xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 6774def6)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <asm/unaligned.h>
23 
24 #include "hw.h"
25 #include "hw-ops.h"
26 #include "ar9003_mac.h"
27 #include "ar9003_mci.h"
28 #include "ar9003_phy.h"
29 #include "ath9k.h"
30 
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37 
38 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
39 {
40 	struct ath_common *common = ath9k_hw_common(ah);
41 	struct ath9k_channel *chan = ah->curchan;
42 	unsigned int clockrate;
43 
44 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
45 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
46 		clockrate = 117;
47 	else if (!chan) /* should really check for CCK instead */
48 		clockrate = ATH9K_CLOCK_RATE_CCK;
49 	else if (IS_CHAN_2GHZ(chan))
50 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
51 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
52 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
53 	else
54 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
55 
56 	if (chan) {
57 		if (IS_CHAN_HT40(chan))
58 			clockrate *= 2;
59 		if (IS_CHAN_HALF_RATE(chan))
60 			clockrate /= 2;
61 		if (IS_CHAN_QUARTER_RATE(chan))
62 			clockrate /= 4;
63 	}
64 
65 	common->clockrate = clockrate;
66 }
67 
68 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
69 {
70 	struct ath_common *common = ath9k_hw_common(ah);
71 
72 	return usecs * common->clockrate;
73 }
74 
75 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
76 {
77 	int i;
78 
79 	BUG_ON(timeout < AH_TIME_QUANTUM);
80 
81 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
82 		if ((REG_READ(ah, reg) & mask) == val)
83 			return true;
84 
85 		udelay(AH_TIME_QUANTUM);
86 	}
87 
88 	ath_dbg(ath9k_hw_common(ah), ANY,
89 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
90 		timeout, reg, REG_READ(ah, reg), mask, val);
91 
92 	return false;
93 }
94 EXPORT_SYMBOL(ath9k_hw_wait);
95 
96 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
97 			  int hw_delay)
98 {
99 	hw_delay /= 10;
100 
101 	if (IS_CHAN_HALF_RATE(chan))
102 		hw_delay *= 2;
103 	else if (IS_CHAN_QUARTER_RATE(chan))
104 		hw_delay *= 4;
105 
106 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
107 }
108 
109 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
110 			  int column, unsigned int *writecnt)
111 {
112 	int r;
113 
114 	ENABLE_REGWRITE_BUFFER(ah);
115 	for (r = 0; r < array->ia_rows; r++) {
116 		REG_WRITE(ah, INI_RA(array, r, 0),
117 			  INI_RA(array, r, column));
118 		DO_DELAY(*writecnt);
119 	}
120 	REGWRITE_BUFFER_FLUSH(ah);
121 }
122 
123 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
124 {
125 	u32 retval;
126 	int i;
127 
128 	for (i = 0, retval = 0; i < n; i++) {
129 		retval = (retval << 1) | (val & 1);
130 		val >>= 1;
131 	}
132 	return retval;
133 }
134 
135 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
136 			   u8 phy, int kbps,
137 			   u32 frameLen, u16 rateix,
138 			   bool shortPreamble)
139 {
140 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
141 
142 	if (kbps == 0)
143 		return 0;
144 
145 	switch (phy) {
146 	case WLAN_RC_PHY_CCK:
147 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
148 		if (shortPreamble)
149 			phyTime >>= 1;
150 		numBits = frameLen << 3;
151 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
152 		break;
153 	case WLAN_RC_PHY_OFDM:
154 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
155 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
156 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
157 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
158 			txTime = OFDM_SIFS_TIME_QUARTER
159 				+ OFDM_PREAMBLE_TIME_QUARTER
160 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
161 		} else if (ah->curchan &&
162 			   IS_CHAN_HALF_RATE(ah->curchan)) {
163 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
164 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
165 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
166 			txTime = OFDM_SIFS_TIME_HALF +
167 				OFDM_PREAMBLE_TIME_HALF
168 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
169 		} else {
170 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
171 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
172 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
173 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
174 				+ (numSymbols * OFDM_SYMBOL_TIME);
175 		}
176 		break;
177 	default:
178 		ath_err(ath9k_hw_common(ah),
179 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
180 		txTime = 0;
181 		break;
182 	}
183 
184 	return txTime;
185 }
186 EXPORT_SYMBOL(ath9k_hw_computetxtime);
187 
188 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
189 				  struct ath9k_channel *chan,
190 				  struct chan_centers *centers)
191 {
192 	int8_t extoff;
193 
194 	if (!IS_CHAN_HT40(chan)) {
195 		centers->ctl_center = centers->ext_center =
196 			centers->synth_center = chan->channel;
197 		return;
198 	}
199 
200 	if (IS_CHAN_HT40PLUS(chan)) {
201 		centers->synth_center =
202 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
203 		extoff = 1;
204 	} else {
205 		centers->synth_center =
206 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
207 		extoff = -1;
208 	}
209 
210 	centers->ctl_center =
211 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
212 	/* 25 MHz spacing is supported by hw but not on upper layers */
213 	centers->ext_center =
214 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
215 }
216 
217 /******************/
218 /* Chip Revisions */
219 /******************/
220 
221 static void ath9k_hw_read_revisions(struct ath_hw *ah)
222 {
223 	u32 val;
224 
225 	if (ah->get_mac_revision)
226 		ah->hw_version.macRev = ah->get_mac_revision();
227 
228 	switch (ah->hw_version.devid) {
229 	case AR5416_AR9100_DEVID:
230 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
231 		break;
232 	case AR9300_DEVID_AR9330:
233 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
234 		if (!ah->get_mac_revision) {
235 			val = REG_READ(ah, AR_SREV);
236 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
237 		}
238 		return;
239 	case AR9300_DEVID_AR9340:
240 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
241 		return;
242 	case AR9300_DEVID_QCA955X:
243 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
244 		return;
245 	case AR9300_DEVID_AR953X:
246 		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
247 		return;
248 	}
249 
250 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
251 
252 	if (val == 0xFF) {
253 		val = REG_READ(ah, AR_SREV);
254 		ah->hw_version.macVersion =
255 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
256 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
257 
258 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
259 			ah->is_pciexpress = true;
260 		else
261 			ah->is_pciexpress = (val &
262 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
263 	} else {
264 		if (!AR_SREV_9100(ah))
265 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
266 
267 		ah->hw_version.macRev = val & AR_SREV_REVISION;
268 
269 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
270 			ah->is_pciexpress = true;
271 	}
272 }
273 
274 /************************************/
275 /* HW Attach, Detach, Init Routines */
276 /************************************/
277 
278 static void ath9k_hw_disablepcie(struct ath_hw *ah)
279 {
280 	if (!AR_SREV_5416(ah))
281 		return;
282 
283 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
284 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
285 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
286 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
287 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
288 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
289 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
290 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
291 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
292 
293 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
294 }
295 
296 /* This should work for all families including legacy */
297 static bool ath9k_hw_chip_test(struct ath_hw *ah)
298 {
299 	struct ath_common *common = ath9k_hw_common(ah);
300 	u32 regAddr[2] = { AR_STA_ID0 };
301 	u32 regHold[2];
302 	static const u32 patternData[4] = {
303 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
304 	};
305 	int i, j, loop_max;
306 
307 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
308 		loop_max = 2;
309 		regAddr[1] = AR_PHY_BASE + (8 << 2);
310 	} else
311 		loop_max = 1;
312 
313 	for (i = 0; i < loop_max; i++) {
314 		u32 addr = regAddr[i];
315 		u32 wrData, rdData;
316 
317 		regHold[i] = REG_READ(ah, addr);
318 		for (j = 0; j < 0x100; j++) {
319 			wrData = (j << 16) | j;
320 			REG_WRITE(ah, addr, wrData);
321 			rdData = REG_READ(ah, addr);
322 			if (rdData != wrData) {
323 				ath_err(common,
324 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
325 					addr, wrData, rdData);
326 				return false;
327 			}
328 		}
329 		for (j = 0; j < 4; j++) {
330 			wrData = patternData[j];
331 			REG_WRITE(ah, addr, wrData);
332 			rdData = REG_READ(ah, addr);
333 			if (wrData != rdData) {
334 				ath_err(common,
335 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
336 					addr, wrData, rdData);
337 				return false;
338 			}
339 		}
340 		REG_WRITE(ah, regAddr[i], regHold[i]);
341 	}
342 	udelay(100);
343 
344 	return true;
345 }
346 
347 static void ath9k_hw_init_config(struct ath_hw *ah)
348 {
349 	struct ath_common *common = ath9k_hw_common(ah);
350 
351 	ah->config.dma_beacon_response_time = 1;
352 	ah->config.sw_beacon_response_time = 6;
353 	ah->config.cwm_ignore_extcca = 0;
354 	ah->config.analog_shiftreg = 1;
355 
356 	ah->config.rx_intr_mitigation = true;
357 
358 	if (AR_SREV_9300_20_OR_LATER(ah)) {
359 		ah->config.rimt_last = 500;
360 		ah->config.rimt_first = 2000;
361 	} else {
362 		ah->config.rimt_last = 250;
363 		ah->config.rimt_first = 700;
364 	}
365 
366 	/*
367 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
368 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
369 	 * This means we use it for all AR5416 devices, and the few
370 	 * minor PCI AR9280 devices out there.
371 	 *
372 	 * Serialization is required because these devices do not handle
373 	 * well the case of two concurrent reads/writes due to the latency
374 	 * involved. During one read/write another read/write can be issued
375 	 * on another CPU while the previous read/write may still be working
376 	 * on our hardware, if we hit this case the hardware poops in a loop.
377 	 * We prevent this by serializing reads and writes.
378 	 *
379 	 * This issue is not present on PCI-Express devices or pre-AR5416
380 	 * devices (legacy, 802.11abg).
381 	 */
382 	if (num_possible_cpus() > 1)
383 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
384 
385 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
386 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
387 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
388 		     !ah->is_pciexpress)) {
389 			ah->config.serialize_regmode = SER_REG_MODE_ON;
390 		} else {
391 			ah->config.serialize_regmode = SER_REG_MODE_OFF;
392 		}
393 	}
394 
395 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
396 		ah->config.serialize_regmode);
397 
398 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
399 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
400 	else
401 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
402 }
403 
404 static void ath9k_hw_init_defaults(struct ath_hw *ah)
405 {
406 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
407 
408 	regulatory->country_code = CTRY_DEFAULT;
409 	regulatory->power_limit = MAX_RATE_POWER;
410 
411 	ah->hw_version.magic = AR5416_MAGIC;
412 	ah->hw_version.subvendorid = 0;
413 
414 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
415 			       AR_STA_ID1_MCAST_KSRCH;
416 	if (AR_SREV_9100(ah))
417 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
418 
419 	ah->slottime = ATH9K_SLOT_TIME_9;
420 	ah->globaltxtimeout = (u32) -1;
421 	ah->power_mode = ATH9K_PM_UNDEFINED;
422 	ah->htc_reset_init = true;
423 
424 	ah->ani_function = ATH9K_ANI_ALL;
425 	if (!AR_SREV_9300_20_OR_LATER(ah))
426 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
427 
428 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
429 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
430 	else
431 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
432 }
433 
434 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
435 {
436 	struct ath_common *common = ath9k_hw_common(ah);
437 	u32 sum;
438 	int i;
439 	u16 eeval;
440 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
441 
442 	sum = 0;
443 	for (i = 0; i < 3; i++) {
444 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
445 		sum += eeval;
446 		common->macaddr[2 * i] = eeval >> 8;
447 		common->macaddr[2 * i + 1] = eeval & 0xff;
448 	}
449 	if (sum == 0 || sum == 0xffff * 3)
450 		return -EADDRNOTAVAIL;
451 
452 	return 0;
453 }
454 
455 static int ath9k_hw_post_init(struct ath_hw *ah)
456 {
457 	struct ath_common *common = ath9k_hw_common(ah);
458 	int ecode;
459 
460 	if (common->bus_ops->ath_bus_type != ATH_USB) {
461 		if (!ath9k_hw_chip_test(ah))
462 			return -ENODEV;
463 	}
464 
465 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
466 		ecode = ar9002_hw_rf_claim(ah);
467 		if (ecode != 0)
468 			return ecode;
469 	}
470 
471 	ecode = ath9k_hw_eeprom_init(ah);
472 	if (ecode != 0)
473 		return ecode;
474 
475 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
476 		ah->eep_ops->get_eeprom_ver(ah),
477 		ah->eep_ops->get_eeprom_rev(ah));
478 
479 	ath9k_hw_ani_init(ah);
480 
481 	/*
482 	 * EEPROM needs to be initialized before we do this.
483 	 * This is required for regulatory compliance.
484 	 */
485 	if (AR_SREV_9300_20_OR_LATER(ah)) {
486 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
487 		if ((regdmn & 0xF0) == CTL_FCC) {
488 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
489 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
490 		}
491 	}
492 
493 	return 0;
494 }
495 
496 static int ath9k_hw_attach_ops(struct ath_hw *ah)
497 {
498 	if (!AR_SREV_9300_20_OR_LATER(ah))
499 		return ar9002_hw_attach_ops(ah);
500 
501 	ar9003_hw_attach_ops(ah);
502 	return 0;
503 }
504 
505 /* Called for all hardware families */
506 static int __ath9k_hw_init(struct ath_hw *ah)
507 {
508 	struct ath_common *common = ath9k_hw_common(ah);
509 	int r = 0;
510 
511 	ath9k_hw_read_revisions(ah);
512 
513 	switch (ah->hw_version.macVersion) {
514 	case AR_SREV_VERSION_5416_PCI:
515 	case AR_SREV_VERSION_5416_PCIE:
516 	case AR_SREV_VERSION_9160:
517 	case AR_SREV_VERSION_9100:
518 	case AR_SREV_VERSION_9280:
519 	case AR_SREV_VERSION_9285:
520 	case AR_SREV_VERSION_9287:
521 	case AR_SREV_VERSION_9271:
522 	case AR_SREV_VERSION_9300:
523 	case AR_SREV_VERSION_9330:
524 	case AR_SREV_VERSION_9485:
525 	case AR_SREV_VERSION_9340:
526 	case AR_SREV_VERSION_9462:
527 	case AR_SREV_VERSION_9550:
528 	case AR_SREV_VERSION_9565:
529 	case AR_SREV_VERSION_9531:
530 		break;
531 	default:
532 		ath_err(common,
533 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
534 			ah->hw_version.macVersion, ah->hw_version.macRev);
535 		return -EOPNOTSUPP;
536 	}
537 
538 	/*
539 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
540 	 * We need to do this to avoid RMW of this register. We cannot
541 	 * read the reg when chip is asleep.
542 	 */
543 	if (AR_SREV_9300_20_OR_LATER(ah)) {
544 		ah->WARegVal = REG_READ(ah, AR_WA);
545 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
546 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
547 	}
548 
549 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
550 		ath_err(common, "Couldn't reset chip\n");
551 		return -EIO;
552 	}
553 
554 	if (AR_SREV_9565(ah)) {
555 		ah->WARegVal |= AR_WA_BIT22;
556 		REG_WRITE(ah, AR_WA, ah->WARegVal);
557 	}
558 
559 	ath9k_hw_init_defaults(ah);
560 	ath9k_hw_init_config(ah);
561 
562 	r = ath9k_hw_attach_ops(ah);
563 	if (r)
564 		return r;
565 
566 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
567 		ath_err(common, "Couldn't wakeup chip\n");
568 		return -EIO;
569 	}
570 
571 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
572 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
573 		ah->is_pciexpress = false;
574 
575 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
576 	ath9k_hw_init_cal_settings(ah);
577 
578 	if (!ah->is_pciexpress)
579 		ath9k_hw_disablepcie(ah);
580 
581 	r = ath9k_hw_post_init(ah);
582 	if (r)
583 		return r;
584 
585 	ath9k_hw_init_mode_gain_regs(ah);
586 	r = ath9k_hw_fill_cap_info(ah);
587 	if (r)
588 		return r;
589 
590 	r = ath9k_hw_init_macaddr(ah);
591 	if (r) {
592 		ath_err(common, "Failed to initialize MAC address\n");
593 		return r;
594 	}
595 
596 	ath9k_hw_init_hang_checks(ah);
597 
598 	common->state = ATH_HW_INITIALIZED;
599 
600 	return 0;
601 }
602 
603 int ath9k_hw_init(struct ath_hw *ah)
604 {
605 	int ret;
606 	struct ath_common *common = ath9k_hw_common(ah);
607 
608 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
609 	switch (ah->hw_version.devid) {
610 	case AR5416_DEVID_PCI:
611 	case AR5416_DEVID_PCIE:
612 	case AR5416_AR9100_DEVID:
613 	case AR9160_DEVID_PCI:
614 	case AR9280_DEVID_PCI:
615 	case AR9280_DEVID_PCIE:
616 	case AR9285_DEVID_PCIE:
617 	case AR9287_DEVID_PCI:
618 	case AR9287_DEVID_PCIE:
619 	case AR2427_DEVID_PCIE:
620 	case AR9300_DEVID_PCIE:
621 	case AR9300_DEVID_AR9485_PCIE:
622 	case AR9300_DEVID_AR9330:
623 	case AR9300_DEVID_AR9340:
624 	case AR9300_DEVID_QCA955X:
625 	case AR9300_DEVID_AR9580:
626 	case AR9300_DEVID_AR9462:
627 	case AR9485_DEVID_AR1111:
628 	case AR9300_DEVID_AR9565:
629 	case AR9300_DEVID_AR953X:
630 		break;
631 	default:
632 		if (common->bus_ops->ath_bus_type == ATH_USB)
633 			break;
634 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
635 			ah->hw_version.devid);
636 		return -EOPNOTSUPP;
637 	}
638 
639 	ret = __ath9k_hw_init(ah);
640 	if (ret) {
641 		ath_err(common,
642 			"Unable to initialize hardware; initialization status: %d\n",
643 			ret);
644 		return ret;
645 	}
646 
647 	ath_dynack_init(ah);
648 
649 	return 0;
650 }
651 EXPORT_SYMBOL(ath9k_hw_init);
652 
653 static void ath9k_hw_init_qos(struct ath_hw *ah)
654 {
655 	ENABLE_REGWRITE_BUFFER(ah);
656 
657 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
658 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
659 
660 	REG_WRITE(ah, AR_QOS_NO_ACK,
661 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
662 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
663 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
664 
665 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
666 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
667 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
668 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
669 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
670 
671 	REGWRITE_BUFFER_FLUSH(ah);
672 }
673 
674 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
675 {
676 	struct ath_common *common = ath9k_hw_common(ah);
677 	int i = 0;
678 
679 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
680 	udelay(100);
681 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
682 
683 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
684 
685 		udelay(100);
686 
687 		if (WARN_ON_ONCE(i >= 100)) {
688 			ath_err(common, "PLL4 meaurement not done\n");
689 			break;
690 		}
691 
692 		i++;
693 	}
694 
695 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
696 }
697 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
698 
699 static void ath9k_hw_init_pll(struct ath_hw *ah,
700 			      struct ath9k_channel *chan)
701 {
702 	u32 pll;
703 
704 	pll = ath9k_hw_compute_pll_control(ah, chan);
705 
706 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
707 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
708 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
709 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
710 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
711 			      AR_CH0_DPLL2_KD, 0x40);
712 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
713 			      AR_CH0_DPLL2_KI, 0x4);
714 
715 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
716 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
717 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
718 			      AR_CH0_BB_DPLL1_NINI, 0x58);
719 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
720 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
721 
722 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
723 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
724 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
725 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
726 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
727 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
728 
729 		/* program BB PLL phase_shift to 0x6 */
730 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
731 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
732 
733 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
734 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
735 		udelay(1000);
736 	} else if (AR_SREV_9330(ah)) {
737 		u32 ddr_dpll2, pll_control2, kd;
738 
739 		if (ah->is_clk_25mhz) {
740 			ddr_dpll2 = 0x18e82f01;
741 			pll_control2 = 0xe04a3d;
742 			kd = 0x1d;
743 		} else {
744 			ddr_dpll2 = 0x19e82f01;
745 			pll_control2 = 0x886666;
746 			kd = 0x3d;
747 		}
748 
749 		/* program DDR PLL ki and kd value */
750 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
751 
752 		/* program DDR PLL phase_shift */
753 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
754 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
755 
756 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
757 			  pll | AR_RTC_9300_PLL_BYPASS);
758 		udelay(1000);
759 
760 		/* program refdiv, nint, frac to RTC register */
761 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
762 
763 		/* program BB PLL kd and ki value */
764 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
765 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
766 
767 		/* program BB PLL phase_shift */
768 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
769 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
770 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah)) {
771 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
772 
773 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
774 			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
775 		udelay(1000);
776 
777 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
778 		udelay(100);
779 
780 		if (ah->is_clk_25mhz) {
781 			if (AR_SREV_9531(ah)) {
782 				pll2_divint = 0x1c;
783 				pll2_divfrac = 0xa3d2;
784 				refdiv = 1;
785 			} else {
786 				pll2_divint = 0x54;
787 				pll2_divfrac = 0x1eb85;
788 				refdiv = 3;
789 			}
790 		} else {
791 			if (AR_SREV_9340(ah)) {
792 				pll2_divint = 88;
793 				pll2_divfrac = 0;
794 				refdiv = 5;
795 			} else {
796 				pll2_divint = 0x11;
797 				pll2_divfrac =
798 					AR_SREV_9531(ah) ? 0x26665 : 0x26666;
799 				refdiv = 1;
800 			}
801 		}
802 
803 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
804 		if (AR_SREV_9531(ah))
805 			regval |= (0x1 << 22);
806 		else
807 			regval |= (0x1 << 16);
808 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
809 		udelay(100);
810 
811 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
812 			  (pll2_divint << 18) | pll2_divfrac);
813 		udelay(100);
814 
815 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
816 		if (AR_SREV_9340(ah))
817 			regval = (regval & 0x80071fff) |
818 				(0x1 << 30) |
819 				(0x1 << 13) |
820 				(0x4 << 26) |
821 				(0x18 << 19);
822 		else if (AR_SREV_9531(ah))
823 			regval = (regval & 0x01c00fff) |
824 				(0x1 << 31) |
825 				(0x2 << 29) |
826 				(0xa << 25) |
827 				(0x1 << 19) |
828 				(0x6 << 12);
829 		else
830 			regval = (regval & 0x80071fff) |
831 				(0x3 << 30) |
832 				(0x1 << 13) |
833 				(0x4 << 26) |
834 				(0x60 << 19);
835 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
836 
837 		if (AR_SREV_9531(ah))
838 			REG_WRITE(ah, AR_PHY_PLL_MODE,
839 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
840 		else
841 			REG_WRITE(ah, AR_PHY_PLL_MODE,
842 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
843 
844 		udelay(1000);
845 	}
846 
847 	if (AR_SREV_9565(ah))
848 		pll |= 0x40000;
849 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
850 
851 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
852 	    AR_SREV_9550(ah))
853 		udelay(1000);
854 
855 	/* Switch the core clock for ar9271 to 117Mhz */
856 	if (AR_SREV_9271(ah)) {
857 		udelay(500);
858 		REG_WRITE(ah, 0x50040, 0x304);
859 	}
860 
861 	udelay(RTC_PLL_SETTLE_DELAY);
862 
863 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
864 
865 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
866 		if (ah->is_clk_25mhz) {
867 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
868 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
869 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
870 		} else {
871 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
872 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
873 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
874 		}
875 		udelay(100);
876 	}
877 }
878 
879 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
880 					  enum nl80211_iftype opmode)
881 {
882 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
883 	u32 imr_reg = AR_IMR_TXERR |
884 		AR_IMR_TXURN |
885 		AR_IMR_RXERR |
886 		AR_IMR_RXORN |
887 		AR_IMR_BCNMISC;
888 
889 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah))
890 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
891 
892 	if (AR_SREV_9300_20_OR_LATER(ah)) {
893 		imr_reg |= AR_IMR_RXOK_HP;
894 		if (ah->config.rx_intr_mitigation)
895 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
896 		else
897 			imr_reg |= AR_IMR_RXOK_LP;
898 
899 	} else {
900 		if (ah->config.rx_intr_mitigation)
901 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
902 		else
903 			imr_reg |= AR_IMR_RXOK;
904 	}
905 
906 	if (ah->config.tx_intr_mitigation)
907 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
908 	else
909 		imr_reg |= AR_IMR_TXOK;
910 
911 	ENABLE_REGWRITE_BUFFER(ah);
912 
913 	REG_WRITE(ah, AR_IMR, imr_reg);
914 	ah->imrs2_reg |= AR_IMR_S2_GTT;
915 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
916 
917 	if (!AR_SREV_9100(ah)) {
918 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
919 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
920 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
921 	}
922 
923 	REGWRITE_BUFFER_FLUSH(ah);
924 
925 	if (AR_SREV_9300_20_OR_LATER(ah)) {
926 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
927 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
928 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
929 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
930 	}
931 }
932 
933 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
934 {
935 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
936 	val = min(val, (u32) 0xFFFF);
937 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
938 }
939 
940 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
941 {
942 	u32 val = ath9k_hw_mac_to_clks(ah, us);
943 	val = min(val, (u32) 0xFFFF);
944 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
945 }
946 
947 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
948 {
949 	u32 val = ath9k_hw_mac_to_clks(ah, us);
950 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
951 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
952 }
953 
954 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
955 {
956 	u32 val = ath9k_hw_mac_to_clks(ah, us);
957 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
958 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
959 }
960 
961 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
962 {
963 	if (tu > 0xFFFF) {
964 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
965 			tu);
966 		ah->globaltxtimeout = (u32) -1;
967 		return false;
968 	} else {
969 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
970 		ah->globaltxtimeout = tu;
971 		return true;
972 	}
973 }
974 
975 void ath9k_hw_init_global_settings(struct ath_hw *ah)
976 {
977 	struct ath_common *common = ath9k_hw_common(ah);
978 	const struct ath9k_channel *chan = ah->curchan;
979 	int acktimeout, ctstimeout, ack_offset = 0;
980 	int slottime;
981 	int sifstime;
982 	int rx_lat = 0, tx_lat = 0, eifs = 0;
983 	u32 reg;
984 
985 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
986 		ah->misc_mode);
987 
988 	if (!chan)
989 		return;
990 
991 	if (ah->misc_mode != 0)
992 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
993 
994 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
995 		rx_lat = 41;
996 	else
997 		rx_lat = 37;
998 	tx_lat = 54;
999 
1000 	if (IS_CHAN_5GHZ(chan))
1001 		sifstime = 16;
1002 	else
1003 		sifstime = 10;
1004 
1005 	if (IS_CHAN_HALF_RATE(chan)) {
1006 		eifs = 175;
1007 		rx_lat *= 2;
1008 		tx_lat *= 2;
1009 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1010 		    tx_lat += 11;
1011 
1012 		sifstime = 32;
1013 		ack_offset = 16;
1014 		slottime = 13;
1015 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1016 		eifs = 340;
1017 		rx_lat = (rx_lat * 4) - 1;
1018 		tx_lat *= 4;
1019 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1020 		    tx_lat += 22;
1021 
1022 		sifstime = 64;
1023 		ack_offset = 32;
1024 		slottime = 21;
1025 	} else {
1026 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1027 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1028 			reg = AR_USEC_ASYNC_FIFO;
1029 		} else {
1030 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1031 				common->clockrate;
1032 			reg = REG_READ(ah, AR_USEC);
1033 		}
1034 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1035 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1036 
1037 		slottime = ah->slottime;
1038 	}
1039 
1040 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1041 	slottime += 3 * ah->coverage_class;
1042 	acktimeout = slottime + sifstime + ack_offset;
1043 	ctstimeout = acktimeout;
1044 
1045 	/*
1046 	 * Workaround for early ACK timeouts, add an offset to match the
1047 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1048 	 * This was initially only meant to work around an issue with delayed
1049 	 * BA frames in some implementations, but it has been found to fix ACK
1050 	 * timeout issues in other cases as well.
1051 	 */
1052 	if (IS_CHAN_2GHZ(chan) &&
1053 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1054 		acktimeout += 64 - sifstime - ah->slottime;
1055 		ctstimeout += 48 - sifstime - ah->slottime;
1056 	}
1057 
1058 	if (ah->dynack.enabled) {
1059 		acktimeout = ah->dynack.ackto;
1060 		ctstimeout = acktimeout;
1061 		slottime = (acktimeout - 3) / 2;
1062 	} else {
1063 		ah->dynack.ackto = acktimeout;
1064 	}
1065 
1066 	ath9k_hw_set_sifs_time(ah, sifstime);
1067 	ath9k_hw_setslottime(ah, slottime);
1068 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1069 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1070 	if (ah->globaltxtimeout != (u32) -1)
1071 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1072 
1073 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1074 	REG_RMW(ah, AR_USEC,
1075 		(common->clockrate - 1) |
1076 		SM(rx_lat, AR_USEC_RX_LAT) |
1077 		SM(tx_lat, AR_USEC_TX_LAT),
1078 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1079 
1080 }
1081 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1082 
1083 void ath9k_hw_deinit(struct ath_hw *ah)
1084 {
1085 	struct ath_common *common = ath9k_hw_common(ah);
1086 
1087 	if (common->state < ATH_HW_INITIALIZED)
1088 		return;
1089 
1090 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1091 }
1092 EXPORT_SYMBOL(ath9k_hw_deinit);
1093 
1094 /*******/
1095 /* INI */
1096 /*******/
1097 
1098 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1099 {
1100 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1101 
1102 	if (IS_CHAN_2GHZ(chan))
1103 		ctl |= CTL_11G;
1104 	else
1105 		ctl |= CTL_11A;
1106 
1107 	return ctl;
1108 }
1109 
1110 /****************************************/
1111 /* Reset and Channel Switching Routines */
1112 /****************************************/
1113 
1114 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1115 {
1116 	struct ath_common *common = ath9k_hw_common(ah);
1117 	int txbuf_size;
1118 
1119 	ENABLE_REGWRITE_BUFFER(ah);
1120 
1121 	/*
1122 	 * set AHB_MODE not to do cacheline prefetches
1123 	*/
1124 	if (!AR_SREV_9300_20_OR_LATER(ah))
1125 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1126 
1127 	/*
1128 	 * let mac dma reads be in 128 byte chunks
1129 	 */
1130 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1131 
1132 	REGWRITE_BUFFER_FLUSH(ah);
1133 
1134 	/*
1135 	 * Restore TX Trigger Level to its pre-reset value.
1136 	 * The initial value depends on whether aggregation is enabled, and is
1137 	 * adjusted whenever underruns are detected.
1138 	 */
1139 	if (!AR_SREV_9300_20_OR_LATER(ah))
1140 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1141 
1142 	ENABLE_REGWRITE_BUFFER(ah);
1143 
1144 	/*
1145 	 * let mac dma writes be in 128 byte chunks
1146 	 */
1147 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1148 
1149 	/*
1150 	 * Setup receive FIFO threshold to hold off TX activities
1151 	 */
1152 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1153 
1154 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1155 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1156 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1157 
1158 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1159 			ah->caps.rx_status_len);
1160 	}
1161 
1162 	/*
1163 	 * reduce the number of usable entries in PCU TXBUF to avoid
1164 	 * wrap around issues.
1165 	 */
1166 	if (AR_SREV_9285(ah)) {
1167 		/* For AR9285 the number of Fifos are reduced to half.
1168 		 * So set the usable tx buf size also to half to
1169 		 * avoid data/delimiter underruns
1170 		 */
1171 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1172 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1173 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1174 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1175 	} else {
1176 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1177 	}
1178 
1179 	if (!AR_SREV_9271(ah))
1180 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1181 
1182 	REGWRITE_BUFFER_FLUSH(ah);
1183 
1184 	if (AR_SREV_9300_20_OR_LATER(ah))
1185 		ath9k_hw_reset_txstatus_ring(ah);
1186 }
1187 
1188 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1189 {
1190 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1191 	u32 set = AR_STA_ID1_KSRCH_MODE;
1192 
1193 	switch (opmode) {
1194 	case NL80211_IFTYPE_ADHOC:
1195 		if (!AR_SREV_9340_13(ah)) {
1196 			set |= AR_STA_ID1_ADHOC;
1197 			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1198 			break;
1199 		}
1200 		/* fall through */
1201 	case NL80211_IFTYPE_MESH_POINT:
1202 	case NL80211_IFTYPE_AP:
1203 		set |= AR_STA_ID1_STA_AP;
1204 		/* fall through */
1205 	case NL80211_IFTYPE_STATION:
1206 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1207 		break;
1208 	default:
1209 		if (!ah->is_monitoring)
1210 			set = 0;
1211 		break;
1212 	}
1213 	REG_RMW(ah, AR_STA_ID1, set, mask);
1214 }
1215 
1216 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1217 				   u32 *coef_mantissa, u32 *coef_exponent)
1218 {
1219 	u32 coef_exp, coef_man;
1220 
1221 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1222 		if ((coef_scaled >> coef_exp) & 0x1)
1223 			break;
1224 
1225 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1226 
1227 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1228 
1229 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1230 	*coef_exponent = coef_exp - 16;
1231 }
1232 
1233 /* AR9330 WAR:
1234  * call external reset function to reset WMAC if:
1235  * - doing a cold reset
1236  * - we have pending frames in the TX queues.
1237  */
1238 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1239 {
1240 	int i, npend = 0;
1241 
1242 	for (i = 0; i < AR_NUM_QCU; i++) {
1243 		npend = ath9k_hw_numtxpending(ah, i);
1244 		if (npend)
1245 			break;
1246 	}
1247 
1248 	if (ah->external_reset &&
1249 	    (npend || type == ATH9K_RESET_COLD)) {
1250 		int reset_err = 0;
1251 
1252 		ath_dbg(ath9k_hw_common(ah), RESET,
1253 			"reset MAC via external reset\n");
1254 
1255 		reset_err = ah->external_reset();
1256 		if (reset_err) {
1257 			ath_err(ath9k_hw_common(ah),
1258 				"External reset failed, err=%d\n",
1259 				reset_err);
1260 			return false;
1261 		}
1262 
1263 		REG_WRITE(ah, AR_RTC_RESET, 1);
1264 	}
1265 
1266 	return true;
1267 }
1268 
1269 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1270 {
1271 	u32 rst_flags;
1272 	u32 tmpReg;
1273 
1274 	if (AR_SREV_9100(ah)) {
1275 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1276 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1277 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1278 	}
1279 
1280 	ENABLE_REGWRITE_BUFFER(ah);
1281 
1282 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1283 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1284 		udelay(10);
1285 	}
1286 
1287 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1288 		  AR_RTC_FORCE_WAKE_ON_INT);
1289 
1290 	if (AR_SREV_9100(ah)) {
1291 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1292 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1293 	} else {
1294 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1295 		if (AR_SREV_9340(ah))
1296 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1297 		else
1298 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1299 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1300 
1301 		if (tmpReg) {
1302 			u32 val;
1303 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1304 
1305 			val = AR_RC_HOSTIF;
1306 			if (!AR_SREV_9300_20_OR_LATER(ah))
1307 				val |= AR_RC_AHB;
1308 			REG_WRITE(ah, AR_RC, val);
1309 
1310 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1311 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1312 
1313 		rst_flags = AR_RTC_RC_MAC_WARM;
1314 		if (type == ATH9K_RESET_COLD)
1315 			rst_flags |= AR_RTC_RC_MAC_COLD;
1316 	}
1317 
1318 	if (AR_SREV_9330(ah)) {
1319 		if (!ath9k_hw_ar9330_reset_war(ah, type))
1320 			return false;
1321 	}
1322 
1323 	if (ath9k_hw_mci_is_enabled(ah))
1324 		ar9003_mci_check_gpm_offset(ah);
1325 
1326 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1327 
1328 	REGWRITE_BUFFER_FLUSH(ah);
1329 
1330 	if (AR_SREV_9300_20_OR_LATER(ah))
1331 		udelay(50);
1332 	else if (AR_SREV_9100(ah))
1333 		mdelay(10);
1334 	else
1335 		udelay(100);
1336 
1337 	REG_WRITE(ah, AR_RTC_RC, 0);
1338 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1339 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1340 		return false;
1341 	}
1342 
1343 	if (!AR_SREV_9100(ah))
1344 		REG_WRITE(ah, AR_RC, 0);
1345 
1346 	if (AR_SREV_9100(ah))
1347 		udelay(50);
1348 
1349 	return true;
1350 }
1351 
1352 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1353 {
1354 	ENABLE_REGWRITE_BUFFER(ah);
1355 
1356 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1357 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1358 		udelay(10);
1359 	}
1360 
1361 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1362 		  AR_RTC_FORCE_WAKE_ON_INT);
1363 
1364 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1365 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1366 
1367 	REG_WRITE(ah, AR_RTC_RESET, 0);
1368 
1369 	REGWRITE_BUFFER_FLUSH(ah);
1370 
1371 	udelay(2);
1372 
1373 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1374 		REG_WRITE(ah, AR_RC, 0);
1375 
1376 	REG_WRITE(ah, AR_RTC_RESET, 1);
1377 
1378 	if (!ath9k_hw_wait(ah,
1379 			   AR_RTC_STATUS,
1380 			   AR_RTC_STATUS_M,
1381 			   AR_RTC_STATUS_ON,
1382 			   AH_WAIT_TIMEOUT)) {
1383 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1384 		return false;
1385 	}
1386 
1387 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1388 }
1389 
1390 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1391 {
1392 	bool ret = false;
1393 
1394 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1395 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1396 		udelay(10);
1397 	}
1398 
1399 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1400 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1401 
1402 	if (!ah->reset_power_on)
1403 		type = ATH9K_RESET_POWER_ON;
1404 
1405 	switch (type) {
1406 	case ATH9K_RESET_POWER_ON:
1407 		ret = ath9k_hw_set_reset_power_on(ah);
1408 		if (ret)
1409 			ah->reset_power_on = true;
1410 		break;
1411 	case ATH9K_RESET_WARM:
1412 	case ATH9K_RESET_COLD:
1413 		ret = ath9k_hw_set_reset(ah, type);
1414 		break;
1415 	default:
1416 		break;
1417 	}
1418 
1419 	return ret;
1420 }
1421 
1422 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1423 				struct ath9k_channel *chan)
1424 {
1425 	int reset_type = ATH9K_RESET_WARM;
1426 
1427 	if (AR_SREV_9280(ah)) {
1428 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1429 			reset_type = ATH9K_RESET_POWER_ON;
1430 		else
1431 			reset_type = ATH9K_RESET_COLD;
1432 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1433 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1434 		reset_type = ATH9K_RESET_COLD;
1435 
1436 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1437 		return false;
1438 
1439 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1440 		return false;
1441 
1442 	ah->chip_fullsleep = false;
1443 
1444 	if (AR_SREV_9330(ah))
1445 		ar9003_hw_internal_regulator_apply(ah);
1446 	ath9k_hw_init_pll(ah, chan);
1447 
1448 	return true;
1449 }
1450 
1451 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1452 				    struct ath9k_channel *chan)
1453 {
1454 	struct ath_common *common = ath9k_hw_common(ah);
1455 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1456 	bool band_switch = false, mode_diff = false;
1457 	u8 ini_reloaded = 0;
1458 	u32 qnum;
1459 	int r;
1460 
1461 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1462 		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1463 		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1464 		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1465 	}
1466 
1467 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1468 		if (ath9k_hw_numtxpending(ah, qnum)) {
1469 			ath_dbg(common, QUEUE,
1470 				"Transmit frames pending on queue %d\n", qnum);
1471 			return false;
1472 		}
1473 	}
1474 
1475 	if (!ath9k_hw_rfbus_req(ah)) {
1476 		ath_err(common, "Could not kill baseband RX\n");
1477 		return false;
1478 	}
1479 
1480 	if (band_switch || mode_diff) {
1481 		ath9k_hw_mark_phy_inactive(ah);
1482 		udelay(5);
1483 
1484 		if (band_switch)
1485 			ath9k_hw_init_pll(ah, chan);
1486 
1487 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1488 			ath_err(common, "Failed to do fast channel change\n");
1489 			return false;
1490 		}
1491 	}
1492 
1493 	ath9k_hw_set_channel_regs(ah, chan);
1494 
1495 	r = ath9k_hw_rf_set_freq(ah, chan);
1496 	if (r) {
1497 		ath_err(common, "Failed to set channel\n");
1498 		return false;
1499 	}
1500 	ath9k_hw_set_clockrate(ah);
1501 	ath9k_hw_apply_txpower(ah, chan, false);
1502 
1503 	ath9k_hw_set_delta_slope(ah, chan);
1504 	ath9k_hw_spur_mitigate_freq(ah, chan);
1505 
1506 	if (band_switch || ini_reloaded)
1507 		ah->eep_ops->set_board_values(ah, chan);
1508 
1509 	ath9k_hw_init_bb(ah, chan);
1510 	ath9k_hw_rfbus_done(ah);
1511 
1512 	if (band_switch || ini_reloaded) {
1513 		ah->ah_flags |= AH_FASTCC;
1514 		ath9k_hw_init_cal(ah, chan);
1515 		ah->ah_flags &= ~AH_FASTCC;
1516 	}
1517 
1518 	return true;
1519 }
1520 
1521 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1522 {
1523 	u32 gpio_mask = ah->gpio_mask;
1524 	int i;
1525 
1526 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1527 		if (!(gpio_mask & 1))
1528 			continue;
1529 
1530 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1531 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1532 	}
1533 }
1534 
1535 void ath9k_hw_check_nav(struct ath_hw *ah)
1536 {
1537 	struct ath_common *common = ath9k_hw_common(ah);
1538 	u32 val;
1539 
1540 	val = REG_READ(ah, AR_NAV);
1541 	if (val != 0xdeadbeef && val > 0x7fff) {
1542 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1543 		REG_WRITE(ah, AR_NAV, 0);
1544 	}
1545 }
1546 EXPORT_SYMBOL(ath9k_hw_check_nav);
1547 
1548 bool ath9k_hw_check_alive(struct ath_hw *ah)
1549 {
1550 	int count = 50;
1551 	u32 reg, last_val;
1552 
1553 	if (AR_SREV_9300(ah))
1554 		return !ath9k_hw_detect_mac_hang(ah);
1555 
1556 	if (AR_SREV_9285_12_OR_LATER(ah))
1557 		return true;
1558 
1559 	last_val = REG_READ(ah, AR_OBS_BUS_1);
1560 	do {
1561 		reg = REG_READ(ah, AR_OBS_BUS_1);
1562 		if (reg != last_val)
1563 			return true;
1564 
1565 		udelay(1);
1566 		last_val = reg;
1567 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1568 			continue;
1569 
1570 		switch (reg & 0x7E000B00) {
1571 		case 0x1E000000:
1572 		case 0x52000B00:
1573 		case 0x18000B00:
1574 			continue;
1575 		default:
1576 			return true;
1577 		}
1578 	} while (count-- > 0);
1579 
1580 	return false;
1581 }
1582 EXPORT_SYMBOL(ath9k_hw_check_alive);
1583 
1584 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1585 {
1586 	/* Setup MFP options for CCMP */
1587 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1588 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1589 		 * frames when constructing CCMP AAD. */
1590 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1591 			      0xc7ff);
1592 		ah->sw_mgmt_crypto = false;
1593 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1594 		/* Disable hardware crypto for management frames */
1595 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1596 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1597 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1598 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1599 		ah->sw_mgmt_crypto = true;
1600 	} else {
1601 		ah->sw_mgmt_crypto = true;
1602 	}
1603 }
1604 
1605 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1606 				  u32 macStaId1, u32 saveDefAntenna)
1607 {
1608 	struct ath_common *common = ath9k_hw_common(ah);
1609 
1610 	ENABLE_REGWRITE_BUFFER(ah);
1611 
1612 	REG_RMW(ah, AR_STA_ID1, macStaId1
1613 		  | AR_STA_ID1_RTS_USE_DEF
1614 		  | ah->sta_id1_defaults,
1615 		  ~AR_STA_ID1_SADH_MASK);
1616 	ath_hw_setbssidmask(common);
1617 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1618 	ath9k_hw_write_associd(ah);
1619 	REG_WRITE(ah, AR_ISR, ~0);
1620 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1621 
1622 	REGWRITE_BUFFER_FLUSH(ah);
1623 
1624 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1625 }
1626 
1627 static void ath9k_hw_init_queues(struct ath_hw *ah)
1628 {
1629 	int i;
1630 
1631 	ENABLE_REGWRITE_BUFFER(ah);
1632 
1633 	for (i = 0; i < AR_NUM_DCU; i++)
1634 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1635 
1636 	REGWRITE_BUFFER_FLUSH(ah);
1637 
1638 	ah->intr_txqs = 0;
1639 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1640 		ath9k_hw_resettxqueue(ah, i);
1641 }
1642 
1643 /*
1644  * For big endian systems turn on swapping for descriptors
1645  */
1646 static void ath9k_hw_init_desc(struct ath_hw *ah)
1647 {
1648 	struct ath_common *common = ath9k_hw_common(ah);
1649 
1650 	if (AR_SREV_9100(ah)) {
1651 		u32 mask;
1652 		mask = REG_READ(ah, AR_CFG);
1653 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1654 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1655 				mask);
1656 		} else {
1657 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1658 			REG_WRITE(ah, AR_CFG, mask);
1659 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1660 				REG_READ(ah, AR_CFG));
1661 		}
1662 	} else {
1663 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1664 			/* Configure AR9271 target WLAN */
1665 			if (AR_SREV_9271(ah))
1666 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1667 			else
1668 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1669 		}
1670 #ifdef __BIG_ENDIAN
1671 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1672 			 AR_SREV_9550(ah) || AR_SREV_9531(ah))
1673 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1674 		else
1675 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1676 #endif
1677 	}
1678 }
1679 
1680 /*
1681  * Fast channel change:
1682  * (Change synthesizer based on channel freq without resetting chip)
1683  */
1684 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1685 {
1686 	struct ath_common *common = ath9k_hw_common(ah);
1687 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1688 	int ret;
1689 
1690 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1691 		goto fail;
1692 
1693 	if (ah->chip_fullsleep)
1694 		goto fail;
1695 
1696 	if (!ah->curchan)
1697 		goto fail;
1698 
1699 	if (chan->channel == ah->curchan->channel)
1700 		goto fail;
1701 
1702 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1703 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1704 		goto fail;
1705 
1706 	/*
1707 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1708 	 */
1709 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1710 	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1711 		goto fail;
1712 
1713 	if (!ath9k_hw_check_alive(ah))
1714 		goto fail;
1715 
1716 	/*
1717 	 * For AR9462, make sure that calibration data for
1718 	 * re-using are present.
1719 	 */
1720 	if (AR_SREV_9462(ah) && (ah->caldata &&
1721 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1722 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1723 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1724 		goto fail;
1725 
1726 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1727 		ah->curchan->channel, chan->channel);
1728 
1729 	ret = ath9k_hw_channel_change(ah, chan);
1730 	if (!ret)
1731 		goto fail;
1732 
1733 	if (ath9k_hw_mci_is_enabled(ah))
1734 		ar9003_mci_2g5g_switch(ah, false);
1735 
1736 	ath9k_hw_loadnf(ah, ah->curchan);
1737 	ath9k_hw_start_nfcal(ah, true);
1738 
1739 	if (AR_SREV_9271(ah))
1740 		ar9002_hw_load_ani_reg(ah, chan);
1741 
1742 	return 0;
1743 fail:
1744 	return -EINVAL;
1745 }
1746 
1747 u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1748 {
1749 	struct timespec ts;
1750 	s64 usec;
1751 
1752 	if (!cur) {
1753 		getrawmonotonic(&ts);
1754 		cur = &ts;
1755 	}
1756 
1757 	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1758 	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1759 
1760 	return (u32) usec;
1761 }
1762 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1763 
1764 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1765 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1766 {
1767 	struct ath_common *common = ath9k_hw_common(ah);
1768 	u32 saveLedState;
1769 	u32 saveDefAntenna;
1770 	u32 macStaId1;
1771 	u64 tsf = 0;
1772 	s64 usec = 0;
1773 	int r;
1774 	bool start_mci_reset = false;
1775 	bool save_fullsleep = ah->chip_fullsleep;
1776 
1777 	if (ath9k_hw_mci_is_enabled(ah)) {
1778 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1779 		if (start_mci_reset)
1780 			return 0;
1781 	}
1782 
1783 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1784 		return -EIO;
1785 
1786 	if (ah->curchan && !ah->chip_fullsleep)
1787 		ath9k_hw_getnf(ah, ah->curchan);
1788 
1789 	ah->caldata = caldata;
1790 	if (caldata && (chan->channel != caldata->channel ||
1791 			chan->channelFlags != caldata->channelFlags)) {
1792 		/* Operating channel changed, reset channel calibration data */
1793 		memset(caldata, 0, sizeof(*caldata));
1794 		ath9k_init_nfcal_hist_buffer(ah, chan);
1795 	} else if (caldata) {
1796 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1797 	}
1798 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1799 
1800 	if (fastcc) {
1801 		r = ath9k_hw_do_fastcc(ah, chan);
1802 		if (!r)
1803 			return r;
1804 	}
1805 
1806 	if (ath9k_hw_mci_is_enabled(ah))
1807 		ar9003_mci_stop_bt(ah, save_fullsleep);
1808 
1809 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1810 	if (saveDefAntenna == 0)
1811 		saveDefAntenna = 1;
1812 
1813 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1814 
1815 	/* Save TSF before chip reset, a cold reset clears it */
1816 	tsf = ath9k_hw_gettsf64(ah);
1817 	usec = ktime_to_us(ktime_get_raw());
1818 
1819 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1820 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1821 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1822 
1823 	ath9k_hw_mark_phy_inactive(ah);
1824 
1825 	ah->paprd_table_write_done = false;
1826 
1827 	/* Only required on the first reset */
1828 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1829 		REG_WRITE(ah,
1830 			  AR9271_RESET_POWER_DOWN_CONTROL,
1831 			  AR9271_RADIO_RF_RST);
1832 		udelay(50);
1833 	}
1834 
1835 	if (!ath9k_hw_chip_reset(ah, chan)) {
1836 		ath_err(common, "Chip reset failed\n");
1837 		return -EINVAL;
1838 	}
1839 
1840 	/* Only required on the first reset */
1841 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1842 		ah->htc_reset_init = false;
1843 		REG_WRITE(ah,
1844 			  AR9271_RESET_POWER_DOWN_CONTROL,
1845 			  AR9271_GATE_MAC_CTL);
1846 		udelay(50);
1847 	}
1848 
1849 	/* Restore TSF */
1850 	usec = ktime_to_us(ktime_get_raw()) - usec;
1851 	ath9k_hw_settsf64(ah, tsf + usec);
1852 
1853 	if (AR_SREV_9280_20_OR_LATER(ah))
1854 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1855 
1856 	if (!AR_SREV_9300_20_OR_LATER(ah))
1857 		ar9002_hw_enable_async_fifo(ah);
1858 
1859 	r = ath9k_hw_process_ini(ah, chan);
1860 	if (r)
1861 		return r;
1862 
1863 	ath9k_hw_set_rfmode(ah, chan);
1864 
1865 	if (ath9k_hw_mci_is_enabled(ah))
1866 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1867 
1868 	/*
1869 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1870 	 * right after the chip reset. When that happens, write a new
1871 	 * value after the initvals have been applied, with an offset
1872 	 * based on measured time difference
1873 	 */
1874 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1875 		tsf += 1500;
1876 		ath9k_hw_settsf64(ah, tsf);
1877 	}
1878 
1879 	ath9k_hw_init_mfp(ah);
1880 
1881 	ath9k_hw_set_delta_slope(ah, chan);
1882 	ath9k_hw_spur_mitigate_freq(ah, chan);
1883 	ah->eep_ops->set_board_values(ah, chan);
1884 
1885 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1886 
1887 	r = ath9k_hw_rf_set_freq(ah, chan);
1888 	if (r)
1889 		return r;
1890 
1891 	ath9k_hw_set_clockrate(ah);
1892 
1893 	ath9k_hw_init_queues(ah);
1894 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1895 	ath9k_hw_ani_cache_ini_regs(ah);
1896 	ath9k_hw_init_qos(ah);
1897 
1898 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1899 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1900 
1901 	ath9k_hw_init_global_settings(ah);
1902 
1903 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1904 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1905 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1906 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1907 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1908 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1909 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1910 	}
1911 
1912 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1913 
1914 	ath9k_hw_set_dma(ah);
1915 
1916 	if (!ath9k_hw_mci_is_enabled(ah))
1917 		REG_WRITE(ah, AR_OBS, 8);
1918 
1919 	if (ah->config.rx_intr_mitigation) {
1920 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1921 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1922 	}
1923 
1924 	if (ah->config.tx_intr_mitigation) {
1925 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1926 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1927 	}
1928 
1929 	ath9k_hw_init_bb(ah, chan);
1930 
1931 	if (caldata) {
1932 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1933 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1934 	}
1935 	if (!ath9k_hw_init_cal(ah, chan))
1936 		return -EIO;
1937 
1938 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
1939 		return -EIO;
1940 
1941 	ENABLE_REGWRITE_BUFFER(ah);
1942 
1943 	ath9k_hw_restore_chainmask(ah);
1944 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1945 
1946 	REGWRITE_BUFFER_FLUSH(ah);
1947 
1948 	ath9k_hw_init_desc(ah);
1949 
1950 	if (ath9k_hw_btcoex_is_enabled(ah))
1951 		ath9k_hw_btcoex_enable(ah);
1952 
1953 	if (ath9k_hw_mci_is_enabled(ah))
1954 		ar9003_mci_check_bt(ah);
1955 
1956 	ath9k_hw_loadnf(ah, chan);
1957 	ath9k_hw_start_nfcal(ah, true);
1958 
1959 	if (AR_SREV_9300_20_OR_LATER(ah))
1960 		ar9003_hw_bb_watchdog_config(ah);
1961 
1962 	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
1963 		ar9003_hw_disable_phy_restart(ah);
1964 
1965 	ath9k_hw_apply_gpio_override(ah);
1966 
1967 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
1968 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
1969 
1970 	if (ah->hw->conf.radar_enabled) {
1971 		/* set HW specific DFS configuration */
1972 		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
1973 		ath9k_hw_set_radar_params(ah);
1974 	}
1975 
1976 	return 0;
1977 }
1978 EXPORT_SYMBOL(ath9k_hw_reset);
1979 
1980 /******************************/
1981 /* Power Management (Chipset) */
1982 /******************************/
1983 
1984 /*
1985  * Notify Power Mgt is disabled in self-generated frames.
1986  * If requested, force chip to sleep.
1987  */
1988 static void ath9k_set_power_sleep(struct ath_hw *ah)
1989 {
1990 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1991 
1992 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
1993 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
1994 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
1995 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
1996 		/* xxx Required for WLAN only case ? */
1997 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
1998 		udelay(100);
1999 	}
2000 
2001 	/*
2002 	 * Clear the RTC force wake bit to allow the
2003 	 * mac to go to sleep.
2004 	 */
2005 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2006 
2007 	if (ath9k_hw_mci_is_enabled(ah))
2008 		udelay(100);
2009 
2010 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2011 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2012 
2013 	/* Shutdown chip. Active low */
2014 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2015 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2016 		udelay(2);
2017 	}
2018 
2019 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2020 	if (AR_SREV_9300_20_OR_LATER(ah))
2021 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2022 }
2023 
2024 /*
2025  * Notify Power Management is enabled in self-generating
2026  * frames. If request, set power mode of chip to
2027  * auto/normal.  Duration in units of 128us (1/8 TU).
2028  */
2029 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2030 {
2031 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2032 
2033 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2034 
2035 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2036 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2037 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2038 			  AR_RTC_FORCE_WAKE_ON_INT);
2039 	} else {
2040 
2041 		/* When chip goes into network sleep, it could be waken
2042 		 * up by MCI_INT interrupt caused by BT's HW messages
2043 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2044 		 * rate (~100us). This will cause chip to leave and
2045 		 * re-enter network sleep mode frequently, which in
2046 		 * consequence will have WLAN MCI HW to generate lots of
2047 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2048 		 * BT CPU to busy to process.
2049 		 */
2050 		if (ath9k_hw_mci_is_enabled(ah))
2051 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2052 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2053 		/*
2054 		 * Clear the RTC force wake bit to allow the
2055 		 * mac to go to sleep.
2056 		 */
2057 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2058 
2059 		if (ath9k_hw_mci_is_enabled(ah))
2060 			udelay(30);
2061 	}
2062 
2063 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2064 	if (AR_SREV_9300_20_OR_LATER(ah))
2065 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2066 }
2067 
2068 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2069 {
2070 	u32 val;
2071 	int i;
2072 
2073 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2074 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2075 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2076 		udelay(10);
2077 	}
2078 
2079 	if ((REG_READ(ah, AR_RTC_STATUS) &
2080 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2081 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2082 			return false;
2083 		}
2084 		if (!AR_SREV_9300_20_OR_LATER(ah))
2085 			ath9k_hw_init_pll(ah, NULL);
2086 	}
2087 	if (AR_SREV_9100(ah))
2088 		REG_SET_BIT(ah, AR_RTC_RESET,
2089 			    AR_RTC_RESET_EN);
2090 
2091 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2092 		    AR_RTC_FORCE_WAKE_EN);
2093 	if (AR_SREV_9100(ah))
2094 		mdelay(10);
2095 	else
2096 		udelay(50);
2097 
2098 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2099 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2100 		if (val == AR_RTC_STATUS_ON)
2101 			break;
2102 		udelay(50);
2103 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2104 			    AR_RTC_FORCE_WAKE_EN);
2105 	}
2106 	if (i == 0) {
2107 		ath_err(ath9k_hw_common(ah),
2108 			"Failed to wakeup in %uus\n",
2109 			POWER_UP_TIME / 20);
2110 		return false;
2111 	}
2112 
2113 	if (ath9k_hw_mci_is_enabled(ah))
2114 		ar9003_mci_set_power_awake(ah);
2115 
2116 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2117 
2118 	return true;
2119 }
2120 
2121 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2122 {
2123 	struct ath_common *common = ath9k_hw_common(ah);
2124 	int status = true;
2125 	static const char *modes[] = {
2126 		"AWAKE",
2127 		"FULL-SLEEP",
2128 		"NETWORK SLEEP",
2129 		"UNDEFINED"
2130 	};
2131 
2132 	if (ah->power_mode == mode)
2133 		return status;
2134 
2135 	ath_dbg(common, RESET, "%s -> %s\n",
2136 		modes[ah->power_mode], modes[mode]);
2137 
2138 	switch (mode) {
2139 	case ATH9K_PM_AWAKE:
2140 		status = ath9k_hw_set_power_awake(ah);
2141 		break;
2142 	case ATH9K_PM_FULL_SLEEP:
2143 		if (ath9k_hw_mci_is_enabled(ah))
2144 			ar9003_mci_set_full_sleep(ah);
2145 
2146 		ath9k_set_power_sleep(ah);
2147 		ah->chip_fullsleep = true;
2148 		break;
2149 	case ATH9K_PM_NETWORK_SLEEP:
2150 		ath9k_set_power_network_sleep(ah);
2151 		break;
2152 	default:
2153 		ath_err(common, "Unknown power mode %u\n", mode);
2154 		return false;
2155 	}
2156 	ah->power_mode = mode;
2157 
2158 	/*
2159 	 * XXX: If this warning never comes up after a while then
2160 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2161 	 * ath9k_hw_setpower() return type void.
2162 	 */
2163 
2164 	if (!(ah->ah_flags & AH_UNPLUGGED))
2165 		ATH_DBG_WARN_ON_ONCE(!status);
2166 
2167 	return status;
2168 }
2169 EXPORT_SYMBOL(ath9k_hw_setpower);
2170 
2171 /*******************/
2172 /* Beacon Handling */
2173 /*******************/
2174 
2175 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2176 {
2177 	int flags = 0;
2178 
2179 	ENABLE_REGWRITE_BUFFER(ah);
2180 
2181 	switch (ah->opmode) {
2182 	case NL80211_IFTYPE_ADHOC:
2183 		REG_SET_BIT(ah, AR_TXCFG,
2184 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2185 	case NL80211_IFTYPE_MESH_POINT:
2186 	case NL80211_IFTYPE_AP:
2187 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2188 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2189 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2190 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2191 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2192 		flags |=
2193 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2194 		break;
2195 	default:
2196 		ath_dbg(ath9k_hw_common(ah), BEACON,
2197 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2198 		return;
2199 		break;
2200 	}
2201 
2202 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2203 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2204 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2205 
2206 	REGWRITE_BUFFER_FLUSH(ah);
2207 
2208 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2209 }
2210 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2211 
2212 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2213 				    const struct ath9k_beacon_state *bs)
2214 {
2215 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2216 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2217 	struct ath_common *common = ath9k_hw_common(ah);
2218 
2219 	ENABLE_REGWRITE_BUFFER(ah);
2220 
2221 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2222 	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2223 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2224 
2225 	REGWRITE_BUFFER_FLUSH(ah);
2226 
2227 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2228 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2229 
2230 	beaconintval = bs->bs_intval;
2231 
2232 	if (bs->bs_sleepduration > beaconintval)
2233 		beaconintval = bs->bs_sleepduration;
2234 
2235 	dtimperiod = bs->bs_dtimperiod;
2236 	if (bs->bs_sleepduration > dtimperiod)
2237 		dtimperiod = bs->bs_sleepduration;
2238 
2239 	if (beaconintval == dtimperiod)
2240 		nextTbtt = bs->bs_nextdtim;
2241 	else
2242 		nextTbtt = bs->bs_nexttbtt;
2243 
2244 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2245 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2246 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2247 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2248 
2249 	ENABLE_REGWRITE_BUFFER(ah);
2250 
2251 	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2252 	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2253 
2254 	REG_WRITE(ah, AR_SLEEP1,
2255 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2256 		  | AR_SLEEP1_ASSUME_DTIM);
2257 
2258 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2259 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2260 	else
2261 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2262 
2263 	REG_WRITE(ah, AR_SLEEP2,
2264 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2265 
2266 	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2267 	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2268 
2269 	REGWRITE_BUFFER_FLUSH(ah);
2270 
2271 	REG_SET_BIT(ah, AR_TIMER_MODE,
2272 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2273 		    AR_DTIM_TIMER_EN);
2274 
2275 	/* TSF Out of Range Threshold */
2276 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2277 }
2278 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2279 
2280 /*******************/
2281 /* HW Capabilities */
2282 /*******************/
2283 
2284 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2285 {
2286 	eeprom_chainmask &= chip_chainmask;
2287 	if (eeprom_chainmask)
2288 		return eeprom_chainmask;
2289 	else
2290 		return chip_chainmask;
2291 }
2292 
2293 /**
2294  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2295  * @ah: the atheros hardware data structure
2296  *
2297  * We enable DFS support upstream on chipsets which have passed a series
2298  * of tests. The testing requirements are going to be documented. Desired
2299  * test requirements are documented at:
2300  *
2301  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2302  *
2303  * Once a new chipset gets properly tested an individual commit can be used
2304  * to document the testing for DFS for that chipset.
2305  */
2306 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2307 {
2308 
2309 	switch (ah->hw_version.macVersion) {
2310 	/* for temporary testing DFS with 9280 */
2311 	case AR_SREV_VERSION_9280:
2312 	/* AR9580 will likely be our first target to get testing on */
2313 	case AR_SREV_VERSION_9580:
2314 		return true;
2315 	default:
2316 		return false;
2317 	}
2318 }
2319 
2320 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2321 {
2322 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2323 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2324 	struct ath_common *common = ath9k_hw_common(ah);
2325 	unsigned int chip_chainmask;
2326 
2327 	u16 eeval;
2328 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2329 
2330 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2331 	regulatory->current_rd = eeval;
2332 
2333 	if (ah->opmode != NL80211_IFTYPE_AP &&
2334 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2335 		if (regulatory->current_rd == 0x64 ||
2336 		    regulatory->current_rd == 0x65)
2337 			regulatory->current_rd += 5;
2338 		else if (regulatory->current_rd == 0x41)
2339 			regulatory->current_rd = 0x43;
2340 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2341 			regulatory->current_rd);
2342 	}
2343 
2344 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2345 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2346 		ath_err(common,
2347 			"no band has been marked as supported in EEPROM\n");
2348 		return -EINVAL;
2349 	}
2350 
2351 	if (eeval & AR5416_OPFLAGS_11A)
2352 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2353 
2354 	if (eeval & AR5416_OPFLAGS_11G)
2355 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2356 
2357 	if (AR_SREV_9485(ah) ||
2358 	    AR_SREV_9285(ah) ||
2359 	    AR_SREV_9330(ah) ||
2360 	    AR_SREV_9565(ah))
2361 		chip_chainmask = 1;
2362 	else if (AR_SREV_9462(ah))
2363 		chip_chainmask = 3;
2364 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2365 		chip_chainmask = 7;
2366 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2367 		chip_chainmask = 3;
2368 	else
2369 		chip_chainmask = 7;
2370 
2371 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2372 	/*
2373 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2374 	 * the EEPROM.
2375 	 */
2376 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2377 	    !(eeval & AR5416_OPFLAGS_11A) &&
2378 	    !(AR_SREV_9271(ah)))
2379 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2380 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2381 	else if (AR_SREV_9100(ah))
2382 		pCap->rx_chainmask = 0x7;
2383 	else
2384 		/* Use rx_chainmask from EEPROM. */
2385 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2386 
2387 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2388 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2389 	ah->txchainmask = pCap->tx_chainmask;
2390 	ah->rxchainmask = pCap->rx_chainmask;
2391 
2392 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2393 
2394 	/* enable key search for every frame in an aggregate */
2395 	if (AR_SREV_9300_20_OR_LATER(ah))
2396 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2397 
2398 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2399 
2400 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2401 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2402 	else
2403 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2404 
2405 	if (AR_SREV_9271(ah))
2406 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2407 	else if (AR_DEVID_7010(ah))
2408 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2409 	else if (AR_SREV_9300_20_OR_LATER(ah))
2410 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2411 	else if (AR_SREV_9287_11_OR_LATER(ah))
2412 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2413 	else if (AR_SREV_9285_12_OR_LATER(ah))
2414 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2415 	else if (AR_SREV_9280_20_OR_LATER(ah))
2416 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2417 	else
2418 		pCap->num_gpio_pins = AR_NUM_GPIO;
2419 
2420 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2421 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2422 	else
2423 		pCap->rts_aggr_limit = (8 * 1024);
2424 
2425 #ifdef CONFIG_ATH9K_RFKILL
2426 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2427 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2428 		ah->rfkill_gpio =
2429 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2430 		ah->rfkill_polarity =
2431 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2432 
2433 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2434 	}
2435 #endif
2436 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2437 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2438 	else
2439 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2440 
2441 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2442 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2443 	else
2444 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2445 
2446 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2447 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2448 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2449 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2450 
2451 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2452 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2453 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2454 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2455 		pCap->txs_len = sizeof(struct ar9003_txs);
2456 	} else {
2457 		pCap->tx_desc_len = sizeof(struct ath_desc);
2458 		if (AR_SREV_9280_20(ah))
2459 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2460 	}
2461 
2462 	if (AR_SREV_9300_20_OR_LATER(ah))
2463 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2464 
2465 	if (AR_SREV_9300_20_OR_LATER(ah))
2466 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2467 
2468 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2469 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2470 
2471 	if (AR_SREV_9285(ah)) {
2472 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2473 			ant_div_ctl1 =
2474 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2475 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2476 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2477 				ath_info(common, "Enable LNA combining\n");
2478 			}
2479 		}
2480 	}
2481 
2482 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2483 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2484 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2485 	}
2486 
2487 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2488 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2489 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2490 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2491 			ath_info(common, "Enable LNA combining\n");
2492 		}
2493 	}
2494 
2495 	if (ath9k_hw_dfs_tested(ah))
2496 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2497 
2498 	tx_chainmask = pCap->tx_chainmask;
2499 	rx_chainmask = pCap->rx_chainmask;
2500 	while (tx_chainmask || rx_chainmask) {
2501 		if (tx_chainmask & BIT(0))
2502 			pCap->max_txchains++;
2503 		if (rx_chainmask & BIT(0))
2504 			pCap->max_rxchains++;
2505 
2506 		tx_chainmask >>= 1;
2507 		rx_chainmask >>= 1;
2508 	}
2509 
2510 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2511 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2512 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2513 
2514 		if (AR_SREV_9462_20_OR_LATER(ah))
2515 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2516 	}
2517 
2518 	if (AR_SREV_9462(ah))
2519 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2520 
2521 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2522 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2523 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2524 
2525 	return 0;
2526 }
2527 
2528 /****************************/
2529 /* GPIO / RFKILL / Antennae */
2530 /****************************/
2531 
2532 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2533 					 u32 gpio, u32 type)
2534 {
2535 	int addr;
2536 	u32 gpio_shift, tmp;
2537 
2538 	if (gpio > 11)
2539 		addr = AR_GPIO_OUTPUT_MUX3;
2540 	else if (gpio > 5)
2541 		addr = AR_GPIO_OUTPUT_MUX2;
2542 	else
2543 		addr = AR_GPIO_OUTPUT_MUX1;
2544 
2545 	gpio_shift = (gpio % 6) * 5;
2546 
2547 	if (AR_SREV_9280_20_OR_LATER(ah)
2548 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2549 		REG_RMW(ah, addr, (type << gpio_shift),
2550 			(0x1f << gpio_shift));
2551 	} else {
2552 		tmp = REG_READ(ah, addr);
2553 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2554 		tmp &= ~(0x1f << gpio_shift);
2555 		tmp |= (type << gpio_shift);
2556 		REG_WRITE(ah, addr, tmp);
2557 	}
2558 }
2559 
2560 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2561 {
2562 	u32 gpio_shift;
2563 
2564 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2565 
2566 	if (AR_DEVID_7010(ah)) {
2567 		gpio_shift = gpio;
2568 		REG_RMW(ah, AR7010_GPIO_OE,
2569 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2570 			(AR7010_GPIO_OE_MASK << gpio_shift));
2571 		return;
2572 	}
2573 
2574 	gpio_shift = gpio << 1;
2575 	REG_RMW(ah,
2576 		AR_GPIO_OE_OUT,
2577 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2578 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2579 }
2580 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2581 
2582 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2583 {
2584 #define MS_REG_READ(x, y) \
2585 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2586 
2587 	if (gpio >= ah->caps.num_gpio_pins)
2588 		return 0xffffffff;
2589 
2590 	if (AR_DEVID_7010(ah)) {
2591 		u32 val;
2592 		val = REG_READ(ah, AR7010_GPIO_IN);
2593 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2594 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2595 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2596 			AR_GPIO_BIT(gpio)) != 0;
2597 	else if (AR_SREV_9271(ah))
2598 		return MS_REG_READ(AR9271, gpio) != 0;
2599 	else if (AR_SREV_9287_11_OR_LATER(ah))
2600 		return MS_REG_READ(AR9287, gpio) != 0;
2601 	else if (AR_SREV_9285_12_OR_LATER(ah))
2602 		return MS_REG_READ(AR9285, gpio) != 0;
2603 	else if (AR_SREV_9280_20_OR_LATER(ah))
2604 		return MS_REG_READ(AR928X, gpio) != 0;
2605 	else
2606 		return MS_REG_READ(AR, gpio) != 0;
2607 }
2608 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2609 
2610 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2611 			 u32 ah_signal_type)
2612 {
2613 	u32 gpio_shift;
2614 
2615 	if (AR_DEVID_7010(ah)) {
2616 		gpio_shift = gpio;
2617 		REG_RMW(ah, AR7010_GPIO_OE,
2618 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2619 			(AR7010_GPIO_OE_MASK << gpio_shift));
2620 		return;
2621 	}
2622 
2623 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2624 	gpio_shift = 2 * gpio;
2625 	REG_RMW(ah,
2626 		AR_GPIO_OE_OUT,
2627 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2628 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2629 }
2630 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2631 
2632 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2633 {
2634 	if (AR_DEVID_7010(ah)) {
2635 		val = val ? 0 : 1;
2636 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2637 			AR_GPIO_BIT(gpio));
2638 		return;
2639 	}
2640 
2641 	if (AR_SREV_9271(ah))
2642 		val = ~val;
2643 
2644 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2645 		AR_GPIO_BIT(gpio));
2646 }
2647 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2648 
2649 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2650 {
2651 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2652 }
2653 EXPORT_SYMBOL(ath9k_hw_setantenna);
2654 
2655 /*********************/
2656 /* General Operation */
2657 /*********************/
2658 
2659 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2660 {
2661 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2662 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2663 
2664 	if (phybits & AR_PHY_ERR_RADAR)
2665 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2666 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2667 		bits |= ATH9K_RX_FILTER_PHYERR;
2668 
2669 	return bits;
2670 }
2671 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2672 
2673 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2674 {
2675 	u32 phybits;
2676 
2677 	ENABLE_REGWRITE_BUFFER(ah);
2678 
2679 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2680 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2681 
2682 	REG_WRITE(ah, AR_RX_FILTER, bits);
2683 
2684 	phybits = 0;
2685 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2686 		phybits |= AR_PHY_ERR_RADAR;
2687 	if (bits & ATH9K_RX_FILTER_PHYERR)
2688 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2689 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2690 
2691 	if (phybits)
2692 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2693 	else
2694 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2695 
2696 	REGWRITE_BUFFER_FLUSH(ah);
2697 }
2698 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2699 
2700 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2701 {
2702 	if (ath9k_hw_mci_is_enabled(ah))
2703 		ar9003_mci_bt_gain_ctrl(ah);
2704 
2705 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2706 		return false;
2707 
2708 	ath9k_hw_init_pll(ah, NULL);
2709 	ah->htc_reset_init = true;
2710 	return true;
2711 }
2712 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2713 
2714 bool ath9k_hw_disable(struct ath_hw *ah)
2715 {
2716 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2717 		return false;
2718 
2719 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2720 		return false;
2721 
2722 	ath9k_hw_init_pll(ah, NULL);
2723 	return true;
2724 }
2725 EXPORT_SYMBOL(ath9k_hw_disable);
2726 
2727 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2728 {
2729 	enum eeprom_param gain_param;
2730 
2731 	if (IS_CHAN_2GHZ(chan))
2732 		gain_param = EEP_ANTENNA_GAIN_2G;
2733 	else
2734 		gain_param = EEP_ANTENNA_GAIN_5G;
2735 
2736 	return ah->eep_ops->get_eeprom(ah, gain_param);
2737 }
2738 
2739 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2740 			    bool test)
2741 {
2742 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2743 	struct ieee80211_channel *channel;
2744 	int chan_pwr, new_pwr, max_gain;
2745 	int ant_gain, ant_reduction = 0;
2746 
2747 	if (!chan)
2748 		return;
2749 
2750 	channel = chan->chan;
2751 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2752 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2753 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2754 
2755 	ant_gain = get_antenna_gain(ah, chan);
2756 	if (ant_gain > max_gain)
2757 		ant_reduction = ant_gain - max_gain;
2758 
2759 	ah->eep_ops->set_txpower(ah, chan,
2760 				 ath9k_regd_get_ctl(reg, chan),
2761 				 ant_reduction, new_pwr, test);
2762 }
2763 
2764 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2765 {
2766 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2767 	struct ath9k_channel *chan = ah->curchan;
2768 	struct ieee80211_channel *channel = chan->chan;
2769 
2770 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2771 	if (test)
2772 		channel->max_power = MAX_RATE_POWER / 2;
2773 
2774 	ath9k_hw_apply_txpower(ah, chan, test);
2775 
2776 	if (test)
2777 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2778 }
2779 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2780 
2781 void ath9k_hw_setopmode(struct ath_hw *ah)
2782 {
2783 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2784 }
2785 EXPORT_SYMBOL(ath9k_hw_setopmode);
2786 
2787 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2788 {
2789 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2790 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2791 }
2792 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2793 
2794 void ath9k_hw_write_associd(struct ath_hw *ah)
2795 {
2796 	struct ath_common *common = ath9k_hw_common(ah);
2797 
2798 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2799 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2800 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2801 }
2802 EXPORT_SYMBOL(ath9k_hw_write_associd);
2803 
2804 #define ATH9K_MAX_TSF_READ 10
2805 
2806 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2807 {
2808 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2809 	int i;
2810 
2811 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2812 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2813 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2814 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2815 		if (tsf_upper2 == tsf_upper1)
2816 			break;
2817 		tsf_upper1 = tsf_upper2;
2818 	}
2819 
2820 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2821 
2822 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2823 }
2824 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2825 
2826 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2827 {
2828 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2829 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2830 }
2831 EXPORT_SYMBOL(ath9k_hw_settsf64);
2832 
2833 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2834 {
2835 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2836 			   AH_TSF_WRITE_TIMEOUT))
2837 		ath_dbg(ath9k_hw_common(ah), RESET,
2838 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2839 
2840 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2841 }
2842 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2843 
2844 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2845 {
2846 	if (set)
2847 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2848 	else
2849 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2850 }
2851 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2852 
2853 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2854 {
2855 	u32 macmode;
2856 
2857 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2858 		macmode = AR_2040_JOINED_RX_CLEAR;
2859 	else
2860 		macmode = 0;
2861 
2862 	REG_WRITE(ah, AR_2040_MODE, macmode);
2863 }
2864 
2865 /* HW Generic timers configuration */
2866 
2867 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2868 {
2869 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2870 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2871 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2872 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2873 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2874 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2875 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2876 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2877 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2878 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2879 				AR_NDP2_TIMER_MODE, 0x0002},
2880 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2881 				AR_NDP2_TIMER_MODE, 0x0004},
2882 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2883 				AR_NDP2_TIMER_MODE, 0x0008},
2884 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2885 				AR_NDP2_TIMER_MODE, 0x0010},
2886 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2887 				AR_NDP2_TIMER_MODE, 0x0020},
2888 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2889 				AR_NDP2_TIMER_MODE, 0x0040},
2890 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2891 				AR_NDP2_TIMER_MODE, 0x0080}
2892 };
2893 
2894 /* HW generic timer primitives */
2895 
2896 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2897 {
2898 	return REG_READ(ah, AR_TSF_L32);
2899 }
2900 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2901 
2902 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2903 					  void (*trigger)(void *),
2904 					  void (*overflow)(void *),
2905 					  void *arg,
2906 					  u8 timer_index)
2907 {
2908 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2909 	struct ath_gen_timer *timer;
2910 
2911 	if ((timer_index < AR_FIRST_NDP_TIMER) ||
2912 		(timer_index >= ATH_MAX_GEN_TIMER))
2913 		return NULL;
2914 
2915 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2916 	if (timer == NULL)
2917 		return NULL;
2918 
2919 	/* allocate a hardware generic timer slot */
2920 	timer_table->timers[timer_index] = timer;
2921 	timer->index = timer_index;
2922 	timer->trigger = trigger;
2923 	timer->overflow = overflow;
2924 	timer->arg = arg;
2925 
2926 	return timer;
2927 }
2928 EXPORT_SYMBOL(ath_gen_timer_alloc);
2929 
2930 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2931 			      struct ath_gen_timer *timer,
2932 			      u32 timer_next,
2933 			      u32 timer_period)
2934 {
2935 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2936 	u32 mask = 0;
2937 
2938 	timer_table->timer_mask |= BIT(timer->index);
2939 
2940 	/*
2941 	 * Program generic timer registers
2942 	 */
2943 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2944 		 timer_next);
2945 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2946 		  timer_period);
2947 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2948 		    gen_tmr_configuration[timer->index].mode_mask);
2949 
2950 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2951 		/*
2952 		 * Starting from AR9462, each generic timer can select which tsf
2953 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
2954 		 * 8 - 15  use tsf2.
2955 		 */
2956 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
2957 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2958 				       (1 << timer->index));
2959 		else
2960 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2961 				       (1 << timer->index));
2962 	}
2963 
2964 	if (timer->trigger)
2965 		mask |= SM(AR_GENTMR_BIT(timer->index),
2966 			   AR_IMR_S5_GENTIMER_TRIG);
2967 	if (timer->overflow)
2968 		mask |= SM(AR_GENTMR_BIT(timer->index),
2969 			   AR_IMR_S5_GENTIMER_THRESH);
2970 
2971 	REG_SET_BIT(ah, AR_IMR_S5, mask);
2972 
2973 	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
2974 		ah->imask |= ATH9K_INT_GENTIMER;
2975 		ath9k_hw_set_interrupts(ah);
2976 	}
2977 }
2978 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2979 
2980 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2981 {
2982 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2983 
2984 	/* Clear generic timer enable bits. */
2985 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2986 			gen_tmr_configuration[timer->index].mode_mask);
2987 
2988 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2989 		/*
2990 		 * Need to switch back to TSF if it was using TSF2.
2991 		 */
2992 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
2993 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
2994 				    (1 << timer->index));
2995 		}
2996 	}
2997 
2998 	/* Disable both trigger and thresh interrupt masks */
2999 	REG_CLR_BIT(ah, AR_IMR_S5,
3000 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3001 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3002 
3003 	timer_table->timer_mask &= ~BIT(timer->index);
3004 
3005 	if (timer_table->timer_mask == 0) {
3006 		ah->imask &= ~ATH9K_INT_GENTIMER;
3007 		ath9k_hw_set_interrupts(ah);
3008 	}
3009 }
3010 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3011 
3012 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3013 {
3014 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3015 
3016 	/* free the hardware generic timer slot */
3017 	timer_table->timers[timer->index] = NULL;
3018 	kfree(timer);
3019 }
3020 EXPORT_SYMBOL(ath_gen_timer_free);
3021 
3022 /*
3023  * Generic Timer Interrupts handling
3024  */
3025 void ath_gen_timer_isr(struct ath_hw *ah)
3026 {
3027 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3028 	struct ath_gen_timer *timer;
3029 	unsigned long trigger_mask, thresh_mask;
3030 	unsigned int index;
3031 
3032 	/* get hardware generic timer interrupt status */
3033 	trigger_mask = ah->intr_gen_timer_trigger;
3034 	thresh_mask = ah->intr_gen_timer_thresh;
3035 	trigger_mask &= timer_table->timer_mask;
3036 	thresh_mask &= timer_table->timer_mask;
3037 
3038 	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3039 		timer = timer_table->timers[index];
3040 		if (!timer)
3041 		    continue;
3042 		if (!timer->overflow)
3043 		    continue;
3044 
3045 		trigger_mask &= ~BIT(index);
3046 		timer->overflow(timer->arg);
3047 	}
3048 
3049 	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3050 		timer = timer_table->timers[index];
3051 		if (!timer)
3052 		    continue;
3053 		if (!timer->trigger)
3054 		    continue;
3055 		timer->trigger(timer->arg);
3056 	}
3057 }
3058 EXPORT_SYMBOL(ath_gen_timer_isr);
3059 
3060 /********/
3061 /* HTC  */
3062 /********/
3063 
3064 static struct {
3065 	u32 version;
3066 	const char * name;
3067 } ath_mac_bb_names[] = {
3068 	/* Devices with external radios */
3069 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3070 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3071 	{ AR_SREV_VERSION_9100,		"9100" },
3072 	{ AR_SREV_VERSION_9160,		"9160" },
3073 	/* Single-chip solutions */
3074 	{ AR_SREV_VERSION_9280,		"9280" },
3075 	{ AR_SREV_VERSION_9285,		"9285" },
3076 	{ AR_SREV_VERSION_9287,         "9287" },
3077 	{ AR_SREV_VERSION_9271,         "9271" },
3078 	{ AR_SREV_VERSION_9300,         "9300" },
3079 	{ AR_SREV_VERSION_9330,         "9330" },
3080 	{ AR_SREV_VERSION_9340,		"9340" },
3081 	{ AR_SREV_VERSION_9485,         "9485" },
3082 	{ AR_SREV_VERSION_9462,         "9462" },
3083 	{ AR_SREV_VERSION_9550,         "9550" },
3084 	{ AR_SREV_VERSION_9565,         "9565" },
3085 	{ AR_SREV_VERSION_9531,         "9531" },
3086 };
3087 
3088 /* For devices with external radios */
3089 static struct {
3090 	u16 version;
3091 	const char * name;
3092 } ath_rf_names[] = {
3093 	{ 0,				"5133" },
3094 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3095 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3096 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3097 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3098 };
3099 
3100 /*
3101  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3102  */
3103 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3104 {
3105 	int i;
3106 
3107 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3108 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3109 			return ath_mac_bb_names[i].name;
3110 		}
3111 	}
3112 
3113 	return "????";
3114 }
3115 
3116 /*
3117  * Return the RF name. "????" is returned if the RF is unknown.
3118  * Used for devices with external radios.
3119  */
3120 static const char *ath9k_hw_rf_name(u16 rf_version)
3121 {
3122 	int i;
3123 
3124 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3125 		if (ath_rf_names[i].version == rf_version) {
3126 			return ath_rf_names[i].name;
3127 		}
3128 	}
3129 
3130 	return "????";
3131 }
3132 
3133 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3134 {
3135 	int used;
3136 
3137 	/* chipsets >= AR9280 are single-chip */
3138 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3139 		used = scnprintf(hw_name, len,
3140 				 "Atheros AR%s Rev:%x",
3141 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3142 				 ah->hw_version.macRev);
3143 	}
3144 	else {
3145 		used = scnprintf(hw_name, len,
3146 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3147 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3148 				 ah->hw_version.macRev,
3149 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3150 						  & AR_RADIO_SREV_MAJOR)),
3151 				 ah->hw_version.phyRev);
3152 	}
3153 
3154 	hw_name[used] = '\0';
3155 }
3156 EXPORT_SYMBOL(ath9k_hw_name);
3157