1 /* 2 * Copyright (c) 2008-2011 Atheros Communications Inc. 3 * 4 * Permission to use, copy, modify, and/or distribute this software for any 5 * purpose with or without fee is hereby granted, provided that the above 6 * copyright notice and this permission notice appear in all copies. 7 * 8 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES 9 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF 10 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR 11 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES 12 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN 13 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF 14 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE. 15 */ 16 17 #include <linux/io.h> 18 #include <linux/slab.h> 19 #include <linux/module.h> 20 #include <linux/time.h> 21 #include <linux/bitops.h> 22 #include <linux/etherdevice.h> 23 #include <linux/gpio.h> 24 #include <asm/unaligned.h> 25 26 #include "hw.h" 27 #include "hw-ops.h" 28 #include "ar9003_mac.h" 29 #include "ar9003_mci.h" 30 #include "ar9003_phy.h" 31 #include "ath9k.h" 32 33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type); 34 35 MODULE_AUTHOR("Atheros Communications"); 36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards."); 37 MODULE_LICENSE("Dual BSD/GPL"); 38 39 static void ath9k_hw_set_clockrate(struct ath_hw *ah) 40 { 41 struct ath_common *common = ath9k_hw_common(ah); 42 struct ath9k_channel *chan = ah->curchan; 43 unsigned int clockrate; 44 45 /* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */ 46 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) 47 clockrate = 117; 48 else if (!chan) /* should really check for CCK instead */ 49 clockrate = ATH9K_CLOCK_RATE_CCK; 50 else if (IS_CHAN_2GHZ(chan)) 51 clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM; 52 else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK) 53 clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM; 54 else 55 clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM; 56 57 if (chan) { 58 if (IS_CHAN_HT40(chan)) 59 clockrate *= 2; 60 if (IS_CHAN_HALF_RATE(chan)) 61 clockrate /= 2; 62 if (IS_CHAN_QUARTER_RATE(chan)) 63 clockrate /= 4; 64 } 65 66 common->clockrate = clockrate; 67 } 68 69 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs) 70 { 71 struct ath_common *common = ath9k_hw_common(ah); 72 73 return usecs * common->clockrate; 74 } 75 76 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout) 77 { 78 int i; 79 80 BUG_ON(timeout < AH_TIME_QUANTUM); 81 82 for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) { 83 if ((REG_READ(ah, reg) & mask) == val) 84 return true; 85 86 udelay(AH_TIME_QUANTUM); 87 } 88 89 ath_dbg(ath9k_hw_common(ah), ANY, 90 "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n", 91 timeout, reg, REG_READ(ah, reg), mask, val); 92 93 return false; 94 } 95 EXPORT_SYMBOL(ath9k_hw_wait); 96 97 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan, 98 int hw_delay) 99 { 100 hw_delay /= 10; 101 102 if (IS_CHAN_HALF_RATE(chan)) 103 hw_delay *= 2; 104 else if (IS_CHAN_QUARTER_RATE(chan)) 105 hw_delay *= 4; 106 107 udelay(hw_delay + BASE_ACTIVATE_DELAY); 108 } 109 110 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array, 111 int column, unsigned int *writecnt) 112 { 113 int r; 114 115 ENABLE_REGWRITE_BUFFER(ah); 116 for (r = 0; r < array->ia_rows; r++) { 117 REG_WRITE(ah, INI_RA(array, r, 0), 118 INI_RA(array, r, column)); 119 DO_DELAY(*writecnt); 120 } 121 REGWRITE_BUFFER_FLUSH(ah); 122 } 123 124 void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size) 125 { 126 u32 *tmp_reg_list, *tmp_data; 127 int i; 128 129 tmp_reg_list = kmalloc_array(size, sizeof(u32), GFP_KERNEL); 130 if (!tmp_reg_list) { 131 dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__); 132 return; 133 } 134 135 tmp_data = kmalloc_array(size, sizeof(u32), GFP_KERNEL); 136 if (!tmp_data) { 137 dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__); 138 goto error_tmp_data; 139 } 140 141 for (i = 0; i < size; i++) 142 tmp_reg_list[i] = array[i][0]; 143 144 REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size); 145 146 for (i = 0; i < size; i++) 147 array[i][1] = tmp_data[i]; 148 149 kfree(tmp_data); 150 error_tmp_data: 151 kfree(tmp_reg_list); 152 } 153 154 u32 ath9k_hw_reverse_bits(u32 val, u32 n) 155 { 156 u32 retval; 157 int i; 158 159 for (i = 0, retval = 0; i < n; i++) { 160 retval = (retval << 1) | (val & 1); 161 val >>= 1; 162 } 163 return retval; 164 } 165 166 u16 ath9k_hw_computetxtime(struct ath_hw *ah, 167 u8 phy, int kbps, 168 u32 frameLen, u16 rateix, 169 bool shortPreamble) 170 { 171 u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime; 172 173 if (kbps == 0) 174 return 0; 175 176 switch (phy) { 177 case WLAN_RC_PHY_CCK: 178 phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS; 179 if (shortPreamble) 180 phyTime >>= 1; 181 numBits = frameLen << 3; 182 txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps); 183 break; 184 case WLAN_RC_PHY_OFDM: 185 if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) { 186 bitsPerSymbol = 187 ((kbps >> 2) * OFDM_SYMBOL_TIME_QUARTER) / 1000; 188 numBits = OFDM_PLCP_BITS + (frameLen << 3); 189 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 190 txTime = OFDM_SIFS_TIME_QUARTER 191 + OFDM_PREAMBLE_TIME_QUARTER 192 + (numSymbols * OFDM_SYMBOL_TIME_QUARTER); 193 } else if (ah->curchan && 194 IS_CHAN_HALF_RATE(ah->curchan)) { 195 bitsPerSymbol = 196 ((kbps >> 1) * OFDM_SYMBOL_TIME_HALF) / 1000; 197 numBits = OFDM_PLCP_BITS + (frameLen << 3); 198 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 199 txTime = OFDM_SIFS_TIME_HALF + 200 OFDM_PREAMBLE_TIME_HALF 201 + (numSymbols * OFDM_SYMBOL_TIME_HALF); 202 } else { 203 bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000; 204 numBits = OFDM_PLCP_BITS + (frameLen << 3); 205 numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol); 206 txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME 207 + (numSymbols * OFDM_SYMBOL_TIME); 208 } 209 break; 210 default: 211 ath_err(ath9k_hw_common(ah), 212 "Unknown phy %u (rate ix %u)\n", phy, rateix); 213 txTime = 0; 214 break; 215 } 216 217 return txTime; 218 } 219 EXPORT_SYMBOL(ath9k_hw_computetxtime); 220 221 void ath9k_hw_get_channel_centers(struct ath_hw *ah, 222 struct ath9k_channel *chan, 223 struct chan_centers *centers) 224 { 225 int8_t extoff; 226 227 if (!IS_CHAN_HT40(chan)) { 228 centers->ctl_center = centers->ext_center = 229 centers->synth_center = chan->channel; 230 return; 231 } 232 233 if (IS_CHAN_HT40PLUS(chan)) { 234 centers->synth_center = 235 chan->channel + HT40_CHANNEL_CENTER_SHIFT; 236 extoff = 1; 237 } else { 238 centers->synth_center = 239 chan->channel - HT40_CHANNEL_CENTER_SHIFT; 240 extoff = -1; 241 } 242 243 centers->ctl_center = 244 centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT); 245 /* 25 MHz spacing is supported by hw but not on upper layers */ 246 centers->ext_center = 247 centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT); 248 } 249 250 /******************/ 251 /* Chip Revisions */ 252 /******************/ 253 254 static bool ath9k_hw_read_revisions(struct ath_hw *ah) 255 { 256 u32 srev; 257 u32 val; 258 259 if (ah->get_mac_revision) 260 ah->hw_version.macRev = ah->get_mac_revision(); 261 262 switch (ah->hw_version.devid) { 263 case AR5416_AR9100_DEVID: 264 ah->hw_version.macVersion = AR_SREV_VERSION_9100; 265 break; 266 case AR9300_DEVID_AR9330: 267 ah->hw_version.macVersion = AR_SREV_VERSION_9330; 268 if (!ah->get_mac_revision) { 269 val = REG_READ(ah, AR_SREV); 270 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 271 } 272 return true; 273 case AR9300_DEVID_AR9340: 274 ah->hw_version.macVersion = AR_SREV_VERSION_9340; 275 return true; 276 case AR9300_DEVID_QCA955X: 277 ah->hw_version.macVersion = AR_SREV_VERSION_9550; 278 return true; 279 case AR9300_DEVID_AR953X: 280 ah->hw_version.macVersion = AR_SREV_VERSION_9531; 281 return true; 282 case AR9300_DEVID_QCA956X: 283 ah->hw_version.macVersion = AR_SREV_VERSION_9561; 284 return true; 285 } 286 287 srev = REG_READ(ah, AR_SREV); 288 289 if (srev == -1) { 290 ath_err(ath9k_hw_common(ah), 291 "Failed to read SREV register"); 292 return false; 293 } 294 295 val = srev & AR_SREV_ID; 296 297 if (val == 0xFF) { 298 val = srev; 299 ah->hw_version.macVersion = 300 (val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S; 301 ah->hw_version.macRev = MS(val, AR_SREV_REVISION2); 302 303 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 304 ah->is_pciexpress = true; 305 else 306 ah->is_pciexpress = (val & 307 AR_SREV_TYPE2_HOST_MODE) ? 0 : 1; 308 } else { 309 if (!AR_SREV_9100(ah)) 310 ah->hw_version.macVersion = MS(val, AR_SREV_VERSION); 311 312 ah->hw_version.macRev = val & AR_SREV_REVISION; 313 314 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE) 315 ah->is_pciexpress = true; 316 } 317 318 return true; 319 } 320 321 /************************************/ 322 /* HW Attach, Detach, Init Routines */ 323 /************************************/ 324 325 static void ath9k_hw_disablepcie(struct ath_hw *ah) 326 { 327 if (!AR_SREV_5416(ah)) 328 return; 329 330 REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00); 331 REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924); 332 REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029); 333 REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824); 334 REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579); 335 REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000); 336 REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40); 337 REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554); 338 REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007); 339 340 REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000); 341 } 342 343 /* This should work for all families including legacy */ 344 static bool ath9k_hw_chip_test(struct ath_hw *ah) 345 { 346 struct ath_common *common = ath9k_hw_common(ah); 347 u32 regAddr[2] = { AR_STA_ID0 }; 348 u32 regHold[2]; 349 static const u32 patternData[4] = { 350 0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999 351 }; 352 int i, j, loop_max; 353 354 if (!AR_SREV_9300_20_OR_LATER(ah)) { 355 loop_max = 2; 356 regAddr[1] = AR_PHY_BASE + (8 << 2); 357 } else 358 loop_max = 1; 359 360 for (i = 0; i < loop_max; i++) { 361 u32 addr = regAddr[i]; 362 u32 wrData, rdData; 363 364 regHold[i] = REG_READ(ah, addr); 365 for (j = 0; j < 0x100; j++) { 366 wrData = (j << 16) | j; 367 REG_WRITE(ah, addr, wrData); 368 rdData = REG_READ(ah, addr); 369 if (rdData != wrData) { 370 ath_err(common, 371 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 372 addr, wrData, rdData); 373 return false; 374 } 375 } 376 for (j = 0; j < 4; j++) { 377 wrData = patternData[j]; 378 REG_WRITE(ah, addr, wrData); 379 rdData = REG_READ(ah, addr); 380 if (wrData != rdData) { 381 ath_err(common, 382 "address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n", 383 addr, wrData, rdData); 384 return false; 385 } 386 } 387 REG_WRITE(ah, regAddr[i], regHold[i]); 388 } 389 udelay(100); 390 391 return true; 392 } 393 394 static void ath9k_hw_init_config(struct ath_hw *ah) 395 { 396 struct ath_common *common = ath9k_hw_common(ah); 397 398 ah->config.dma_beacon_response_time = 1; 399 ah->config.sw_beacon_response_time = 6; 400 ah->config.cwm_ignore_extcca = false; 401 ah->config.analog_shiftreg = 1; 402 403 ah->config.rx_intr_mitigation = true; 404 405 if (AR_SREV_9300_20_OR_LATER(ah)) { 406 ah->config.rimt_last = 500; 407 ah->config.rimt_first = 2000; 408 } else { 409 ah->config.rimt_last = 250; 410 ah->config.rimt_first = 700; 411 } 412 413 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) 414 ah->config.pll_pwrsave = 7; 415 416 /* 417 * We need this for PCI devices only (Cardbus, PCI, miniPCI) 418 * _and_ if on non-uniprocessor systems (Multiprocessor/HT). 419 * This means we use it for all AR5416 devices, and the few 420 * minor PCI AR9280 devices out there. 421 * 422 * Serialization is required because these devices do not handle 423 * well the case of two concurrent reads/writes due to the latency 424 * involved. During one read/write another read/write can be issued 425 * on another CPU while the previous read/write may still be working 426 * on our hardware, if we hit this case the hardware poops in a loop. 427 * We prevent this by serializing reads and writes. 428 * 429 * This issue is not present on PCI-Express devices or pre-AR5416 430 * devices (legacy, 802.11abg). 431 */ 432 if (num_possible_cpus() > 1) 433 ah->config.serialize_regmode = SER_REG_MODE_AUTO; 434 435 if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) { 436 if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI || 437 ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) && 438 !ah->is_pciexpress)) { 439 ah->config.serialize_regmode = SER_REG_MODE_ON; 440 } else { 441 ah->config.serialize_regmode = SER_REG_MODE_OFF; 442 } 443 } 444 445 ath_dbg(common, RESET, "serialize_regmode is %d\n", 446 ah->config.serialize_regmode); 447 448 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 449 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1; 450 else 451 ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD; 452 } 453 454 static void ath9k_hw_init_defaults(struct ath_hw *ah) 455 { 456 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 457 458 regulatory->country_code = CTRY_DEFAULT; 459 regulatory->power_limit = MAX_COMBINED_POWER; 460 461 ah->hw_version.magic = AR5416_MAGIC; 462 ah->hw_version.subvendorid = 0; 463 464 ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE | 465 AR_STA_ID1_MCAST_KSRCH; 466 if (AR_SREV_9100(ah)) 467 ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX; 468 469 ah->slottime = 9; 470 ah->globaltxtimeout = (u32) -1; 471 ah->power_mode = ATH9K_PM_UNDEFINED; 472 ah->htc_reset_init = true; 473 474 ah->tpc_enabled = false; 475 476 ah->ani_function = ATH9K_ANI_ALL; 477 if (!AR_SREV_9300_20_OR_LATER(ah)) 478 ah->ani_function &= ~ATH9K_ANI_MRC_CCK; 479 480 if (AR_SREV_9285(ah) || AR_SREV_9271(ah)) 481 ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S); 482 else 483 ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S); 484 } 485 486 static void ath9k_hw_init_macaddr(struct ath_hw *ah) 487 { 488 struct ath_common *common = ath9k_hw_common(ah); 489 int i; 490 u16 eeval; 491 static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW }; 492 493 /* MAC address may already be loaded via ath9k_platform_data */ 494 if (is_valid_ether_addr(common->macaddr)) 495 return; 496 497 for (i = 0; i < 3; i++) { 498 eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]); 499 common->macaddr[2 * i] = eeval >> 8; 500 common->macaddr[2 * i + 1] = eeval & 0xff; 501 } 502 503 if (is_valid_ether_addr(common->macaddr)) 504 return; 505 506 ath_err(common, "eeprom contains invalid mac address: %pM\n", 507 common->macaddr); 508 509 eth_random_addr(common->macaddr); 510 ath_err(common, "random mac address will be used: %pM\n", 511 common->macaddr); 512 513 return; 514 } 515 516 static int ath9k_hw_post_init(struct ath_hw *ah) 517 { 518 struct ath_common *common = ath9k_hw_common(ah); 519 int ecode; 520 521 if (common->bus_ops->ath_bus_type != ATH_USB) { 522 if (!ath9k_hw_chip_test(ah)) 523 return -ENODEV; 524 } 525 526 if (!AR_SREV_9300_20_OR_LATER(ah)) { 527 ecode = ar9002_hw_rf_claim(ah); 528 if (ecode != 0) 529 return ecode; 530 } 531 532 ecode = ath9k_hw_eeprom_init(ah); 533 if (ecode != 0) 534 return ecode; 535 536 ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n", 537 ah->eep_ops->get_eeprom_ver(ah), 538 ah->eep_ops->get_eeprom_rev(ah)); 539 540 ath9k_hw_ani_init(ah); 541 542 /* 543 * EEPROM needs to be initialized before we do this. 544 * This is required for regulatory compliance. 545 */ 546 if (AR_SREV_9300_20_OR_LATER(ah)) { 547 u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 548 if ((regdmn & 0xF0) == CTL_FCC) { 549 ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ; 550 ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ; 551 } 552 } 553 554 return 0; 555 } 556 557 static int ath9k_hw_attach_ops(struct ath_hw *ah) 558 { 559 if (!AR_SREV_9300_20_OR_LATER(ah)) 560 return ar9002_hw_attach_ops(ah); 561 562 ar9003_hw_attach_ops(ah); 563 return 0; 564 } 565 566 /* Called for all hardware families */ 567 static int __ath9k_hw_init(struct ath_hw *ah) 568 { 569 struct ath_common *common = ath9k_hw_common(ah); 570 int r = 0; 571 572 if (!ath9k_hw_read_revisions(ah)) { 573 ath_err(common, "Could not read hardware revisions"); 574 return -EOPNOTSUPP; 575 } 576 577 switch (ah->hw_version.macVersion) { 578 case AR_SREV_VERSION_5416_PCI: 579 case AR_SREV_VERSION_5416_PCIE: 580 case AR_SREV_VERSION_9160: 581 case AR_SREV_VERSION_9100: 582 case AR_SREV_VERSION_9280: 583 case AR_SREV_VERSION_9285: 584 case AR_SREV_VERSION_9287: 585 case AR_SREV_VERSION_9271: 586 case AR_SREV_VERSION_9300: 587 case AR_SREV_VERSION_9330: 588 case AR_SREV_VERSION_9485: 589 case AR_SREV_VERSION_9340: 590 case AR_SREV_VERSION_9462: 591 case AR_SREV_VERSION_9550: 592 case AR_SREV_VERSION_9565: 593 case AR_SREV_VERSION_9531: 594 case AR_SREV_VERSION_9561: 595 break; 596 default: 597 ath_err(common, 598 "Mac Chip Rev 0x%02x.%x is not supported by this driver\n", 599 ah->hw_version.macVersion, ah->hw_version.macRev); 600 return -EOPNOTSUPP; 601 } 602 603 /* 604 * Read back AR_WA into a permanent copy and set bits 14 and 17. 605 * We need to do this to avoid RMW of this register. We cannot 606 * read the reg when chip is asleep. 607 */ 608 if (AR_SREV_9300_20_OR_LATER(ah)) { 609 ah->WARegVal = REG_READ(ah, AR_WA); 610 ah->WARegVal |= (AR_WA_D3_L1_DISABLE | 611 AR_WA_ASPM_TIMER_BASED_DISABLE); 612 } 613 614 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 615 ath_err(common, "Couldn't reset chip\n"); 616 return -EIO; 617 } 618 619 if (AR_SREV_9565(ah)) { 620 ah->WARegVal |= AR_WA_BIT22; 621 REG_WRITE(ah, AR_WA, ah->WARegVal); 622 } 623 624 ath9k_hw_init_defaults(ah); 625 ath9k_hw_init_config(ah); 626 627 r = ath9k_hw_attach_ops(ah); 628 if (r) 629 return r; 630 631 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) { 632 ath_err(common, "Couldn't wakeup chip\n"); 633 return -EIO; 634 } 635 636 if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) || 637 AR_SREV_9330(ah) || AR_SREV_9550(ah)) 638 ah->is_pciexpress = false; 639 640 ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID); 641 ath9k_hw_init_cal_settings(ah); 642 643 if (!ah->is_pciexpress) 644 ath9k_hw_disablepcie(ah); 645 646 r = ath9k_hw_post_init(ah); 647 if (r) 648 return r; 649 650 ath9k_hw_init_mode_gain_regs(ah); 651 r = ath9k_hw_fill_cap_info(ah); 652 if (r) 653 return r; 654 655 ath9k_hw_init_macaddr(ah); 656 ath9k_hw_init_hang_checks(ah); 657 658 common->state = ATH_HW_INITIALIZED; 659 660 return 0; 661 } 662 663 int ath9k_hw_init(struct ath_hw *ah) 664 { 665 int ret; 666 struct ath_common *common = ath9k_hw_common(ah); 667 668 /* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */ 669 switch (ah->hw_version.devid) { 670 case AR5416_DEVID_PCI: 671 case AR5416_DEVID_PCIE: 672 case AR5416_AR9100_DEVID: 673 case AR9160_DEVID_PCI: 674 case AR9280_DEVID_PCI: 675 case AR9280_DEVID_PCIE: 676 case AR9285_DEVID_PCIE: 677 case AR9287_DEVID_PCI: 678 case AR9287_DEVID_PCIE: 679 case AR2427_DEVID_PCIE: 680 case AR9300_DEVID_PCIE: 681 case AR9300_DEVID_AR9485_PCIE: 682 case AR9300_DEVID_AR9330: 683 case AR9300_DEVID_AR9340: 684 case AR9300_DEVID_QCA955X: 685 case AR9300_DEVID_AR9580: 686 case AR9300_DEVID_AR9462: 687 case AR9485_DEVID_AR1111: 688 case AR9300_DEVID_AR9565: 689 case AR9300_DEVID_AR953X: 690 case AR9300_DEVID_QCA956X: 691 break; 692 default: 693 if (common->bus_ops->ath_bus_type == ATH_USB) 694 break; 695 ath_err(common, "Hardware device ID 0x%04x not supported\n", 696 ah->hw_version.devid); 697 return -EOPNOTSUPP; 698 } 699 700 ret = __ath9k_hw_init(ah); 701 if (ret) { 702 ath_err(common, 703 "Unable to initialize hardware; initialization status: %d\n", 704 ret); 705 return ret; 706 } 707 708 ath_dynack_init(ah); 709 710 return 0; 711 } 712 EXPORT_SYMBOL(ath9k_hw_init); 713 714 static void ath9k_hw_init_qos(struct ath_hw *ah) 715 { 716 ENABLE_REGWRITE_BUFFER(ah); 717 718 REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa); 719 REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210); 720 721 REG_WRITE(ah, AR_QOS_NO_ACK, 722 SM(2, AR_QOS_NO_ACK_TWO_BIT) | 723 SM(5, AR_QOS_NO_ACK_BIT_OFF) | 724 SM(0, AR_QOS_NO_ACK_BYTE_OFF)); 725 726 REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL); 727 REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF); 728 REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF); 729 REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF); 730 REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF); 731 732 REGWRITE_BUFFER_FLUSH(ah); 733 } 734 735 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah) 736 { 737 struct ath_common *common = ath9k_hw_common(ah); 738 int i = 0; 739 740 REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 741 udelay(100); 742 REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK); 743 744 while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) { 745 746 udelay(100); 747 748 if (WARN_ON_ONCE(i >= 100)) { 749 ath_err(common, "PLL4 measurement not done\n"); 750 break; 751 } 752 753 i++; 754 } 755 756 return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3; 757 } 758 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc); 759 760 static void ath9k_hw_init_pll(struct ath_hw *ah, 761 struct ath9k_channel *chan) 762 { 763 u32 pll; 764 765 pll = ath9k_hw_compute_pll_control(ah, chan); 766 767 if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) { 768 /* program BB PLL ki and kd value, ki=0x4, kd=0x40 */ 769 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 770 AR_CH0_BB_DPLL2_PLL_PWD, 0x1); 771 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 772 AR_CH0_DPLL2_KD, 0x40); 773 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 774 AR_CH0_DPLL2_KI, 0x4); 775 776 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 777 AR_CH0_BB_DPLL1_REFDIV, 0x5); 778 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 779 AR_CH0_BB_DPLL1_NINI, 0x58); 780 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1, 781 AR_CH0_BB_DPLL1_NFRAC, 0x0); 782 783 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 784 AR_CH0_BB_DPLL2_OUTDIV, 0x1); 785 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 786 AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1); 787 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 788 AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1); 789 790 /* program BB PLL phase_shift to 0x6 */ 791 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 792 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6); 793 794 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, 795 AR_CH0_BB_DPLL2_PLL_PWD, 0x0); 796 udelay(1000); 797 } else if (AR_SREV_9330(ah)) { 798 u32 ddr_dpll2, pll_control2, kd; 799 800 if (ah->is_clk_25mhz) { 801 ddr_dpll2 = 0x18e82f01; 802 pll_control2 = 0xe04a3d; 803 kd = 0x1d; 804 } else { 805 ddr_dpll2 = 0x19e82f01; 806 pll_control2 = 0x886666; 807 kd = 0x3d; 808 } 809 810 /* program DDR PLL ki and kd value */ 811 REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2); 812 813 /* program DDR PLL phase_shift */ 814 REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3, 815 AR_CH0_DPLL3_PHASE_SHIFT, 0x1); 816 817 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 818 pll | AR_RTC_9300_PLL_BYPASS); 819 udelay(1000); 820 821 /* program refdiv, nint, frac to RTC register */ 822 REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2); 823 824 /* program BB PLL kd and ki value */ 825 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd); 826 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06); 827 828 /* program BB PLL phase_shift */ 829 REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3, 830 AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1); 831 } else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) || 832 AR_SREV_9561(ah)) { 833 u32 regval, pll2_divint, pll2_divfrac, refdiv; 834 835 REG_WRITE(ah, AR_RTC_PLL_CONTROL, 836 pll | AR_RTC_9300_SOC_PLL_BYPASS); 837 udelay(1000); 838 839 REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16); 840 udelay(100); 841 842 if (ah->is_clk_25mhz) { 843 if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) { 844 pll2_divint = 0x1c; 845 pll2_divfrac = 0xa3d2; 846 refdiv = 1; 847 } else { 848 pll2_divint = 0x54; 849 pll2_divfrac = 0x1eb85; 850 refdiv = 3; 851 } 852 } else { 853 if (AR_SREV_9340(ah)) { 854 pll2_divint = 88; 855 pll2_divfrac = 0; 856 refdiv = 5; 857 } else { 858 pll2_divint = 0x11; 859 pll2_divfrac = (AR_SREV_9531(ah) || 860 AR_SREV_9561(ah)) ? 861 0x26665 : 0x26666; 862 refdiv = 1; 863 } 864 } 865 866 regval = REG_READ(ah, AR_PHY_PLL_MODE); 867 if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) 868 regval |= (0x1 << 22); 869 else 870 regval |= (0x1 << 16); 871 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 872 udelay(100); 873 874 REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) | 875 (pll2_divint << 18) | pll2_divfrac); 876 udelay(100); 877 878 regval = REG_READ(ah, AR_PHY_PLL_MODE); 879 if (AR_SREV_9340(ah)) 880 regval = (regval & 0x80071fff) | 881 (0x1 << 30) | 882 (0x1 << 13) | 883 (0x4 << 26) | 884 (0x18 << 19); 885 else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) { 886 regval = (regval & 0x01c00fff) | 887 (0x1 << 31) | 888 (0x2 << 29) | 889 (0xa << 25) | 890 (0x1 << 19); 891 892 if (AR_SREV_9531(ah)) 893 regval |= (0x6 << 12); 894 } else 895 regval = (regval & 0x80071fff) | 896 (0x3 << 30) | 897 (0x1 << 13) | 898 (0x4 << 26) | 899 (0x60 << 19); 900 REG_WRITE(ah, AR_PHY_PLL_MODE, regval); 901 902 if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) 903 REG_WRITE(ah, AR_PHY_PLL_MODE, 904 REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff); 905 else 906 REG_WRITE(ah, AR_PHY_PLL_MODE, 907 REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff); 908 909 udelay(1000); 910 } 911 912 if (AR_SREV_9565(ah)) 913 pll |= 0x40000; 914 REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll); 915 916 if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) || 917 AR_SREV_9550(ah)) 918 udelay(1000); 919 920 /* Switch the core clock for ar9271 to 117Mhz */ 921 if (AR_SREV_9271(ah)) { 922 udelay(500); 923 REG_WRITE(ah, 0x50040, 0x304); 924 } 925 926 udelay(RTC_PLL_SETTLE_DELAY); 927 928 REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK); 929 } 930 931 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah, 932 enum nl80211_iftype opmode) 933 { 934 u32 sync_default = AR_INTR_SYNC_DEFAULT; 935 u32 imr_reg = AR_IMR_TXERR | 936 AR_IMR_TXURN | 937 AR_IMR_RXERR | 938 AR_IMR_RXORN | 939 AR_IMR_BCNMISC; 940 u32 msi_cfg = 0; 941 942 if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) || 943 AR_SREV_9561(ah)) 944 sync_default &= ~AR_INTR_SYNC_HOST1_FATAL; 945 946 if (AR_SREV_9300_20_OR_LATER(ah)) { 947 imr_reg |= AR_IMR_RXOK_HP; 948 if (ah->config.rx_intr_mitigation) { 949 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 950 msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR; 951 } else { 952 imr_reg |= AR_IMR_RXOK_LP; 953 msi_cfg |= AR_INTCFG_MSI_RXOK; 954 } 955 } else { 956 if (ah->config.rx_intr_mitigation) { 957 imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR; 958 msi_cfg |= AR_INTCFG_MSI_RXINTM | AR_INTCFG_MSI_RXMINTR; 959 } else { 960 imr_reg |= AR_IMR_RXOK; 961 msi_cfg |= AR_INTCFG_MSI_RXOK; 962 } 963 } 964 965 if (ah->config.tx_intr_mitigation) { 966 imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR; 967 msi_cfg |= AR_INTCFG_MSI_TXINTM | AR_INTCFG_MSI_TXMINTR; 968 } else { 969 imr_reg |= AR_IMR_TXOK; 970 msi_cfg |= AR_INTCFG_MSI_TXOK; 971 } 972 973 ENABLE_REGWRITE_BUFFER(ah); 974 975 REG_WRITE(ah, AR_IMR, imr_reg); 976 ah->imrs2_reg |= AR_IMR_S2_GTT; 977 REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg); 978 979 if (ah->msi_enabled) { 980 ah->msi_reg = REG_READ(ah, AR_PCIE_MSI); 981 ah->msi_reg |= AR_PCIE_MSI_HW_DBI_WR_EN; 982 ah->msi_reg &= AR_PCIE_MSI_HW_INT_PENDING_ADDR_MSI_64; 983 REG_WRITE(ah, AR_INTCFG, msi_cfg); 984 ath_dbg(ath9k_hw_common(ah), ANY, 985 "value of AR_INTCFG=0x%X, msi_cfg=0x%X\n", 986 REG_READ(ah, AR_INTCFG), msi_cfg); 987 } 988 989 if (!AR_SREV_9100(ah)) { 990 REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF); 991 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default); 992 REG_WRITE(ah, AR_INTR_SYNC_MASK, 0); 993 } 994 995 REGWRITE_BUFFER_FLUSH(ah); 996 997 if (AR_SREV_9300_20_OR_LATER(ah)) { 998 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0); 999 REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0); 1000 REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0); 1001 REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0); 1002 } 1003 } 1004 1005 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us) 1006 { 1007 u32 val = ath9k_hw_mac_to_clks(ah, us - 2); 1008 val = min(val, (u32) 0xFFFF); 1009 REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val); 1010 } 1011 1012 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us) 1013 { 1014 u32 val = ath9k_hw_mac_to_clks(ah, us); 1015 val = min(val, (u32) 0xFFFF); 1016 REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val); 1017 } 1018 1019 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us) 1020 { 1021 u32 val = ath9k_hw_mac_to_clks(ah, us); 1022 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK)); 1023 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val); 1024 } 1025 1026 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us) 1027 { 1028 u32 val = ath9k_hw_mac_to_clks(ah, us); 1029 val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS)); 1030 REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val); 1031 } 1032 1033 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu) 1034 { 1035 if (tu > 0xFFFF) { 1036 ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n", 1037 tu); 1038 ah->globaltxtimeout = (u32) -1; 1039 return false; 1040 } else { 1041 REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu); 1042 ah->globaltxtimeout = tu; 1043 return true; 1044 } 1045 } 1046 1047 void ath9k_hw_init_global_settings(struct ath_hw *ah) 1048 { 1049 struct ath_common *common = ath9k_hw_common(ah); 1050 const struct ath9k_channel *chan = ah->curchan; 1051 int acktimeout, ctstimeout, ack_offset = 0; 1052 int slottime; 1053 int sifstime; 1054 int rx_lat = 0, tx_lat = 0, eifs = 0, ack_shift = 0; 1055 u32 reg; 1056 1057 ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n", 1058 ah->misc_mode); 1059 1060 if (!chan) 1061 return; 1062 1063 if (ah->misc_mode != 0) 1064 REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode); 1065 1066 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1067 rx_lat = 41; 1068 else 1069 rx_lat = 37; 1070 tx_lat = 54; 1071 1072 if (IS_CHAN_5GHZ(chan)) 1073 sifstime = 16; 1074 else 1075 sifstime = 10; 1076 1077 if (IS_CHAN_HALF_RATE(chan)) { 1078 eifs = 175; 1079 rx_lat *= 2; 1080 tx_lat *= 2; 1081 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1082 tx_lat += 11; 1083 1084 sifstime = 32; 1085 ack_offset = 16; 1086 ack_shift = 3; 1087 slottime = 13; 1088 } else if (IS_CHAN_QUARTER_RATE(chan)) { 1089 eifs = 340; 1090 rx_lat = (rx_lat * 4) - 1; 1091 tx_lat *= 4; 1092 if (IS_CHAN_A_FAST_CLOCK(ah, chan)) 1093 tx_lat += 22; 1094 1095 sifstime = 64; 1096 ack_offset = 32; 1097 ack_shift = 1; 1098 slottime = 21; 1099 } else { 1100 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { 1101 eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO; 1102 reg = AR_USEC_ASYNC_FIFO; 1103 } else { 1104 eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/ 1105 common->clockrate; 1106 reg = REG_READ(ah, AR_USEC); 1107 } 1108 rx_lat = MS(reg, AR_USEC_RX_LAT); 1109 tx_lat = MS(reg, AR_USEC_TX_LAT); 1110 1111 slottime = ah->slottime; 1112 } 1113 1114 /* As defined by IEEE 802.11-2007 17.3.8.6 */ 1115 slottime += 3 * ah->coverage_class; 1116 acktimeout = slottime + sifstime + ack_offset; 1117 ctstimeout = acktimeout; 1118 1119 /* 1120 * Workaround for early ACK timeouts, add an offset to match the 1121 * initval's 64us ack timeout value. Use 48us for the CTS timeout. 1122 * This was initially only meant to work around an issue with delayed 1123 * BA frames in some implementations, but it has been found to fix ACK 1124 * timeout issues in other cases as well. 1125 */ 1126 if (IS_CHAN_2GHZ(chan) && 1127 !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) { 1128 acktimeout += 64 - sifstime - ah->slottime; 1129 ctstimeout += 48 - sifstime - ah->slottime; 1130 } 1131 1132 if (ah->dynack.enabled) { 1133 acktimeout = ah->dynack.ackto; 1134 ctstimeout = acktimeout; 1135 slottime = (acktimeout - 3) / 2; 1136 } else { 1137 ah->dynack.ackto = acktimeout; 1138 } 1139 1140 ath9k_hw_set_sifs_time(ah, sifstime); 1141 ath9k_hw_setslottime(ah, slottime); 1142 ath9k_hw_set_ack_timeout(ah, acktimeout); 1143 ath9k_hw_set_cts_timeout(ah, ctstimeout); 1144 if (ah->globaltxtimeout != (u32) -1) 1145 ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout); 1146 1147 REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs)); 1148 REG_RMW(ah, AR_USEC, 1149 (common->clockrate - 1) | 1150 SM(rx_lat, AR_USEC_RX_LAT) | 1151 SM(tx_lat, AR_USEC_TX_LAT), 1152 AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC); 1153 1154 if (IS_CHAN_HALF_RATE(chan) || IS_CHAN_QUARTER_RATE(chan)) 1155 REG_RMW(ah, AR_TXSIFS, 1156 sifstime | SM(ack_shift, AR_TXSIFS_ACK_SHIFT), 1157 (AR_TXSIFS_TIME | AR_TXSIFS_ACK_SHIFT)); 1158 } 1159 EXPORT_SYMBOL(ath9k_hw_init_global_settings); 1160 1161 void ath9k_hw_deinit(struct ath_hw *ah) 1162 { 1163 struct ath_common *common = ath9k_hw_common(ah); 1164 1165 if (common->state < ATH_HW_INITIALIZED) 1166 return; 1167 1168 ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP); 1169 } 1170 EXPORT_SYMBOL(ath9k_hw_deinit); 1171 1172 /*******/ 1173 /* INI */ 1174 /*******/ 1175 1176 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan) 1177 { 1178 u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band); 1179 1180 if (IS_CHAN_2GHZ(chan)) 1181 ctl |= CTL_11G; 1182 else 1183 ctl |= CTL_11A; 1184 1185 return ctl; 1186 } 1187 1188 /****************************************/ 1189 /* Reset and Channel Switching Routines */ 1190 /****************************************/ 1191 1192 static inline void ath9k_hw_set_dma(struct ath_hw *ah) 1193 { 1194 struct ath_common *common = ath9k_hw_common(ah); 1195 int txbuf_size; 1196 1197 ENABLE_REGWRITE_BUFFER(ah); 1198 1199 /* 1200 * set AHB_MODE not to do cacheline prefetches 1201 */ 1202 if (!AR_SREV_9300_20_OR_LATER(ah)) 1203 REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN); 1204 1205 /* 1206 * let mac dma reads be in 128 byte chunks 1207 */ 1208 REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK); 1209 1210 REGWRITE_BUFFER_FLUSH(ah); 1211 1212 /* 1213 * Restore TX Trigger Level to its pre-reset value. 1214 * The initial value depends on whether aggregation is enabled, and is 1215 * adjusted whenever underruns are detected. 1216 */ 1217 if (!AR_SREV_9300_20_OR_LATER(ah)) 1218 REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level); 1219 1220 ENABLE_REGWRITE_BUFFER(ah); 1221 1222 /* 1223 * let mac dma writes be in 128 byte chunks 1224 */ 1225 REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK); 1226 1227 /* 1228 * Setup receive FIFO threshold to hold off TX activities 1229 */ 1230 REG_WRITE(ah, AR_RXFIFO_CFG, 0x200); 1231 1232 if (AR_SREV_9300_20_OR_LATER(ah)) { 1233 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1); 1234 REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1); 1235 1236 ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize - 1237 ah->caps.rx_status_len); 1238 } 1239 1240 /* 1241 * reduce the number of usable entries in PCU TXBUF to avoid 1242 * wrap around issues. 1243 */ 1244 if (AR_SREV_9285(ah)) { 1245 /* For AR9285 the number of Fifos are reduced to half. 1246 * So set the usable tx buf size also to half to 1247 * avoid data/delimiter underruns 1248 */ 1249 txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE; 1250 } else if (AR_SREV_9340_13_OR_LATER(ah)) { 1251 /* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */ 1252 txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE; 1253 } else { 1254 txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE; 1255 } 1256 1257 if (!AR_SREV_9271(ah)) 1258 REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size); 1259 1260 REGWRITE_BUFFER_FLUSH(ah); 1261 1262 if (AR_SREV_9300_20_OR_LATER(ah)) 1263 ath9k_hw_reset_txstatus_ring(ah); 1264 } 1265 1266 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode) 1267 { 1268 u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC; 1269 u32 set = AR_STA_ID1_KSRCH_MODE; 1270 1271 ENABLE_REG_RMW_BUFFER(ah); 1272 switch (opmode) { 1273 case NL80211_IFTYPE_ADHOC: 1274 if (!AR_SREV_9340_13(ah)) { 1275 set |= AR_STA_ID1_ADHOC; 1276 REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1277 break; 1278 } 1279 fallthrough; 1280 case NL80211_IFTYPE_OCB: 1281 case NL80211_IFTYPE_MESH_POINT: 1282 case NL80211_IFTYPE_AP: 1283 set |= AR_STA_ID1_STA_AP; 1284 fallthrough; 1285 case NL80211_IFTYPE_STATION: 1286 REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION); 1287 break; 1288 default: 1289 if (!ah->is_monitoring) 1290 set = 0; 1291 break; 1292 } 1293 REG_RMW(ah, AR_STA_ID1, set, mask); 1294 REG_RMW_BUFFER_FLUSH(ah); 1295 } 1296 1297 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled, 1298 u32 *coef_mantissa, u32 *coef_exponent) 1299 { 1300 u32 coef_exp, coef_man; 1301 1302 for (coef_exp = 31; coef_exp > 0; coef_exp--) 1303 if ((coef_scaled >> coef_exp) & 0x1) 1304 break; 1305 1306 coef_exp = 14 - (coef_exp - COEF_SCALE_S); 1307 1308 coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1)); 1309 1310 *coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp); 1311 *coef_exponent = coef_exp - 16; 1312 } 1313 1314 /* AR9330 WAR: 1315 * call external reset function to reset WMAC if: 1316 * - doing a cold reset 1317 * - we have pending frames in the TX queues. 1318 */ 1319 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type) 1320 { 1321 int i, npend = 0; 1322 1323 for (i = 0; i < AR_NUM_QCU; i++) { 1324 npend = ath9k_hw_numtxpending(ah, i); 1325 if (npend) 1326 break; 1327 } 1328 1329 if (ah->external_reset && 1330 (npend || type == ATH9K_RESET_COLD)) { 1331 int reset_err = 0; 1332 1333 ath_dbg(ath9k_hw_common(ah), RESET, 1334 "reset MAC via external reset\n"); 1335 1336 reset_err = ah->external_reset(); 1337 if (reset_err) { 1338 ath_err(ath9k_hw_common(ah), 1339 "External reset failed, err=%d\n", 1340 reset_err); 1341 return false; 1342 } 1343 1344 REG_WRITE(ah, AR_RTC_RESET, 1); 1345 } 1346 1347 return true; 1348 } 1349 1350 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type) 1351 { 1352 u32 rst_flags; 1353 u32 tmpReg; 1354 1355 if (AR_SREV_9100(ah)) { 1356 REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK, 1357 AR_RTC_DERIVED_CLK_PERIOD, 1); 1358 (void)REG_READ(ah, AR_RTC_DERIVED_CLK); 1359 } 1360 1361 ENABLE_REGWRITE_BUFFER(ah); 1362 1363 if (AR_SREV_9300_20_OR_LATER(ah)) { 1364 REG_WRITE(ah, AR_WA, ah->WARegVal); 1365 udelay(10); 1366 } 1367 1368 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1369 AR_RTC_FORCE_WAKE_ON_INT); 1370 1371 if (AR_SREV_9100(ah)) { 1372 rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD | 1373 AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET; 1374 } else { 1375 tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE); 1376 if (AR_SREV_9340(ah)) 1377 tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT; 1378 else 1379 tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT | 1380 AR_INTR_SYNC_RADM_CPL_TIMEOUT; 1381 1382 if (tmpReg) { 1383 u32 val; 1384 REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0); 1385 1386 val = AR_RC_HOSTIF; 1387 if (!AR_SREV_9300_20_OR_LATER(ah)) 1388 val |= AR_RC_AHB; 1389 REG_WRITE(ah, AR_RC, val); 1390 1391 } else if (!AR_SREV_9300_20_OR_LATER(ah)) 1392 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1393 1394 rst_flags = AR_RTC_RC_MAC_WARM; 1395 if (type == ATH9K_RESET_COLD) 1396 rst_flags |= AR_RTC_RC_MAC_COLD; 1397 } 1398 1399 if (AR_SREV_9330(ah)) { 1400 if (!ath9k_hw_ar9330_reset_war(ah, type)) 1401 return false; 1402 } 1403 1404 if (ath9k_hw_mci_is_enabled(ah)) 1405 ar9003_mci_check_gpm_offset(ah); 1406 1407 /* DMA HALT added to resolve ar9300 and ar9580 bus error during 1408 * RTC_RC reg read 1409 */ 1410 if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) { 1411 REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ); 1412 ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK, 1413 20 * AH_WAIT_TIMEOUT); 1414 REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ); 1415 } 1416 1417 REG_WRITE(ah, AR_RTC_RC, rst_flags); 1418 1419 REGWRITE_BUFFER_FLUSH(ah); 1420 1421 if (AR_SREV_9300_20_OR_LATER(ah)) 1422 udelay(50); 1423 else if (AR_SREV_9100(ah)) 1424 mdelay(10); 1425 else 1426 udelay(100); 1427 1428 REG_WRITE(ah, AR_RTC_RC, 0); 1429 if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) { 1430 ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n"); 1431 return false; 1432 } 1433 1434 if (!AR_SREV_9100(ah)) 1435 REG_WRITE(ah, AR_RC, 0); 1436 1437 if (AR_SREV_9100(ah)) 1438 udelay(50); 1439 1440 return true; 1441 } 1442 1443 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah) 1444 { 1445 ENABLE_REGWRITE_BUFFER(ah); 1446 1447 if (AR_SREV_9300_20_OR_LATER(ah)) { 1448 REG_WRITE(ah, AR_WA, ah->WARegVal); 1449 udelay(10); 1450 } 1451 1452 REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN | 1453 AR_RTC_FORCE_WAKE_ON_INT); 1454 1455 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1456 REG_WRITE(ah, AR_RC, AR_RC_AHB); 1457 1458 REG_WRITE(ah, AR_RTC_RESET, 0); 1459 1460 REGWRITE_BUFFER_FLUSH(ah); 1461 1462 udelay(2); 1463 1464 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 1465 REG_WRITE(ah, AR_RC, 0); 1466 1467 REG_WRITE(ah, AR_RTC_RESET, 1); 1468 1469 if (!ath9k_hw_wait(ah, 1470 AR_RTC_STATUS, 1471 AR_RTC_STATUS_M, 1472 AR_RTC_STATUS_ON, 1473 AH_WAIT_TIMEOUT)) { 1474 ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n"); 1475 return false; 1476 } 1477 1478 return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM); 1479 } 1480 1481 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type) 1482 { 1483 bool ret = false; 1484 1485 if (AR_SREV_9300_20_OR_LATER(ah)) { 1486 REG_WRITE(ah, AR_WA, ah->WARegVal); 1487 udelay(10); 1488 } 1489 1490 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 1491 AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT); 1492 1493 if (!ah->reset_power_on) 1494 type = ATH9K_RESET_POWER_ON; 1495 1496 switch (type) { 1497 case ATH9K_RESET_POWER_ON: 1498 ret = ath9k_hw_set_reset_power_on(ah); 1499 if (ret) 1500 ah->reset_power_on = true; 1501 break; 1502 case ATH9K_RESET_WARM: 1503 case ATH9K_RESET_COLD: 1504 ret = ath9k_hw_set_reset(ah, type); 1505 break; 1506 default: 1507 break; 1508 } 1509 1510 return ret; 1511 } 1512 1513 static bool ath9k_hw_chip_reset(struct ath_hw *ah, 1514 struct ath9k_channel *chan) 1515 { 1516 int reset_type = ATH9K_RESET_WARM; 1517 1518 if (AR_SREV_9280(ah)) { 1519 if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) 1520 reset_type = ATH9K_RESET_POWER_ON; 1521 else 1522 reset_type = ATH9K_RESET_COLD; 1523 } else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) || 1524 (REG_READ(ah, AR_CR) & AR_CR_RXE)) 1525 reset_type = ATH9K_RESET_COLD; 1526 1527 if (!ath9k_hw_set_reset_reg(ah, reset_type)) 1528 return false; 1529 1530 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1531 return false; 1532 1533 ah->chip_fullsleep = false; 1534 1535 if (AR_SREV_9330(ah)) 1536 ar9003_hw_internal_regulator_apply(ah); 1537 ath9k_hw_init_pll(ah, chan); 1538 1539 return true; 1540 } 1541 1542 static bool ath9k_hw_channel_change(struct ath_hw *ah, 1543 struct ath9k_channel *chan) 1544 { 1545 struct ath_common *common = ath9k_hw_common(ah); 1546 struct ath9k_hw_capabilities *pCap = &ah->caps; 1547 bool band_switch = false, mode_diff = false; 1548 u8 ini_reloaded = 0; 1549 u32 qnum; 1550 int r; 1551 1552 if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) { 1553 u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags; 1554 band_switch = !!(flags_diff & CHANNEL_5GHZ); 1555 mode_diff = !!(flags_diff & ~CHANNEL_HT); 1556 } 1557 1558 for (qnum = 0; qnum < AR_NUM_QCU; qnum++) { 1559 if (ath9k_hw_numtxpending(ah, qnum)) { 1560 ath_dbg(common, QUEUE, 1561 "Transmit frames pending on queue %d\n", qnum); 1562 return false; 1563 } 1564 } 1565 1566 if (!ath9k_hw_rfbus_req(ah)) { 1567 ath_err(common, "Could not kill baseband RX\n"); 1568 return false; 1569 } 1570 1571 if (band_switch || mode_diff) { 1572 ath9k_hw_mark_phy_inactive(ah); 1573 udelay(5); 1574 1575 if (band_switch) 1576 ath9k_hw_init_pll(ah, chan); 1577 1578 if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) { 1579 ath_err(common, "Failed to do fast channel change\n"); 1580 return false; 1581 } 1582 } 1583 1584 ath9k_hw_set_channel_regs(ah, chan); 1585 1586 r = ath9k_hw_rf_set_freq(ah, chan); 1587 if (r) { 1588 ath_err(common, "Failed to set channel\n"); 1589 return false; 1590 } 1591 ath9k_hw_set_clockrate(ah); 1592 ath9k_hw_apply_txpower(ah, chan, false); 1593 1594 ath9k_hw_set_delta_slope(ah, chan); 1595 ath9k_hw_spur_mitigate_freq(ah, chan); 1596 1597 if (band_switch || ini_reloaded) 1598 ah->eep_ops->set_board_values(ah, chan); 1599 1600 ath9k_hw_init_bb(ah, chan); 1601 ath9k_hw_rfbus_done(ah); 1602 1603 if (band_switch || ini_reloaded) { 1604 ah->ah_flags |= AH_FASTCC; 1605 ath9k_hw_init_cal(ah, chan); 1606 ah->ah_flags &= ~AH_FASTCC; 1607 } 1608 1609 return true; 1610 } 1611 1612 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah) 1613 { 1614 u32 gpio_mask = ah->gpio_mask; 1615 int i; 1616 1617 for (i = 0; gpio_mask; i++, gpio_mask >>= 1) { 1618 if (!(gpio_mask & 1)) 1619 continue; 1620 1621 ath9k_hw_gpio_request_out(ah, i, NULL, 1622 AR_GPIO_OUTPUT_MUX_AS_OUTPUT); 1623 ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i))); 1624 ath9k_hw_gpio_free(ah, i); 1625 } 1626 } 1627 1628 void ath9k_hw_check_nav(struct ath_hw *ah) 1629 { 1630 struct ath_common *common = ath9k_hw_common(ah); 1631 u32 val; 1632 1633 val = REG_READ(ah, AR_NAV); 1634 if (val != 0xdeadbeef && val > 0x7fff) { 1635 ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val); 1636 REG_WRITE(ah, AR_NAV, 0); 1637 } 1638 } 1639 EXPORT_SYMBOL(ath9k_hw_check_nav); 1640 1641 bool ath9k_hw_check_alive(struct ath_hw *ah) 1642 { 1643 int count = 50; 1644 u32 reg, last_val; 1645 1646 /* Check if chip failed to wake up */ 1647 if (REG_READ(ah, AR_CFG) == 0xdeadbeef) 1648 return false; 1649 1650 if (AR_SREV_9300(ah)) 1651 return !ath9k_hw_detect_mac_hang(ah); 1652 1653 if (AR_SREV_9285_12_OR_LATER(ah)) 1654 return true; 1655 1656 last_val = REG_READ(ah, AR_OBS_BUS_1); 1657 do { 1658 reg = REG_READ(ah, AR_OBS_BUS_1); 1659 if (reg != last_val) 1660 return true; 1661 1662 udelay(1); 1663 last_val = reg; 1664 if ((reg & 0x7E7FFFEF) == 0x00702400) 1665 continue; 1666 1667 switch (reg & 0x7E000B00) { 1668 case 0x1E000000: 1669 case 0x52000B00: 1670 case 0x18000B00: 1671 continue; 1672 default: 1673 return true; 1674 } 1675 } while (count-- > 0); 1676 1677 return false; 1678 } 1679 EXPORT_SYMBOL(ath9k_hw_check_alive); 1680 1681 static void ath9k_hw_init_mfp(struct ath_hw *ah) 1682 { 1683 /* Setup MFP options for CCMP */ 1684 if (AR_SREV_9280_20_OR_LATER(ah)) { 1685 /* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt 1686 * frames when constructing CCMP AAD. */ 1687 REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT, 1688 0xc7ff); 1689 if (AR_SREV_9271(ah) || AR_DEVID_7010(ah)) 1690 ah->sw_mgmt_crypto_tx = true; 1691 else 1692 ah->sw_mgmt_crypto_tx = false; 1693 ah->sw_mgmt_crypto_rx = false; 1694 } else if (AR_SREV_9160_10_OR_LATER(ah)) { 1695 /* Disable hardware crypto for management frames */ 1696 REG_CLR_BIT(ah, AR_PCU_MISC_MODE2, 1697 AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE); 1698 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 1699 AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT); 1700 ah->sw_mgmt_crypto_tx = true; 1701 ah->sw_mgmt_crypto_rx = true; 1702 } else { 1703 ah->sw_mgmt_crypto_tx = true; 1704 ah->sw_mgmt_crypto_rx = true; 1705 } 1706 } 1707 1708 static void ath9k_hw_reset_opmode(struct ath_hw *ah, 1709 u32 macStaId1, u32 saveDefAntenna) 1710 { 1711 struct ath_common *common = ath9k_hw_common(ah); 1712 1713 ENABLE_REGWRITE_BUFFER(ah); 1714 1715 REG_RMW(ah, AR_STA_ID1, macStaId1 1716 | AR_STA_ID1_RTS_USE_DEF 1717 | ah->sta_id1_defaults, 1718 ~AR_STA_ID1_SADH_MASK); 1719 ath_hw_setbssidmask(common); 1720 REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna); 1721 ath9k_hw_write_associd(ah); 1722 REG_WRITE(ah, AR_ISR, ~0); 1723 REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR); 1724 1725 REGWRITE_BUFFER_FLUSH(ah); 1726 1727 ath9k_hw_set_operating_mode(ah, ah->opmode); 1728 } 1729 1730 static void ath9k_hw_init_queues(struct ath_hw *ah) 1731 { 1732 int i; 1733 1734 ENABLE_REGWRITE_BUFFER(ah); 1735 1736 for (i = 0; i < AR_NUM_DCU; i++) 1737 REG_WRITE(ah, AR_DQCUMASK(i), 1 << i); 1738 1739 REGWRITE_BUFFER_FLUSH(ah); 1740 1741 ah->intr_txqs = 0; 1742 for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++) 1743 ath9k_hw_resettxqueue(ah, i); 1744 } 1745 1746 /* 1747 * For big endian systems turn on swapping for descriptors 1748 */ 1749 static void ath9k_hw_init_desc(struct ath_hw *ah) 1750 { 1751 struct ath_common *common = ath9k_hw_common(ah); 1752 1753 if (AR_SREV_9100(ah)) { 1754 u32 mask; 1755 mask = REG_READ(ah, AR_CFG); 1756 if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) { 1757 ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n", 1758 mask); 1759 } else { 1760 mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB; 1761 REG_WRITE(ah, AR_CFG, mask); 1762 ath_dbg(common, RESET, "Setting CFG 0x%x\n", 1763 REG_READ(ah, AR_CFG)); 1764 } 1765 } else { 1766 if (common->bus_ops->ath_bus_type == ATH_USB) { 1767 /* Configure AR9271 target WLAN */ 1768 if (AR_SREV_9271(ah)) 1769 REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB); 1770 else 1771 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1772 } 1773 #ifdef __BIG_ENDIAN 1774 else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) || 1775 AR_SREV_9550(ah) || AR_SREV_9531(ah) || 1776 AR_SREV_9561(ah)) 1777 REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0); 1778 else 1779 REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD); 1780 #endif 1781 } 1782 } 1783 1784 /* 1785 * Fast channel change: 1786 * (Change synthesizer based on channel freq without resetting chip) 1787 */ 1788 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan) 1789 { 1790 struct ath_common *common = ath9k_hw_common(ah); 1791 struct ath9k_hw_capabilities *pCap = &ah->caps; 1792 int ret; 1793 1794 if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI) 1795 goto fail; 1796 1797 if (ah->chip_fullsleep) 1798 goto fail; 1799 1800 if (!ah->curchan) 1801 goto fail; 1802 1803 if (chan->channel == ah->curchan->channel) 1804 goto fail; 1805 1806 if ((ah->curchan->channelFlags | chan->channelFlags) & 1807 (CHANNEL_HALF | CHANNEL_QUARTER)) 1808 goto fail; 1809 1810 /* 1811 * If cross-band fcc is not supoprted, bail out if channelFlags differ. 1812 */ 1813 if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) && 1814 ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT)) 1815 goto fail; 1816 1817 if (!ath9k_hw_check_alive(ah)) 1818 goto fail; 1819 1820 /* 1821 * For AR9462, make sure that calibration data for 1822 * re-using are present. 1823 */ 1824 if (AR_SREV_9462(ah) && (ah->caldata && 1825 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) || 1826 !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) || 1827 !test_bit(RTT_DONE, &ah->caldata->cal_flags)))) 1828 goto fail; 1829 1830 ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n", 1831 ah->curchan->channel, chan->channel); 1832 1833 ret = ath9k_hw_channel_change(ah, chan); 1834 if (!ret) 1835 goto fail; 1836 1837 if (ath9k_hw_mci_is_enabled(ah)) 1838 ar9003_mci_2g5g_switch(ah, false); 1839 1840 ath9k_hw_loadnf(ah, ah->curchan); 1841 ath9k_hw_start_nfcal(ah, true); 1842 1843 if (AR_SREV_9271(ah)) 1844 ar9002_hw_load_ani_reg(ah, chan); 1845 1846 return 0; 1847 fail: 1848 return -EINVAL; 1849 } 1850 1851 u32 ath9k_hw_get_tsf_offset(struct timespec64 *last, struct timespec64 *cur) 1852 { 1853 struct timespec64 ts; 1854 s64 usec; 1855 1856 if (!cur) { 1857 ktime_get_raw_ts64(&ts); 1858 cur = &ts; 1859 } 1860 1861 usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000; 1862 usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000; 1863 1864 return (u32) usec; 1865 } 1866 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset); 1867 1868 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan, 1869 struct ath9k_hw_cal_data *caldata, bool fastcc) 1870 { 1871 struct ath_common *common = ath9k_hw_common(ah); 1872 u32 saveLedState; 1873 u32 saveDefAntenna; 1874 u32 macStaId1; 1875 struct timespec64 tsf_ts; 1876 u32 tsf_offset; 1877 u64 tsf = 0; 1878 int r; 1879 bool start_mci_reset = false; 1880 bool save_fullsleep = ah->chip_fullsleep; 1881 1882 if (ath9k_hw_mci_is_enabled(ah)) { 1883 start_mci_reset = ar9003_mci_start_reset(ah, chan); 1884 if (start_mci_reset) 1885 return 0; 1886 } 1887 1888 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 1889 return -EIO; 1890 1891 if (ah->curchan && !ah->chip_fullsleep) 1892 ath9k_hw_getnf(ah, ah->curchan); 1893 1894 ah->caldata = caldata; 1895 if (caldata && (chan->channel != caldata->channel || 1896 chan->channelFlags != caldata->channelFlags)) { 1897 /* Operating channel changed, reset channel calibration data */ 1898 memset(caldata, 0, sizeof(*caldata)); 1899 ath9k_init_nfcal_hist_buffer(ah, chan); 1900 } else if (caldata) { 1901 clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags); 1902 } 1903 ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor); 1904 1905 if (fastcc) { 1906 r = ath9k_hw_do_fastcc(ah, chan); 1907 if (!r) 1908 return r; 1909 } 1910 1911 if (ath9k_hw_mci_is_enabled(ah)) 1912 ar9003_mci_stop_bt(ah, save_fullsleep); 1913 1914 saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA); 1915 if (saveDefAntenna == 0) 1916 saveDefAntenna = 1; 1917 1918 macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B; 1919 1920 /* Save TSF before chip reset, a cold reset clears it */ 1921 ktime_get_raw_ts64(&tsf_ts); 1922 tsf = ath9k_hw_gettsf64(ah); 1923 1924 saveLedState = REG_READ(ah, AR_CFG_LED) & 1925 (AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL | 1926 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW); 1927 1928 ath9k_hw_mark_phy_inactive(ah); 1929 1930 ah->paprd_table_write_done = false; 1931 1932 /* Only required on the first reset */ 1933 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1934 REG_WRITE(ah, 1935 AR9271_RESET_POWER_DOWN_CONTROL, 1936 AR9271_RADIO_RF_RST); 1937 udelay(50); 1938 } 1939 1940 if (!ath9k_hw_chip_reset(ah, chan)) { 1941 ath_err(common, "Chip reset failed\n"); 1942 return -EINVAL; 1943 } 1944 1945 /* Only required on the first reset */ 1946 if (AR_SREV_9271(ah) && ah->htc_reset_init) { 1947 ah->htc_reset_init = false; 1948 REG_WRITE(ah, 1949 AR9271_RESET_POWER_DOWN_CONTROL, 1950 AR9271_GATE_MAC_CTL); 1951 udelay(50); 1952 } 1953 1954 /* Restore TSF */ 1955 tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL); 1956 ath9k_hw_settsf64(ah, tsf + tsf_offset); 1957 1958 if (AR_SREV_9280_20_OR_LATER(ah)) 1959 REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE); 1960 1961 if (!AR_SREV_9300_20_OR_LATER(ah)) 1962 ar9002_hw_enable_async_fifo(ah); 1963 1964 r = ath9k_hw_process_ini(ah, chan); 1965 if (r) 1966 return r; 1967 1968 ath9k_hw_set_rfmode(ah, chan); 1969 1970 if (ath9k_hw_mci_is_enabled(ah)) 1971 ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep); 1972 1973 /* 1974 * Some AR91xx SoC devices frequently fail to accept TSF writes 1975 * right after the chip reset. When that happens, write a new 1976 * value after the initvals have been applied. 1977 */ 1978 if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) { 1979 tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL); 1980 ath9k_hw_settsf64(ah, tsf + tsf_offset); 1981 } 1982 1983 ath9k_hw_init_mfp(ah); 1984 1985 ath9k_hw_set_delta_slope(ah, chan); 1986 ath9k_hw_spur_mitigate_freq(ah, chan); 1987 ah->eep_ops->set_board_values(ah, chan); 1988 1989 ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna); 1990 1991 r = ath9k_hw_rf_set_freq(ah, chan); 1992 if (r) 1993 return r; 1994 1995 ath9k_hw_set_clockrate(ah); 1996 1997 ath9k_hw_init_queues(ah); 1998 ath9k_hw_init_interrupt_masks(ah, ah->opmode); 1999 ath9k_hw_ani_cache_ini_regs(ah); 2000 ath9k_hw_init_qos(ah); 2001 2002 if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT) 2003 ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill"); 2004 2005 ath9k_hw_init_global_settings(ah); 2006 2007 if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) { 2008 REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER, 2009 AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768); 2010 REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN, 2011 AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL); 2012 REG_SET_BIT(ah, AR_PCU_MISC_MODE2, 2013 AR_PCU_MISC_MODE2_ENABLE_AGGWEP); 2014 } 2015 2016 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM); 2017 2018 ath9k_hw_set_dma(ah); 2019 2020 if (!ath9k_hw_mci_is_enabled(ah)) 2021 REG_WRITE(ah, AR_OBS, 8); 2022 2023 ENABLE_REG_RMW_BUFFER(ah); 2024 if (ah->config.rx_intr_mitigation) { 2025 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last); 2026 REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first); 2027 } 2028 2029 if (ah->config.tx_intr_mitigation) { 2030 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300); 2031 REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750); 2032 } 2033 REG_RMW_BUFFER_FLUSH(ah); 2034 2035 ath9k_hw_init_bb(ah, chan); 2036 2037 if (caldata) { 2038 clear_bit(TXIQCAL_DONE, &caldata->cal_flags); 2039 clear_bit(TXCLCAL_DONE, &caldata->cal_flags); 2040 } 2041 if (!ath9k_hw_init_cal(ah, chan)) 2042 return -EIO; 2043 2044 if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata)) 2045 return -EIO; 2046 2047 ENABLE_REGWRITE_BUFFER(ah); 2048 2049 ath9k_hw_restore_chainmask(ah); 2050 REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ); 2051 2052 REGWRITE_BUFFER_FLUSH(ah); 2053 2054 ath9k_hw_gen_timer_start_tsf2(ah); 2055 2056 ath9k_hw_init_desc(ah); 2057 2058 if (ath9k_hw_btcoex_is_enabled(ah)) 2059 ath9k_hw_btcoex_enable(ah); 2060 2061 if (ath9k_hw_mci_is_enabled(ah)) 2062 ar9003_mci_check_bt(ah); 2063 2064 if (AR_SREV_9300_20_OR_LATER(ah)) { 2065 ath9k_hw_loadnf(ah, chan); 2066 ath9k_hw_start_nfcal(ah, true); 2067 } 2068 2069 if (AR_SREV_9300_20_OR_LATER(ah)) 2070 ar9003_hw_bb_watchdog_config(ah); 2071 2072 if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR) 2073 ar9003_hw_disable_phy_restart(ah); 2074 2075 ath9k_hw_apply_gpio_override(ah); 2076 2077 if (AR_SREV_9565(ah) && common->bt_ant_diversity) 2078 REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON); 2079 2080 if (ah->hw->conf.radar_enabled) { 2081 /* set HW specific DFS configuration */ 2082 ah->radar_conf.ext_channel = IS_CHAN_HT40(chan); 2083 ath9k_hw_set_radar_params(ah); 2084 } 2085 2086 return 0; 2087 } 2088 EXPORT_SYMBOL(ath9k_hw_reset); 2089 2090 /******************************/ 2091 /* Power Management (Chipset) */ 2092 /******************************/ 2093 2094 /* 2095 * Notify Power Mgt is disabled in self-generated frames. 2096 * If requested, force chip to sleep. 2097 */ 2098 static void ath9k_set_power_sleep(struct ath_hw *ah) 2099 { 2100 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2101 2102 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 2103 REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff); 2104 REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff); 2105 REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff); 2106 /* xxx Required for WLAN only case ? */ 2107 REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0); 2108 udelay(100); 2109 } 2110 2111 /* 2112 * Clear the RTC force wake bit to allow the 2113 * mac to go to sleep. 2114 */ 2115 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); 2116 2117 if (ath9k_hw_mci_is_enabled(ah)) 2118 udelay(100); 2119 2120 if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah)) 2121 REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF); 2122 2123 /* Shutdown chip. Active low */ 2124 if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) { 2125 REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN); 2126 udelay(2); 2127 } 2128 2129 /* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */ 2130 if (AR_SREV_9300_20_OR_LATER(ah)) 2131 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 2132 } 2133 2134 /* 2135 * Notify Power Management is enabled in self-generating 2136 * frames. If request, set power mode of chip to 2137 * auto/normal. Duration in units of 128us (1/8 TU). 2138 */ 2139 static void ath9k_set_power_network_sleep(struct ath_hw *ah) 2140 { 2141 struct ath9k_hw_capabilities *pCap = &ah->caps; 2142 2143 REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2144 2145 if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) { 2146 /* Set WakeOnInterrupt bit; clear ForceWake bit */ 2147 REG_WRITE(ah, AR_RTC_FORCE_WAKE, 2148 AR_RTC_FORCE_WAKE_ON_INT); 2149 } else { 2150 2151 /* When chip goes into network sleep, it could be waken 2152 * up by MCI_INT interrupt caused by BT's HW messages 2153 * (LNA_xxx, CONT_xxx) which chould be in a very fast 2154 * rate (~100us). This will cause chip to leave and 2155 * re-enter network sleep mode frequently, which in 2156 * consequence will have WLAN MCI HW to generate lots of 2157 * SYS_WAKING and SYS_SLEEPING messages which will make 2158 * BT CPU to busy to process. 2159 */ 2160 if (ath9k_hw_mci_is_enabled(ah)) 2161 REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 2162 AR_MCI_INTERRUPT_RX_HW_MSG_MASK); 2163 /* 2164 * Clear the RTC force wake bit to allow the 2165 * mac to go to sleep. 2166 */ 2167 REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN); 2168 2169 if (ath9k_hw_mci_is_enabled(ah)) 2170 udelay(30); 2171 } 2172 2173 /* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */ 2174 if (AR_SREV_9300_20_OR_LATER(ah)) 2175 REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE); 2176 } 2177 2178 static bool ath9k_hw_set_power_awake(struct ath_hw *ah) 2179 { 2180 u32 val; 2181 int i; 2182 2183 /* Set Bits 14 and 17 of AR_WA before powering on the chip. */ 2184 if (AR_SREV_9300_20_OR_LATER(ah)) { 2185 REG_WRITE(ah, AR_WA, ah->WARegVal); 2186 udelay(10); 2187 } 2188 2189 if ((REG_READ(ah, AR_RTC_STATUS) & 2190 AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) { 2191 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) { 2192 return false; 2193 } 2194 if (!AR_SREV_9300_20_OR_LATER(ah)) 2195 ath9k_hw_init_pll(ah, NULL); 2196 } 2197 if (AR_SREV_9100(ah)) 2198 REG_SET_BIT(ah, AR_RTC_RESET, 2199 AR_RTC_RESET_EN); 2200 2201 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 2202 AR_RTC_FORCE_WAKE_EN); 2203 if (AR_SREV_9100(ah)) 2204 mdelay(10); 2205 else 2206 udelay(50); 2207 2208 for (i = POWER_UP_TIME / 50; i > 0; i--) { 2209 val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M; 2210 if (val == AR_RTC_STATUS_ON) 2211 break; 2212 udelay(50); 2213 REG_SET_BIT(ah, AR_RTC_FORCE_WAKE, 2214 AR_RTC_FORCE_WAKE_EN); 2215 } 2216 if (i == 0) { 2217 ath_err(ath9k_hw_common(ah), 2218 "Failed to wakeup in %uus\n", 2219 POWER_UP_TIME / 20); 2220 return false; 2221 } 2222 2223 if (ath9k_hw_mci_is_enabled(ah)) 2224 ar9003_mci_set_power_awake(ah); 2225 2226 REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV); 2227 2228 return true; 2229 } 2230 2231 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode) 2232 { 2233 struct ath_common *common = ath9k_hw_common(ah); 2234 int status = true; 2235 static const char *modes[] = { 2236 "AWAKE", 2237 "FULL-SLEEP", 2238 "NETWORK SLEEP", 2239 "UNDEFINED" 2240 }; 2241 2242 if (ah->power_mode == mode) 2243 return status; 2244 2245 ath_dbg(common, RESET, "%s -> %s\n", 2246 modes[ah->power_mode], modes[mode]); 2247 2248 switch (mode) { 2249 case ATH9K_PM_AWAKE: 2250 status = ath9k_hw_set_power_awake(ah); 2251 break; 2252 case ATH9K_PM_FULL_SLEEP: 2253 if (ath9k_hw_mci_is_enabled(ah)) 2254 ar9003_mci_set_full_sleep(ah); 2255 2256 ath9k_set_power_sleep(ah); 2257 ah->chip_fullsleep = true; 2258 break; 2259 case ATH9K_PM_NETWORK_SLEEP: 2260 ath9k_set_power_network_sleep(ah); 2261 break; 2262 default: 2263 ath_err(common, "Unknown power mode %u\n", mode); 2264 return false; 2265 } 2266 ah->power_mode = mode; 2267 2268 /* 2269 * XXX: If this warning never comes up after a while then 2270 * simply keep the ATH_DBG_WARN_ON_ONCE() but make 2271 * ath9k_hw_setpower() return type void. 2272 */ 2273 2274 if (!(ah->ah_flags & AH_UNPLUGGED)) 2275 ATH_DBG_WARN_ON_ONCE(!status); 2276 2277 return status; 2278 } 2279 EXPORT_SYMBOL(ath9k_hw_setpower); 2280 2281 /*******************/ 2282 /* Beacon Handling */ 2283 /*******************/ 2284 2285 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period) 2286 { 2287 int flags = 0; 2288 2289 ENABLE_REGWRITE_BUFFER(ah); 2290 2291 switch (ah->opmode) { 2292 case NL80211_IFTYPE_ADHOC: 2293 REG_SET_BIT(ah, AR_TXCFG, 2294 AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY); 2295 fallthrough; 2296 case NL80211_IFTYPE_MESH_POINT: 2297 case NL80211_IFTYPE_AP: 2298 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon); 2299 REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon - 2300 TU_TO_USEC(ah->config.dma_beacon_response_time)); 2301 REG_WRITE(ah, AR_NEXT_SWBA, next_beacon - 2302 TU_TO_USEC(ah->config.sw_beacon_response_time)); 2303 flags |= 2304 AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN; 2305 break; 2306 default: 2307 ath_dbg(ath9k_hw_common(ah), BEACON, 2308 "%s: unsupported opmode: %d\n", __func__, ah->opmode); 2309 return; 2310 } 2311 2312 REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period); 2313 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period); 2314 REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period); 2315 2316 REGWRITE_BUFFER_FLUSH(ah); 2317 2318 REG_SET_BIT(ah, AR_TIMER_MODE, flags); 2319 } 2320 EXPORT_SYMBOL(ath9k_hw_beaconinit); 2321 2322 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah, 2323 const struct ath9k_beacon_state *bs) 2324 { 2325 u32 nextTbtt, beaconintval, dtimperiod, beacontimeout; 2326 struct ath9k_hw_capabilities *pCap = &ah->caps; 2327 struct ath_common *common = ath9k_hw_common(ah); 2328 2329 ENABLE_REGWRITE_BUFFER(ah); 2330 2331 REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt); 2332 REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval); 2333 REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval); 2334 2335 REGWRITE_BUFFER_FLUSH(ah); 2336 2337 REG_RMW_FIELD(ah, AR_RSSI_THR, 2338 AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold); 2339 2340 beaconintval = bs->bs_intval; 2341 2342 if (bs->bs_sleepduration > beaconintval) 2343 beaconintval = bs->bs_sleepduration; 2344 2345 dtimperiod = bs->bs_dtimperiod; 2346 if (bs->bs_sleepduration > dtimperiod) 2347 dtimperiod = bs->bs_sleepduration; 2348 2349 if (beaconintval == dtimperiod) 2350 nextTbtt = bs->bs_nextdtim; 2351 else 2352 nextTbtt = bs->bs_nexttbtt; 2353 2354 ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim); 2355 ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt); 2356 ath_dbg(common, BEACON, "beacon period %u\n", beaconintval); 2357 ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod); 2358 2359 ENABLE_REGWRITE_BUFFER(ah); 2360 2361 REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP); 2362 REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP); 2363 2364 REG_WRITE(ah, AR_SLEEP1, 2365 SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT) 2366 | AR_SLEEP1_ASSUME_DTIM); 2367 2368 if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP) 2369 beacontimeout = (BEACON_TIMEOUT_VAL << 3); 2370 else 2371 beacontimeout = MIN_BEACON_TIMEOUT_VAL; 2372 2373 REG_WRITE(ah, AR_SLEEP2, 2374 SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT)); 2375 2376 REG_WRITE(ah, AR_TIM_PERIOD, beaconintval); 2377 REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod); 2378 2379 REGWRITE_BUFFER_FLUSH(ah); 2380 2381 REG_SET_BIT(ah, AR_TIMER_MODE, 2382 AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN | 2383 AR_DTIM_TIMER_EN); 2384 2385 /* TSF Out of Range Threshold */ 2386 REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold); 2387 } 2388 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers); 2389 2390 /*******************/ 2391 /* HW Capabilities */ 2392 /*******************/ 2393 2394 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask) 2395 { 2396 eeprom_chainmask &= chip_chainmask; 2397 if (eeprom_chainmask) 2398 return eeprom_chainmask; 2399 else 2400 return chip_chainmask; 2401 } 2402 2403 /** 2404 * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset 2405 * @ah: the atheros hardware data structure 2406 * 2407 * We enable DFS support upstream on chipsets which have passed a series 2408 * of tests. The testing requirements are going to be documented. Desired 2409 * test requirements are documented at: 2410 * 2411 * https://wireless.wiki.kernel.org/en/users/Drivers/ath9k/dfs 2412 * 2413 * Once a new chipset gets properly tested an individual commit can be used 2414 * to document the testing for DFS for that chipset. 2415 */ 2416 static bool ath9k_hw_dfs_tested(struct ath_hw *ah) 2417 { 2418 2419 switch (ah->hw_version.macVersion) { 2420 /* for temporary testing DFS with 9280 */ 2421 case AR_SREV_VERSION_9280: 2422 /* AR9580 will likely be our first target to get testing on */ 2423 case AR_SREV_VERSION_9580: 2424 return true; 2425 default: 2426 return false; 2427 } 2428 } 2429 2430 static void ath9k_gpio_cap_init(struct ath_hw *ah) 2431 { 2432 struct ath9k_hw_capabilities *pCap = &ah->caps; 2433 2434 if (AR_SREV_9271(ah)) { 2435 pCap->num_gpio_pins = AR9271_NUM_GPIO; 2436 pCap->gpio_mask = AR9271_GPIO_MASK; 2437 } else if (AR_DEVID_7010(ah)) { 2438 pCap->num_gpio_pins = AR7010_NUM_GPIO; 2439 pCap->gpio_mask = AR7010_GPIO_MASK; 2440 } else if (AR_SREV_9287(ah)) { 2441 pCap->num_gpio_pins = AR9287_NUM_GPIO; 2442 pCap->gpio_mask = AR9287_GPIO_MASK; 2443 } else if (AR_SREV_9285(ah)) { 2444 pCap->num_gpio_pins = AR9285_NUM_GPIO; 2445 pCap->gpio_mask = AR9285_GPIO_MASK; 2446 } else if (AR_SREV_9280(ah)) { 2447 pCap->num_gpio_pins = AR9280_NUM_GPIO; 2448 pCap->gpio_mask = AR9280_GPIO_MASK; 2449 } else if (AR_SREV_9300(ah)) { 2450 pCap->num_gpio_pins = AR9300_NUM_GPIO; 2451 pCap->gpio_mask = AR9300_GPIO_MASK; 2452 } else if (AR_SREV_9330(ah)) { 2453 pCap->num_gpio_pins = AR9330_NUM_GPIO; 2454 pCap->gpio_mask = AR9330_GPIO_MASK; 2455 } else if (AR_SREV_9340(ah)) { 2456 pCap->num_gpio_pins = AR9340_NUM_GPIO; 2457 pCap->gpio_mask = AR9340_GPIO_MASK; 2458 } else if (AR_SREV_9462(ah)) { 2459 pCap->num_gpio_pins = AR9462_NUM_GPIO; 2460 pCap->gpio_mask = AR9462_GPIO_MASK; 2461 } else if (AR_SREV_9485(ah)) { 2462 pCap->num_gpio_pins = AR9485_NUM_GPIO; 2463 pCap->gpio_mask = AR9485_GPIO_MASK; 2464 } else if (AR_SREV_9531(ah)) { 2465 pCap->num_gpio_pins = AR9531_NUM_GPIO; 2466 pCap->gpio_mask = AR9531_GPIO_MASK; 2467 } else if (AR_SREV_9550(ah)) { 2468 pCap->num_gpio_pins = AR9550_NUM_GPIO; 2469 pCap->gpio_mask = AR9550_GPIO_MASK; 2470 } else if (AR_SREV_9561(ah)) { 2471 pCap->num_gpio_pins = AR9561_NUM_GPIO; 2472 pCap->gpio_mask = AR9561_GPIO_MASK; 2473 } else if (AR_SREV_9565(ah)) { 2474 pCap->num_gpio_pins = AR9565_NUM_GPIO; 2475 pCap->gpio_mask = AR9565_GPIO_MASK; 2476 } else if (AR_SREV_9580(ah)) { 2477 pCap->num_gpio_pins = AR9580_NUM_GPIO; 2478 pCap->gpio_mask = AR9580_GPIO_MASK; 2479 } else { 2480 pCap->num_gpio_pins = AR_NUM_GPIO; 2481 pCap->gpio_mask = AR_GPIO_MASK; 2482 } 2483 } 2484 2485 int ath9k_hw_fill_cap_info(struct ath_hw *ah) 2486 { 2487 struct ath9k_hw_capabilities *pCap = &ah->caps; 2488 struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah); 2489 struct ath_common *common = ath9k_hw_common(ah); 2490 2491 u16 eeval; 2492 u8 ant_div_ctl1, tx_chainmask, rx_chainmask; 2493 2494 eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0); 2495 regulatory->current_rd = eeval; 2496 2497 if (ah->opmode != NL80211_IFTYPE_AP && 2498 ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) { 2499 if (regulatory->current_rd == 0x64 || 2500 regulatory->current_rd == 0x65) 2501 regulatory->current_rd += 5; 2502 else if (regulatory->current_rd == 0x41) 2503 regulatory->current_rd = 0x43; 2504 ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n", 2505 regulatory->current_rd); 2506 } 2507 2508 eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE); 2509 2510 if (eeval & AR5416_OPFLAGS_11A) { 2511 if (ah->disable_5ghz) 2512 ath_warn(common, "disabling 5GHz band\n"); 2513 else 2514 pCap->hw_caps |= ATH9K_HW_CAP_5GHZ; 2515 } 2516 2517 if (eeval & AR5416_OPFLAGS_11G) { 2518 if (ah->disable_2ghz) 2519 ath_warn(common, "disabling 2GHz band\n"); 2520 else 2521 pCap->hw_caps |= ATH9K_HW_CAP_2GHZ; 2522 } 2523 2524 if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) { 2525 ath_err(common, "both bands are disabled\n"); 2526 return -EINVAL; 2527 } 2528 2529 ath9k_gpio_cap_init(ah); 2530 2531 if (AR_SREV_9485(ah) || 2532 AR_SREV_9285(ah) || 2533 AR_SREV_9330(ah) || 2534 AR_SREV_9565(ah)) 2535 pCap->chip_chainmask = 1; 2536 else if (!AR_SREV_9280_20_OR_LATER(ah)) 2537 pCap->chip_chainmask = 7; 2538 else if (!AR_SREV_9300_20_OR_LATER(ah) || 2539 AR_SREV_9340(ah) || 2540 AR_SREV_9462(ah) || 2541 AR_SREV_9531(ah)) 2542 pCap->chip_chainmask = 3; 2543 else 2544 pCap->chip_chainmask = 7; 2545 2546 pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK); 2547 /* 2548 * For AR9271 we will temporarilly uses the rx chainmax as read from 2549 * the EEPROM. 2550 */ 2551 if ((ah->hw_version.devid == AR5416_DEVID_PCI) && 2552 !(eeval & AR5416_OPFLAGS_11A) && 2553 !(AR_SREV_9271(ah))) 2554 /* CB71: GPIO 0 is pulled down to indicate 3 rx chains */ 2555 pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7; 2556 else if (AR_SREV_9100(ah)) 2557 pCap->rx_chainmask = 0x7; 2558 else 2559 /* Use rx_chainmask from EEPROM. */ 2560 pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK); 2561 2562 pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask); 2563 pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask); 2564 ah->txchainmask = pCap->tx_chainmask; 2565 ah->rxchainmask = pCap->rx_chainmask; 2566 2567 ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA; 2568 2569 /* enable key search for every frame in an aggregate */ 2570 if (AR_SREV_9300_20_OR_LATER(ah)) 2571 ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH; 2572 2573 common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM; 2574 2575 if (ah->hw_version.devid != AR2427_DEVID_PCIE) 2576 pCap->hw_caps |= ATH9K_HW_CAP_HT; 2577 else 2578 pCap->hw_caps &= ~ATH9K_HW_CAP_HT; 2579 2580 if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) 2581 pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX; 2582 else 2583 pCap->rts_aggr_limit = (8 * 1024); 2584 2585 #ifdef CONFIG_ATH9K_RFKILL 2586 ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT); 2587 if (ah->rfsilent & EEP_RFSILENT_ENABLED) { 2588 ah->rfkill_gpio = 2589 MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL); 2590 ah->rfkill_polarity = 2591 MS(ah->rfsilent, EEP_RFSILENT_POLARITY); 2592 2593 pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT; 2594 } 2595 #endif 2596 if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah)) 2597 pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP; 2598 else 2599 pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP; 2600 2601 if (AR_SREV_9280(ah) || AR_SREV_9285(ah)) 2602 pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS; 2603 else 2604 pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS; 2605 2606 if (AR_SREV_9300_20_OR_LATER(ah)) { 2607 pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK; 2608 if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && 2609 !AR_SREV_9561(ah) && !AR_SREV_9565(ah)) 2610 pCap->hw_caps |= ATH9K_HW_CAP_LDPC; 2611 2612 pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH; 2613 pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH; 2614 pCap->rx_status_len = sizeof(struct ar9003_rxs); 2615 pCap->tx_desc_len = sizeof(struct ar9003_txc); 2616 pCap->txs_len = sizeof(struct ar9003_txs); 2617 } else { 2618 pCap->tx_desc_len = sizeof(struct ath_desc); 2619 if (AR_SREV_9280_20(ah)) 2620 pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK; 2621 } 2622 2623 if (AR_SREV_9300_20_OR_LATER(ah)) 2624 pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED; 2625 2626 if (AR_SREV_9561(ah)) 2627 ah->ent_mode = 0x3BDA000; 2628 else if (AR_SREV_9300_20_OR_LATER(ah)) 2629 ah->ent_mode = REG_READ(ah, AR_ENT_OTP); 2630 2631 if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah)) 2632 pCap->hw_caps |= ATH9K_HW_CAP_SGI_20; 2633 2634 if (AR_SREV_9285(ah)) { 2635 if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) { 2636 ant_div_ctl1 = 2637 ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2638 if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) { 2639 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2640 ath_info(common, "Enable LNA combining\n"); 2641 } 2642 } 2643 } 2644 2645 if (AR_SREV_9300_20_OR_LATER(ah)) { 2646 if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE)) 2647 pCap->hw_caps |= ATH9K_HW_CAP_APM; 2648 } 2649 2650 if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) { 2651 ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1); 2652 if ((ant_div_ctl1 >> 0x6) == 0x3) { 2653 pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB; 2654 ath_info(common, "Enable LNA combining\n"); 2655 } 2656 } 2657 2658 if (ath9k_hw_dfs_tested(ah)) 2659 pCap->hw_caps |= ATH9K_HW_CAP_DFS; 2660 2661 tx_chainmask = pCap->tx_chainmask; 2662 rx_chainmask = pCap->rx_chainmask; 2663 while (tx_chainmask || rx_chainmask) { 2664 if (tx_chainmask & BIT(0)) 2665 pCap->max_txchains++; 2666 if (rx_chainmask & BIT(0)) 2667 pCap->max_rxchains++; 2668 2669 tx_chainmask >>= 1; 2670 rx_chainmask >>= 1; 2671 } 2672 2673 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 2674 if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE)) 2675 pCap->hw_caps |= ATH9K_HW_CAP_MCI; 2676 2677 if (AR_SREV_9462_20_OR_LATER(ah)) 2678 pCap->hw_caps |= ATH9K_HW_CAP_RTT; 2679 } 2680 2681 if (AR_SREV_9300_20_OR_LATER(ah) && 2682 ah->eep_ops->get_eeprom(ah, EEP_PAPRD)) 2683 pCap->hw_caps |= ATH9K_HW_CAP_PAPRD; 2684 2685 #ifdef CONFIG_ATH9K_WOW 2686 if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah)) 2687 ah->wow.max_patterns = MAX_NUM_PATTERN; 2688 else 2689 ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY; 2690 #endif 2691 2692 return 0; 2693 } 2694 2695 /****************************/ 2696 /* GPIO / RFKILL / Antennae */ 2697 /****************************/ 2698 2699 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type) 2700 { 2701 int addr; 2702 u32 gpio_shift, tmp; 2703 2704 if (gpio > 11) 2705 addr = AR_GPIO_OUTPUT_MUX3; 2706 else if (gpio > 5) 2707 addr = AR_GPIO_OUTPUT_MUX2; 2708 else 2709 addr = AR_GPIO_OUTPUT_MUX1; 2710 2711 gpio_shift = (gpio % 6) * 5; 2712 2713 if (AR_SREV_9280_20_OR_LATER(ah) || 2714 (addr != AR_GPIO_OUTPUT_MUX1)) { 2715 REG_RMW(ah, addr, (type << gpio_shift), 2716 (0x1f << gpio_shift)); 2717 } else { 2718 tmp = REG_READ(ah, addr); 2719 tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0); 2720 tmp &= ~(0x1f << gpio_shift); 2721 tmp |= (type << gpio_shift); 2722 REG_WRITE(ah, addr, tmp); 2723 } 2724 } 2725 2726 /* BSP should set the corresponding MUX register correctly. 2727 */ 2728 static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out, 2729 const char *label) 2730 { 2731 if (ah->caps.gpio_requested & BIT(gpio)) 2732 return; 2733 2734 /* may be requested by BSP, free anyway */ 2735 gpio_free(gpio); 2736 2737 if (gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label)) 2738 return; 2739 2740 ah->caps.gpio_requested |= BIT(gpio); 2741 } 2742 2743 static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out, 2744 u32 ah_signal_type) 2745 { 2746 u32 gpio_set, gpio_shift = gpio; 2747 2748 if (AR_DEVID_7010(ah)) { 2749 gpio_set = out ? 2750 AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT; 2751 REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift, 2752 AR7010_GPIO_OE_MASK << gpio_shift); 2753 } else if (AR_SREV_SOC(ah)) { 2754 gpio_set = out ? 1 : 0; 2755 REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift, 2756 gpio_set << gpio_shift); 2757 } else { 2758 gpio_shift = gpio << 1; 2759 gpio_set = out ? 2760 AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO; 2761 REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift, 2762 AR_GPIO_OE_OUT_DRV << gpio_shift); 2763 2764 if (out) 2765 ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type); 2766 } 2767 } 2768 2769 static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out, 2770 const char *label, u32 ah_signal_type) 2771 { 2772 WARN_ON(gpio >= ah->caps.num_gpio_pins); 2773 2774 if (BIT(gpio) & ah->caps.gpio_mask) 2775 ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type); 2776 else if (AR_SREV_SOC(ah)) 2777 ath9k_hw_gpio_cfg_soc(ah, gpio, out, label); 2778 else 2779 WARN_ON(1); 2780 } 2781 2782 void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label) 2783 { 2784 ath9k_hw_gpio_request(ah, gpio, false, label, 0); 2785 } 2786 EXPORT_SYMBOL(ath9k_hw_gpio_request_in); 2787 2788 void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label, 2789 u32 ah_signal_type) 2790 { 2791 ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type); 2792 } 2793 EXPORT_SYMBOL(ath9k_hw_gpio_request_out); 2794 2795 void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio) 2796 { 2797 if (!AR_SREV_SOC(ah)) 2798 return; 2799 2800 WARN_ON(gpio >= ah->caps.num_gpio_pins); 2801 2802 if (ah->caps.gpio_requested & BIT(gpio)) { 2803 gpio_free(gpio); 2804 ah->caps.gpio_requested &= ~BIT(gpio); 2805 } 2806 } 2807 EXPORT_SYMBOL(ath9k_hw_gpio_free); 2808 2809 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio) 2810 { 2811 u32 val = 0xffffffff; 2812 2813 #define MS_REG_READ(x, y) \ 2814 (MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y)) 2815 2816 WARN_ON(gpio >= ah->caps.num_gpio_pins); 2817 2818 if (BIT(gpio) & ah->caps.gpio_mask) { 2819 if (AR_SREV_9271(ah)) 2820 val = MS_REG_READ(AR9271, gpio); 2821 else if (AR_SREV_9287(ah)) 2822 val = MS_REG_READ(AR9287, gpio); 2823 else if (AR_SREV_9285(ah)) 2824 val = MS_REG_READ(AR9285, gpio); 2825 else if (AR_SREV_9280(ah)) 2826 val = MS_REG_READ(AR928X, gpio); 2827 else if (AR_DEVID_7010(ah)) 2828 val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio); 2829 else if (AR_SREV_9300_20_OR_LATER(ah)) 2830 val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio); 2831 else 2832 val = MS_REG_READ(AR, gpio); 2833 } else if (BIT(gpio) & ah->caps.gpio_requested) { 2834 val = gpio_get_value(gpio) & BIT(gpio); 2835 } else { 2836 WARN_ON(1); 2837 } 2838 2839 return !!val; 2840 } 2841 EXPORT_SYMBOL(ath9k_hw_gpio_get); 2842 2843 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val) 2844 { 2845 WARN_ON(gpio >= ah->caps.num_gpio_pins); 2846 2847 if (AR_DEVID_7010(ah) || AR_SREV_9271(ah)) 2848 val = !val; 2849 else 2850 val = !!val; 2851 2852 if (BIT(gpio) & ah->caps.gpio_mask) { 2853 u32 out_addr = AR_DEVID_7010(ah) ? 2854 AR7010_GPIO_OUT : AR_GPIO_IN_OUT; 2855 2856 REG_RMW(ah, out_addr, val << gpio, BIT(gpio)); 2857 } else if (BIT(gpio) & ah->caps.gpio_requested) { 2858 gpio_set_value(gpio, val); 2859 } else { 2860 WARN_ON(1); 2861 } 2862 } 2863 EXPORT_SYMBOL(ath9k_hw_set_gpio); 2864 2865 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna) 2866 { 2867 REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7)); 2868 } 2869 EXPORT_SYMBOL(ath9k_hw_setantenna); 2870 2871 /*********************/ 2872 /* General Operation */ 2873 /*********************/ 2874 2875 u32 ath9k_hw_getrxfilter(struct ath_hw *ah) 2876 { 2877 u32 bits = REG_READ(ah, AR_RX_FILTER); 2878 u32 phybits = REG_READ(ah, AR_PHY_ERR); 2879 2880 if (phybits & AR_PHY_ERR_RADAR) 2881 bits |= ATH9K_RX_FILTER_PHYRADAR; 2882 if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING)) 2883 bits |= ATH9K_RX_FILTER_PHYERR; 2884 2885 return bits; 2886 } 2887 EXPORT_SYMBOL(ath9k_hw_getrxfilter); 2888 2889 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits) 2890 { 2891 u32 phybits; 2892 2893 ENABLE_REGWRITE_BUFFER(ah); 2894 2895 REG_WRITE(ah, AR_RX_FILTER, bits); 2896 2897 phybits = 0; 2898 if (bits & ATH9K_RX_FILTER_PHYRADAR) 2899 phybits |= AR_PHY_ERR_RADAR; 2900 if (bits & ATH9K_RX_FILTER_PHYERR) 2901 phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING; 2902 REG_WRITE(ah, AR_PHY_ERR, phybits); 2903 2904 if (phybits) 2905 REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2906 else 2907 REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA); 2908 2909 REGWRITE_BUFFER_FLUSH(ah); 2910 } 2911 EXPORT_SYMBOL(ath9k_hw_setrxfilter); 2912 2913 bool ath9k_hw_phy_disable(struct ath_hw *ah) 2914 { 2915 if (ath9k_hw_mci_is_enabled(ah)) 2916 ar9003_mci_bt_gain_ctrl(ah); 2917 2918 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM)) 2919 return false; 2920 2921 ath9k_hw_init_pll(ah, NULL); 2922 ah->htc_reset_init = true; 2923 return true; 2924 } 2925 EXPORT_SYMBOL(ath9k_hw_phy_disable); 2926 2927 bool ath9k_hw_disable(struct ath_hw *ah) 2928 { 2929 if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) 2930 return false; 2931 2932 if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD)) 2933 return false; 2934 2935 ath9k_hw_init_pll(ah, NULL); 2936 return true; 2937 } 2938 EXPORT_SYMBOL(ath9k_hw_disable); 2939 2940 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan) 2941 { 2942 enum eeprom_param gain_param; 2943 2944 if (IS_CHAN_2GHZ(chan)) 2945 gain_param = EEP_ANTENNA_GAIN_2G; 2946 else 2947 gain_param = EEP_ANTENNA_GAIN_5G; 2948 2949 return ah->eep_ops->get_eeprom(ah, gain_param); 2950 } 2951 2952 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan, 2953 bool test) 2954 { 2955 struct ath_regulatory *reg = ath9k_hw_regulatory(ah); 2956 struct ieee80211_channel *channel; 2957 int chan_pwr, new_pwr; 2958 u16 ctl = NO_CTL; 2959 2960 if (!chan) 2961 return; 2962 2963 if (!test) 2964 ctl = ath9k_regd_get_ctl(reg, chan); 2965 2966 channel = chan->chan; 2967 chan_pwr = min_t(int, channel->max_power * 2, MAX_COMBINED_POWER); 2968 new_pwr = min_t(int, chan_pwr, reg->power_limit); 2969 2970 ah->eep_ops->set_txpower(ah, chan, ctl, 2971 get_antenna_gain(ah, chan), new_pwr, test); 2972 } 2973 2974 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test) 2975 { 2976 struct ath_regulatory *reg = ath9k_hw_regulatory(ah); 2977 struct ath9k_channel *chan = ah->curchan; 2978 struct ieee80211_channel *channel = chan->chan; 2979 2980 reg->power_limit = min_t(u32, limit, MAX_COMBINED_POWER); 2981 if (test) 2982 channel->max_power = MAX_COMBINED_POWER / 2; 2983 2984 ath9k_hw_apply_txpower(ah, chan, test); 2985 2986 if (test) 2987 channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2); 2988 } 2989 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit); 2990 2991 void ath9k_hw_setopmode(struct ath_hw *ah) 2992 { 2993 ath9k_hw_set_operating_mode(ah, ah->opmode); 2994 } 2995 EXPORT_SYMBOL(ath9k_hw_setopmode); 2996 2997 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1) 2998 { 2999 REG_WRITE(ah, AR_MCAST_FIL0, filter0); 3000 REG_WRITE(ah, AR_MCAST_FIL1, filter1); 3001 } 3002 EXPORT_SYMBOL(ath9k_hw_setmcastfilter); 3003 3004 void ath9k_hw_write_associd(struct ath_hw *ah) 3005 { 3006 struct ath_common *common = ath9k_hw_common(ah); 3007 3008 REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid)); 3009 REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) | 3010 ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S)); 3011 } 3012 EXPORT_SYMBOL(ath9k_hw_write_associd); 3013 3014 #define ATH9K_MAX_TSF_READ 10 3015 3016 u64 ath9k_hw_gettsf64(struct ath_hw *ah) 3017 { 3018 u32 tsf_lower, tsf_upper1, tsf_upper2; 3019 int i; 3020 3021 tsf_upper1 = REG_READ(ah, AR_TSF_U32); 3022 for (i = 0; i < ATH9K_MAX_TSF_READ; i++) { 3023 tsf_lower = REG_READ(ah, AR_TSF_L32); 3024 tsf_upper2 = REG_READ(ah, AR_TSF_U32); 3025 if (tsf_upper2 == tsf_upper1) 3026 break; 3027 tsf_upper1 = tsf_upper2; 3028 } 3029 3030 WARN_ON( i == ATH9K_MAX_TSF_READ ); 3031 3032 return (((u64)tsf_upper1 << 32) | tsf_lower); 3033 } 3034 EXPORT_SYMBOL(ath9k_hw_gettsf64); 3035 3036 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64) 3037 { 3038 REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff); 3039 REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff); 3040 } 3041 EXPORT_SYMBOL(ath9k_hw_settsf64); 3042 3043 void ath9k_hw_reset_tsf(struct ath_hw *ah) 3044 { 3045 if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0, 3046 AH_TSF_WRITE_TIMEOUT)) 3047 ath_dbg(ath9k_hw_common(ah), RESET, 3048 "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n"); 3049 3050 REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE); 3051 } 3052 EXPORT_SYMBOL(ath9k_hw_reset_tsf); 3053 3054 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set) 3055 { 3056 if (set) 3057 ah->misc_mode |= AR_PCU_TX_ADD_TSF; 3058 else 3059 ah->misc_mode &= ~AR_PCU_TX_ADD_TSF; 3060 } 3061 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust); 3062 3063 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan) 3064 { 3065 u32 macmode; 3066 3067 if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca) 3068 macmode = AR_2040_JOINED_RX_CLEAR; 3069 else 3070 macmode = 0; 3071 3072 REG_WRITE(ah, AR_2040_MODE, macmode); 3073 } 3074 3075 /* HW Generic timers configuration */ 3076 3077 static const struct ath_gen_timer_configuration gen_tmr_configuration[] = 3078 { 3079 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3080 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3081 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3082 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3083 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3084 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3085 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3086 {AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080}, 3087 {AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001}, 3088 {AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4, 3089 AR_NDP2_TIMER_MODE, 0x0002}, 3090 {AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4, 3091 AR_NDP2_TIMER_MODE, 0x0004}, 3092 {AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4, 3093 AR_NDP2_TIMER_MODE, 0x0008}, 3094 {AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4, 3095 AR_NDP2_TIMER_MODE, 0x0010}, 3096 {AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4, 3097 AR_NDP2_TIMER_MODE, 0x0020}, 3098 {AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4, 3099 AR_NDP2_TIMER_MODE, 0x0040}, 3100 {AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4, 3101 AR_NDP2_TIMER_MODE, 0x0080} 3102 }; 3103 3104 /* HW generic timer primitives */ 3105 3106 u32 ath9k_hw_gettsf32(struct ath_hw *ah) 3107 { 3108 return REG_READ(ah, AR_TSF_L32); 3109 } 3110 EXPORT_SYMBOL(ath9k_hw_gettsf32); 3111 3112 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah) 3113 { 3114 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3115 3116 if (timer_table->tsf2_enabled) { 3117 REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN); 3118 REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE); 3119 } 3120 } 3121 3122 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah, 3123 void (*trigger)(void *), 3124 void (*overflow)(void *), 3125 void *arg, 3126 u8 timer_index) 3127 { 3128 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3129 struct ath_gen_timer *timer; 3130 3131 if ((timer_index < AR_FIRST_NDP_TIMER) || 3132 (timer_index >= ATH_MAX_GEN_TIMER)) 3133 return NULL; 3134 3135 if ((timer_index > AR_FIRST_NDP_TIMER) && 3136 !AR_SREV_9300_20_OR_LATER(ah)) 3137 return NULL; 3138 3139 timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL); 3140 if (timer == NULL) 3141 return NULL; 3142 3143 /* allocate a hardware generic timer slot */ 3144 timer_table->timers[timer_index] = timer; 3145 timer->index = timer_index; 3146 timer->trigger = trigger; 3147 timer->overflow = overflow; 3148 timer->arg = arg; 3149 3150 if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) { 3151 timer_table->tsf2_enabled = true; 3152 ath9k_hw_gen_timer_start_tsf2(ah); 3153 } 3154 3155 return timer; 3156 } 3157 EXPORT_SYMBOL(ath_gen_timer_alloc); 3158 3159 void ath9k_hw_gen_timer_start(struct ath_hw *ah, 3160 struct ath_gen_timer *timer, 3161 u32 timer_next, 3162 u32 timer_period) 3163 { 3164 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3165 u32 mask = 0; 3166 3167 timer_table->timer_mask |= BIT(timer->index); 3168 3169 /* 3170 * Program generic timer registers 3171 */ 3172 REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr, 3173 timer_next); 3174 REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr, 3175 timer_period); 3176 REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 3177 gen_tmr_configuration[timer->index].mode_mask); 3178 3179 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 3180 /* 3181 * Starting from AR9462, each generic timer can select which tsf 3182 * to use. But we still follow the old rule, 0 - 7 use tsf and 3183 * 8 - 15 use tsf2. 3184 */ 3185 if ((timer->index < AR_GEN_TIMER_BANK_1_LEN)) 3186 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 3187 (1 << timer->index)); 3188 else 3189 REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 3190 (1 << timer->index)); 3191 } 3192 3193 if (timer->trigger) 3194 mask |= SM(AR_GENTMR_BIT(timer->index), 3195 AR_IMR_S5_GENTIMER_TRIG); 3196 if (timer->overflow) 3197 mask |= SM(AR_GENTMR_BIT(timer->index), 3198 AR_IMR_S5_GENTIMER_THRESH); 3199 3200 REG_SET_BIT(ah, AR_IMR_S5, mask); 3201 3202 if ((ah->imask & ATH9K_INT_GENTIMER) == 0) { 3203 ah->imask |= ATH9K_INT_GENTIMER; 3204 ath9k_hw_set_interrupts(ah); 3205 } 3206 } 3207 EXPORT_SYMBOL(ath9k_hw_gen_timer_start); 3208 3209 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer) 3210 { 3211 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3212 3213 /* Clear generic timer enable bits. */ 3214 REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr, 3215 gen_tmr_configuration[timer->index].mode_mask); 3216 3217 if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) { 3218 /* 3219 * Need to switch back to TSF if it was using TSF2. 3220 */ 3221 if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) { 3222 REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL, 3223 (1 << timer->index)); 3224 } 3225 } 3226 3227 /* Disable both trigger and thresh interrupt masks */ 3228 REG_CLR_BIT(ah, AR_IMR_S5, 3229 (SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) | 3230 SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG))); 3231 3232 timer_table->timer_mask &= ~BIT(timer->index); 3233 3234 if (timer_table->timer_mask == 0) { 3235 ah->imask &= ~ATH9K_INT_GENTIMER; 3236 ath9k_hw_set_interrupts(ah); 3237 } 3238 } 3239 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop); 3240 3241 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer) 3242 { 3243 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3244 3245 /* free the hardware generic timer slot */ 3246 timer_table->timers[timer->index] = NULL; 3247 kfree(timer); 3248 } 3249 EXPORT_SYMBOL(ath_gen_timer_free); 3250 3251 /* 3252 * Generic Timer Interrupts handling 3253 */ 3254 void ath_gen_timer_isr(struct ath_hw *ah) 3255 { 3256 struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers; 3257 struct ath_gen_timer *timer; 3258 unsigned long trigger_mask, thresh_mask; 3259 unsigned int index; 3260 3261 /* get hardware generic timer interrupt status */ 3262 trigger_mask = ah->intr_gen_timer_trigger; 3263 thresh_mask = ah->intr_gen_timer_thresh; 3264 trigger_mask &= timer_table->timer_mask; 3265 thresh_mask &= timer_table->timer_mask; 3266 3267 for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) { 3268 timer = timer_table->timers[index]; 3269 if (!timer) 3270 continue; 3271 if (!timer->overflow) 3272 continue; 3273 3274 trigger_mask &= ~BIT(index); 3275 timer->overflow(timer->arg); 3276 } 3277 3278 for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) { 3279 timer = timer_table->timers[index]; 3280 if (!timer) 3281 continue; 3282 if (!timer->trigger) 3283 continue; 3284 timer->trigger(timer->arg); 3285 } 3286 } 3287 EXPORT_SYMBOL(ath_gen_timer_isr); 3288 3289 /********/ 3290 /* HTC */ 3291 /********/ 3292 3293 static struct { 3294 u32 version; 3295 const char * name; 3296 } ath_mac_bb_names[] = { 3297 /* Devices with external radios */ 3298 { AR_SREV_VERSION_5416_PCI, "5416" }, 3299 { AR_SREV_VERSION_5416_PCIE, "5418" }, 3300 { AR_SREV_VERSION_9100, "9100" }, 3301 { AR_SREV_VERSION_9160, "9160" }, 3302 /* Single-chip solutions */ 3303 { AR_SREV_VERSION_9280, "9280" }, 3304 { AR_SREV_VERSION_9285, "9285" }, 3305 { AR_SREV_VERSION_9287, "9287" }, 3306 { AR_SREV_VERSION_9271, "9271" }, 3307 { AR_SREV_VERSION_9300, "9300" }, 3308 { AR_SREV_VERSION_9330, "9330" }, 3309 { AR_SREV_VERSION_9340, "9340" }, 3310 { AR_SREV_VERSION_9485, "9485" }, 3311 { AR_SREV_VERSION_9462, "9462" }, 3312 { AR_SREV_VERSION_9550, "9550" }, 3313 { AR_SREV_VERSION_9565, "9565" }, 3314 { AR_SREV_VERSION_9531, "9531" }, 3315 { AR_SREV_VERSION_9561, "9561" }, 3316 }; 3317 3318 /* For devices with external radios */ 3319 static struct { 3320 u16 version; 3321 const char * name; 3322 } ath_rf_names[] = { 3323 { 0, "5133" }, 3324 { AR_RAD5133_SREV_MAJOR, "5133" }, 3325 { AR_RAD5122_SREV_MAJOR, "5122" }, 3326 { AR_RAD2133_SREV_MAJOR, "2133" }, 3327 { AR_RAD2122_SREV_MAJOR, "2122" } 3328 }; 3329 3330 /* 3331 * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown. 3332 */ 3333 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version) 3334 { 3335 int i; 3336 3337 for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) { 3338 if (ath_mac_bb_names[i].version == mac_bb_version) { 3339 return ath_mac_bb_names[i].name; 3340 } 3341 } 3342 3343 return "????"; 3344 } 3345 3346 /* 3347 * Return the RF name. "????" is returned if the RF is unknown. 3348 * Used for devices with external radios. 3349 */ 3350 static const char *ath9k_hw_rf_name(u16 rf_version) 3351 { 3352 int i; 3353 3354 for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) { 3355 if (ath_rf_names[i].version == rf_version) { 3356 return ath_rf_names[i].name; 3357 } 3358 } 3359 3360 return "????"; 3361 } 3362 3363 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len) 3364 { 3365 int used; 3366 3367 /* chipsets >= AR9280 are single-chip */ 3368 if (AR_SREV_9280_20_OR_LATER(ah)) { 3369 used = scnprintf(hw_name, len, 3370 "Atheros AR%s Rev:%x", 3371 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 3372 ah->hw_version.macRev); 3373 } 3374 else { 3375 used = scnprintf(hw_name, len, 3376 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x", 3377 ath9k_hw_mac_bb_name(ah->hw_version.macVersion), 3378 ah->hw_version.macRev, 3379 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev 3380 & AR_RADIO_SREV_MAJOR)), 3381 ah->hw_version.phyRev); 3382 } 3383 3384 hw_name[used] = '\0'; 3385 } 3386 EXPORT_SYMBOL(ath9k_hw_name); 3387