ath9k_hw_check_alive);
1690 
1691 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1692 {
1693 	/* Setup MFP options for CCMP */
1694 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1695 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1696 		 * frames when constructing CCMP AAD. */
1697 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1698 			      0xc7ff);
1699 		ah->sw_mgmt_crypto = false;
1700 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1701 		/* Disable hardware crypto for management frames */
1702 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1703 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1704 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1705 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1706 		ah->sw_mgmt_crypto = true;
1707 	} else {
1708 		ah->sw_mgmt_crypto = true;
1709 	}
1710 }
1711 
1712 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1713 				  u32 macStaId1, u32 saveDefAntenna)
1714 {
1715 	struct ath_common *common = ath9k_hw_common(ah);
1716 
1717 	ENABLE_REGWRITE_BUFFER(ah);
1718 
1719 	REG_RMW(ah, AR_STA_ID1, macStaId1
1720 		  | AR_STA_ID1_RTS_USE_DEF
1721 		  | (ah->config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1722 		  | ah->sta_id1_defaults,
1723 		  ~AR_STA_ID1_SADH_MASK);
1724 	ath_hw_setbssidmask(common);
1725 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1726 	ath9k_hw_write_associd(ah);
1727 	REG_WRITE(ah, AR_ISR, ~0);
1728 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1729 
1730 	REGWRITE_BUFFER_FLUSH(ah);
1731 
1732 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1733 }
1734 
1735 static void ath9k_hw_init_queues(struct ath_hw *ah)
1736 {
1737 	int i;
1738 
1739 	ENABLE_REGWRITE_BUFFER(ah);
1740 
1741 	for (i = 0; i < AR_NUM_DCU; i++)
1742 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1743 
1744 	REGWRITE_BUFFER_FLUSH(ah);
1745 
1746 	ah->intr_txqs = 0;
1747 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1748 		ath9k_hw_resettxqueue(ah, i);
1749 }
1750 
1751 /*
1752  * For big endian systems turn on swapping for descriptors
1753  */
1754 static void ath9k_hw_init_desc(struct ath_hw *ah)
1755 {
1756 	struct ath_common *common = ath9k_hw_common(ah);
1757 
1758 	if (AR_SREV_9100(ah)) {
1759 		u32 mask;
1760 		mask = REG_READ(ah, AR_CFG);
1761 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1762 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1763 				mask);
1764 		} else {
1765 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1766 			REG_WRITE(ah, AR_CFG, mask);
1767 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1768 				REG_READ(ah, AR_CFG));
1769 		}
1770 	} else {
1771 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1772 			/* Configure AR9271 target WLAN */
1773 			if (AR_SREV_9271(ah))
1774 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1775 			else
1776 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1777 		}
1778 #ifdef __BIG_ENDIAN
1779 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1780 			 AR_SREV_9550(ah))
1781 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1782 		else
1783 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1784 #endif
1785 	}
1786 }
1787 
1788 /*
1789  * Fast channel change:
1790  * (Change synthesizer based on channel freq without resetting chip)
1791  */
1792 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1793 {
1794 	struct ath_common *common = ath9k_hw_common(ah);
1795 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1796 	int ret;
1797 
1798 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1799 		goto fail;
1800 
1801 	if (ah->chip_fullsleep)
1802 		goto fail;
1803 
1804 	if (!ah->curchan)
1805 		goto fail;
1806 
1807 	if (chan->channel == ah->curchan->channel)
1808 		goto fail;
1809 
1810 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1811 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1812 		goto fail;
1813 
1814 	/*
1815 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1816 	 */
1817 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1818 	    chan->channelFlags != ah->curchan->channelFlags)
1819 		goto fail;
1820 
1821 	if (!ath9k_hw_check_alive(ah))
1822 		goto fail;
1823 
1824 	/*
1825 	 * For AR9462, make sure that calibration data for
1826 	 * re-using are present.
1827 	 */
1828 	if (AR_SREV_9462(ah) && (ah->caldata &&
1829 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1830 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1831 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1832 		goto fail;
1833 
1834 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1835 		ah->curchan->channel, chan->channel);
1836 
1837 	ret = ath9k_hw_channel_change(ah, chan);
1838 	if (!ret)
1839 		goto fail;
1840 
1841 	if (ath9k_hw_mci_is_enabled(ah))
1842 		ar9003_mci_2g5g_switch(ah, false);
1843 
1844 	ath9k_hw_loadnf(ah, ah->curchan);
1845 	ath9k_hw_start_nfcal(ah, true);
1846 
1847 	if (AR_SREV_9271(ah))
1848 		ar9002_hw_load_ani_reg(ah, chan);
1849 
1850 	return 0;
1851 fail:
1852 	return -EINVAL;
1853 }
1854 
1855 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1856 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1857 {
1858 	struct ath_common *common = ath9k_hw_common(ah);
1859 	u32 saveLedState;
1860 	u32 saveDefAntenna;
1861 	u32 macStaId1;
1862 	u64 tsf = 0;
1863 	int r;
1864 	bool start_mci_reset = false;
1865 	bool save_fullsleep = ah->chip_fullsleep;
1866 
1867 	if (ath9k_hw_mci_is_enabled(ah)) {
1868 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1869 		if (start_mci_reset)
1870 			return 0;
1871 	}
1872 
1873 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1874 		return -EIO;
1875 
1876 	if (ah->curchan && !ah->chip_fullsleep)
1877 		ath9k_hw_getnf(ah, ah->curchan);
1878 
1879 	ah->caldata = caldata;
1880 	if (caldata && (chan->channel != caldata->channel ||
1881 			chan->channelFlags != caldata->channelFlags)) {
1882 		/* Operating channel changed, reset channel calibration data */
1883 		memset(caldata, 0, sizeof(*caldata));
1884 		ath9k_init_nfcal_hist_buffer(ah, chan);
1885 	} else if (caldata) {
1886 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1887 	}
1888 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1889 
1890 	if (fastcc) {
1891 		r = ath9k_hw_do_fastcc(ah, chan);
1892 		if (!r)
1893 			return r;
1894 	}
1895 
1896 	if (ath9k_hw_mci_is_enabled(ah))
1897 		ar9003_mci_stop_bt(ah, save_fullsleep);
1898 
1899 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1900 	if (saveDefAntenna == 0)
1901 		saveDefAntenna = 1;
1902 
1903 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1904 
1905 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1906 	if (AR_SREV_9100(ah) ||
1907 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1908 		tsf = ath9k_hw_gettsf64(ah);
1909 
1910 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1911 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1912 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1913 
1914 	ath9k_hw_mark_phy_inactive(ah);
1915 
1916 	ah->paprd_table_write_done = false;
1917 
1918 	/* Only required on the first reset */
1919 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1920 		REG_WRITE(ah,
1921 			  AR9271_RESET_POWER_DOWN_CONTROL,
1922 			  AR9271_RADIO_RF_RST);
1923 		udelay(50);
1924 	}
1925 
1926 	if (!ath9k_hw_chip_reset(ah, chan)) {
1927 		ath_err(common, "Chip reset failed\n");
1928 		return -EINVAL;
1929 	}
1930 
1931 	/* Only required on the first reset */
1932 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1933 		ah->htc_reset_init = false;
1934 		REG_WRITE(ah,
1935 			  AR9271_RESET_POWER_DOWN_CONTROL,
1936 			  AR9271_GATE_MAC_CTL);
1937 		udelay(50);
1938 	}
1939 
1940 	/* Restore TSF */
1941 	if (tsf)
1942 		ath9k_hw_settsf64(ah, tsf);
1943 
1944 	if (AR_SREV_9280_20_OR_LATER(ah))
1945 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1946 
1947 	if (!AR_SREV_9300_20_OR_LATER(ah))
1948 		ar9002_hw_enable_async_fifo(ah);
1949 
1950 	r = ath9k_hw_process_ini(ah, chan);
1951 	if (r)
1952 		return r;
1953 
1954 	if (ath9k_hw_mci_is_enabled(ah))
1955 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1956 
1957 	/*
1958 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1959 	 * right after the chip reset. When that happens, write a new
1960 	 * value after the initvals have been applied, with an offset
1961 	 * based on measured time difference
1962 	 */
1963 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1964 		tsf += 1500;
1965 		ath9k_hw_settsf64(ah, tsf);
1966 	}
1967 
1968 	ath9k_hw_init_mfp(ah);
1969 
1970 	ath9k_hw_set_delta_slope(ah, chan);
1971 	ath9k_hw_spur_mitigate_freq(ah, chan);
1972 	ah->eep_ops->set_board_values(ah, chan);
1973 
1974 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1975 
1976 	r = ath9k_hw_rf_set_freq(ah, chan);
1977 	if (r)
1978 		return r;
1979 
1980 	ath9k_hw_set_clockrate(ah);
1981 
1982 	ath9k_hw_init_queues(ah);
1983 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1984 	ath9k_hw_ani_cache_ini_regs(ah);
1985 	ath9k_hw_init_qos(ah);
1986 
1987 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1988 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1989 
1990 	ath9k_hw_init_global_settings(ah);
1991 
1992 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1993 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1994 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1995 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1996 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1997 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1998 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1999 	}
2000 
2001 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2002 
2003 	ath9k_hw_set_dma(ah);
2004 
2005 	if (!ath9k_hw_mci_is_enabled(ah))
2006 		REG_WRITE(ah, AR_OBS, 8);
2007 
2008 	if (ah->config.rx_intr_mitigation) {
2009 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2010 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2011 	}
2012 
2013 	if (ah->config.tx_intr_mitigation) {
2014 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2015 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2016 	}
2017 
2018 	ath9k_hw_init_bb(ah, chan);
2019 
2020 	if (caldata) {
2021 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
2022 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
2023 	}
2024 	if (!ath9k_hw_init_cal(ah, chan))
2025 		return -EIO;
2026 
2027 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2028 		return -EIO;
2029 
2030 	ENABLE_REGWRITE_BUFFER(ah);
2031 
2032 	ath9k_hw_restore_chainmask(ah);
2033 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2034 
2035 	REGWRITE_BUFFER_FLUSH(ah);
2036 
2037 	ath9k_hw_init_desc(ah);
2038 
2039 	if (ath9k_hw_btcoex_is_enabled(ah))
2040 		ath9k_hw_btcoex_enable(ah);
2041 
2042 	if (ath9k_hw_mci_is_enabled(ah))
2043 		ar9003_mci_check_bt(ah);
2044 
2045 	ath9k_hw_loadnf(ah, chan);
2046 	ath9k_hw_start_nfcal(ah, true);
2047 
2048 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2049 		ar9003_hw_bb_watchdog_config(ah);
2050 		ar9003_hw_disable_phy_restart(ah);
2051 	}
2052 
2053 	ath9k_hw_apply_gpio_override(ah);
2054 
2055 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2056 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2057 
2058 	return 0;
2059 }
2060 EXPORT_SYMBOL(ath9k_hw_reset);
2061 
2062 /******************************/
2063 /* Power Management (Chipset) */
2064 /******************************/
2065 
2066 /*
2067  * Notify Power Mgt is disabled in self-generated frames.
2068  * If requested, force chip to sleep.
2069  */
2070 static void ath9k_set_power_sleep(struct ath_hw *ah)
2071 {
2072 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2073 
2074 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2075 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2076 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2077 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2078 		/* xxx Required for WLAN only case ? */
2079 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2080 		udelay(100);
2081 	}
2082 
2083 	/*
2084 	 * Clear the RTC force wake bit to allow the
2085 	 * mac to go to sleep.
2086 	 */
2087 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2088 
2089 	if (ath9k_hw_mci_is_enabled(ah))
2090 		udelay(100);
2091 
2092 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2093 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2094 
2095 	/* Shutdown chip. Active low */
2096 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2097 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2098 		udelay(2);
2099 	}
2100 
2101 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2102 	if (AR_SREV_9300_20_OR_LATER(ah))
2103 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2104 }
2105 
2106 /*
2107  * Notify Power Management is enabled in self-generating
2108  * frames. If request, set power mode of chip to
2109  * auto/normal.  Duration in units of 128us (1/8 TU).
2110  */
2111 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2112 {
2113 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2114 
2115 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2116 
2117 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2118 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2119 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2120 			  AR_RTC_FORCE_WAKE_ON_INT);
2121 	} else {
2122 
2123 		/* When chip goes into network sleep, it could be waken
2124 		 * up by MCI_INT interrupt caused by BT's HW messages
2125 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2126 		 * rate (~100us). This will cause chip to leave and
2127 		 * re-enter network sleep mode frequently, which in
2128 		 * consequence will have WLAN MCI HW to generate lots of
2129 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2130 		 * BT CPU to busy to process.
2131 		 */
2132 		if (ath9k_hw_mci_is_enabled(ah))
2133 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2134 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2135 		/*
2136 		 * Clear the RTC force wake bit to allow the
2137 		 * mac to go to sleep.
2138 		 */
2139 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2140 
2141 		if (ath9k_hw_mci_is_enabled(ah))
2142 			udelay(30);
2143 	}
2144 
2145 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2146 	if (AR_SREV_9300_20_OR_LATER(ah))
2147 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2148 }
2149 
2150 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2151 {
2152 	u32 val;
2153 	int i;
2154 
2155 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2156 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2157 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2158 		udelay(10);
2159 	}
2160 
2161 	if ((REG_READ(ah, AR_RTC_STATUS) &
2162 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2163 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2164 			return false;
2165 		}
2166 		if (!AR_SREV_9300_20_OR_LATER(ah))
2167 			ath9k_hw_init_pll(ah, NULL);
2168 	}
2169 	if (AR_SREV_9100(ah))
2170 		REG_SET_BIT(ah, AR_RTC_RESET,
2171 			    AR_RTC_RESET_EN);
2172 
2173 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2174 		    AR_RTC_FORCE_WAKE_EN);
2175 	udelay(50);
2176 
2177 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2178 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2179 		if (val == AR_RTC_STATUS_ON)
2180 			break;
2181 		udelay(50);
2182 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2183 			    AR_RTC_FORCE_WAKE_EN);
2184 	}
2185 	if (i == 0) {
2186 		ath_err(ath9k_hw_common(ah),
2187 			"Failed to wakeup in %uus\n",
2188 			POWER_UP_TIME / 20);
2189 		return false;
2190 	}
2191 
2192 	if (ath9k_hw_mci_is_enabled(ah))
2193 		ar9003_mci_set_power_awake(ah);
2194 
2195 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2196 
2197 	return true;
2198 }
2199 
2200 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2201 {
2202 	struct ath_common *common = ath9k_hw_common(ah);
2203 	int status = true;
2204 	static const char *modes[] = {
2205 		"AWAKE",
2206 		"FULL-SLEEP",
2207 		"NETWORK SLEEP",
2208 		"UNDEFINED"
2209 	};
2210 
2211 	if (ah->power_mode == mode)
2212 		return status;
2213 
2214 	ath_dbg(common, RESET, "%s -> %s\n",
2215 		modes[ah->power_mode], modes[mode]);
2216 
2217 	switch (mode) {
2218 	case ATH9K_PM_AWAKE:
2219 		status = ath9k_hw_set_power_awake(ah);
2220 		break;
2221 	case ATH9K_PM_FULL_SLEEP:
2222 		if (ath9k_hw_mci_is_enabled(ah))
2223 			ar9003_mci_set_full_sleep(ah);
2224 
2225 		ath9k_set_power_sleep(ah);
2226 		ah->chip_fullsleep = true;
2227 		break;
2228 	case ATH9K_PM_NETWORK_SLEEP:
2229 		ath9k_set_power_network_sleep(ah);
2230 		break;
2231 	default:
2232 		ath_err(common, "Unknown power mode %u\n", mode);
2233 		return false;
2234 	}
2235 	ah->power_mode = mode;
2236 
2237 	/*
2238 	 * XXX: If this warning never comes up after a while then
2239 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2240 	 * ath9k_hw_setpower() return type void.
2241 	 */
2242 
2243 	if (!(ah->ah_flags & AH_UNPLUGGED))
2244 		ATH_DBG_WARN_ON_ONCE(!status);
2245 
2246 	return status;
2247 }
2248 EXPORT_SYMBOL(ath9k_hw_setpower);
2249 
2250 /*******************/
2251 /* Beacon Handling */
2252 /*******************/
2253 
2254 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2255 {
2256 	int flags = 0;
2257 
2258 	ENABLE_REGWRITE_BUFFER(ah);
2259 
2260 	switch (ah->opmode) {
2261 	case NL80211_IFTYPE_ADHOC:
2262 		REG_SET_BIT(ah, AR_TXCFG,
2263 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2264 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2265 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2266 		flags |= AR_NDP_TIMER_EN;
2267 	case NL80211_IFTYPE_MESH_POINT:
2268 	case NL80211_IFTYPE_AP:
2269 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2270 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2271 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2272 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2273 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2274 		flags |=
2275 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2276 		break;
2277 	default:
2278 		ath_dbg(ath9k_hw_common(ah), BEACON,
2279 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2280 		return;
2281 		break;
2282 	}
2283 
2284 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2285 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2286 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2287 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2288 
2289 	REGWRITE_BUFFER_FLUSH(ah);
2290 
2291 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2292 }
2293 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2294 
2295 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2296 				    const struct ath9k_beacon_state *bs)
2297 {
2298 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2299 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2300 	struct ath_common *common = ath9k_hw_common(ah);
2301 
2302 	ENABLE_REGWRITE_BUFFER(ah);
2303 
2304 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2305 
2306 	REG_WRITE(ah, AR_BEACON_PERIOD,
2307 		  TU_TO_USEC(bs->bs_intval));
2308 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2309 		  TU_TO_USEC(bs->bs_intval));
2310 
2311 	REGWRITE_BUFFER_FLUSH(ah);
2312 
2313 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2314 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2315 
2316 	beaconintval = bs->bs_intval;
2317 
2318 	if (bs->bs_sleepduration > beaconintval)
2319 		beaconintval = bs->bs_sleepduration;
2320 
2321 	dtimperiod = bs->bs_dtimperiod;
2322 	if (bs->bs_sleepduration > dtimperiod)
2323 		dtimperiod = bs->bs_sleepduration;
2324 
2325 	if (beaconintval == dtimperiod)
2326 		nextTbtt = bs->bs_nextdtim;
2327 	else
2328 		nextTbtt = bs->bs_nexttbtt;
2329 
2330 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2331 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2332 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2333 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2334 
2335 	ENABLE_REGWRITE_BUFFER(ah);
2336 
2337 	REG_WRITE(ah, AR_NEXT_DTIM,
2338 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2339 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2340 
2341 	REG_WRITE(ah, AR_SLEEP1,
2342 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2343 		  | AR_SLEEP1_ASSUME_DTIM);
2344 
2345 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2346 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2347 	else
2348 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2349 
2350 	REG_WRITE(ah, AR_SLEEP2,
2351 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2352 
2353 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2354 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2355 
2356 	REGWRITE_BUFFER_FLUSH(ah);
2357 
2358 	REG_SET_BIT(ah, AR_TIMER_MODE,
2359 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2360 		    AR_DTIM_TIMER_EN);
2361 
2362 	/* TSF Out of Range Threshold */
2363 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2364 }
2365 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2366 
2367 /*******************/
2368 /* HW Capabilities */
2369 /*******************/
2370 
2371 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2372 {
2373 	eeprom_chainmask &= chip_chainmask;
2374 	if (eeprom_chainmask)
2375 		return eeprom_chainmask;
2376 	else
2377 		return chip_chainmask;
2378 }
2379 
2380 /**
2381  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2382  * @ah: the atheros hardware data structure
2383  *
2384  * We enable DFS support upstream on chipsets which have passed a series
2385  * of tests. The testing requirements are going to be documented. Desired
2386  * test requirements are documented at:
2387  *
2388  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2389  *
2390  * Once a new chipset gets properly tested an individual commit can be used
2391  * to document the testing for DFS for that chipset.
2392  */
2393 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2394 {
2395 
2396 	switch (ah->hw_version.macVersion) {
2397 	/* for temporary testing DFS with 9280 */
2398 	case AR_SREV_VERSION_9280:
2399 	/* AR9580 will likely be our first target to get testing on */
2400 	case AR_SREV_VERSION_9580:
2401 		return true;
2402 	default:
2403 		return false;
2404 	}
2405 }
2406 
2407 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2408 {
2409 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2410 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2411 	struct ath_common *common = ath9k_hw_common(ah);
2412 	unsigned int chip_chainmask;
2413 
2414 	u16 eeval;
2415 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2416 
2417 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2418 	regulatory->current_rd = eeval;
2419 
2420 	if (ah->opmode != NL80211_IFTYPE_AP &&
2421 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2422 		if (regulatory->current_rd == 0x64 ||
2423 		    regulatory->current_rd == 0x65)
2424 			regulatory->current_rd += 5;
2425 		else if (regulatory->current_rd == 0x41)
2426 			regulatory->current_rd = 0x43;
2427 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2428 			regulatory->current_rd);
2429 	}
2430 
2431 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2432 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2433 		ath_err(common,
2434 			"no band has been marked as supported in EEPROM\n");
2435 		return -EINVAL;
2436 	}
2437 
2438 	if (eeval & AR5416_OPFLAGS_11A)
2439 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2440 
2441 	if (eeval & AR5416_OPFLAGS_11G)
2442 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2443 
2444 	if (AR_SREV_9485(ah) ||
2445 	    AR_SREV_9285(ah) ||
2446 	    AR_SREV_9330(ah) ||
2447 	    AR_SREV_9565(ah))
2448 		chip_chainmask = 1;
2449 	else if (AR_SREV_9462(ah))
2450 		chip_chainmask = 3;
2451 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2452 		chip_chainmask = 7;
2453 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2454 		chip_chainmask = 3;
2455 	else
2456 		chip_chainmask = 7;
2457 
2458 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2459 	/*
2460 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2461 	 * the EEPROM.
2462 	 */
2463 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2464 	    !(eeval & AR5416_OPFLAGS_11A) &&
2465 	    !(AR_SREV_9271(ah)))
2466 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2467 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2468 	else if (AR_SREV_9100(ah))
2469 		pCap->rx_chainmask = 0x7;
2470 	else
2471 		/* Use rx_chainmask from EEPROM. */
2472 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2473 
2474 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2475 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2476 	ah->txchainmask = pCap->tx_chainmask;
2477 	ah->rxchainmask = pCap->rx_chainmask;
2478 
2479 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2480 
2481 	/* enable key search for every frame in an aggregate */
2482 	if (AR_SREV_9300_20_OR_LATER(ah))
2483 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2484 
2485 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2486 
2487 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2488 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2489 	else
2490 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2491 
2492 	if (AR_SREV_9271(ah))
2493 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2494 	else if (AR_DEVID_7010(ah))
2495 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2496 	else if (AR_SREV_9300_20_OR_LATER(ah))
2497 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2498 	else if (AR_SREV_9287_11_OR_LATER(ah))
2499 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2500 	else if (AR_SREV_9285_12_OR_LATER(ah))
2501 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2502 	else if (AR_SREV_9280_20_OR_LATER(ah))
2503 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2504 	else
2505 		pCap->num_gpio_pins = AR_NUM_GPIO;
2506 
2507 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2508 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2509 	else
2510 		pCap->rts_aggr_limit = (8 * 1024);
2511 
2512 #ifdef CONFIG_ATH9K_RFKILL
2513 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2514 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2515 		ah->rfkill_gpio =
2516 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2517 		ah->rfkill_polarity =
2518 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2519 
2520 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2521 	}
2522 #endif
2523 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2524 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2525 	else
2526 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2527 
2528 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2529 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2530 	else
2531 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2532 
2533 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2534 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2535 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2536 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2537 
2538 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2539 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2540 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2541 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2542 		pCap->txs_len = sizeof(struct ar9003_txs);
2543 	} else {
2544 		pCap->tx_desc_len = sizeof(struct ath_desc);
2545 		if (AR_SREV_9280_20(ah))
2546 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2547 	}
2548 
2549 	if (AR_SREV_9300_20_OR_LATER(ah))
2550 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2551 
2552 	if (AR_SREV_9300_20_OR_LATER(ah))
2553 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2554 
2555 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2556 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2557 
2558 	if (AR_SREV_9285(ah)) {
2559 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2560 			ant_div_ctl1 =
2561 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2562 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2563 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2564 				ath_info(common, "Enable LNA combining\n");
2565 			}
2566 		}
2567 	}
2568 
2569 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2570 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2571 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2572 	}
2573 
2574 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2575 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2576 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2577 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2578 			ath_info(common, "Enable LNA combining\n");
2579 		}
2580 	}
2581 
2582 	if (ath9k_hw_dfs_tested(ah))
2583 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2584 
2585 	tx_chainmask = pCap->tx_chainmask;
2586 	rx_chainmask = pCap->rx_chainmask;
2587 	while (tx_chainmask || rx_chainmask) {
2588 		if (tx_chainmask & BIT(0))
2589 			pCap->max_txchains++;
2590 		if (rx_chainmask & BIT(0))
2591 			pCap->max_rxchains++;
2592 
2593 		tx_chainmask >>= 1;
2594 		rx_chainmask >>= 1;
2595 	}
2596 
2597 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2598 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2599 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2600 
2601 		if (AR_SREV_9462_20_OR_LATER(ah))
2602 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2603 	}
2604 
2605 	if (AR_SREV_9462(ah))
2606 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2607 
2608 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2609 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2610 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2611 
2612 	/*
2613 	 * Fast channel change across bands is available
2614 	 * only for AR9462 and AR9565.
2615 	 */
2616 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2617 		pCap->hw_caps |= ATH9K_HW_CAP_FCC_BAND_SWITCH;
2618 
2619 	return 0;
2620 }
2621 
2622 /****************************/
2623 /* GPIO / RFKILL / Antennae */
2624 /****************************/
2625 
2626 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2627 					 u32 gpio, u32 type)
2628 {
2629 	int addr;
2630 	u32 gpio_shift, tmp;
2631 
2632 	if (gpio > 11)
2633 		addr = AR_GPIO_OUTPUT_MUX3;
2634 	else if (gpio > 5)
2635 		addr = AR_GPIO_OUTPUT_MUX2;
2636 	else
2637 		addr = AR_GPIO_OUTPUT_MUX1;
2638 
2639 	gpio_shift = (gpio % 6) * 5;
2640 
2641 	if (AR_SREV_9280_20_OR_LATER(ah)
2642 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2643 		REG_RMW(ah, addr, (type << gpio_shift),
2644 			(0x1f << gpio_shift));
2645 	} else {
2646 		tmp = REG_READ(ah, addr);
2647 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2648 		tmp &= ~(0x1f << gpio_shift);
2649 		tmp |= (type << gpio_shift);
2650 		REG_WRITE(ah, addr, tmp);
2651 	}
2652 }
2653 
2654 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2655 {
2656 	u32 gpio_shift;
2657 
2658 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2659 
2660 	if (AR_DEVID_7010(ah)) {
2661 		gpio_shift = gpio;
2662 		REG_RMW(ah, AR7010_GPIO_OE,
2663 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2664 			(AR7010_GPIO_OE_MASK << gpio_shift));
2665 		return;
2666 	}
2667 
2668 	gpio_shift = gpio << 1;
2669 	REG_RMW(ah,
2670 		AR_GPIO_OE_OUT,
2671 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2672 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2673 }
2674 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2675 
2676 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2677 {
2678 #define MS_REG_READ(x, y) \
2679 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2680 
2681 	if (gpio >= ah->caps.num_gpio_pins)
2682 		return 0xffffffff;
2683 
2684 	if (AR_DEVID_7010(ah)) {
2685 		u32 val;
2686 		val = REG_READ(ah, AR7010_GPIO_IN);
2687 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2688 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2689 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2690 			AR_GPIO_BIT(gpio)) != 0;
2691 	else if (AR_SREV_9271(ah))
2692 		return MS_REG_READ(AR9271, gpio) != 0;
2693 	else if (AR_SREV_9287_11_OR_LATER(ah))
2694 		return MS_REG_READ(AR9287, gpio) != 0;
2695 	else if (AR_SREV_9285_12_OR_LATER(ah))
2696 		return MS_REG_READ(AR9285, gpio) != 0;
2697 	else if (AR_SREV_9280_20_OR_LATER(ah))
2698 		return MS_REG_READ(AR928X, gpio) != 0;
2699 	else
2700 		return MS_REG_READ(AR, gpio) != 0;
2701 }
2702 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2703 
2704 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2705 			 u32 ah_signal_type)
2706 {
2707 	u32 gpio_shift;
2708 
2709 	if (AR_DEVID_7010(ah)) {
2710 		gpio_shift = gpio;
2711 		REG_RMW(ah, AR7010_GPIO_OE,
2712 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2713 			(AR7010_GPIO_OE_MASK << gpio_shift));
2714 		return;
2715 	}
2716 
2717 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2718 	gpio_shift = 2 * gpio;
2719 	REG_RMW(ah,
2720 		AR_GPIO_OE_OUT,
2721 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2722 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2723 }
2724 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2725 
2726 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2727 {
2728 	if (AR_DEVID_7010(ah)) {
2729 		val = val ? 0 : 1;
2730 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2731 			AR_GPIO_BIT(gpio));
2732 		return;
2733 	}
2734 
2735 	if (AR_SREV_9271(ah))
2736 		val = ~val;
2737 
2738 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2739 		AR_GPIO_BIT(gpio));
2740 }
2741 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2742 
2743 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2744 {
2745 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2746 }
2747 EXPORT_SYMBOL(ath9k_hw_setantenna);
2748 
2749 /*********************/
2750 /* General Operation */
2751 /*********************/
2752 
2753 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2754 {
2755 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2756 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2757 
2758 	if (phybits & AR_PHY_ERR_RADAR)
2759 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2760 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2761 		bits |= ATH9K_RX_FILTER_PHYERR;
2762 
2763 	return bits;
2764 }
2765 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2766 
2767 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2768 {
2769 	u32 phybits;
2770 
2771 	ENABLE_REGWRITE_BUFFER(ah);
2772 
2773 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2774 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2775 
2776 	REG_WRITE(ah, AR_RX_FILTER, bits);
2777 
2778 	phybits = 0;
2779 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2780 		phybits |= AR_PHY_ERR_RADAR;
2781 	if (bits & ATH9K_RX_FILTER_PHYERR)
2782 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2783 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2784 
2785 	if (phybits)
2786 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2787 	else
2788 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2789 
2790 	REGWRITE_BUFFER_FLUSH(ah);
2791 }
2792 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2793 
2794 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2795 {
2796 	if (ath9k_hw_mci_is_enabled(ah))
2797 		ar9003_mci_bt_gain_ctrl(ah);
2798 
2799 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2800 		return false;
2801 
2802 	ath9k_hw_init_pll(ah, NULL);
2803 	ah->htc_reset_init = true;
2804 	return true;
2805 }
2806 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2807 
2808 bool ath9k_hw_disable(struct ath_hw *ah)
2809 {
2810 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2811 		return false;
2812 
2813 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2814 		return false;
2815 
2816 	ath9k_hw_init_pll(ah, NULL);
2817 	return true;
2818 }
2819 EXPORT_SYMBOL(ath9k_hw_disable);
2820 
2821 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2822 {
2823 	enum eeprom_param gain_param;
2824 
2825 	if (IS_CHAN_2GHZ(chan))
2826 		gain_param = EEP_ANTENNA_GAIN_2G;
2827 	else
2828 		gain_param = EEP_ANTENNA_GAIN_5G;
2829 
2830 	return ah->eep_ops->get_eeprom(ah, gain_param);
2831 }
2832 
2833 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2834 			    bool test)
2835 {
2836 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2837 	struct ieee80211_channel *channel;
2838 	int chan_pwr, new_pwr, max_gain;
2839 	int ant_gain, ant_reduction = 0;
2840 
2841 	if (!chan)
2842 		return;
2843 
2844 	channel = chan->chan;
2845 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2846 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2847 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2848 
2849 	ant_gain = get_antenna_gain(ah, chan);
2850 	if (ant_gain > max_gain)
2851 		ant_reduction = ant_gain - max_gain;
2852 
2853 	ah->eep_ops->set_txpower(ah, chan,
2854 				 ath9k_regd_get_ctl(reg, chan),
2855 				 ant_reduction, new_pwr, test);
2856 }
2857 
2858 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2859 {
2860 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2861 	struct ath9k_channel *chan = ah->curchan;
2862 	struct ieee80211_channel *channel = chan->chan;
2863 
2864 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2865 	if (test)
2866 		channel->max_power = MAX_RATE_POWER / 2;
2867 
2868 	ath9k_hw_apply_txpower(ah, chan, test);
2869 
2870 	if (test)
2871 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2872 }
2873 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2874 
2875 void ath9k_hw_setopmode(struct ath_hw *ah)
2876 {
2877 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2878 }
2879 EXPORT_SYMBOL(ath9k_hw_setopmode);
2880 
2881 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2882 {
2883 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2884 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2885 }
2886 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2887 
2888 void ath9k_hw_write_associd(struct ath_hw *ah)
2889 {
2890 	struct ath_common *common = ath9k_hw_common(ah);
2891 
2892 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2893 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2894 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2895 }
2896 EXPORT_SYMBOL(ath9k_hw_write_associd);
2897 
2898 #define ATH9K_MAX_TSF_READ 10
2899 
2900 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2901 {
2902 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2903 	int i;
2904 
2905 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2906 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2907 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2908 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2909 		if (tsf_upper2 == tsf_upper1)
2910 			break;
2911 		tsf_upper1 = tsf_upper2;
2912 	}
2913 
2914 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2915 
2916 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2917 }
2918 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2919 
2920 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2921 {
2922 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2923 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2924 }
2925 EXPORT_SYMBOL(ath9k_hw_settsf64);
2926 
2927 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2928 {
2929 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2930 			   AH_TSF_WRITE_TIMEOUT))
2931 		ath_dbg(ath9k_hw_common(ah), RESET,
2932 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2933 
2934 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2935 }
2936 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2937 
2938 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2939 {
2940 	if (set)
2941 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2942 	else
2943 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2944 }
2945 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2946 
2947 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2948 {
2949 	u32 macmode;
2950 
2951 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2952 		macmode = AR_2040_JOINED_RX_CLEAR;
2953 	else
2954 		macmode = 0;
2955 
2956 	REG_WRITE(ah, AR_2040_MODE, macmode);
2957 }
2958 
2959 /* HW Generic timers configuration */
2960 
2961 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2962 {
2963 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2964 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2965 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2966 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2967 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2968 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2969 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2970 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2971 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2972 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2973 				AR_NDP2_TIMER_MODE, 0x0002},
2974 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2975 				AR_NDP2_TIMER_MODE, 0x0004},
2976 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2977 				AR_NDP2_TIMER_MODE, 0x0008},
2978 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2979 				AR_NDP2_TIMER_MODE, 0x0010},
2980 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2981 				AR_NDP2_TIMER_MODE, 0x0020},
2982 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2983 				AR_NDP2_TIMER_MODE, 0x0040},
2984 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2985 				AR_NDP2_TIMER_MODE, 0x0080}
2986 };
2987 
2988 /* HW generic timer primitives */
2989 
2990 /* compute and clear index of rightmost 1 */
2991 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2992 {
2993 	u32 b;
2994 
2995 	b = *mask;
2996 	b &= (0-b);
2997 	*mask &= ~b;
2998 	b *= debruijn32;
2999 	b >>= 27;
3000 
3001 	return timer_table->gen_timer_index[b];
3002 }
3003 
3004 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3005 {
3006 	return REG_READ(ah, AR_TSF_L32);
3007 }
3008 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3009 
3010 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3011 					  void (*trigger)(void *),
3012 					  void (*overflow)(void *),
3013 					  void *arg,
3014 					  u8 timer_index)
3015 {
3016 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3017 	struct ath_gen_timer *timer;
3018 
3019 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3020 	if (timer == NULL)
3021 		return NULL;
3022 
3023 	/* allocate a hardware generic timer slot */
3024 	timer_table->timers[timer_index] = timer;
3025 	timer->index = timer_index;
3026 	timer->trigger = trigger;
3027 	timer->overflow = overflow;
3028 	timer->arg = arg;
3029 
3030 	return timer;
3031 }
3032 EXPORT_SYMBOL(ath_gen_timer_alloc);
3033 
3034 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3035 			      struct ath_gen_timer *timer,
3036 			      u32 trig_timeout,
3037 			      u32 timer_period)
3038 {
3039 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3040 	u32 tsf, timer_next;
3041 
3042 	BUG_ON(!timer_period);
3043 
3044 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3045 
3046 	tsf = ath9k_hw_gettsf32(ah);
3047 
3048 	timer_next = tsf + trig_timeout;
3049 
3050 	ath_dbg(ath9k_hw_common(ah), BTCOEX,
3051 		"current tsf %x period %x timer_next %x\n",
3052 		tsf, timer_period, timer_next);
3053 
3054 	/*
3055 	 * Program generic timer registers
3056 	 */
3057 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3058 		 timer_next);
3059 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3060 		  timer_period);
3061 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3062 		    gen_tmr_configuration[timer->index].mode_mask);
3063 
3064 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3065 		/*
3066 		 * Starting from AR9462, each generic timer can select which tsf
3067 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3068 		 * 8 - 15  use tsf2.
3069 		 */
3070 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3071 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3072 				       (1 << timer->index));
3073 		else
3074 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3075 				       (1 << timer->index));
3076 	}
3077 
3078 	/* Enable both trigger and thresh interrupt masks */
3079 	REG_SET_BIT(ah, AR_IMR_S5,
3080 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3081 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3082 }
3083 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3084 
3085 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3086 {
3087 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3088 
3089 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3090 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3091 		return;
3092 	}
3093 
3094 	/* Clear generic timer enable bits. */
3095 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3096 			gen_tmr_configuration[timer->index].mode_mask);
3097 
3098 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3099 		/*
3100 		 * Need to switch back to TSF if it was using TSF2.
3101 		 */
3102 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3103 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3104 				    (1 << timer->index));
3105 		}
3106 	}
3107 
3108 	/* Disable both trigger and thresh interrupt masks */
3109 	REG_CLR_BIT(ah, AR_IMR_S5,
3110 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3111 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3112 
3113 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3114 }
3115 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3116 
3117 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3118 {
3119 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3120 
3121 	/* free the hardware generic timer slot */
3122 	timer_table->timers[timer->index] = NULL;
3123 	kfree(timer);
3124 }
3125 EXPORT_SYMBOL(ath_gen_timer_free);
3126 
3127 /*
3128  * Generic Timer Interrupts handling
3129  */
3130 void ath_gen_timer_isr(struct ath_hw *ah)
3131 {
3132 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3133 	struct ath_gen_timer *timer;
3134 	struct ath_common *common = ath9k_hw_common(ah);
3135 	u32 trigger_mask, thresh_mask, index;
3136 
3137 	/* get hardware generic timer interrupt status */
3138 	trigger_mask = ah->intr_gen_timer_trigger;
3139 	thresh_mask = ah->intr_gen_timer_thresh;
3140 	trigger_mask &= timer_table->timer_mask.val;
3141 	thresh_mask &= timer_table->timer_mask.val;
3142 
3143 	trigger_mask &= ~thresh_mask;
3144 
3145 	while (thresh_mask) {
3146 		index = rightmost_index(timer_table, &thresh_mask);
3147 		timer = timer_table->timers[index];
3148 		BUG_ON(!timer);
3149 		ath_dbg(common, BTCOEX, "TSF overflow for Gen timer %d\n",
3150 			index);
3151 		timer->overflow(timer->arg);
3152 	}
3153 
3154 	while (trigger_mask) {
3155 		index = rightmost_index(timer_table, &trigger_mask);
3156 		timer = timer_table->timers[index];
3157 		BUG_ON(!timer);
3158 		ath_dbg(common, BTCOEX,
3159 			"Gen timer[%d] trigger\n", index);
3160 		timer->trigger(timer->arg);
3161 	}
3162 }
3163 EXPORT_SYMBOL(ath_gen_timer_isr);
3164 
3165 /********/
3166 /* HTC  */
3167 /********/
3168 
3169 static struct {
3170 	u32 version;
3171 	const char * name;
3172 } ath_mac_bb_names[] = {
3173 	/* Devices with external radios */
3174 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3175 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3176 	{ AR_SREV_VERSION_9100,		"9100" },
3177 	{ AR_SREV_VERSION_9160,		"9160" },
3178 	/* Single-chip solutions */
3179 	{ AR_SREV_VERSION_9280,		"9280" },
3180 	{ AR_SREV_VERSION_9285,		"9285" },
3181 	{ AR_SREV_VERSION_9287,         "9287" },
3182 	{ AR_SREV_VERSION_9271,         "9271" },
3183 	{ AR_SREV_VERSION_9300,         "9300" },
3184 	{ AR_SREV_VERSION_9330,         "9330" },
3185 	{ AR_SREV_VERSION_9340,		"9340" },
3186 	{ AR_SREV_VERSION_9485,         "9485" },
3187 	{ AR_SREV_VERSION_9462,         "9462" },
3188 	{ AR_SREV_VERSION_9550,         "9550" },
3189 	{ AR_SREV_VERSION_9565,         "9565" },
3190 };
3191 
3192 /* For devices with external radios */
3193 static struct {
3194 	u16 version;
3195 	const char * name;
3196 } ath_rf_names[] = {
3197 	{ 0,				"5133" },
3198 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3199 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3200 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3201 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3202 };
3203 
3204 /*
3205  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3206  */
3207 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3208 {
3209 	int i;
3210 
3211 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3212 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3213 			return ath_mac_bb_names[i].name;
3214 		}
3215 	}
3216 
3217 	return "????";
3218 }
3219 
3220 /*
3221  * Return the RF name. "????" is returned if the RF is unknown.
3222  * Used for devices with external radios.
3223  */
3224 static const char *ath9k_hw_rf_name(u16 rf_version)
3225 {
3226 	int i;
3227 
3228 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3229 		if (ath_rf_names[i].version == rf_version) {
3230 			return ath_rf_names[i].name;
3231 		}
3232 	}
3233 
3234 	return "????";
3235 }
3236 
3237 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3238 {
3239 	int used;
3240 
3241 	/* chipsets >= AR9280 are single-chip */
3242 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3243 		used = scnprintf(hw_name, len,
3244 				 "Atheros AR%s Rev:%x",
3245 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3246 				 ah->hw_version.macRev);
3247 	}
3248 	else {
3249 		used = scnprintf(hw_name, len,
3250 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3251 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3252 				 ah->hw_version.macRev,
3253 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3254 						  & AR_RADIO_SREV_MAJOR)),
3255 				 ah->hw_version.phyRev);
3256 	}
3257 
3258 	hw_name[used] = '\0';
3259 }
3260 EXPORT_SYMBOL(ath9k_hw_name);
3261