xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 565d76cb)
1 /*
2  * Copyright (c) 2008-2010 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
20 
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
25 
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27 
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
32 
33 static int __init ath9k_init(void)
34 {
35 	return 0;
36 }
37 module_init(ath9k_init);
38 
39 static void __exit ath9k_exit(void)
40 {
41 	return;
42 }
43 module_exit(ath9k_exit);
44 
45 /* Private hardware callbacks */
46 
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48 {
49 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50 }
51 
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55 }
56 
57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 					struct ath9k_channel *chan)
59 {
60 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62 
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 		return;
67 
68 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70 
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 	/* You will not have this callback if using the old ANI */
74 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 		return;
76 
77 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79 
80 /********************/
81 /* Helper Functions */
82 /********************/
83 
84 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85 {
86 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87 	struct ath_common *common = ath9k_hw_common(ah);
88 	unsigned int clockrate;
89 
90 	if (!ah->curchan) /* should really check for CCK instead */
91 		clockrate = ATH9K_CLOCK_RATE_CCK;
92 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
93 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
94 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
95 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
96 	else
97 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
98 
99 	if (conf_is_ht40(conf))
100 		clockrate *= 2;
101 
102 	common->clockrate = clockrate;
103 }
104 
105 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
106 {
107 	struct ath_common *common = ath9k_hw_common(ah);
108 
109 	return usecs * common->clockrate;
110 }
111 
112 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
113 {
114 	int i;
115 
116 	BUG_ON(timeout < AH_TIME_QUANTUM);
117 
118 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
119 		if ((REG_READ(ah, reg) & mask) == val)
120 			return true;
121 
122 		udelay(AH_TIME_QUANTUM);
123 	}
124 
125 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
126 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
127 		timeout, reg, REG_READ(ah, reg), mask, val);
128 
129 	return false;
130 }
131 EXPORT_SYMBOL(ath9k_hw_wait);
132 
133 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
134 {
135 	u32 retval;
136 	int i;
137 
138 	for (i = 0, retval = 0; i < n; i++) {
139 		retval = (retval << 1) | (val & 1);
140 		val >>= 1;
141 	}
142 	return retval;
143 }
144 
145 bool ath9k_get_channel_edges(struct ath_hw *ah,
146 			     u16 flags, u16 *low,
147 			     u16 *high)
148 {
149 	struct ath9k_hw_capabilities *pCap = &ah->caps;
150 
151 	if (flags & CHANNEL_5GHZ) {
152 		*low = pCap->low_5ghz_chan;
153 		*high = pCap->high_5ghz_chan;
154 		return true;
155 	}
156 	if ((flags & CHANNEL_2GHZ)) {
157 		*low = pCap->low_2ghz_chan;
158 		*high = pCap->high_2ghz_chan;
159 		return true;
160 	}
161 	return false;
162 }
163 
164 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
165 			   u8 phy, int kbps,
166 			   u32 frameLen, u16 rateix,
167 			   bool shortPreamble)
168 {
169 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
170 
171 	if (kbps == 0)
172 		return 0;
173 
174 	switch (phy) {
175 	case WLAN_RC_PHY_CCK:
176 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
177 		if (shortPreamble)
178 			phyTime >>= 1;
179 		numBits = frameLen << 3;
180 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
181 		break;
182 	case WLAN_RC_PHY_OFDM:
183 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
184 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
185 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
186 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
187 			txTime = OFDM_SIFS_TIME_QUARTER
188 				+ OFDM_PREAMBLE_TIME_QUARTER
189 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
190 		} else if (ah->curchan &&
191 			   IS_CHAN_HALF_RATE(ah->curchan)) {
192 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
193 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
194 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
195 			txTime = OFDM_SIFS_TIME_HALF +
196 				OFDM_PREAMBLE_TIME_HALF
197 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
198 		} else {
199 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
200 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
201 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
202 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
203 				+ (numSymbols * OFDM_SYMBOL_TIME);
204 		}
205 		break;
206 	default:
207 		ath_err(ath9k_hw_common(ah),
208 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
209 		txTime = 0;
210 		break;
211 	}
212 
213 	return txTime;
214 }
215 EXPORT_SYMBOL(ath9k_hw_computetxtime);
216 
217 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
218 				  struct ath9k_channel *chan,
219 				  struct chan_centers *centers)
220 {
221 	int8_t extoff;
222 
223 	if (!IS_CHAN_HT40(chan)) {
224 		centers->ctl_center = centers->ext_center =
225 			centers->synth_center = chan->channel;
226 		return;
227 	}
228 
229 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
230 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
231 		centers->synth_center =
232 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
233 		extoff = 1;
234 	} else {
235 		centers->synth_center =
236 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
237 		extoff = -1;
238 	}
239 
240 	centers->ctl_center =
241 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
242 	/* 25 MHz spacing is supported by hw but not on upper layers */
243 	centers->ext_center =
244 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
245 }
246 
247 /******************/
248 /* Chip Revisions */
249 /******************/
250 
251 static void ath9k_hw_read_revisions(struct ath_hw *ah)
252 {
253 	u32 val;
254 
255 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
256 
257 	if (val == 0xFF) {
258 		val = REG_READ(ah, AR_SREV);
259 		ah->hw_version.macVersion =
260 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
261 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
262 		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
263 	} else {
264 		if (!AR_SREV_9100(ah))
265 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
266 
267 		ah->hw_version.macRev = val & AR_SREV_REVISION;
268 
269 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
270 			ah->is_pciexpress = true;
271 	}
272 }
273 
274 /************************************/
275 /* HW Attach, Detach, Init Routines */
276 /************************************/
277 
278 static void ath9k_hw_disablepcie(struct ath_hw *ah)
279 {
280 	if (!AR_SREV_5416(ah))
281 		return;
282 
283 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
284 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
285 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
286 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
287 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
288 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
289 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
290 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
291 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
292 
293 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
294 }
295 
296 /* This should work for all families including legacy */
297 static bool ath9k_hw_chip_test(struct ath_hw *ah)
298 {
299 	struct ath_common *common = ath9k_hw_common(ah);
300 	u32 regAddr[2] = { AR_STA_ID0 };
301 	u32 regHold[2];
302 	static const u32 patternData[4] = {
303 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
304 	};
305 	int i, j, loop_max;
306 
307 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
308 		loop_max = 2;
309 		regAddr[1] = AR_PHY_BASE + (8 << 2);
310 	} else
311 		loop_max = 1;
312 
313 	for (i = 0; i < loop_max; i++) {
314 		u32 addr = regAddr[i];
315 		u32 wrData, rdData;
316 
317 		regHold[i] = REG_READ(ah, addr);
318 		for (j = 0; j < 0x100; j++) {
319 			wrData = (j << 16) | j;
320 			REG_WRITE(ah, addr, wrData);
321 			rdData = REG_READ(ah, addr);
322 			if (rdData != wrData) {
323 				ath_err(common,
324 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
325 					addr, wrData, rdData);
326 				return false;
327 			}
328 		}
329 		for (j = 0; j < 4; j++) {
330 			wrData = patternData[j];
331 			REG_WRITE(ah, addr, wrData);
332 			rdData = REG_READ(ah, addr);
333 			if (wrData != rdData) {
334 				ath_err(common,
335 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
336 					addr, wrData, rdData);
337 				return false;
338 			}
339 		}
340 		REG_WRITE(ah, regAddr[i], regHold[i]);
341 	}
342 	udelay(100);
343 
344 	return true;
345 }
346 
347 static void ath9k_hw_init_config(struct ath_hw *ah)
348 {
349 	int i;
350 
351 	ah->config.dma_beacon_response_time = 2;
352 	ah->config.sw_beacon_response_time = 10;
353 	ah->config.additional_swba_backoff = 0;
354 	ah->config.ack_6mb = 0x0;
355 	ah->config.cwm_ignore_extcca = 0;
356 	ah->config.pcie_powersave_enable = 0;
357 	ah->config.pcie_clock_req = 0;
358 	ah->config.pcie_waen = 0;
359 	ah->config.analog_shiftreg = 1;
360 	ah->config.enable_ani = true;
361 
362 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
363 		ah->config.spurchans[i][0] = AR_NO_SPUR;
364 		ah->config.spurchans[i][1] = AR_NO_SPUR;
365 	}
366 
367 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
368 		ah->config.ht_enable = 1;
369 	else
370 		ah->config.ht_enable = 0;
371 
372 	/* PAPRD needs some more work to be enabled */
373 	ah->config.paprd_disable = 1;
374 
375 	ah->config.rx_intr_mitigation = true;
376 	ah->config.pcieSerDesWrite = true;
377 
378 	/*
379 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
380 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
381 	 * This means we use it for all AR5416 devices, and the few
382 	 * minor PCI AR9280 devices out there.
383 	 *
384 	 * Serialization is required because these devices do not handle
385 	 * well the case of two concurrent reads/writes due to the latency
386 	 * involved. During one read/write another read/write can be issued
387 	 * on another CPU while the previous read/write may still be working
388 	 * on our hardware, if we hit this case the hardware poops in a loop.
389 	 * We prevent this by serializing reads and writes.
390 	 *
391 	 * This issue is not present on PCI-Express devices or pre-AR5416
392 	 * devices (legacy, 802.11abg).
393 	 */
394 	if (num_possible_cpus() > 1)
395 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
396 }
397 
398 static void ath9k_hw_init_defaults(struct ath_hw *ah)
399 {
400 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
401 
402 	regulatory->country_code = CTRY_DEFAULT;
403 	regulatory->power_limit = MAX_RATE_POWER;
404 	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
405 
406 	ah->hw_version.magic = AR5416_MAGIC;
407 	ah->hw_version.subvendorid = 0;
408 
409 	ah->atim_window = 0;
410 	ah->sta_id1_defaults =
411 		AR_STA_ID1_CRPT_MIC_ENABLE |
412 		AR_STA_ID1_MCAST_KSRCH;
413 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
414 	ah->slottime = 20;
415 	ah->globaltxtimeout = (u32) -1;
416 	ah->power_mode = ATH9K_PM_UNDEFINED;
417 }
418 
419 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
420 {
421 	struct ath_common *common = ath9k_hw_common(ah);
422 	u32 sum;
423 	int i;
424 	u16 eeval;
425 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
426 
427 	sum = 0;
428 	for (i = 0; i < 3; i++) {
429 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
430 		sum += eeval;
431 		common->macaddr[2 * i] = eeval >> 8;
432 		common->macaddr[2 * i + 1] = eeval & 0xff;
433 	}
434 	if (sum == 0 || sum == 0xffff * 3)
435 		return -EADDRNOTAVAIL;
436 
437 	return 0;
438 }
439 
440 static int ath9k_hw_post_init(struct ath_hw *ah)
441 {
442 	struct ath_common *common = ath9k_hw_common(ah);
443 	int ecode;
444 
445 	if (common->bus_ops->ath_bus_type != ATH_USB) {
446 		if (!ath9k_hw_chip_test(ah))
447 			return -ENODEV;
448 	}
449 
450 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
451 		ecode = ar9002_hw_rf_claim(ah);
452 		if (ecode != 0)
453 			return ecode;
454 	}
455 
456 	ecode = ath9k_hw_eeprom_init(ah);
457 	if (ecode != 0)
458 		return ecode;
459 
460 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
461 		"Eeprom VER: %d, REV: %d\n",
462 		ah->eep_ops->get_eeprom_ver(ah),
463 		ah->eep_ops->get_eeprom_rev(ah));
464 
465 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
466 	if (ecode) {
467 		ath_err(ath9k_hw_common(ah),
468 			"Failed allocating banks for external radio\n");
469 		ath9k_hw_rf_free_ext_banks(ah);
470 		return ecode;
471 	}
472 
473 	if (!AR_SREV_9100(ah)) {
474 		ath9k_hw_ani_setup(ah);
475 		ath9k_hw_ani_init(ah);
476 	}
477 
478 	return 0;
479 }
480 
481 static void ath9k_hw_attach_ops(struct ath_hw *ah)
482 {
483 	if (AR_SREV_9300_20_OR_LATER(ah))
484 		ar9003_hw_attach_ops(ah);
485 	else
486 		ar9002_hw_attach_ops(ah);
487 }
488 
489 /* Called for all hardware families */
490 static int __ath9k_hw_init(struct ath_hw *ah)
491 {
492 	struct ath_common *common = ath9k_hw_common(ah);
493 	int r = 0;
494 
495 	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
496 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
497 
498 	ath9k_hw_read_revisions(ah);
499 
500 	/*
501 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
502 	 * We need to do this to avoid RMW of this register. We cannot
503 	 * read the reg when chip is asleep.
504 	 */
505 	ah->WARegVal = REG_READ(ah, AR_WA);
506 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
507 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
508 
509 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
510 		ath_err(common, "Couldn't reset chip\n");
511 		return -EIO;
512 	}
513 
514 	ath9k_hw_init_defaults(ah);
515 	ath9k_hw_init_config(ah);
516 
517 	ath9k_hw_attach_ops(ah);
518 
519 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
520 		ath_err(common, "Couldn't wakeup chip\n");
521 		return -EIO;
522 	}
523 
524 	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
525 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
526 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
527 		     !ah->is_pciexpress)) {
528 			ah->config.serialize_regmode =
529 				SER_REG_MODE_ON;
530 		} else {
531 			ah->config.serialize_regmode =
532 				SER_REG_MODE_OFF;
533 		}
534 	}
535 
536 	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
537 		ah->config.serialize_regmode);
538 
539 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
540 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
541 	else
542 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
543 
544 	switch (ah->hw_version.macVersion) {
545 	case AR_SREV_VERSION_5416_PCI:
546 	case AR_SREV_VERSION_5416_PCIE:
547 	case AR_SREV_VERSION_9160:
548 	case AR_SREV_VERSION_9100:
549 	case AR_SREV_VERSION_9280:
550 	case AR_SREV_VERSION_9285:
551 	case AR_SREV_VERSION_9287:
552 	case AR_SREV_VERSION_9271:
553 	case AR_SREV_VERSION_9300:
554 	case AR_SREV_VERSION_9485:
555 		break;
556 	default:
557 		ath_err(common,
558 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
559 			ah->hw_version.macVersion, ah->hw_version.macRev);
560 		return -EOPNOTSUPP;
561 	}
562 
563 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
564 		ah->is_pciexpress = false;
565 
566 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
567 	ath9k_hw_init_cal_settings(ah);
568 
569 	ah->ani_function = ATH9K_ANI_ALL;
570 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
571 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
572 	if (!AR_SREV_9300_20_OR_LATER(ah))
573 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
574 
575 	ath9k_hw_init_mode_regs(ah);
576 
577 
578 	if (ah->is_pciexpress)
579 		ath9k_hw_configpcipowersave(ah, 0, 0);
580 	else
581 		ath9k_hw_disablepcie(ah);
582 
583 	if (!AR_SREV_9300_20_OR_LATER(ah))
584 		ar9002_hw_cck_chan14_spread(ah);
585 
586 	r = ath9k_hw_post_init(ah);
587 	if (r)
588 		return r;
589 
590 	ath9k_hw_init_mode_gain_regs(ah);
591 	r = ath9k_hw_fill_cap_info(ah);
592 	if (r)
593 		return r;
594 
595 	r = ath9k_hw_init_macaddr(ah);
596 	if (r) {
597 		ath_err(common, "Failed to initialize MAC address\n");
598 		return r;
599 	}
600 
601 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
602 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
603 	else
604 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
605 
606 	ah->bb_watchdog_timeout_ms = 25;
607 
608 	common->state = ATH_HW_INITIALIZED;
609 
610 	return 0;
611 }
612 
613 int ath9k_hw_init(struct ath_hw *ah)
614 {
615 	int ret;
616 	struct ath_common *common = ath9k_hw_common(ah);
617 
618 	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
619 	switch (ah->hw_version.devid) {
620 	case AR5416_DEVID_PCI:
621 	case AR5416_DEVID_PCIE:
622 	case AR5416_AR9100_DEVID:
623 	case AR9160_DEVID_PCI:
624 	case AR9280_DEVID_PCI:
625 	case AR9280_DEVID_PCIE:
626 	case AR9285_DEVID_PCIE:
627 	case AR9287_DEVID_PCI:
628 	case AR9287_DEVID_PCIE:
629 	case AR2427_DEVID_PCIE:
630 	case AR9300_DEVID_PCIE:
631 	case AR9300_DEVID_AR9485_PCIE:
632 		break;
633 	default:
634 		if (common->bus_ops->ath_bus_type == ATH_USB)
635 			break;
636 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
637 			ah->hw_version.devid);
638 		return -EOPNOTSUPP;
639 	}
640 
641 	ret = __ath9k_hw_init(ah);
642 	if (ret) {
643 		ath_err(common,
644 			"Unable to initialize hardware; initialization status: %d\n",
645 			ret);
646 		return ret;
647 	}
648 
649 	return 0;
650 }
651 EXPORT_SYMBOL(ath9k_hw_init);
652 
653 static void ath9k_hw_init_qos(struct ath_hw *ah)
654 {
655 	ENABLE_REGWRITE_BUFFER(ah);
656 
657 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
658 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
659 
660 	REG_WRITE(ah, AR_QOS_NO_ACK,
661 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
662 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
663 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
664 
665 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
666 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
667 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
668 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
669 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
670 
671 	REGWRITE_BUFFER_FLUSH(ah);
672 }
673 
674 unsigned long ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
675 {
676 		REG_WRITE(ah, PLL3, (REG_READ(ah, PLL3) & ~(PLL3_DO_MEAS_MASK)));
677 		udelay(100);
678 		REG_WRITE(ah, PLL3, (REG_READ(ah, PLL3) | PLL3_DO_MEAS_MASK));
679 
680 		while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
681 			udelay(100);
682 
683 		return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
684 }
685 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
686 
687 #define DPLL2_KD_VAL            0x3D
688 #define DPLL2_KI_VAL            0x06
689 #define DPLL3_PHASE_SHIFT_VAL   0x1
690 
691 static void ath9k_hw_init_pll(struct ath_hw *ah,
692 			      struct ath9k_channel *chan)
693 {
694 	u32 pll;
695 
696 	if (AR_SREV_9485(ah)) {
697 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
698 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, 0x19e82f01);
699 
700 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
701 			      AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
702 
703 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
704 		udelay(1000);
705 
706 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
707 
708 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
709 			      AR_CH0_DPLL2_KD, DPLL2_KD_VAL);
710 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
711 			      AR_CH0_DPLL2_KI, DPLL2_KI_VAL);
712 
713 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
714 			      AR_CH0_DPLL3_PHASE_SHIFT, DPLL3_PHASE_SHIFT_VAL);
715 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x142c);
716 		udelay(1000);
717 	}
718 
719 	pll = ath9k_hw_compute_pll_control(ah, chan);
720 
721 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
722 
723 	/* Switch the core clock for ar9271 to 117Mhz */
724 	if (AR_SREV_9271(ah)) {
725 		udelay(500);
726 		REG_WRITE(ah, 0x50040, 0x304);
727 	}
728 
729 	udelay(RTC_PLL_SETTLE_DELAY);
730 
731 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
732 }
733 
734 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
735 					  enum nl80211_iftype opmode)
736 {
737 	u32 imr_reg = AR_IMR_TXERR |
738 		AR_IMR_TXURN |
739 		AR_IMR_RXERR |
740 		AR_IMR_RXORN |
741 		AR_IMR_BCNMISC;
742 
743 	if (AR_SREV_9300_20_OR_LATER(ah)) {
744 		imr_reg |= AR_IMR_RXOK_HP;
745 		if (ah->config.rx_intr_mitigation)
746 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
747 		else
748 			imr_reg |= AR_IMR_RXOK_LP;
749 
750 	} else {
751 		if (ah->config.rx_intr_mitigation)
752 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
753 		else
754 			imr_reg |= AR_IMR_RXOK;
755 	}
756 
757 	if (ah->config.tx_intr_mitigation)
758 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
759 	else
760 		imr_reg |= AR_IMR_TXOK;
761 
762 	if (opmode == NL80211_IFTYPE_AP)
763 		imr_reg |= AR_IMR_MIB;
764 
765 	ENABLE_REGWRITE_BUFFER(ah);
766 
767 	REG_WRITE(ah, AR_IMR, imr_reg);
768 	ah->imrs2_reg |= AR_IMR_S2_GTT;
769 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
770 
771 	if (!AR_SREV_9100(ah)) {
772 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
773 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
774 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
775 	}
776 
777 	REGWRITE_BUFFER_FLUSH(ah);
778 
779 	if (AR_SREV_9300_20_OR_LATER(ah)) {
780 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
781 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
782 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
783 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
784 	}
785 }
786 
787 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
788 {
789 	u32 val = ath9k_hw_mac_to_clks(ah, us);
790 	val = min(val, (u32) 0xFFFF);
791 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
792 }
793 
794 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
795 {
796 	u32 val = ath9k_hw_mac_to_clks(ah, us);
797 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
798 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
799 }
800 
801 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
802 {
803 	u32 val = ath9k_hw_mac_to_clks(ah, us);
804 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
805 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
806 }
807 
808 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
809 {
810 	if (tu > 0xFFFF) {
811 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
812 			"bad global tx timeout %u\n", tu);
813 		ah->globaltxtimeout = (u32) -1;
814 		return false;
815 	} else {
816 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
817 		ah->globaltxtimeout = tu;
818 		return true;
819 	}
820 }
821 
822 void ath9k_hw_init_global_settings(struct ath_hw *ah)
823 {
824 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
825 	int acktimeout;
826 	int slottime;
827 	int sifstime;
828 
829 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
830 		ah->misc_mode);
831 
832 	if (ah->misc_mode != 0)
833 		REG_WRITE(ah, AR_PCU_MISC,
834 			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
835 
836 	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
837 		sifstime = 16;
838 	else
839 		sifstime = 10;
840 
841 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
842 	slottime = ah->slottime + 3 * ah->coverage_class;
843 	acktimeout = slottime + sifstime;
844 
845 	/*
846 	 * Workaround for early ACK timeouts, add an offset to match the
847 	 * initval's 64us ack timeout value.
848 	 * This was initially only meant to work around an issue with delayed
849 	 * BA frames in some implementations, but it has been found to fix ACK
850 	 * timeout issues in other cases as well.
851 	 */
852 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
853 		acktimeout += 64 - sifstime - ah->slottime;
854 
855 	ath9k_hw_setslottime(ah, ah->slottime);
856 	ath9k_hw_set_ack_timeout(ah, acktimeout);
857 	ath9k_hw_set_cts_timeout(ah, acktimeout);
858 	if (ah->globaltxtimeout != (u32) -1)
859 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
860 }
861 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
862 
863 void ath9k_hw_deinit(struct ath_hw *ah)
864 {
865 	struct ath_common *common = ath9k_hw_common(ah);
866 
867 	if (common->state < ATH_HW_INITIALIZED)
868 		goto free_hw;
869 
870 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
871 
872 free_hw:
873 	ath9k_hw_rf_free_ext_banks(ah);
874 }
875 EXPORT_SYMBOL(ath9k_hw_deinit);
876 
877 /*******/
878 /* INI */
879 /*******/
880 
881 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
882 {
883 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
884 
885 	if (IS_CHAN_B(chan))
886 		ctl |= CTL_11B;
887 	else if (IS_CHAN_G(chan))
888 		ctl |= CTL_11G;
889 	else
890 		ctl |= CTL_11A;
891 
892 	return ctl;
893 }
894 
895 /****************************************/
896 /* Reset and Channel Switching Routines */
897 /****************************************/
898 
899 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
900 {
901 	struct ath_common *common = ath9k_hw_common(ah);
902 	u32 regval;
903 
904 	ENABLE_REGWRITE_BUFFER(ah);
905 
906 	/*
907 	 * set AHB_MODE not to do cacheline prefetches
908 	*/
909 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
910 		regval = REG_READ(ah, AR_AHB_MODE);
911 		REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
912 	}
913 
914 	/*
915 	 * let mac dma reads be in 128 byte chunks
916 	 */
917 	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
918 	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
919 
920 	REGWRITE_BUFFER_FLUSH(ah);
921 
922 	/*
923 	 * Restore TX Trigger Level to its pre-reset value.
924 	 * The initial value depends on whether aggregation is enabled, and is
925 	 * adjusted whenever underruns are detected.
926 	 */
927 	if (!AR_SREV_9300_20_OR_LATER(ah))
928 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
929 
930 	ENABLE_REGWRITE_BUFFER(ah);
931 
932 	/*
933 	 * let mac dma writes be in 128 byte chunks
934 	 */
935 	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
936 	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
937 
938 	/*
939 	 * Setup receive FIFO threshold to hold off TX activities
940 	 */
941 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
942 
943 	if (AR_SREV_9300_20_OR_LATER(ah)) {
944 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
945 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
946 
947 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
948 			ah->caps.rx_status_len);
949 	}
950 
951 	/*
952 	 * reduce the number of usable entries in PCU TXBUF to avoid
953 	 * wrap around issues.
954 	 */
955 	if (AR_SREV_9285(ah)) {
956 		/* For AR9285 the number of Fifos are reduced to half.
957 		 * So set the usable tx buf size also to half to
958 		 * avoid data/delimiter underruns
959 		 */
960 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
961 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
962 	} else if (!AR_SREV_9271(ah)) {
963 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
964 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
965 	}
966 
967 	REGWRITE_BUFFER_FLUSH(ah);
968 
969 	if (AR_SREV_9300_20_OR_LATER(ah))
970 		ath9k_hw_reset_txstatus_ring(ah);
971 }
972 
973 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
974 {
975 	u32 val;
976 
977 	val = REG_READ(ah, AR_STA_ID1);
978 	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
979 	switch (opmode) {
980 	case NL80211_IFTYPE_AP:
981 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
982 			  | AR_STA_ID1_KSRCH_MODE);
983 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
984 		break;
985 	case NL80211_IFTYPE_ADHOC:
986 	case NL80211_IFTYPE_MESH_POINT:
987 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
988 			  | AR_STA_ID1_KSRCH_MODE);
989 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
990 		break;
991 	case NL80211_IFTYPE_STATION:
992 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
993 		break;
994 	default:
995 		if (ah->is_monitoring)
996 			REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
997 		break;
998 	}
999 }
1000 
1001 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1002 				   u32 *coef_mantissa, u32 *coef_exponent)
1003 {
1004 	u32 coef_exp, coef_man;
1005 
1006 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1007 		if ((coef_scaled >> coef_exp) & 0x1)
1008 			break;
1009 
1010 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1011 
1012 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1013 
1014 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1015 	*coef_exponent = coef_exp - 16;
1016 }
1017 
1018 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1019 {
1020 	u32 rst_flags;
1021 	u32 tmpReg;
1022 
1023 	if (AR_SREV_9100(ah)) {
1024 		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1025 		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1026 		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1027 		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1028 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1029 	}
1030 
1031 	ENABLE_REGWRITE_BUFFER(ah);
1032 
1033 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1034 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1035 		udelay(10);
1036 	}
1037 
1038 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1039 		  AR_RTC_FORCE_WAKE_ON_INT);
1040 
1041 	if (AR_SREV_9100(ah)) {
1042 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1043 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1044 	} else {
1045 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1046 		if (tmpReg &
1047 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1048 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1049 			u32 val;
1050 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1051 
1052 			val = AR_RC_HOSTIF;
1053 			if (!AR_SREV_9300_20_OR_LATER(ah))
1054 				val |= AR_RC_AHB;
1055 			REG_WRITE(ah, AR_RC, val);
1056 
1057 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1058 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1059 
1060 		rst_flags = AR_RTC_RC_MAC_WARM;
1061 		if (type == ATH9K_RESET_COLD)
1062 			rst_flags |= AR_RTC_RC_MAC_COLD;
1063 	}
1064 
1065 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1066 
1067 	REGWRITE_BUFFER_FLUSH(ah);
1068 
1069 	udelay(50);
1070 
1071 	REG_WRITE(ah, AR_RTC_RC, 0);
1072 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1073 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1074 			"RTC stuck in MAC reset\n");
1075 		return false;
1076 	}
1077 
1078 	if (!AR_SREV_9100(ah))
1079 		REG_WRITE(ah, AR_RC, 0);
1080 
1081 	if (AR_SREV_9100(ah))
1082 		udelay(50);
1083 
1084 	return true;
1085 }
1086 
1087 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1088 {
1089 	ENABLE_REGWRITE_BUFFER(ah);
1090 
1091 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1092 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1093 		udelay(10);
1094 	}
1095 
1096 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1097 		  AR_RTC_FORCE_WAKE_ON_INT);
1098 
1099 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1100 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1101 
1102 	REG_WRITE(ah, AR_RTC_RESET, 0);
1103 
1104 	REGWRITE_BUFFER_FLUSH(ah);
1105 
1106 	if (!AR_SREV_9300_20_OR_LATER(ah))
1107 		udelay(2);
1108 
1109 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1110 		REG_WRITE(ah, AR_RC, 0);
1111 
1112 	REG_WRITE(ah, AR_RTC_RESET, 1);
1113 
1114 	if (!ath9k_hw_wait(ah,
1115 			   AR_RTC_STATUS,
1116 			   AR_RTC_STATUS_M,
1117 			   AR_RTC_STATUS_ON,
1118 			   AH_WAIT_TIMEOUT)) {
1119 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1120 			"RTC not waking up\n");
1121 		return false;
1122 	}
1123 
1124 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1125 }
1126 
1127 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1128 {
1129 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1130 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1131 		udelay(10);
1132 	}
1133 
1134 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1135 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1136 
1137 	switch (type) {
1138 	case ATH9K_RESET_POWER_ON:
1139 		return ath9k_hw_set_reset_power_on(ah);
1140 	case ATH9K_RESET_WARM:
1141 	case ATH9K_RESET_COLD:
1142 		return ath9k_hw_set_reset(ah, type);
1143 	default:
1144 		return false;
1145 	}
1146 }
1147 
1148 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1149 				struct ath9k_channel *chan)
1150 {
1151 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1152 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1153 			return false;
1154 	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1155 		return false;
1156 
1157 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1158 		return false;
1159 
1160 	ah->chip_fullsleep = false;
1161 	ath9k_hw_init_pll(ah, chan);
1162 	ath9k_hw_set_rfmode(ah, chan);
1163 
1164 	return true;
1165 }
1166 
1167 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1168 				    struct ath9k_channel *chan)
1169 {
1170 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1171 	struct ath_common *common = ath9k_hw_common(ah);
1172 	struct ieee80211_channel *channel = chan->chan;
1173 	u32 qnum;
1174 	int r;
1175 
1176 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1177 		if (ath9k_hw_numtxpending(ah, qnum)) {
1178 			ath_dbg(common, ATH_DBG_QUEUE,
1179 				"Transmit frames pending on queue %d\n", qnum);
1180 			return false;
1181 		}
1182 	}
1183 
1184 	if (!ath9k_hw_rfbus_req(ah)) {
1185 		ath_err(common, "Could not kill baseband RX\n");
1186 		return false;
1187 	}
1188 
1189 	ath9k_hw_set_channel_regs(ah, chan);
1190 
1191 	r = ath9k_hw_rf_set_freq(ah, chan);
1192 	if (r) {
1193 		ath_err(common, "Failed to set channel\n");
1194 		return false;
1195 	}
1196 	ath9k_hw_set_clockrate(ah);
1197 
1198 	ah->eep_ops->set_txpower(ah, chan,
1199 			     ath9k_regd_get_ctl(regulatory, chan),
1200 			     channel->max_antenna_gain * 2,
1201 			     channel->max_power * 2,
1202 			     min((u32) MAX_RATE_POWER,
1203 			     (u32) regulatory->power_limit), false);
1204 
1205 	ath9k_hw_rfbus_done(ah);
1206 
1207 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1208 		ath9k_hw_set_delta_slope(ah, chan);
1209 
1210 	ath9k_hw_spur_mitigate_freq(ah, chan);
1211 
1212 	return true;
1213 }
1214 
1215 bool ath9k_hw_check_alive(struct ath_hw *ah)
1216 {
1217 	int count = 50;
1218 	u32 reg;
1219 
1220 	if (AR_SREV_9285_12_OR_LATER(ah))
1221 		return true;
1222 
1223 	do {
1224 		reg = REG_READ(ah, AR_OBS_BUS_1);
1225 
1226 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1227 			continue;
1228 
1229 		switch (reg & 0x7E000B00) {
1230 		case 0x1E000000:
1231 		case 0x52000B00:
1232 		case 0x18000B00:
1233 			continue;
1234 		default:
1235 			return true;
1236 		}
1237 	} while (count-- > 0);
1238 
1239 	return false;
1240 }
1241 EXPORT_SYMBOL(ath9k_hw_check_alive);
1242 
1243 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1244 		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1245 {
1246 	struct ath_common *common = ath9k_hw_common(ah);
1247 	u32 saveLedState;
1248 	struct ath9k_channel *curchan = ah->curchan;
1249 	u32 saveDefAntenna;
1250 	u32 macStaId1;
1251 	u64 tsf = 0;
1252 	int i, r;
1253 
1254 	ah->txchainmask = common->tx_chainmask;
1255 	ah->rxchainmask = common->rx_chainmask;
1256 
1257 	if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) {
1258 		ath9k_hw_abortpcurecv(ah);
1259 		if (!ath9k_hw_stopdmarecv(ah)) {
1260 			ath_dbg(common, ATH_DBG_XMIT,
1261 				"Failed to stop receive dma\n");
1262 			bChannelChange = false;
1263 		}
1264 	}
1265 
1266 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1267 		return -EIO;
1268 
1269 	if (curchan && !ah->chip_fullsleep)
1270 		ath9k_hw_getnf(ah, curchan);
1271 
1272 	ah->caldata = caldata;
1273 	if (caldata &&
1274 	    (chan->channel != caldata->channel ||
1275 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1276 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1277 		/* Operating channel changed, reset channel calibration data */
1278 		memset(caldata, 0, sizeof(*caldata));
1279 		ath9k_init_nfcal_hist_buffer(ah, chan);
1280 	}
1281 
1282 	if (bChannelChange &&
1283 	    (ah->chip_fullsleep != true) &&
1284 	    (ah->curchan != NULL) &&
1285 	    (chan->channel != ah->curchan->channel) &&
1286 	    ((chan->channelFlags & CHANNEL_ALL) ==
1287 	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1288 	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1289 
1290 		if (ath9k_hw_channel_change(ah, chan)) {
1291 			ath9k_hw_loadnf(ah, ah->curchan);
1292 			ath9k_hw_start_nfcal(ah, true);
1293 			if (AR_SREV_9271(ah))
1294 				ar9002_hw_load_ani_reg(ah, chan);
1295 			return 0;
1296 		}
1297 	}
1298 
1299 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1300 	if (saveDefAntenna == 0)
1301 		saveDefAntenna = 1;
1302 
1303 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1304 
1305 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1306 	if (AR_SREV_9100(ah) ||
1307 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1308 		tsf = ath9k_hw_gettsf64(ah);
1309 
1310 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1311 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1312 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1313 
1314 	ath9k_hw_mark_phy_inactive(ah);
1315 
1316 	ah->paprd_table_write_done = false;
1317 
1318 	/* Only required on the first reset */
1319 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1320 		REG_WRITE(ah,
1321 			  AR9271_RESET_POWER_DOWN_CONTROL,
1322 			  AR9271_RADIO_RF_RST);
1323 		udelay(50);
1324 	}
1325 
1326 	if (!ath9k_hw_chip_reset(ah, chan)) {
1327 		ath_err(common, "Chip reset failed\n");
1328 		return -EINVAL;
1329 	}
1330 
1331 	/* Only required on the first reset */
1332 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1333 		ah->htc_reset_init = false;
1334 		REG_WRITE(ah,
1335 			  AR9271_RESET_POWER_DOWN_CONTROL,
1336 			  AR9271_GATE_MAC_CTL);
1337 		udelay(50);
1338 	}
1339 
1340 	/* Restore TSF */
1341 	if (tsf)
1342 		ath9k_hw_settsf64(ah, tsf);
1343 
1344 	if (AR_SREV_9280_20_OR_LATER(ah))
1345 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1346 
1347 	if (!AR_SREV_9300_20_OR_LATER(ah))
1348 		ar9002_hw_enable_async_fifo(ah);
1349 
1350 	r = ath9k_hw_process_ini(ah, chan);
1351 	if (r)
1352 		return r;
1353 
1354 	/*
1355 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1356 	 * right after the chip reset. When that happens, write a new
1357 	 * value after the initvals have been applied, with an offset
1358 	 * based on measured time difference
1359 	 */
1360 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1361 		tsf += 1500;
1362 		ath9k_hw_settsf64(ah, tsf);
1363 	}
1364 
1365 	/* Setup MFP options for CCMP */
1366 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1367 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1368 		 * frames when constructing CCMP AAD. */
1369 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1370 			      0xc7ff);
1371 		ah->sw_mgmt_crypto = false;
1372 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1373 		/* Disable hardware crypto for management frames */
1374 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1375 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1376 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1377 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1378 		ah->sw_mgmt_crypto = true;
1379 	} else
1380 		ah->sw_mgmt_crypto = true;
1381 
1382 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1383 		ath9k_hw_set_delta_slope(ah, chan);
1384 
1385 	ath9k_hw_spur_mitigate_freq(ah, chan);
1386 	ah->eep_ops->set_board_values(ah, chan);
1387 
1388 	ENABLE_REGWRITE_BUFFER(ah);
1389 
1390 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1391 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1392 		  | macStaId1
1393 		  | AR_STA_ID1_RTS_USE_DEF
1394 		  | (ah->config.
1395 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1396 		  | ah->sta_id1_defaults);
1397 	ath_hw_setbssidmask(common);
1398 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1399 	ath9k_hw_write_associd(ah);
1400 	REG_WRITE(ah, AR_ISR, ~0);
1401 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1402 
1403 	REGWRITE_BUFFER_FLUSH(ah);
1404 
1405 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1406 
1407 	r = ath9k_hw_rf_set_freq(ah, chan);
1408 	if (r)
1409 		return r;
1410 
1411 	ath9k_hw_set_clockrate(ah);
1412 
1413 	ENABLE_REGWRITE_BUFFER(ah);
1414 
1415 	for (i = 0; i < AR_NUM_DCU; i++)
1416 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1417 
1418 	REGWRITE_BUFFER_FLUSH(ah);
1419 
1420 	ah->intr_txqs = 0;
1421 	for (i = 0; i < ah->caps.total_queues; i++)
1422 		ath9k_hw_resettxqueue(ah, i);
1423 
1424 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1425 	ath9k_hw_ani_cache_ini_regs(ah);
1426 	ath9k_hw_init_qos(ah);
1427 
1428 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1429 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1430 
1431 	ath9k_hw_init_global_settings(ah);
1432 
1433 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1434 		ar9002_hw_update_async_fifo(ah);
1435 		ar9002_hw_enable_wep_aggregation(ah);
1436 	}
1437 
1438 	REG_WRITE(ah, AR_STA_ID1,
1439 		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1440 
1441 	ath9k_hw_set_dma(ah);
1442 
1443 	REG_WRITE(ah, AR_OBS, 8);
1444 
1445 	if (ah->config.rx_intr_mitigation) {
1446 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1447 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1448 	}
1449 
1450 	if (ah->config.tx_intr_mitigation) {
1451 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1452 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1453 	}
1454 
1455 	ath9k_hw_init_bb(ah, chan);
1456 
1457 	if (!ath9k_hw_init_cal(ah, chan))
1458 		return -EIO;
1459 
1460 	ENABLE_REGWRITE_BUFFER(ah);
1461 
1462 	ath9k_hw_restore_chainmask(ah);
1463 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1464 
1465 	REGWRITE_BUFFER_FLUSH(ah);
1466 
1467 	/*
1468 	 * For big endian systems turn on swapping for descriptors
1469 	 */
1470 	if (AR_SREV_9100(ah)) {
1471 		u32 mask;
1472 		mask = REG_READ(ah, AR_CFG);
1473 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1474 			ath_dbg(common, ATH_DBG_RESET,
1475 				"CFG Byte Swap Set 0x%x\n", mask);
1476 		} else {
1477 			mask =
1478 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1479 			REG_WRITE(ah, AR_CFG, mask);
1480 			ath_dbg(common, ATH_DBG_RESET,
1481 				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1482 		}
1483 	} else {
1484 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1485 			/* Configure AR9271 target WLAN */
1486 			if (AR_SREV_9271(ah))
1487 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1488 			else
1489 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1490 		}
1491 #ifdef __BIG_ENDIAN
1492                 else
1493 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1494 #endif
1495 	}
1496 
1497 	if (ah->btcoex_hw.enabled)
1498 		ath9k_hw_btcoex_enable(ah);
1499 
1500 	if (AR_SREV_9300_20_OR_LATER(ah))
1501 		ar9003_hw_bb_watchdog_config(ah);
1502 
1503 	return 0;
1504 }
1505 EXPORT_SYMBOL(ath9k_hw_reset);
1506 
1507 /******************************/
1508 /* Power Management (Chipset) */
1509 /******************************/
1510 
1511 /*
1512  * Notify Power Mgt is disabled in self-generated frames.
1513  * If requested, force chip to sleep.
1514  */
1515 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1516 {
1517 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1518 	if (setChip) {
1519 		/*
1520 		 * Clear the RTC force wake bit to allow the
1521 		 * mac to go to sleep.
1522 		 */
1523 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1524 			    AR_RTC_FORCE_WAKE_EN);
1525 		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1526 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1527 
1528 		/* Shutdown chip. Active low */
1529 		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1530 			REG_CLR_BIT(ah, (AR_RTC_RESET),
1531 				    AR_RTC_RESET_EN);
1532 	}
1533 
1534 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1535 	if (AR_SREV_9300_20_OR_LATER(ah))
1536 		REG_WRITE(ah, AR_WA,
1537 			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1538 }
1539 
1540 /*
1541  * Notify Power Management is enabled in self-generating
1542  * frames. If request, set power mode of chip to
1543  * auto/normal.  Duration in units of 128us (1/8 TU).
1544  */
1545 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1546 {
1547 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1548 	if (setChip) {
1549 		struct ath9k_hw_capabilities *pCap = &ah->caps;
1550 
1551 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1552 			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1553 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1554 				  AR_RTC_FORCE_WAKE_ON_INT);
1555 		} else {
1556 			/*
1557 			 * Clear the RTC force wake bit to allow the
1558 			 * mac to go to sleep.
1559 			 */
1560 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1561 				    AR_RTC_FORCE_WAKE_EN);
1562 		}
1563 	}
1564 
1565 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1566 	if (AR_SREV_9300_20_OR_LATER(ah))
1567 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1568 }
1569 
1570 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1571 {
1572 	u32 val;
1573 	int i;
1574 
1575 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1576 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1577 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1578 		udelay(10);
1579 	}
1580 
1581 	if (setChip) {
1582 		if ((REG_READ(ah, AR_RTC_STATUS) &
1583 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1584 			if (ath9k_hw_set_reset_reg(ah,
1585 					   ATH9K_RESET_POWER_ON) != true) {
1586 				return false;
1587 			}
1588 			if (!AR_SREV_9300_20_OR_LATER(ah))
1589 				ath9k_hw_init_pll(ah, NULL);
1590 		}
1591 		if (AR_SREV_9100(ah))
1592 			REG_SET_BIT(ah, AR_RTC_RESET,
1593 				    AR_RTC_RESET_EN);
1594 
1595 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1596 			    AR_RTC_FORCE_WAKE_EN);
1597 		udelay(50);
1598 
1599 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1600 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1601 			if (val == AR_RTC_STATUS_ON)
1602 				break;
1603 			udelay(50);
1604 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1605 				    AR_RTC_FORCE_WAKE_EN);
1606 		}
1607 		if (i == 0) {
1608 			ath_err(ath9k_hw_common(ah),
1609 				"Failed to wakeup in %uus\n",
1610 				POWER_UP_TIME / 20);
1611 			return false;
1612 		}
1613 	}
1614 
1615 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1616 
1617 	return true;
1618 }
1619 
1620 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1621 {
1622 	struct ath_common *common = ath9k_hw_common(ah);
1623 	int status = true, setChip = true;
1624 	static const char *modes[] = {
1625 		"AWAKE",
1626 		"FULL-SLEEP",
1627 		"NETWORK SLEEP",
1628 		"UNDEFINED"
1629 	};
1630 
1631 	if (ah->power_mode == mode)
1632 		return status;
1633 
1634 	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1635 		modes[ah->power_mode], modes[mode]);
1636 
1637 	switch (mode) {
1638 	case ATH9K_PM_AWAKE:
1639 		status = ath9k_hw_set_power_awake(ah, setChip);
1640 		break;
1641 	case ATH9K_PM_FULL_SLEEP:
1642 		ath9k_set_power_sleep(ah, setChip);
1643 		ah->chip_fullsleep = true;
1644 		break;
1645 	case ATH9K_PM_NETWORK_SLEEP:
1646 		ath9k_set_power_network_sleep(ah, setChip);
1647 		break;
1648 	default:
1649 		ath_err(common, "Unknown power mode %u\n", mode);
1650 		return false;
1651 	}
1652 	ah->power_mode = mode;
1653 
1654 	/*
1655 	 * XXX: If this warning never comes up after a while then
1656 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1657 	 * ath9k_hw_setpower() return type void.
1658 	 */
1659 
1660 	if (!(ah->ah_flags & AH_UNPLUGGED))
1661 		ATH_DBG_WARN_ON_ONCE(!status);
1662 
1663 	return status;
1664 }
1665 EXPORT_SYMBOL(ath9k_hw_setpower);
1666 
1667 /*******************/
1668 /* Beacon Handling */
1669 /*******************/
1670 
1671 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1672 {
1673 	int flags = 0;
1674 
1675 	ENABLE_REGWRITE_BUFFER(ah);
1676 
1677 	switch (ah->opmode) {
1678 	case NL80211_IFTYPE_ADHOC:
1679 	case NL80211_IFTYPE_MESH_POINT:
1680 		REG_SET_BIT(ah, AR_TXCFG,
1681 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1682 		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1683 			  TU_TO_USEC(next_beacon +
1684 				     (ah->atim_window ? ah->
1685 				      atim_window : 1)));
1686 		flags |= AR_NDP_TIMER_EN;
1687 	case NL80211_IFTYPE_AP:
1688 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1689 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1690 			  TU_TO_USEC(next_beacon -
1691 				     ah->config.
1692 				     dma_beacon_response_time));
1693 		REG_WRITE(ah, AR_NEXT_SWBA,
1694 			  TU_TO_USEC(next_beacon -
1695 				     ah->config.
1696 				     sw_beacon_response_time));
1697 		flags |=
1698 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1699 		break;
1700 	default:
1701 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1702 			"%s: unsupported opmode: %d\n",
1703 			__func__, ah->opmode);
1704 		return;
1705 		break;
1706 	}
1707 
1708 	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1709 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1710 	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1711 	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1712 
1713 	REGWRITE_BUFFER_FLUSH(ah);
1714 
1715 	beacon_period &= ~ATH9K_BEACON_ENA;
1716 	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1717 		ath9k_hw_reset_tsf(ah);
1718 	}
1719 
1720 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1721 }
1722 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1723 
1724 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1725 				    const struct ath9k_beacon_state *bs)
1726 {
1727 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1728 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1729 	struct ath_common *common = ath9k_hw_common(ah);
1730 
1731 	ENABLE_REGWRITE_BUFFER(ah);
1732 
1733 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1734 
1735 	REG_WRITE(ah, AR_BEACON_PERIOD,
1736 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1737 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1738 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1739 
1740 	REGWRITE_BUFFER_FLUSH(ah);
1741 
1742 	REG_RMW_FIELD(ah, AR_RSSI_THR,
1743 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1744 
1745 	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1746 
1747 	if (bs->bs_sleepduration > beaconintval)
1748 		beaconintval = bs->bs_sleepduration;
1749 
1750 	dtimperiod = bs->bs_dtimperiod;
1751 	if (bs->bs_sleepduration > dtimperiod)
1752 		dtimperiod = bs->bs_sleepduration;
1753 
1754 	if (beaconintval == dtimperiod)
1755 		nextTbtt = bs->bs_nextdtim;
1756 	else
1757 		nextTbtt = bs->bs_nexttbtt;
1758 
1759 	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1760 	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1761 	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1762 	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1763 
1764 	ENABLE_REGWRITE_BUFFER(ah);
1765 
1766 	REG_WRITE(ah, AR_NEXT_DTIM,
1767 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1768 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1769 
1770 	REG_WRITE(ah, AR_SLEEP1,
1771 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1772 		  | AR_SLEEP1_ASSUME_DTIM);
1773 
1774 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1775 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1776 	else
1777 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1778 
1779 	REG_WRITE(ah, AR_SLEEP2,
1780 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1781 
1782 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1783 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1784 
1785 	REGWRITE_BUFFER_FLUSH(ah);
1786 
1787 	REG_SET_BIT(ah, AR_TIMER_MODE,
1788 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1789 		    AR_DTIM_TIMER_EN);
1790 
1791 	/* TSF Out of Range Threshold */
1792 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1793 }
1794 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1795 
1796 /*******************/
1797 /* HW Capabilities */
1798 /*******************/
1799 
1800 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1801 {
1802 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1803 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1804 	struct ath_common *common = ath9k_hw_common(ah);
1805 	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1806 
1807 	u16 capField = 0, eeval;
1808 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
1809 
1810 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1811 	regulatory->current_rd = eeval;
1812 
1813 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1814 	if (AR_SREV_9285_12_OR_LATER(ah))
1815 		eeval |= AR9285_RDEXT_DEFAULT;
1816 	regulatory->current_rd_ext = eeval;
1817 
1818 	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
1819 
1820 	if (ah->opmode != NL80211_IFTYPE_AP &&
1821 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1822 		if (regulatory->current_rd == 0x64 ||
1823 		    regulatory->current_rd == 0x65)
1824 			regulatory->current_rd += 5;
1825 		else if (regulatory->current_rd == 0x41)
1826 			regulatory->current_rd = 0x43;
1827 		ath_dbg(common, ATH_DBG_REGULATORY,
1828 			"regdomain mapped to 0x%x\n", regulatory->current_rd);
1829 	}
1830 
1831 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1832 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1833 		ath_err(common,
1834 			"no band has been marked as supported in EEPROM\n");
1835 		return -EINVAL;
1836 	}
1837 
1838 	if (eeval & AR5416_OPFLAGS_11A)
1839 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1840 
1841 	if (eeval & AR5416_OPFLAGS_11G)
1842 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1843 
1844 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1845 	/*
1846 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
1847 	 * the EEPROM.
1848 	 */
1849 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1850 	    !(eeval & AR5416_OPFLAGS_11A) &&
1851 	    !(AR_SREV_9271(ah)))
1852 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1853 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1854 	else
1855 		/* Use rx_chainmask from EEPROM. */
1856 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1857 
1858 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1859 
1860 	/* enable key search for every frame in an aggregate */
1861 	if (AR_SREV_9300_20_OR_LATER(ah))
1862 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
1863 
1864 	pCap->low_2ghz_chan = 2312;
1865 	pCap->high_2ghz_chan = 2732;
1866 
1867 	pCap->low_5ghz_chan = 4920;
1868 	pCap->high_5ghz_chan = 6100;
1869 
1870 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1871 
1872 	if (ah->config.ht_enable)
1873 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
1874 	else
1875 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1876 
1877 	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
1878 		pCap->total_queues =
1879 			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
1880 	else
1881 		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
1882 
1883 	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
1884 		pCap->keycache_size =
1885 			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
1886 	else
1887 		pCap->keycache_size = AR_KEYTABLE_SIZE;
1888 
1889 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
1890 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
1891 	else
1892 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
1893 
1894 	if (AR_SREV_9271(ah))
1895 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
1896 	else if (AR_DEVID_7010(ah))
1897 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
1898 	else if (AR_SREV_9285_12_OR_LATER(ah))
1899 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
1900 	else if (AR_SREV_9280_20_OR_LATER(ah))
1901 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
1902 	else
1903 		pCap->num_gpio_pins = AR_NUM_GPIO;
1904 
1905 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1906 		pCap->hw_caps |= ATH9K_HW_CAP_CST;
1907 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1908 	} else {
1909 		pCap->rts_aggr_limit = (8 * 1024);
1910 	}
1911 
1912 	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
1913 
1914 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1915 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1916 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1917 		ah->rfkill_gpio =
1918 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1919 		ah->rfkill_polarity =
1920 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1921 
1922 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1923 	}
1924 #endif
1925 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1926 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1927 	else
1928 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1929 
1930 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1931 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1932 	else
1933 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1934 
1935 	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
1936 		pCap->reg_cap =
1937 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1938 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
1939 			AR_EEPROM_EEREGCAP_EN_KK_U2 |
1940 			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
1941 	} else {
1942 		pCap->reg_cap =
1943 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1944 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
1945 	}
1946 
1947 	/* Advertise midband for AR5416 with FCC midband set in eeprom */
1948 	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
1949 	    AR_SREV_5416(ah))
1950 		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
1951 
1952 	if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
1953 		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
1954 		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
1955 
1956 		if (AR_SREV_9285(ah)) {
1957 			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1958 			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
1959 		} else {
1960 			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1961 		}
1962 	} else {
1963 		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1964 	}
1965 
1966 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1967 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
1968 		if (!AR_SREV_9485(ah))
1969 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
1970 
1971 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1972 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1973 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
1974 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
1975 		pCap->txs_len = sizeof(struct ar9003_txs);
1976 		if (!ah->config.paprd_disable &&
1977 		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1978 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1979 	} else {
1980 		pCap->tx_desc_len = sizeof(struct ath_desc);
1981 		if (AR_SREV_9280_20(ah) &&
1982 		    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1983 		      AR5416_EEP_MINOR_VER_16) ||
1984 		     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
1985 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
1986 	}
1987 
1988 	if (AR_SREV_9300_20_OR_LATER(ah))
1989 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
1990 
1991 	if (AR_SREV_9300_20_OR_LATER(ah))
1992 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
1993 
1994 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
1995 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
1996 
1997 	if (AR_SREV_9285(ah))
1998 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
1999 			ant_div_ctl1 =
2000 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2001 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2002 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2003 		}
2004 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2005 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2006 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2007 	}
2008 
2009 
2010 
2011 	if (AR_SREV_9485_10(ah)) {
2012 		pCap->pcie_lcr_extsync_en = true;
2013 		pCap->pcie_lcr_offset = 0x80;
2014 	}
2015 
2016 	tx_chainmask = pCap->tx_chainmask;
2017 	rx_chainmask = pCap->rx_chainmask;
2018 	while (tx_chainmask || rx_chainmask) {
2019 		if (tx_chainmask & BIT(0))
2020 			pCap->max_txchains++;
2021 		if (rx_chainmask & BIT(0))
2022 			pCap->max_rxchains++;
2023 
2024 		tx_chainmask >>= 1;
2025 		rx_chainmask >>= 1;
2026 	}
2027 
2028 	return 0;
2029 }
2030 
2031 /****************************/
2032 /* GPIO / RFKILL / Antennae */
2033 /****************************/
2034 
2035 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2036 					 u32 gpio, u32 type)
2037 {
2038 	int addr;
2039 	u32 gpio_shift, tmp;
2040 
2041 	if (gpio > 11)
2042 		addr = AR_GPIO_OUTPUT_MUX3;
2043 	else if (gpio > 5)
2044 		addr = AR_GPIO_OUTPUT_MUX2;
2045 	else
2046 		addr = AR_GPIO_OUTPUT_MUX1;
2047 
2048 	gpio_shift = (gpio % 6) * 5;
2049 
2050 	if (AR_SREV_9280_20_OR_LATER(ah)
2051 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2052 		REG_RMW(ah, addr, (type << gpio_shift),
2053 			(0x1f << gpio_shift));
2054 	} else {
2055 		tmp = REG_READ(ah, addr);
2056 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2057 		tmp &= ~(0x1f << gpio_shift);
2058 		tmp |= (type << gpio_shift);
2059 		REG_WRITE(ah, addr, tmp);
2060 	}
2061 }
2062 
2063 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2064 {
2065 	u32 gpio_shift;
2066 
2067 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2068 
2069 	if (AR_DEVID_7010(ah)) {
2070 		gpio_shift = gpio;
2071 		REG_RMW(ah, AR7010_GPIO_OE,
2072 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2073 			(AR7010_GPIO_OE_MASK << gpio_shift));
2074 		return;
2075 	}
2076 
2077 	gpio_shift = gpio << 1;
2078 	REG_RMW(ah,
2079 		AR_GPIO_OE_OUT,
2080 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2081 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2082 }
2083 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2084 
2085 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2086 {
2087 #define MS_REG_READ(x, y) \
2088 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2089 
2090 	if (gpio >= ah->caps.num_gpio_pins)
2091 		return 0xffffffff;
2092 
2093 	if (AR_DEVID_7010(ah)) {
2094 		u32 val;
2095 		val = REG_READ(ah, AR7010_GPIO_IN);
2096 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2097 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2098 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2099 			AR_GPIO_BIT(gpio)) != 0;
2100 	else if (AR_SREV_9271(ah))
2101 		return MS_REG_READ(AR9271, gpio) != 0;
2102 	else if (AR_SREV_9287_11_OR_LATER(ah))
2103 		return MS_REG_READ(AR9287, gpio) != 0;
2104 	else if (AR_SREV_9285_12_OR_LATER(ah))
2105 		return MS_REG_READ(AR9285, gpio) != 0;
2106 	else if (AR_SREV_9280_20_OR_LATER(ah))
2107 		return MS_REG_READ(AR928X, gpio) != 0;
2108 	else
2109 		return MS_REG_READ(AR, gpio) != 0;
2110 }
2111 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2112 
2113 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2114 			 u32 ah_signal_type)
2115 {
2116 	u32 gpio_shift;
2117 
2118 	if (AR_DEVID_7010(ah)) {
2119 		gpio_shift = gpio;
2120 		REG_RMW(ah, AR7010_GPIO_OE,
2121 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2122 			(AR7010_GPIO_OE_MASK << gpio_shift));
2123 		return;
2124 	}
2125 
2126 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2127 	gpio_shift = 2 * gpio;
2128 	REG_RMW(ah,
2129 		AR_GPIO_OE_OUT,
2130 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2131 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2132 }
2133 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2134 
2135 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2136 {
2137 	if (AR_DEVID_7010(ah)) {
2138 		val = val ? 0 : 1;
2139 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2140 			AR_GPIO_BIT(gpio));
2141 		return;
2142 	}
2143 
2144 	if (AR_SREV_9271(ah))
2145 		val = ~val;
2146 
2147 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2148 		AR_GPIO_BIT(gpio));
2149 }
2150 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2151 
2152 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2153 {
2154 	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2155 }
2156 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2157 
2158 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2159 {
2160 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2161 }
2162 EXPORT_SYMBOL(ath9k_hw_setantenna);
2163 
2164 /*********************/
2165 /* General Operation */
2166 /*********************/
2167 
2168 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2169 {
2170 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2171 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2172 
2173 	if (phybits & AR_PHY_ERR_RADAR)
2174 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2175 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2176 		bits |= ATH9K_RX_FILTER_PHYERR;
2177 
2178 	return bits;
2179 }
2180 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2181 
2182 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2183 {
2184 	u32 phybits;
2185 
2186 	ENABLE_REGWRITE_BUFFER(ah);
2187 
2188 	REG_WRITE(ah, AR_RX_FILTER, bits);
2189 
2190 	phybits = 0;
2191 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2192 		phybits |= AR_PHY_ERR_RADAR;
2193 	if (bits & ATH9K_RX_FILTER_PHYERR)
2194 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2195 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2196 
2197 	if (phybits)
2198 		REG_WRITE(ah, AR_RXCFG,
2199 			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2200 	else
2201 		REG_WRITE(ah, AR_RXCFG,
2202 			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2203 
2204 	REGWRITE_BUFFER_FLUSH(ah);
2205 }
2206 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2207 
2208 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2209 {
2210 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2211 		return false;
2212 
2213 	ath9k_hw_init_pll(ah, NULL);
2214 	return true;
2215 }
2216 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2217 
2218 bool ath9k_hw_disable(struct ath_hw *ah)
2219 {
2220 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2221 		return false;
2222 
2223 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2224 		return false;
2225 
2226 	ath9k_hw_init_pll(ah, NULL);
2227 	return true;
2228 }
2229 EXPORT_SYMBOL(ath9k_hw_disable);
2230 
2231 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2232 {
2233 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2234 	struct ath9k_channel *chan = ah->curchan;
2235 	struct ieee80211_channel *channel = chan->chan;
2236 
2237 	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2238 
2239 	ah->eep_ops->set_txpower(ah, chan,
2240 				 ath9k_regd_get_ctl(regulatory, chan),
2241 				 channel->max_antenna_gain * 2,
2242 				 channel->max_power * 2,
2243 				 min((u32) MAX_RATE_POWER,
2244 				 (u32) regulatory->power_limit), test);
2245 }
2246 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2247 
2248 void ath9k_hw_setopmode(struct ath_hw *ah)
2249 {
2250 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2251 }
2252 EXPORT_SYMBOL(ath9k_hw_setopmode);
2253 
2254 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2255 {
2256 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2257 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2258 }
2259 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2260 
2261 void ath9k_hw_write_associd(struct ath_hw *ah)
2262 {
2263 	struct ath_common *common = ath9k_hw_common(ah);
2264 
2265 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2266 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2267 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2268 }
2269 EXPORT_SYMBOL(ath9k_hw_write_associd);
2270 
2271 #define ATH9K_MAX_TSF_READ 10
2272 
2273 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2274 {
2275 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2276 	int i;
2277 
2278 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2279 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2280 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2281 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2282 		if (tsf_upper2 == tsf_upper1)
2283 			break;
2284 		tsf_upper1 = tsf_upper2;
2285 	}
2286 
2287 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2288 
2289 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2290 }
2291 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2292 
2293 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2294 {
2295 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2296 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2297 }
2298 EXPORT_SYMBOL(ath9k_hw_settsf64);
2299 
2300 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2301 {
2302 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2303 			   AH_TSF_WRITE_TIMEOUT))
2304 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2305 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2306 
2307 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2308 }
2309 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2310 
2311 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2312 {
2313 	if (setting)
2314 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2315 	else
2316 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2317 }
2318 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2319 
2320 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2321 {
2322 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2323 	u32 macmode;
2324 
2325 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2326 		macmode = AR_2040_JOINED_RX_CLEAR;
2327 	else
2328 		macmode = 0;
2329 
2330 	REG_WRITE(ah, AR_2040_MODE, macmode);
2331 }
2332 
2333 /* HW Generic timers configuration */
2334 
2335 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2336 {
2337 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2338 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2339 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2340 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2341 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2342 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2343 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2344 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2345 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2346 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2347 				AR_NDP2_TIMER_MODE, 0x0002},
2348 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2349 				AR_NDP2_TIMER_MODE, 0x0004},
2350 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2351 				AR_NDP2_TIMER_MODE, 0x0008},
2352 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2353 				AR_NDP2_TIMER_MODE, 0x0010},
2354 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2355 				AR_NDP2_TIMER_MODE, 0x0020},
2356 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2357 				AR_NDP2_TIMER_MODE, 0x0040},
2358 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2359 				AR_NDP2_TIMER_MODE, 0x0080}
2360 };
2361 
2362 /* HW generic timer primitives */
2363 
2364 /* compute and clear index of rightmost 1 */
2365 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2366 {
2367 	u32 b;
2368 
2369 	b = *mask;
2370 	b &= (0-b);
2371 	*mask &= ~b;
2372 	b *= debruijn32;
2373 	b >>= 27;
2374 
2375 	return timer_table->gen_timer_index[b];
2376 }
2377 
2378 static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2379 {
2380 	return REG_READ(ah, AR_TSF_L32);
2381 }
2382 
2383 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2384 					  void (*trigger)(void *),
2385 					  void (*overflow)(void *),
2386 					  void *arg,
2387 					  u8 timer_index)
2388 {
2389 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2390 	struct ath_gen_timer *timer;
2391 
2392 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2393 
2394 	if (timer == NULL) {
2395 		ath_err(ath9k_hw_common(ah),
2396 			"Failed to allocate memory for hw timer[%d]\n",
2397 			timer_index);
2398 		return NULL;
2399 	}
2400 
2401 	/* allocate a hardware generic timer slot */
2402 	timer_table->timers[timer_index] = timer;
2403 	timer->index = timer_index;
2404 	timer->trigger = trigger;
2405 	timer->overflow = overflow;
2406 	timer->arg = arg;
2407 
2408 	return timer;
2409 }
2410 EXPORT_SYMBOL(ath_gen_timer_alloc);
2411 
2412 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2413 			      struct ath_gen_timer *timer,
2414 			      u32 timer_next,
2415 			      u32 timer_period)
2416 {
2417 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2418 	u32 tsf;
2419 
2420 	BUG_ON(!timer_period);
2421 
2422 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2423 
2424 	tsf = ath9k_hw_gettsf32(ah);
2425 
2426 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2427 		"current tsf %x period %x timer_next %x\n",
2428 		tsf, timer_period, timer_next);
2429 
2430 	/*
2431 	 * Pull timer_next forward if the current TSF already passed it
2432 	 * because of software latency
2433 	 */
2434 	if (timer_next < tsf)
2435 		timer_next = tsf + timer_period;
2436 
2437 	/*
2438 	 * Program generic timer registers
2439 	 */
2440 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2441 		 timer_next);
2442 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2443 		  timer_period);
2444 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2445 		    gen_tmr_configuration[timer->index].mode_mask);
2446 
2447 	/* Enable both trigger and thresh interrupt masks */
2448 	REG_SET_BIT(ah, AR_IMR_S5,
2449 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2450 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2451 }
2452 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2453 
2454 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2455 {
2456 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2457 
2458 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2459 		(timer->index >= ATH_MAX_GEN_TIMER)) {
2460 		return;
2461 	}
2462 
2463 	/* Clear generic timer enable bits. */
2464 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2465 			gen_tmr_configuration[timer->index].mode_mask);
2466 
2467 	/* Disable both trigger and thresh interrupt masks */
2468 	REG_CLR_BIT(ah, AR_IMR_S5,
2469 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2470 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2471 
2472 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2473 }
2474 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2475 
2476 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2477 {
2478 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2479 
2480 	/* free the hardware generic timer slot */
2481 	timer_table->timers[timer->index] = NULL;
2482 	kfree(timer);
2483 }
2484 EXPORT_SYMBOL(ath_gen_timer_free);
2485 
2486 /*
2487  * Generic Timer Interrupts handling
2488  */
2489 void ath_gen_timer_isr(struct ath_hw *ah)
2490 {
2491 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2492 	struct ath_gen_timer *timer;
2493 	struct ath_common *common = ath9k_hw_common(ah);
2494 	u32 trigger_mask, thresh_mask, index;
2495 
2496 	/* get hardware generic timer interrupt status */
2497 	trigger_mask = ah->intr_gen_timer_trigger;
2498 	thresh_mask = ah->intr_gen_timer_thresh;
2499 	trigger_mask &= timer_table->timer_mask.val;
2500 	thresh_mask &= timer_table->timer_mask.val;
2501 
2502 	trigger_mask &= ~thresh_mask;
2503 
2504 	while (thresh_mask) {
2505 		index = rightmost_index(timer_table, &thresh_mask);
2506 		timer = timer_table->timers[index];
2507 		BUG_ON(!timer);
2508 		ath_dbg(common, ATH_DBG_HWTIMER,
2509 			"TSF overflow for Gen timer %d\n", index);
2510 		timer->overflow(timer->arg);
2511 	}
2512 
2513 	while (trigger_mask) {
2514 		index = rightmost_index(timer_table, &trigger_mask);
2515 		timer = timer_table->timers[index];
2516 		BUG_ON(!timer);
2517 		ath_dbg(common, ATH_DBG_HWTIMER,
2518 			"Gen timer[%d] trigger\n", index);
2519 		timer->trigger(timer->arg);
2520 	}
2521 }
2522 EXPORT_SYMBOL(ath_gen_timer_isr);
2523 
2524 /********/
2525 /* HTC  */
2526 /********/
2527 
2528 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2529 {
2530 	ah->htc_reset_init = true;
2531 }
2532 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2533 
2534 static struct {
2535 	u32 version;
2536 	const char * name;
2537 } ath_mac_bb_names[] = {
2538 	/* Devices with external radios */
2539 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2540 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2541 	{ AR_SREV_VERSION_9100,		"9100" },
2542 	{ AR_SREV_VERSION_9160,		"9160" },
2543 	/* Single-chip solutions */
2544 	{ AR_SREV_VERSION_9280,		"9280" },
2545 	{ AR_SREV_VERSION_9285,		"9285" },
2546 	{ AR_SREV_VERSION_9287,         "9287" },
2547 	{ AR_SREV_VERSION_9271,         "9271" },
2548 	{ AR_SREV_VERSION_9300,         "9300" },
2549 };
2550 
2551 /* For devices with external radios */
2552 static struct {
2553 	u16 version;
2554 	const char * name;
2555 } ath_rf_names[] = {
2556 	{ 0,				"5133" },
2557 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2558 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2559 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2560 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2561 };
2562 
2563 /*
2564  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2565  */
2566 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2567 {
2568 	int i;
2569 
2570 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2571 		if (ath_mac_bb_names[i].version == mac_bb_version) {
2572 			return ath_mac_bb_names[i].name;
2573 		}
2574 	}
2575 
2576 	return "????";
2577 }
2578 
2579 /*
2580  * Return the RF name. "????" is returned if the RF is unknown.
2581  * Used for devices with external radios.
2582  */
2583 static const char *ath9k_hw_rf_name(u16 rf_version)
2584 {
2585 	int i;
2586 
2587 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2588 		if (ath_rf_names[i].version == rf_version) {
2589 			return ath_rf_names[i].name;
2590 		}
2591 	}
2592 
2593 	return "????";
2594 }
2595 
2596 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2597 {
2598 	int used;
2599 
2600 	/* chipsets >= AR9280 are single-chip */
2601 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2602 		used = snprintf(hw_name, len,
2603 			       "Atheros AR%s Rev:%x",
2604 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2605 			       ah->hw_version.macRev);
2606 	}
2607 	else {
2608 		used = snprintf(hw_name, len,
2609 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2610 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2611 			       ah->hw_version.macRev,
2612 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2613 						AR_RADIO_SREV_MAJOR)),
2614 			       ah->hw_version.phyRev);
2615 	}
2616 
2617 	hw_name[used] = '\0';
2618 }
2619 EXPORT_SYMBOL(ath9k_hw_name);
2620