xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 54525552)
1 /*
2  * Copyright (c) 2008-2010 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
20 
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
25 
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27 
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
32 
33 static int __init ath9k_init(void)
34 {
35 	return 0;
36 }
37 module_init(ath9k_init);
38 
39 static void __exit ath9k_exit(void)
40 {
41 	return;
42 }
43 module_exit(ath9k_exit);
44 
45 /* Private hardware callbacks */
46 
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48 {
49 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50 }
51 
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55 }
56 
57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 					struct ath9k_channel *chan)
59 {
60 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62 
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 		return;
67 
68 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70 
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 	/* You will not have this callback if using the old ANI */
74 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 		return;
76 
77 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79 
80 /********************/
81 /* Helper Functions */
82 /********************/
83 
84 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85 {
86 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87 	struct ath_common *common = ath9k_hw_common(ah);
88 	unsigned int clockrate;
89 
90 	if (!ah->curchan) /* should really check for CCK instead */
91 		clockrate = ATH9K_CLOCK_RATE_CCK;
92 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
93 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
94 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
95 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
96 	else
97 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
98 
99 	if (conf_is_ht40(conf))
100 		clockrate *= 2;
101 
102 	common->clockrate = clockrate;
103 }
104 
105 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
106 {
107 	struct ath_common *common = ath9k_hw_common(ah);
108 
109 	return usecs * common->clockrate;
110 }
111 
112 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
113 {
114 	int i;
115 
116 	BUG_ON(timeout < AH_TIME_QUANTUM);
117 
118 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
119 		if ((REG_READ(ah, reg) & mask) == val)
120 			return true;
121 
122 		udelay(AH_TIME_QUANTUM);
123 	}
124 
125 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
126 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
127 		timeout, reg, REG_READ(ah, reg), mask, val);
128 
129 	return false;
130 }
131 EXPORT_SYMBOL(ath9k_hw_wait);
132 
133 void ath9k_hw_write_array(struct ath_hw *ah, struct ar5416IniArray *array,
134 			  int column, unsigned int *writecnt)
135 {
136 	int r;
137 
138 	ENABLE_REGWRITE_BUFFER(ah);
139 	for (r = 0; r < array->ia_rows; r++) {
140 		REG_WRITE(ah, INI_RA(array, r, 0),
141 			  INI_RA(array, r, column));
142 		DO_DELAY(*writecnt);
143 	}
144 	REGWRITE_BUFFER_FLUSH(ah);
145 }
146 
147 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
148 {
149 	u32 retval;
150 	int i;
151 
152 	for (i = 0, retval = 0; i < n; i++) {
153 		retval = (retval << 1) | (val & 1);
154 		val >>= 1;
155 	}
156 	return retval;
157 }
158 
159 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
160 			   u8 phy, int kbps,
161 			   u32 frameLen, u16 rateix,
162 			   bool shortPreamble)
163 {
164 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
165 
166 	if (kbps == 0)
167 		return 0;
168 
169 	switch (phy) {
170 	case WLAN_RC_PHY_CCK:
171 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
172 		if (shortPreamble)
173 			phyTime >>= 1;
174 		numBits = frameLen << 3;
175 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
176 		break;
177 	case WLAN_RC_PHY_OFDM:
178 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
179 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
180 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
181 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
182 			txTime = OFDM_SIFS_TIME_QUARTER
183 				+ OFDM_PREAMBLE_TIME_QUARTER
184 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
185 		} else if (ah->curchan &&
186 			   IS_CHAN_HALF_RATE(ah->curchan)) {
187 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
188 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
189 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
190 			txTime = OFDM_SIFS_TIME_HALF +
191 				OFDM_PREAMBLE_TIME_HALF
192 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
193 		} else {
194 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
195 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
196 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
197 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
198 				+ (numSymbols * OFDM_SYMBOL_TIME);
199 		}
200 		break;
201 	default:
202 		ath_err(ath9k_hw_common(ah),
203 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
204 		txTime = 0;
205 		break;
206 	}
207 
208 	return txTime;
209 }
210 EXPORT_SYMBOL(ath9k_hw_computetxtime);
211 
212 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
213 				  struct ath9k_channel *chan,
214 				  struct chan_centers *centers)
215 {
216 	int8_t extoff;
217 
218 	if (!IS_CHAN_HT40(chan)) {
219 		centers->ctl_center = centers->ext_center =
220 			centers->synth_center = chan->channel;
221 		return;
222 	}
223 
224 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
225 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
226 		centers->synth_center =
227 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
228 		extoff = 1;
229 	} else {
230 		centers->synth_center =
231 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
232 		extoff = -1;
233 	}
234 
235 	centers->ctl_center =
236 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
237 	/* 25 MHz spacing is supported by hw but not on upper layers */
238 	centers->ext_center =
239 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
240 }
241 
242 /******************/
243 /* Chip Revisions */
244 /******************/
245 
246 static void ath9k_hw_read_revisions(struct ath_hw *ah)
247 {
248 	u32 val;
249 
250 	switch (ah->hw_version.devid) {
251 	case AR5416_AR9100_DEVID:
252 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
253 		break;
254 	case AR9300_DEVID_AR9340:
255 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
256 		val = REG_READ(ah, AR_SREV);
257 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
258 		return;
259 	}
260 
261 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
262 
263 	if (val == 0xFF) {
264 		val = REG_READ(ah, AR_SREV);
265 		ah->hw_version.macVersion =
266 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
267 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
268 		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
269 	} else {
270 		if (!AR_SREV_9100(ah))
271 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
272 
273 		ah->hw_version.macRev = val & AR_SREV_REVISION;
274 
275 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
276 			ah->is_pciexpress = true;
277 	}
278 }
279 
280 /************************************/
281 /* HW Attach, Detach, Init Routines */
282 /************************************/
283 
284 static void ath9k_hw_disablepcie(struct ath_hw *ah)
285 {
286 	if (!AR_SREV_5416(ah))
287 		return;
288 
289 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
290 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
291 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
292 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
293 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
294 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
295 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
296 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
297 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
298 
299 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
300 }
301 
302 /* This should work for all families including legacy */
303 static bool ath9k_hw_chip_test(struct ath_hw *ah)
304 {
305 	struct ath_common *common = ath9k_hw_common(ah);
306 	u32 regAddr[2] = { AR_STA_ID0 };
307 	u32 regHold[2];
308 	static const u32 patternData[4] = {
309 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
310 	};
311 	int i, j, loop_max;
312 
313 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
314 		loop_max = 2;
315 		regAddr[1] = AR_PHY_BASE + (8 << 2);
316 	} else
317 		loop_max = 1;
318 
319 	for (i = 0; i < loop_max; i++) {
320 		u32 addr = regAddr[i];
321 		u32 wrData, rdData;
322 
323 		regHold[i] = REG_READ(ah, addr);
324 		for (j = 0; j < 0x100; j++) {
325 			wrData = (j << 16) | j;
326 			REG_WRITE(ah, addr, wrData);
327 			rdData = REG_READ(ah, addr);
328 			if (rdData != wrData) {
329 				ath_err(common,
330 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
331 					addr, wrData, rdData);
332 				return false;
333 			}
334 		}
335 		for (j = 0; j < 4; j++) {
336 			wrData = patternData[j];
337 			REG_WRITE(ah, addr, wrData);
338 			rdData = REG_READ(ah, addr);
339 			if (wrData != rdData) {
340 				ath_err(common,
341 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
342 					addr, wrData, rdData);
343 				return false;
344 			}
345 		}
346 		REG_WRITE(ah, regAddr[i], regHold[i]);
347 	}
348 	udelay(100);
349 
350 	return true;
351 }
352 
353 static void ath9k_hw_init_config(struct ath_hw *ah)
354 {
355 	int i;
356 
357 	ah->config.dma_beacon_response_time = 2;
358 	ah->config.sw_beacon_response_time = 10;
359 	ah->config.additional_swba_backoff = 0;
360 	ah->config.ack_6mb = 0x0;
361 	ah->config.cwm_ignore_extcca = 0;
362 	ah->config.pcie_powersave_enable = 0;
363 	ah->config.pcie_clock_req = 0;
364 	ah->config.pcie_waen = 0;
365 	ah->config.analog_shiftreg = 1;
366 	ah->config.enable_ani = true;
367 
368 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
369 		ah->config.spurchans[i][0] = AR_NO_SPUR;
370 		ah->config.spurchans[i][1] = AR_NO_SPUR;
371 	}
372 
373 	/* PAPRD needs some more work to be enabled */
374 	ah->config.paprd_disable = 1;
375 
376 	ah->config.rx_intr_mitigation = true;
377 	ah->config.pcieSerDesWrite = true;
378 
379 	/*
380 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
381 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
382 	 * This means we use it for all AR5416 devices, and the few
383 	 * minor PCI AR9280 devices out there.
384 	 *
385 	 * Serialization is required because these devices do not handle
386 	 * well the case of two concurrent reads/writes due to the latency
387 	 * involved. During one read/write another read/write can be issued
388 	 * on another CPU while the previous read/write may still be working
389 	 * on our hardware, if we hit this case the hardware poops in a loop.
390 	 * We prevent this by serializing reads and writes.
391 	 *
392 	 * This issue is not present on PCI-Express devices or pre-AR5416
393 	 * devices (legacy, 802.11abg).
394 	 */
395 	if (num_possible_cpus() > 1)
396 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
397 }
398 
399 static void ath9k_hw_init_defaults(struct ath_hw *ah)
400 {
401 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
402 
403 	regulatory->country_code = CTRY_DEFAULT;
404 	regulatory->power_limit = MAX_RATE_POWER;
405 	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
406 
407 	ah->hw_version.magic = AR5416_MAGIC;
408 	ah->hw_version.subvendorid = 0;
409 
410 	ah->atim_window = 0;
411 	ah->sta_id1_defaults =
412 		AR_STA_ID1_CRPT_MIC_ENABLE |
413 		AR_STA_ID1_MCAST_KSRCH;
414 	if (AR_SREV_9100(ah))
415 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
416 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
417 	ah->slottime = 20;
418 	ah->globaltxtimeout = (u32) -1;
419 	ah->power_mode = ATH9K_PM_UNDEFINED;
420 }
421 
422 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
423 {
424 	struct ath_common *common = ath9k_hw_common(ah);
425 	u32 sum;
426 	int i;
427 	u16 eeval;
428 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
429 
430 	sum = 0;
431 	for (i = 0; i < 3; i++) {
432 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
433 		sum += eeval;
434 		common->macaddr[2 * i] = eeval >> 8;
435 		common->macaddr[2 * i + 1] = eeval & 0xff;
436 	}
437 	if (sum == 0 || sum == 0xffff * 3)
438 		return -EADDRNOTAVAIL;
439 
440 	return 0;
441 }
442 
443 static int ath9k_hw_post_init(struct ath_hw *ah)
444 {
445 	struct ath_common *common = ath9k_hw_common(ah);
446 	int ecode;
447 
448 	if (common->bus_ops->ath_bus_type != ATH_USB) {
449 		if (!ath9k_hw_chip_test(ah))
450 			return -ENODEV;
451 	}
452 
453 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
454 		ecode = ar9002_hw_rf_claim(ah);
455 		if (ecode != 0)
456 			return ecode;
457 	}
458 
459 	ecode = ath9k_hw_eeprom_init(ah);
460 	if (ecode != 0)
461 		return ecode;
462 
463 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
464 		"Eeprom VER: %d, REV: %d\n",
465 		ah->eep_ops->get_eeprom_ver(ah),
466 		ah->eep_ops->get_eeprom_rev(ah));
467 
468 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
469 	if (ecode) {
470 		ath_err(ath9k_hw_common(ah),
471 			"Failed allocating banks for external radio\n");
472 		ath9k_hw_rf_free_ext_banks(ah);
473 		return ecode;
474 	}
475 
476 	if (!AR_SREV_9100(ah) && !AR_SREV_9340(ah)) {
477 		ath9k_hw_ani_setup(ah);
478 		ath9k_hw_ani_init(ah);
479 	}
480 
481 	return 0;
482 }
483 
484 static void ath9k_hw_attach_ops(struct ath_hw *ah)
485 {
486 	if (AR_SREV_9300_20_OR_LATER(ah))
487 		ar9003_hw_attach_ops(ah);
488 	else
489 		ar9002_hw_attach_ops(ah);
490 }
491 
492 /* Called for all hardware families */
493 static int __ath9k_hw_init(struct ath_hw *ah)
494 {
495 	struct ath_common *common = ath9k_hw_common(ah);
496 	int r = 0;
497 
498 	ath9k_hw_read_revisions(ah);
499 
500 	/*
501 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
502 	 * We need to do this to avoid RMW of this register. We cannot
503 	 * read the reg when chip is asleep.
504 	 */
505 	ah->WARegVal = REG_READ(ah, AR_WA);
506 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
507 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
508 
509 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
510 		ath_err(common, "Couldn't reset chip\n");
511 		return -EIO;
512 	}
513 
514 	ath9k_hw_init_defaults(ah);
515 	ath9k_hw_init_config(ah);
516 
517 	ath9k_hw_attach_ops(ah);
518 
519 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
520 		ath_err(common, "Couldn't wakeup chip\n");
521 		return -EIO;
522 	}
523 
524 	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
525 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
526 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
527 		     !ah->is_pciexpress)) {
528 			ah->config.serialize_regmode =
529 				SER_REG_MODE_ON;
530 		} else {
531 			ah->config.serialize_regmode =
532 				SER_REG_MODE_OFF;
533 		}
534 	}
535 
536 	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
537 		ah->config.serialize_regmode);
538 
539 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
540 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
541 	else
542 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
543 
544 	switch (ah->hw_version.macVersion) {
545 	case AR_SREV_VERSION_5416_PCI:
546 	case AR_SREV_VERSION_5416_PCIE:
547 	case AR_SREV_VERSION_9160:
548 	case AR_SREV_VERSION_9100:
549 	case AR_SREV_VERSION_9280:
550 	case AR_SREV_VERSION_9285:
551 	case AR_SREV_VERSION_9287:
552 	case AR_SREV_VERSION_9271:
553 	case AR_SREV_VERSION_9300:
554 	case AR_SREV_VERSION_9485:
555 	case AR_SREV_VERSION_9340:
556 		break;
557 	default:
558 		ath_err(common,
559 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
560 			ah->hw_version.macVersion, ah->hw_version.macRev);
561 		return -EOPNOTSUPP;
562 	}
563 
564 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah))
565 		ah->is_pciexpress = false;
566 
567 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
568 	ath9k_hw_init_cal_settings(ah);
569 
570 	ah->ani_function = ATH9K_ANI_ALL;
571 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
572 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
573 	if (!AR_SREV_9300_20_OR_LATER(ah))
574 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
575 
576 	ath9k_hw_init_mode_regs(ah);
577 
578 
579 	if (ah->is_pciexpress)
580 		ath9k_hw_configpcipowersave(ah, 0, 0);
581 	else
582 		ath9k_hw_disablepcie(ah);
583 
584 	if (!AR_SREV_9300_20_OR_LATER(ah))
585 		ar9002_hw_cck_chan14_spread(ah);
586 
587 	r = ath9k_hw_post_init(ah);
588 	if (r)
589 		return r;
590 
591 	ath9k_hw_init_mode_gain_regs(ah);
592 	r = ath9k_hw_fill_cap_info(ah);
593 	if (r)
594 		return r;
595 
596 	r = ath9k_hw_init_macaddr(ah);
597 	if (r) {
598 		ath_err(common, "Failed to initialize MAC address\n");
599 		return r;
600 	}
601 
602 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
603 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
604 	else
605 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
606 
607 	ah->bb_watchdog_timeout_ms = 25;
608 
609 	common->state = ATH_HW_INITIALIZED;
610 
611 	return 0;
612 }
613 
614 int ath9k_hw_init(struct ath_hw *ah)
615 {
616 	int ret;
617 	struct ath_common *common = ath9k_hw_common(ah);
618 
619 	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
620 	switch (ah->hw_version.devid) {
621 	case AR5416_DEVID_PCI:
622 	case AR5416_DEVID_PCIE:
623 	case AR5416_AR9100_DEVID:
624 	case AR9160_DEVID_PCI:
625 	case AR9280_DEVID_PCI:
626 	case AR9280_DEVID_PCIE:
627 	case AR9285_DEVID_PCIE:
628 	case AR9287_DEVID_PCI:
629 	case AR9287_DEVID_PCIE:
630 	case AR2427_DEVID_PCIE:
631 	case AR9300_DEVID_PCIE:
632 	case AR9300_DEVID_AR9485_PCIE:
633 	case AR9300_DEVID_AR9340:
634 		break;
635 	default:
636 		if (common->bus_ops->ath_bus_type == ATH_USB)
637 			break;
638 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
639 			ah->hw_version.devid);
640 		return -EOPNOTSUPP;
641 	}
642 
643 	ret = __ath9k_hw_init(ah);
644 	if (ret) {
645 		ath_err(common,
646 			"Unable to initialize hardware; initialization status: %d\n",
647 			ret);
648 		return ret;
649 	}
650 
651 	return 0;
652 }
653 EXPORT_SYMBOL(ath9k_hw_init);
654 
655 static void ath9k_hw_init_qos(struct ath_hw *ah)
656 {
657 	ENABLE_REGWRITE_BUFFER(ah);
658 
659 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
660 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
661 
662 	REG_WRITE(ah, AR_QOS_NO_ACK,
663 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
664 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
665 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
666 
667 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
668 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
669 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
670 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
671 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
672 
673 	REGWRITE_BUFFER_FLUSH(ah);
674 }
675 
676 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
677 {
678 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
679 	udelay(100);
680 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
681 
682 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0)
683 		udelay(100);
684 
685 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
686 }
687 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
688 
689 static void ath9k_hw_init_pll(struct ath_hw *ah,
690 			      struct ath9k_channel *chan)
691 {
692 	u32 pll;
693 
694 	if (AR_SREV_9485(ah)) {
695 
696 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
697 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
698 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
699 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
700 			      AR_CH0_DPLL2_KD, 0x40);
701 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
702 			      AR_CH0_DPLL2_KI, 0x4);
703 
704 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
705 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
706 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
707 			      AR_CH0_BB_DPLL1_NINI, 0x58);
708 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
709 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
710 
711 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
712 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
713 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
714 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
715 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
716 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
717 
718 		/* program BB PLL phase_shift to 0x6 */
719 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
720 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
721 
722 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
723 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
724 		udelay(1000);
725 	} else if (AR_SREV_9340(ah)) {
726 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
727 
728 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
729 		udelay(1000);
730 
731 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
732 		udelay(100);
733 
734 		if (ah->is_clk_25mhz) {
735 			pll2_divint = 0x54;
736 			pll2_divfrac = 0x1eb85;
737 			refdiv = 3;
738 		} else {
739 			pll2_divint = 88;
740 			pll2_divfrac = 0;
741 			refdiv = 5;
742 		}
743 
744 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
745 		regval |= (0x1 << 16);
746 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
747 		udelay(100);
748 
749 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
750 			  (pll2_divint << 18) | pll2_divfrac);
751 		udelay(100);
752 
753 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
754 		regval = (regval & 0x80071fff) | (0x1 << 30) | (0x1 << 13) |
755 			 (0x4 << 26) | (0x18 << 19);
756 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
757 		REG_WRITE(ah, AR_PHY_PLL_MODE,
758 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
759 		udelay(1000);
760 	}
761 
762 	pll = ath9k_hw_compute_pll_control(ah, chan);
763 
764 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
765 
766 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah))
767 		udelay(1000);
768 
769 	/* Switch the core clock for ar9271 to 117Mhz */
770 	if (AR_SREV_9271(ah)) {
771 		udelay(500);
772 		REG_WRITE(ah, 0x50040, 0x304);
773 	}
774 
775 	udelay(RTC_PLL_SETTLE_DELAY);
776 
777 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
778 
779 	if (AR_SREV_9340(ah)) {
780 		if (ah->is_clk_25mhz) {
781 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
782 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
783 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
784 		} else {
785 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
786 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
787 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
788 		}
789 		udelay(100);
790 	}
791 }
792 
793 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
794 					  enum nl80211_iftype opmode)
795 {
796 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
797 	u32 imr_reg = AR_IMR_TXERR |
798 		AR_IMR_TXURN |
799 		AR_IMR_RXERR |
800 		AR_IMR_RXORN |
801 		AR_IMR_BCNMISC;
802 
803 	if (AR_SREV_9340(ah))
804 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
805 
806 	if (AR_SREV_9300_20_OR_LATER(ah)) {
807 		imr_reg |= AR_IMR_RXOK_HP;
808 		if (ah->config.rx_intr_mitigation)
809 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
810 		else
811 			imr_reg |= AR_IMR_RXOK_LP;
812 
813 	} else {
814 		if (ah->config.rx_intr_mitigation)
815 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
816 		else
817 			imr_reg |= AR_IMR_RXOK;
818 	}
819 
820 	if (ah->config.tx_intr_mitigation)
821 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
822 	else
823 		imr_reg |= AR_IMR_TXOK;
824 
825 	if (opmode == NL80211_IFTYPE_AP)
826 		imr_reg |= AR_IMR_MIB;
827 
828 	ENABLE_REGWRITE_BUFFER(ah);
829 
830 	REG_WRITE(ah, AR_IMR, imr_reg);
831 	ah->imrs2_reg |= AR_IMR_S2_GTT;
832 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
833 
834 	if (!AR_SREV_9100(ah)) {
835 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
836 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
837 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
838 	}
839 
840 	REGWRITE_BUFFER_FLUSH(ah);
841 
842 	if (AR_SREV_9300_20_OR_LATER(ah)) {
843 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
844 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
845 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
846 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
847 	}
848 }
849 
850 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
851 {
852 	u32 val = ath9k_hw_mac_to_clks(ah, us);
853 	val = min(val, (u32) 0xFFFF);
854 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
855 }
856 
857 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
858 {
859 	u32 val = ath9k_hw_mac_to_clks(ah, us);
860 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
861 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
862 }
863 
864 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
865 {
866 	u32 val = ath9k_hw_mac_to_clks(ah, us);
867 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
868 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
869 }
870 
871 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
872 {
873 	if (tu > 0xFFFF) {
874 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
875 			"bad global tx timeout %u\n", tu);
876 		ah->globaltxtimeout = (u32) -1;
877 		return false;
878 	} else {
879 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
880 		ah->globaltxtimeout = tu;
881 		return true;
882 	}
883 }
884 
885 void ath9k_hw_init_global_settings(struct ath_hw *ah)
886 {
887 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
888 	int acktimeout;
889 	int slottime;
890 	int sifstime;
891 
892 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
893 		ah->misc_mode);
894 
895 	if (ah->misc_mode != 0)
896 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
897 
898 	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
899 		sifstime = 16;
900 	else
901 		sifstime = 10;
902 
903 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
904 	slottime = ah->slottime + 3 * ah->coverage_class;
905 	acktimeout = slottime + sifstime;
906 
907 	/*
908 	 * Workaround for early ACK timeouts, add an offset to match the
909 	 * initval's 64us ack timeout value.
910 	 * This was initially only meant to work around an issue with delayed
911 	 * BA frames in some implementations, but it has been found to fix ACK
912 	 * timeout issues in other cases as well.
913 	 */
914 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
915 		acktimeout += 64 - sifstime - ah->slottime;
916 
917 	ath9k_hw_setslottime(ah, ah->slottime);
918 	ath9k_hw_set_ack_timeout(ah, acktimeout);
919 	ath9k_hw_set_cts_timeout(ah, acktimeout);
920 	if (ah->globaltxtimeout != (u32) -1)
921 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
922 }
923 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
924 
925 void ath9k_hw_deinit(struct ath_hw *ah)
926 {
927 	struct ath_common *common = ath9k_hw_common(ah);
928 
929 	if (common->state < ATH_HW_INITIALIZED)
930 		goto free_hw;
931 
932 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
933 
934 free_hw:
935 	ath9k_hw_rf_free_ext_banks(ah);
936 }
937 EXPORT_SYMBOL(ath9k_hw_deinit);
938 
939 /*******/
940 /* INI */
941 /*******/
942 
943 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
944 {
945 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
946 
947 	if (IS_CHAN_B(chan))
948 		ctl |= CTL_11B;
949 	else if (IS_CHAN_G(chan))
950 		ctl |= CTL_11G;
951 	else
952 		ctl |= CTL_11A;
953 
954 	return ctl;
955 }
956 
957 /****************************************/
958 /* Reset and Channel Switching Routines */
959 /****************************************/
960 
961 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
962 {
963 	struct ath_common *common = ath9k_hw_common(ah);
964 
965 	ENABLE_REGWRITE_BUFFER(ah);
966 
967 	/*
968 	 * set AHB_MODE not to do cacheline prefetches
969 	*/
970 	if (!AR_SREV_9300_20_OR_LATER(ah))
971 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
972 
973 	/*
974 	 * let mac dma reads be in 128 byte chunks
975 	 */
976 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
977 
978 	REGWRITE_BUFFER_FLUSH(ah);
979 
980 	/*
981 	 * Restore TX Trigger Level to its pre-reset value.
982 	 * The initial value depends on whether aggregation is enabled, and is
983 	 * adjusted whenever underruns are detected.
984 	 */
985 	if (!AR_SREV_9300_20_OR_LATER(ah))
986 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
987 
988 	ENABLE_REGWRITE_BUFFER(ah);
989 
990 	/*
991 	 * let mac dma writes be in 128 byte chunks
992 	 */
993 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
994 
995 	/*
996 	 * Setup receive FIFO threshold to hold off TX activities
997 	 */
998 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
999 
1000 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1001 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1002 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1003 
1004 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1005 			ah->caps.rx_status_len);
1006 	}
1007 
1008 	/*
1009 	 * reduce the number of usable entries in PCU TXBUF to avoid
1010 	 * wrap around issues.
1011 	 */
1012 	if (AR_SREV_9285(ah)) {
1013 		/* For AR9285 the number of Fifos are reduced to half.
1014 		 * So set the usable tx buf size also to half to
1015 		 * avoid data/delimiter underruns
1016 		 */
1017 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1018 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1019 	} else if (!AR_SREV_9271(ah)) {
1020 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1021 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1022 	}
1023 
1024 	REGWRITE_BUFFER_FLUSH(ah);
1025 
1026 	if (AR_SREV_9300_20_OR_LATER(ah))
1027 		ath9k_hw_reset_txstatus_ring(ah);
1028 }
1029 
1030 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1031 {
1032 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1033 	u32 set = AR_STA_ID1_KSRCH_MODE;
1034 
1035 	switch (opmode) {
1036 	case NL80211_IFTYPE_ADHOC:
1037 	case NL80211_IFTYPE_MESH_POINT:
1038 		set |= AR_STA_ID1_ADHOC;
1039 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1040 		break;
1041 	case NL80211_IFTYPE_AP:
1042 		set |= AR_STA_ID1_STA_AP;
1043 		/* fall through */
1044 	case NL80211_IFTYPE_STATION:
1045 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1046 		break;
1047 	default:
1048 		if (!ah->is_monitoring)
1049 			set = 0;
1050 		break;
1051 	}
1052 	REG_RMW(ah, AR_STA_ID1, set, mask);
1053 }
1054 
1055 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1056 				   u32 *coef_mantissa, u32 *coef_exponent)
1057 {
1058 	u32 coef_exp, coef_man;
1059 
1060 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1061 		if ((coef_scaled >> coef_exp) & 0x1)
1062 			break;
1063 
1064 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1065 
1066 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1067 
1068 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1069 	*coef_exponent = coef_exp - 16;
1070 }
1071 
1072 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1073 {
1074 	u32 rst_flags;
1075 	u32 tmpReg;
1076 
1077 	if (AR_SREV_9100(ah)) {
1078 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1079 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1080 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1081 	}
1082 
1083 	ENABLE_REGWRITE_BUFFER(ah);
1084 
1085 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1086 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1087 		udelay(10);
1088 	}
1089 
1090 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1091 		  AR_RTC_FORCE_WAKE_ON_INT);
1092 
1093 	if (AR_SREV_9100(ah)) {
1094 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1095 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1096 	} else {
1097 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1098 		if (tmpReg &
1099 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1100 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1101 			u32 val;
1102 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1103 
1104 			val = AR_RC_HOSTIF;
1105 			if (!AR_SREV_9300_20_OR_LATER(ah))
1106 				val |= AR_RC_AHB;
1107 			REG_WRITE(ah, AR_RC, val);
1108 
1109 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1110 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1111 
1112 		rst_flags = AR_RTC_RC_MAC_WARM;
1113 		if (type == ATH9K_RESET_COLD)
1114 			rst_flags |= AR_RTC_RC_MAC_COLD;
1115 	}
1116 
1117 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1118 
1119 	REGWRITE_BUFFER_FLUSH(ah);
1120 
1121 	udelay(50);
1122 
1123 	REG_WRITE(ah, AR_RTC_RC, 0);
1124 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1125 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1126 			"RTC stuck in MAC reset\n");
1127 		return false;
1128 	}
1129 
1130 	if (!AR_SREV_9100(ah))
1131 		REG_WRITE(ah, AR_RC, 0);
1132 
1133 	if (AR_SREV_9100(ah))
1134 		udelay(50);
1135 
1136 	return true;
1137 }
1138 
1139 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1140 {
1141 	ENABLE_REGWRITE_BUFFER(ah);
1142 
1143 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1144 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1145 		udelay(10);
1146 	}
1147 
1148 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1149 		  AR_RTC_FORCE_WAKE_ON_INT);
1150 
1151 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1152 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1153 
1154 	REG_WRITE(ah, AR_RTC_RESET, 0);
1155 
1156 	REGWRITE_BUFFER_FLUSH(ah);
1157 
1158 	if (!AR_SREV_9300_20_OR_LATER(ah))
1159 		udelay(2);
1160 
1161 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1162 		REG_WRITE(ah, AR_RC, 0);
1163 
1164 	REG_WRITE(ah, AR_RTC_RESET, 1);
1165 
1166 	if (!ath9k_hw_wait(ah,
1167 			   AR_RTC_STATUS,
1168 			   AR_RTC_STATUS_M,
1169 			   AR_RTC_STATUS_ON,
1170 			   AH_WAIT_TIMEOUT)) {
1171 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1172 			"RTC not waking up\n");
1173 		return false;
1174 	}
1175 
1176 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1177 }
1178 
1179 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1180 {
1181 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1182 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1183 		udelay(10);
1184 	}
1185 
1186 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1187 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1188 
1189 	switch (type) {
1190 	case ATH9K_RESET_POWER_ON:
1191 		return ath9k_hw_set_reset_power_on(ah);
1192 	case ATH9K_RESET_WARM:
1193 	case ATH9K_RESET_COLD:
1194 		return ath9k_hw_set_reset(ah, type);
1195 	default:
1196 		return false;
1197 	}
1198 }
1199 
1200 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1201 				struct ath9k_channel *chan)
1202 {
1203 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1204 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1205 			return false;
1206 	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1207 		return false;
1208 
1209 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1210 		return false;
1211 
1212 	ah->chip_fullsleep = false;
1213 	ath9k_hw_init_pll(ah, chan);
1214 	ath9k_hw_set_rfmode(ah, chan);
1215 
1216 	return true;
1217 }
1218 
1219 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1220 				    struct ath9k_channel *chan)
1221 {
1222 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1223 	struct ath_common *common = ath9k_hw_common(ah);
1224 	struct ieee80211_channel *channel = chan->chan;
1225 	u32 qnum;
1226 	int r;
1227 
1228 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1229 		if (ath9k_hw_numtxpending(ah, qnum)) {
1230 			ath_dbg(common, ATH_DBG_QUEUE,
1231 				"Transmit frames pending on queue %d\n", qnum);
1232 			return false;
1233 		}
1234 	}
1235 
1236 	if (!ath9k_hw_rfbus_req(ah)) {
1237 		ath_err(common, "Could not kill baseband RX\n");
1238 		return false;
1239 	}
1240 
1241 	ath9k_hw_set_channel_regs(ah, chan);
1242 
1243 	r = ath9k_hw_rf_set_freq(ah, chan);
1244 	if (r) {
1245 		ath_err(common, "Failed to set channel\n");
1246 		return false;
1247 	}
1248 	ath9k_hw_set_clockrate(ah);
1249 
1250 	ah->eep_ops->set_txpower(ah, chan,
1251 			     ath9k_regd_get_ctl(regulatory, chan),
1252 			     channel->max_antenna_gain * 2,
1253 			     channel->max_power * 2,
1254 			     min((u32) MAX_RATE_POWER,
1255 			     (u32) regulatory->power_limit), false);
1256 
1257 	ath9k_hw_rfbus_done(ah);
1258 
1259 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1260 		ath9k_hw_set_delta_slope(ah, chan);
1261 
1262 	ath9k_hw_spur_mitigate_freq(ah, chan);
1263 
1264 	return true;
1265 }
1266 
1267 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1268 {
1269 	u32 gpio_mask = ah->gpio_mask;
1270 	int i;
1271 
1272 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1273 		if (!(gpio_mask & 1))
1274 			continue;
1275 
1276 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1277 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1278 	}
1279 }
1280 
1281 bool ath9k_hw_check_alive(struct ath_hw *ah)
1282 {
1283 	int count = 50;
1284 	u32 reg;
1285 
1286 	if (AR_SREV_9285_12_OR_LATER(ah))
1287 		return true;
1288 
1289 	do {
1290 		reg = REG_READ(ah, AR_OBS_BUS_1);
1291 
1292 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1293 			continue;
1294 
1295 		switch (reg & 0x7E000B00) {
1296 		case 0x1E000000:
1297 		case 0x52000B00:
1298 		case 0x18000B00:
1299 			continue;
1300 		default:
1301 			return true;
1302 		}
1303 	} while (count-- > 0);
1304 
1305 	return false;
1306 }
1307 EXPORT_SYMBOL(ath9k_hw_check_alive);
1308 
1309 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1310 		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1311 {
1312 	struct ath_common *common = ath9k_hw_common(ah);
1313 	u32 saveLedState;
1314 	struct ath9k_channel *curchan = ah->curchan;
1315 	u32 saveDefAntenna;
1316 	u32 macStaId1;
1317 	u64 tsf = 0;
1318 	int i, r;
1319 
1320 	ah->txchainmask = common->tx_chainmask;
1321 	ah->rxchainmask = common->rx_chainmask;
1322 
1323 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1324 		return -EIO;
1325 
1326 	if (curchan && !ah->chip_fullsleep)
1327 		ath9k_hw_getnf(ah, curchan);
1328 
1329 	ah->caldata = caldata;
1330 	if (caldata &&
1331 	    (chan->channel != caldata->channel ||
1332 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1333 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1334 		/* Operating channel changed, reset channel calibration data */
1335 		memset(caldata, 0, sizeof(*caldata));
1336 		ath9k_init_nfcal_hist_buffer(ah, chan);
1337 	}
1338 
1339 	if (bChannelChange &&
1340 	    (ah->chip_fullsleep != true) &&
1341 	    (ah->curchan != NULL) &&
1342 	    (chan->channel != ah->curchan->channel) &&
1343 	    ((chan->channelFlags & CHANNEL_ALL) ==
1344 	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1345 	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1346 
1347 		if (ath9k_hw_channel_change(ah, chan)) {
1348 			ath9k_hw_loadnf(ah, ah->curchan);
1349 			ath9k_hw_start_nfcal(ah, true);
1350 			if (AR_SREV_9271(ah))
1351 				ar9002_hw_load_ani_reg(ah, chan);
1352 			return 0;
1353 		}
1354 	}
1355 
1356 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1357 	if (saveDefAntenna == 0)
1358 		saveDefAntenna = 1;
1359 
1360 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1361 
1362 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1363 	if (AR_SREV_9100(ah) ||
1364 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1365 		tsf = ath9k_hw_gettsf64(ah);
1366 
1367 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1368 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1369 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1370 
1371 	ath9k_hw_mark_phy_inactive(ah);
1372 
1373 	ah->paprd_table_write_done = false;
1374 
1375 	/* Only required on the first reset */
1376 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1377 		REG_WRITE(ah,
1378 			  AR9271_RESET_POWER_DOWN_CONTROL,
1379 			  AR9271_RADIO_RF_RST);
1380 		udelay(50);
1381 	}
1382 
1383 	if (!ath9k_hw_chip_reset(ah, chan)) {
1384 		ath_err(common, "Chip reset failed\n");
1385 		return -EINVAL;
1386 	}
1387 
1388 	/* Only required on the first reset */
1389 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1390 		ah->htc_reset_init = false;
1391 		REG_WRITE(ah,
1392 			  AR9271_RESET_POWER_DOWN_CONTROL,
1393 			  AR9271_GATE_MAC_CTL);
1394 		udelay(50);
1395 	}
1396 
1397 	/* Restore TSF */
1398 	if (tsf)
1399 		ath9k_hw_settsf64(ah, tsf);
1400 
1401 	if (AR_SREV_9280_20_OR_LATER(ah))
1402 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1403 
1404 	if (!AR_SREV_9300_20_OR_LATER(ah))
1405 		ar9002_hw_enable_async_fifo(ah);
1406 
1407 	r = ath9k_hw_process_ini(ah, chan);
1408 	if (r)
1409 		return r;
1410 
1411 	/*
1412 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1413 	 * right after the chip reset. When that happens, write a new
1414 	 * value after the initvals have been applied, with an offset
1415 	 * based on measured time difference
1416 	 */
1417 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1418 		tsf += 1500;
1419 		ath9k_hw_settsf64(ah, tsf);
1420 	}
1421 
1422 	/* Setup MFP options for CCMP */
1423 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1424 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1425 		 * frames when constructing CCMP AAD. */
1426 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1427 			      0xc7ff);
1428 		ah->sw_mgmt_crypto = false;
1429 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1430 		/* Disable hardware crypto for management frames */
1431 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1432 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1433 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1434 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1435 		ah->sw_mgmt_crypto = true;
1436 	} else
1437 		ah->sw_mgmt_crypto = true;
1438 
1439 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1440 		ath9k_hw_set_delta_slope(ah, chan);
1441 
1442 	ath9k_hw_spur_mitigate_freq(ah, chan);
1443 	ah->eep_ops->set_board_values(ah, chan);
1444 
1445 	ENABLE_REGWRITE_BUFFER(ah);
1446 
1447 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1448 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1449 		  | macStaId1
1450 		  | AR_STA_ID1_RTS_USE_DEF
1451 		  | (ah->config.
1452 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1453 		  | ah->sta_id1_defaults);
1454 	ath_hw_setbssidmask(common);
1455 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1456 	ath9k_hw_write_associd(ah);
1457 	REG_WRITE(ah, AR_ISR, ~0);
1458 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1459 
1460 	REGWRITE_BUFFER_FLUSH(ah);
1461 
1462 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1463 
1464 	r = ath9k_hw_rf_set_freq(ah, chan);
1465 	if (r)
1466 		return r;
1467 
1468 	ath9k_hw_set_clockrate(ah);
1469 
1470 	ENABLE_REGWRITE_BUFFER(ah);
1471 
1472 	for (i = 0; i < AR_NUM_DCU; i++)
1473 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1474 
1475 	REGWRITE_BUFFER_FLUSH(ah);
1476 
1477 	ah->intr_txqs = 0;
1478 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1479 		ath9k_hw_resettxqueue(ah, i);
1480 
1481 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1482 	ath9k_hw_ani_cache_ini_regs(ah);
1483 	ath9k_hw_init_qos(ah);
1484 
1485 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1486 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1487 
1488 	ath9k_hw_init_global_settings(ah);
1489 
1490 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1491 		ar9002_hw_update_async_fifo(ah);
1492 		ar9002_hw_enable_wep_aggregation(ah);
1493 	}
1494 
1495 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1496 
1497 	ath9k_hw_set_dma(ah);
1498 
1499 	REG_WRITE(ah, AR_OBS, 8);
1500 
1501 	if (ah->config.rx_intr_mitigation) {
1502 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1503 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1504 	}
1505 
1506 	if (ah->config.tx_intr_mitigation) {
1507 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1508 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1509 	}
1510 
1511 	ath9k_hw_init_bb(ah, chan);
1512 
1513 	if (!ath9k_hw_init_cal(ah, chan))
1514 		return -EIO;
1515 
1516 	ENABLE_REGWRITE_BUFFER(ah);
1517 
1518 	ath9k_hw_restore_chainmask(ah);
1519 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1520 
1521 	REGWRITE_BUFFER_FLUSH(ah);
1522 
1523 	/*
1524 	 * For big endian systems turn on swapping for descriptors
1525 	 */
1526 	if (AR_SREV_9100(ah)) {
1527 		u32 mask;
1528 		mask = REG_READ(ah, AR_CFG);
1529 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1530 			ath_dbg(common, ATH_DBG_RESET,
1531 				"CFG Byte Swap Set 0x%x\n", mask);
1532 		} else {
1533 			mask =
1534 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1535 			REG_WRITE(ah, AR_CFG, mask);
1536 			ath_dbg(common, ATH_DBG_RESET,
1537 				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1538 		}
1539 	} else {
1540 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1541 			/* Configure AR9271 target WLAN */
1542 			if (AR_SREV_9271(ah))
1543 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1544 			else
1545 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1546 		}
1547 #ifdef __BIG_ENDIAN
1548 		else if (AR_SREV_9340(ah))
1549 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1550 		else
1551 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1552 #endif
1553 	}
1554 
1555 	if (ah->btcoex_hw.enabled)
1556 		ath9k_hw_btcoex_enable(ah);
1557 
1558 	if (AR_SREV_9300_20_OR_LATER(ah))
1559 		ar9003_hw_bb_watchdog_config(ah);
1560 
1561 	ath9k_hw_apply_gpio_override(ah);
1562 
1563 	return 0;
1564 }
1565 EXPORT_SYMBOL(ath9k_hw_reset);
1566 
1567 /******************************/
1568 /* Power Management (Chipset) */
1569 /******************************/
1570 
1571 /*
1572  * Notify Power Mgt is disabled in self-generated frames.
1573  * If requested, force chip to sleep.
1574  */
1575 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1576 {
1577 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1578 	if (setChip) {
1579 		/*
1580 		 * Clear the RTC force wake bit to allow the
1581 		 * mac to go to sleep.
1582 		 */
1583 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1584 			    AR_RTC_FORCE_WAKE_EN);
1585 		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1586 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1587 
1588 		/* Shutdown chip. Active low */
1589 		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1590 			REG_CLR_BIT(ah, (AR_RTC_RESET),
1591 				    AR_RTC_RESET_EN);
1592 	}
1593 
1594 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1595 	if (AR_SREV_9300_20_OR_LATER(ah))
1596 		REG_WRITE(ah, AR_WA,
1597 			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1598 }
1599 
1600 /*
1601  * Notify Power Management is enabled in self-generating
1602  * frames. If request, set power mode of chip to
1603  * auto/normal.  Duration in units of 128us (1/8 TU).
1604  */
1605 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1606 {
1607 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1608 	if (setChip) {
1609 		struct ath9k_hw_capabilities *pCap = &ah->caps;
1610 
1611 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1612 			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1613 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1614 				  AR_RTC_FORCE_WAKE_ON_INT);
1615 		} else {
1616 			/*
1617 			 * Clear the RTC force wake bit to allow the
1618 			 * mac to go to sleep.
1619 			 */
1620 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1621 				    AR_RTC_FORCE_WAKE_EN);
1622 		}
1623 	}
1624 
1625 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1626 	if (AR_SREV_9300_20_OR_LATER(ah))
1627 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1628 }
1629 
1630 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1631 {
1632 	u32 val;
1633 	int i;
1634 
1635 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1636 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1637 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1638 		udelay(10);
1639 	}
1640 
1641 	if (setChip) {
1642 		if ((REG_READ(ah, AR_RTC_STATUS) &
1643 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1644 			if (ath9k_hw_set_reset_reg(ah,
1645 					   ATH9K_RESET_POWER_ON) != true) {
1646 				return false;
1647 			}
1648 			if (!AR_SREV_9300_20_OR_LATER(ah))
1649 				ath9k_hw_init_pll(ah, NULL);
1650 		}
1651 		if (AR_SREV_9100(ah))
1652 			REG_SET_BIT(ah, AR_RTC_RESET,
1653 				    AR_RTC_RESET_EN);
1654 
1655 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1656 			    AR_RTC_FORCE_WAKE_EN);
1657 		udelay(50);
1658 
1659 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1660 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1661 			if (val == AR_RTC_STATUS_ON)
1662 				break;
1663 			udelay(50);
1664 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1665 				    AR_RTC_FORCE_WAKE_EN);
1666 		}
1667 		if (i == 0) {
1668 			ath_err(ath9k_hw_common(ah),
1669 				"Failed to wakeup in %uus\n",
1670 				POWER_UP_TIME / 20);
1671 			return false;
1672 		}
1673 	}
1674 
1675 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1676 
1677 	return true;
1678 }
1679 
1680 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1681 {
1682 	struct ath_common *common = ath9k_hw_common(ah);
1683 	int status = true, setChip = true;
1684 	static const char *modes[] = {
1685 		"AWAKE",
1686 		"FULL-SLEEP",
1687 		"NETWORK SLEEP",
1688 		"UNDEFINED"
1689 	};
1690 
1691 	if (ah->power_mode == mode)
1692 		return status;
1693 
1694 	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1695 		modes[ah->power_mode], modes[mode]);
1696 
1697 	switch (mode) {
1698 	case ATH9K_PM_AWAKE:
1699 		status = ath9k_hw_set_power_awake(ah, setChip);
1700 		break;
1701 	case ATH9K_PM_FULL_SLEEP:
1702 		ath9k_set_power_sleep(ah, setChip);
1703 		ah->chip_fullsleep = true;
1704 		break;
1705 	case ATH9K_PM_NETWORK_SLEEP:
1706 		ath9k_set_power_network_sleep(ah, setChip);
1707 		break;
1708 	default:
1709 		ath_err(common, "Unknown power mode %u\n", mode);
1710 		return false;
1711 	}
1712 	ah->power_mode = mode;
1713 
1714 	/*
1715 	 * XXX: If this warning never comes up after a while then
1716 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1717 	 * ath9k_hw_setpower() return type void.
1718 	 */
1719 
1720 	if (!(ah->ah_flags & AH_UNPLUGGED))
1721 		ATH_DBG_WARN_ON_ONCE(!status);
1722 
1723 	return status;
1724 }
1725 EXPORT_SYMBOL(ath9k_hw_setpower);
1726 
1727 /*******************/
1728 /* Beacon Handling */
1729 /*******************/
1730 
1731 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1732 {
1733 	int flags = 0;
1734 
1735 	ENABLE_REGWRITE_BUFFER(ah);
1736 
1737 	switch (ah->opmode) {
1738 	case NL80211_IFTYPE_ADHOC:
1739 	case NL80211_IFTYPE_MESH_POINT:
1740 		REG_SET_BIT(ah, AR_TXCFG,
1741 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1742 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
1743 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
1744 		flags |= AR_NDP_TIMER_EN;
1745 	case NL80211_IFTYPE_AP:
1746 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
1747 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
1748 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
1749 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
1750 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
1751 		flags |=
1752 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1753 		break;
1754 	default:
1755 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1756 			"%s: unsupported opmode: %d\n",
1757 			__func__, ah->opmode);
1758 		return;
1759 		break;
1760 	}
1761 
1762 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
1763 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
1764 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
1765 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
1766 
1767 	REGWRITE_BUFFER_FLUSH(ah);
1768 
1769 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1770 }
1771 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1772 
1773 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1774 				    const struct ath9k_beacon_state *bs)
1775 {
1776 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1777 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1778 	struct ath_common *common = ath9k_hw_common(ah);
1779 
1780 	ENABLE_REGWRITE_BUFFER(ah);
1781 
1782 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1783 
1784 	REG_WRITE(ah, AR_BEACON_PERIOD,
1785 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1786 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1787 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1788 
1789 	REGWRITE_BUFFER_FLUSH(ah);
1790 
1791 	REG_RMW_FIELD(ah, AR_RSSI_THR,
1792 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1793 
1794 	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1795 
1796 	if (bs->bs_sleepduration > beaconintval)
1797 		beaconintval = bs->bs_sleepduration;
1798 
1799 	dtimperiod = bs->bs_dtimperiod;
1800 	if (bs->bs_sleepduration > dtimperiod)
1801 		dtimperiod = bs->bs_sleepduration;
1802 
1803 	if (beaconintval == dtimperiod)
1804 		nextTbtt = bs->bs_nextdtim;
1805 	else
1806 		nextTbtt = bs->bs_nexttbtt;
1807 
1808 	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1809 	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1810 	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1811 	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1812 
1813 	ENABLE_REGWRITE_BUFFER(ah);
1814 
1815 	REG_WRITE(ah, AR_NEXT_DTIM,
1816 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1817 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1818 
1819 	REG_WRITE(ah, AR_SLEEP1,
1820 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1821 		  | AR_SLEEP1_ASSUME_DTIM);
1822 
1823 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1824 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1825 	else
1826 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1827 
1828 	REG_WRITE(ah, AR_SLEEP2,
1829 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1830 
1831 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1832 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1833 
1834 	REGWRITE_BUFFER_FLUSH(ah);
1835 
1836 	REG_SET_BIT(ah, AR_TIMER_MODE,
1837 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1838 		    AR_DTIM_TIMER_EN);
1839 
1840 	/* TSF Out of Range Threshold */
1841 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1842 }
1843 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1844 
1845 /*******************/
1846 /* HW Capabilities */
1847 /*******************/
1848 
1849 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1850 {
1851 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1852 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1853 	struct ath_common *common = ath9k_hw_common(ah);
1854 	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1855 
1856 	u16 eeval;
1857 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
1858 
1859 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1860 	regulatory->current_rd = eeval;
1861 
1862 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1863 	if (AR_SREV_9285_12_OR_LATER(ah))
1864 		eeval |= AR9285_RDEXT_DEFAULT;
1865 	regulatory->current_rd_ext = eeval;
1866 
1867 	if (ah->opmode != NL80211_IFTYPE_AP &&
1868 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1869 		if (regulatory->current_rd == 0x64 ||
1870 		    regulatory->current_rd == 0x65)
1871 			regulatory->current_rd += 5;
1872 		else if (regulatory->current_rd == 0x41)
1873 			regulatory->current_rd = 0x43;
1874 		ath_dbg(common, ATH_DBG_REGULATORY,
1875 			"regdomain mapped to 0x%x\n", regulatory->current_rd);
1876 	}
1877 
1878 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1879 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1880 		ath_err(common,
1881 			"no band has been marked as supported in EEPROM\n");
1882 		return -EINVAL;
1883 	}
1884 
1885 	if (eeval & AR5416_OPFLAGS_11A)
1886 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1887 
1888 	if (eeval & AR5416_OPFLAGS_11G)
1889 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1890 
1891 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1892 	/*
1893 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
1894 	 * the EEPROM.
1895 	 */
1896 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1897 	    !(eeval & AR5416_OPFLAGS_11A) &&
1898 	    !(AR_SREV_9271(ah)))
1899 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1900 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1901 	else if (AR_SREV_9100(ah))
1902 		pCap->rx_chainmask = 0x7;
1903 	else
1904 		/* Use rx_chainmask from EEPROM. */
1905 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1906 
1907 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1908 
1909 	/* enable key search for every frame in an aggregate */
1910 	if (AR_SREV_9300_20_OR_LATER(ah))
1911 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
1912 
1913 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1914 
1915 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
1916 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
1917 	else
1918 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1919 
1920 	if (AR_SREV_9271(ah))
1921 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
1922 	else if (AR_DEVID_7010(ah))
1923 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
1924 	else if (AR_SREV_9285_12_OR_LATER(ah))
1925 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
1926 	else if (AR_SREV_9280_20_OR_LATER(ah))
1927 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
1928 	else
1929 		pCap->num_gpio_pins = AR_NUM_GPIO;
1930 
1931 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1932 		pCap->hw_caps |= ATH9K_HW_CAP_CST;
1933 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1934 	} else {
1935 		pCap->rts_aggr_limit = (8 * 1024);
1936 	}
1937 
1938 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1939 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1940 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1941 		ah->rfkill_gpio =
1942 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1943 		ah->rfkill_polarity =
1944 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1945 
1946 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1947 	}
1948 #endif
1949 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1950 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1951 	else
1952 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1953 
1954 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1955 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1956 	else
1957 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1958 
1959 	if (common->btcoex_enabled) {
1960 		if (AR_SREV_9300_20_OR_LATER(ah)) {
1961 			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1962 			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9300;
1963 			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9300;
1964 			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO_9300;
1965 		} else if (AR_SREV_9280_20_OR_LATER(ah)) {
1966 			btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO_9280;
1967 			btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO_9280;
1968 
1969 			if (AR_SREV_9285(ah)) {
1970 				btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1971 				btcoex_hw->btpriority_gpio =
1972 						ATH_BTPRIORITY_GPIO_9285;
1973 			} else {
1974 				btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1975 			}
1976 		}
1977 	} else {
1978 		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1979 	}
1980 
1981 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1982 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
1983 		if (!AR_SREV_9485(ah))
1984 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
1985 
1986 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1987 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1988 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
1989 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
1990 		pCap->txs_len = sizeof(struct ar9003_txs);
1991 		if (!ah->config.paprd_disable &&
1992 		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1993 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1994 	} else {
1995 		pCap->tx_desc_len = sizeof(struct ath_desc);
1996 		if (AR_SREV_9280_20(ah) &&
1997 		    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1998 		      AR5416_EEP_MINOR_VER_16) ||
1999 		     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
2000 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2001 	}
2002 
2003 	if (AR_SREV_9300_20_OR_LATER(ah))
2004 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2005 
2006 	if (AR_SREV_9300_20_OR_LATER(ah))
2007 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2008 
2009 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2010 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2011 
2012 	if (AR_SREV_9285(ah))
2013 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2014 			ant_div_ctl1 =
2015 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2016 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
2017 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2018 		}
2019 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2020 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2021 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2022 	}
2023 
2024 
2025 	if (AR_SREV_9485(ah)) {
2026 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2027 		/*
2028 		 * enable the diversity-combining algorithm only when
2029 		 * both enable_lna_div and enable_fast_div are set
2030 		 *		Table for Diversity
2031 		 * ant_div_alt_lnaconf		bit 0-1
2032 		 * ant_div_main_lnaconf		bit 2-3
2033 		 * ant_div_alt_gaintb		bit 4
2034 		 * ant_div_main_gaintb		bit 5
2035 		 * enable_ant_div_lnadiv	bit 6
2036 		 * enable_ant_fast_div		bit 7
2037 		 */
2038 		if ((ant_div_ctl1 >> 0x6) == 0x3)
2039 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2040 	}
2041 
2042 	if (AR_SREV_9485_10(ah)) {
2043 		pCap->pcie_lcr_extsync_en = true;
2044 		pCap->pcie_lcr_offset = 0x80;
2045 	}
2046 
2047 	tx_chainmask = pCap->tx_chainmask;
2048 	rx_chainmask = pCap->rx_chainmask;
2049 	while (tx_chainmask || rx_chainmask) {
2050 		if (tx_chainmask & BIT(0))
2051 			pCap->max_txchains++;
2052 		if (rx_chainmask & BIT(0))
2053 			pCap->max_rxchains++;
2054 
2055 		tx_chainmask >>= 1;
2056 		rx_chainmask >>= 1;
2057 	}
2058 
2059 	return 0;
2060 }
2061 
2062 /****************************/
2063 /* GPIO / RFKILL / Antennae */
2064 /****************************/
2065 
2066 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2067 					 u32 gpio, u32 type)
2068 {
2069 	int addr;
2070 	u32 gpio_shift, tmp;
2071 
2072 	if (gpio > 11)
2073 		addr = AR_GPIO_OUTPUT_MUX3;
2074 	else if (gpio > 5)
2075 		addr = AR_GPIO_OUTPUT_MUX2;
2076 	else
2077 		addr = AR_GPIO_OUTPUT_MUX1;
2078 
2079 	gpio_shift = (gpio % 6) * 5;
2080 
2081 	if (AR_SREV_9280_20_OR_LATER(ah)
2082 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2083 		REG_RMW(ah, addr, (type << gpio_shift),
2084 			(0x1f << gpio_shift));
2085 	} else {
2086 		tmp = REG_READ(ah, addr);
2087 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2088 		tmp &= ~(0x1f << gpio_shift);
2089 		tmp |= (type << gpio_shift);
2090 		REG_WRITE(ah, addr, tmp);
2091 	}
2092 }
2093 
2094 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2095 {
2096 	u32 gpio_shift;
2097 
2098 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2099 
2100 	if (AR_DEVID_7010(ah)) {
2101 		gpio_shift = gpio;
2102 		REG_RMW(ah, AR7010_GPIO_OE,
2103 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2104 			(AR7010_GPIO_OE_MASK << gpio_shift));
2105 		return;
2106 	}
2107 
2108 	gpio_shift = gpio << 1;
2109 	REG_RMW(ah,
2110 		AR_GPIO_OE_OUT,
2111 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2112 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2113 }
2114 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2115 
2116 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2117 {
2118 #define MS_REG_READ(x, y) \
2119 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2120 
2121 	if (gpio >= ah->caps.num_gpio_pins)
2122 		return 0xffffffff;
2123 
2124 	if (AR_DEVID_7010(ah)) {
2125 		u32 val;
2126 		val = REG_READ(ah, AR7010_GPIO_IN);
2127 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2128 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2129 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2130 			AR_GPIO_BIT(gpio)) != 0;
2131 	else if (AR_SREV_9271(ah))
2132 		return MS_REG_READ(AR9271, gpio) != 0;
2133 	else if (AR_SREV_9287_11_OR_LATER(ah))
2134 		return MS_REG_READ(AR9287, gpio) != 0;
2135 	else if (AR_SREV_9285_12_OR_LATER(ah))
2136 		return MS_REG_READ(AR9285, gpio) != 0;
2137 	else if (AR_SREV_9280_20_OR_LATER(ah))
2138 		return MS_REG_READ(AR928X, gpio) != 0;
2139 	else
2140 		return MS_REG_READ(AR, gpio) != 0;
2141 }
2142 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2143 
2144 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2145 			 u32 ah_signal_type)
2146 {
2147 	u32 gpio_shift;
2148 
2149 	if (AR_DEVID_7010(ah)) {
2150 		gpio_shift = gpio;
2151 		REG_RMW(ah, AR7010_GPIO_OE,
2152 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2153 			(AR7010_GPIO_OE_MASK << gpio_shift));
2154 		return;
2155 	}
2156 
2157 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2158 	gpio_shift = 2 * gpio;
2159 	REG_RMW(ah,
2160 		AR_GPIO_OE_OUT,
2161 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2162 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2163 }
2164 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2165 
2166 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2167 {
2168 	if (AR_DEVID_7010(ah)) {
2169 		val = val ? 0 : 1;
2170 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2171 			AR_GPIO_BIT(gpio));
2172 		return;
2173 	}
2174 
2175 	if (AR_SREV_9271(ah))
2176 		val = ~val;
2177 
2178 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2179 		AR_GPIO_BIT(gpio));
2180 }
2181 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2182 
2183 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2184 {
2185 	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2186 }
2187 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2188 
2189 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2190 {
2191 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2192 }
2193 EXPORT_SYMBOL(ath9k_hw_setantenna);
2194 
2195 /*********************/
2196 /* General Operation */
2197 /*********************/
2198 
2199 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2200 {
2201 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2202 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2203 
2204 	if (phybits & AR_PHY_ERR_RADAR)
2205 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2206 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2207 		bits |= ATH9K_RX_FILTER_PHYERR;
2208 
2209 	return bits;
2210 }
2211 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2212 
2213 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2214 {
2215 	u32 phybits;
2216 
2217 	ENABLE_REGWRITE_BUFFER(ah);
2218 
2219 	REG_WRITE(ah, AR_RX_FILTER, bits);
2220 
2221 	phybits = 0;
2222 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2223 		phybits |= AR_PHY_ERR_RADAR;
2224 	if (bits & ATH9K_RX_FILTER_PHYERR)
2225 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2226 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2227 
2228 	if (phybits)
2229 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2230 	else
2231 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2232 
2233 	REGWRITE_BUFFER_FLUSH(ah);
2234 }
2235 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2236 
2237 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2238 {
2239 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2240 		return false;
2241 
2242 	ath9k_hw_init_pll(ah, NULL);
2243 	return true;
2244 }
2245 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2246 
2247 bool ath9k_hw_disable(struct ath_hw *ah)
2248 {
2249 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2250 		return false;
2251 
2252 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2253 		return false;
2254 
2255 	ath9k_hw_init_pll(ah, NULL);
2256 	return true;
2257 }
2258 EXPORT_SYMBOL(ath9k_hw_disable);
2259 
2260 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2261 {
2262 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2263 	struct ath9k_channel *chan = ah->curchan;
2264 	struct ieee80211_channel *channel = chan->chan;
2265 
2266 	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2267 
2268 	ah->eep_ops->set_txpower(ah, chan,
2269 				 ath9k_regd_get_ctl(regulatory, chan),
2270 				 channel->max_antenna_gain * 2,
2271 				 channel->max_power * 2,
2272 				 min((u32) MAX_RATE_POWER,
2273 				 (u32) regulatory->power_limit), test);
2274 }
2275 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2276 
2277 void ath9k_hw_setopmode(struct ath_hw *ah)
2278 {
2279 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2280 }
2281 EXPORT_SYMBOL(ath9k_hw_setopmode);
2282 
2283 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2284 {
2285 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2286 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2287 }
2288 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2289 
2290 void ath9k_hw_write_associd(struct ath_hw *ah)
2291 {
2292 	struct ath_common *common = ath9k_hw_common(ah);
2293 
2294 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2295 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2296 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2297 }
2298 EXPORT_SYMBOL(ath9k_hw_write_associd);
2299 
2300 #define ATH9K_MAX_TSF_READ 10
2301 
2302 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2303 {
2304 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2305 	int i;
2306 
2307 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2308 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2309 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2310 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2311 		if (tsf_upper2 == tsf_upper1)
2312 			break;
2313 		tsf_upper1 = tsf_upper2;
2314 	}
2315 
2316 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2317 
2318 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2319 }
2320 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2321 
2322 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2323 {
2324 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2325 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2326 }
2327 EXPORT_SYMBOL(ath9k_hw_settsf64);
2328 
2329 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2330 {
2331 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2332 			   AH_TSF_WRITE_TIMEOUT))
2333 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2334 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2335 
2336 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2337 }
2338 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2339 
2340 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2341 {
2342 	if (setting)
2343 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2344 	else
2345 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2346 }
2347 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2348 
2349 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2350 {
2351 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2352 	u32 macmode;
2353 
2354 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2355 		macmode = AR_2040_JOINED_RX_CLEAR;
2356 	else
2357 		macmode = 0;
2358 
2359 	REG_WRITE(ah, AR_2040_MODE, macmode);
2360 }
2361 
2362 /* HW Generic timers configuration */
2363 
2364 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2365 {
2366 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2367 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2368 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2369 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2370 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2371 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2372 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2373 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2374 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2375 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2376 				AR_NDP2_TIMER_MODE, 0x0002},
2377 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2378 				AR_NDP2_TIMER_MODE, 0x0004},
2379 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2380 				AR_NDP2_TIMER_MODE, 0x0008},
2381 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2382 				AR_NDP2_TIMER_MODE, 0x0010},
2383 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2384 				AR_NDP2_TIMER_MODE, 0x0020},
2385 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2386 				AR_NDP2_TIMER_MODE, 0x0040},
2387 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2388 				AR_NDP2_TIMER_MODE, 0x0080}
2389 };
2390 
2391 /* HW generic timer primitives */
2392 
2393 /* compute and clear index of rightmost 1 */
2394 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2395 {
2396 	u32 b;
2397 
2398 	b = *mask;
2399 	b &= (0-b);
2400 	*mask &= ~b;
2401 	b *= debruijn32;
2402 	b >>= 27;
2403 
2404 	return timer_table->gen_timer_index[b];
2405 }
2406 
2407 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2408 {
2409 	return REG_READ(ah, AR_TSF_L32);
2410 }
2411 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2412 
2413 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2414 					  void (*trigger)(void *),
2415 					  void (*overflow)(void *),
2416 					  void *arg,
2417 					  u8 timer_index)
2418 {
2419 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2420 	struct ath_gen_timer *timer;
2421 
2422 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2423 
2424 	if (timer == NULL) {
2425 		ath_err(ath9k_hw_common(ah),
2426 			"Failed to allocate memory for hw timer[%d]\n",
2427 			timer_index);
2428 		return NULL;
2429 	}
2430 
2431 	/* allocate a hardware generic timer slot */
2432 	timer_table->timers[timer_index] = timer;
2433 	timer->index = timer_index;
2434 	timer->trigger = trigger;
2435 	timer->overflow = overflow;
2436 	timer->arg = arg;
2437 
2438 	return timer;
2439 }
2440 EXPORT_SYMBOL(ath_gen_timer_alloc);
2441 
2442 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2443 			      struct ath_gen_timer *timer,
2444 			      u32 trig_timeout,
2445 			      u32 timer_period)
2446 {
2447 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2448 	u32 tsf, timer_next;
2449 
2450 	BUG_ON(!timer_period);
2451 
2452 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2453 
2454 	tsf = ath9k_hw_gettsf32(ah);
2455 
2456 	timer_next = tsf + trig_timeout;
2457 
2458 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2459 		"current tsf %x period %x timer_next %x\n",
2460 		tsf, timer_period, timer_next);
2461 
2462 	/*
2463 	 * Program generic timer registers
2464 	 */
2465 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2466 		 timer_next);
2467 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2468 		  timer_period);
2469 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2470 		    gen_tmr_configuration[timer->index].mode_mask);
2471 
2472 	/* Enable both trigger and thresh interrupt masks */
2473 	REG_SET_BIT(ah, AR_IMR_S5,
2474 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2475 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2476 }
2477 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2478 
2479 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2480 {
2481 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2482 
2483 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2484 		(timer->index >= ATH_MAX_GEN_TIMER)) {
2485 		return;
2486 	}
2487 
2488 	/* Clear generic timer enable bits. */
2489 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2490 			gen_tmr_configuration[timer->index].mode_mask);
2491 
2492 	/* Disable both trigger and thresh interrupt masks */
2493 	REG_CLR_BIT(ah, AR_IMR_S5,
2494 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2495 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2496 
2497 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2498 }
2499 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2500 
2501 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2502 {
2503 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2504 
2505 	/* free the hardware generic timer slot */
2506 	timer_table->timers[timer->index] = NULL;
2507 	kfree(timer);
2508 }
2509 EXPORT_SYMBOL(ath_gen_timer_free);
2510 
2511 /*
2512  * Generic Timer Interrupts handling
2513  */
2514 void ath_gen_timer_isr(struct ath_hw *ah)
2515 {
2516 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2517 	struct ath_gen_timer *timer;
2518 	struct ath_common *common = ath9k_hw_common(ah);
2519 	u32 trigger_mask, thresh_mask, index;
2520 
2521 	/* get hardware generic timer interrupt status */
2522 	trigger_mask = ah->intr_gen_timer_trigger;
2523 	thresh_mask = ah->intr_gen_timer_thresh;
2524 	trigger_mask &= timer_table->timer_mask.val;
2525 	thresh_mask &= timer_table->timer_mask.val;
2526 
2527 	trigger_mask &= ~thresh_mask;
2528 
2529 	while (thresh_mask) {
2530 		index = rightmost_index(timer_table, &thresh_mask);
2531 		timer = timer_table->timers[index];
2532 		BUG_ON(!timer);
2533 		ath_dbg(common, ATH_DBG_HWTIMER,
2534 			"TSF overflow for Gen timer %d\n", index);
2535 		timer->overflow(timer->arg);
2536 	}
2537 
2538 	while (trigger_mask) {
2539 		index = rightmost_index(timer_table, &trigger_mask);
2540 		timer = timer_table->timers[index];
2541 		BUG_ON(!timer);
2542 		ath_dbg(common, ATH_DBG_HWTIMER,
2543 			"Gen timer[%d] trigger\n", index);
2544 		timer->trigger(timer->arg);
2545 	}
2546 }
2547 EXPORT_SYMBOL(ath_gen_timer_isr);
2548 
2549 /********/
2550 /* HTC  */
2551 /********/
2552 
2553 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2554 {
2555 	ah->htc_reset_init = true;
2556 }
2557 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2558 
2559 static struct {
2560 	u32 version;
2561 	const char * name;
2562 } ath_mac_bb_names[] = {
2563 	/* Devices with external radios */
2564 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2565 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2566 	{ AR_SREV_VERSION_9100,		"9100" },
2567 	{ AR_SREV_VERSION_9160,		"9160" },
2568 	/* Single-chip solutions */
2569 	{ AR_SREV_VERSION_9280,		"9280" },
2570 	{ AR_SREV_VERSION_9285,		"9285" },
2571 	{ AR_SREV_VERSION_9287,         "9287" },
2572 	{ AR_SREV_VERSION_9271,         "9271" },
2573 	{ AR_SREV_VERSION_9300,         "9300" },
2574 	{ AR_SREV_VERSION_9485,         "9485" },
2575 };
2576 
2577 /* For devices with external radios */
2578 static struct {
2579 	u16 version;
2580 	const char * name;
2581 } ath_rf_names[] = {
2582 	{ 0,				"5133" },
2583 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2584 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2585 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2586 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2587 };
2588 
2589 /*
2590  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2591  */
2592 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2593 {
2594 	int i;
2595 
2596 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2597 		if (ath_mac_bb_names[i].version == mac_bb_version) {
2598 			return ath_mac_bb_names[i].name;
2599 		}
2600 	}
2601 
2602 	return "????";
2603 }
2604 
2605 /*
2606  * Return the RF name. "????" is returned if the RF is unknown.
2607  * Used for devices with external radios.
2608  */
2609 static const char *ath9k_hw_rf_name(u16 rf_version)
2610 {
2611 	int i;
2612 
2613 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2614 		if (ath_rf_names[i].version == rf_version) {
2615 			return ath_rf_names[i].name;
2616 		}
2617 	}
2618 
2619 	return "????";
2620 }
2621 
2622 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2623 {
2624 	int used;
2625 
2626 	/* chipsets >= AR9280 are single-chip */
2627 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2628 		used = snprintf(hw_name, len,
2629 			       "Atheros AR%s Rev:%x",
2630 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2631 			       ah->hw_version.macRev);
2632 	}
2633 	else {
2634 		used = snprintf(hw_name, len,
2635 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2636 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2637 			       ah->hw_version.macRev,
2638 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2639 						AR_RADIO_SREV_MAJOR)),
2640 			       ah->hw_version.phyRev);
2641 	}
2642 
2643 	hw_name[used] = '\0';
2644 }
2645 EXPORT_SYMBOL(ath9k_hw_name);
2646