xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 4dc7ccf7)
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
20 
21 #include "hw.h"
22 #include "rc.h"
23 #include "initvals.h"
24 
25 #define ATH9K_CLOCK_RATE_CCK		22
26 #define ATH9K_CLOCK_RATE_5GHZ_OFDM	40
27 #define ATH9K_CLOCK_RATE_2GHZ_OFDM	44
28 
29 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
30 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan);
31 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
32 			      struct ar5416_eeprom_def *pEepData,
33 			      u32 reg, u32 value);
34 
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
39 
40 static int __init ath9k_init(void)
41 {
42 	return 0;
43 }
44 module_init(ath9k_init);
45 
46 static void __exit ath9k_exit(void)
47 {
48 	return;
49 }
50 module_exit(ath9k_exit);
51 
52 /********************/
53 /* Helper Functions */
54 /********************/
55 
56 static u32 ath9k_hw_mac_clks(struct ath_hw *ah, u32 usecs)
57 {
58 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
59 
60 	if (!ah->curchan) /* should really check for CCK instead */
61 		return usecs *ATH9K_CLOCK_RATE_CCK;
62 	if (conf->channel->band == IEEE80211_BAND_2GHZ)
63 		return usecs *ATH9K_CLOCK_RATE_2GHZ_OFDM;
64 	return usecs *ATH9K_CLOCK_RATE_5GHZ_OFDM;
65 }
66 
67 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
68 {
69 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
70 
71 	if (conf_is_ht40(conf))
72 		return ath9k_hw_mac_clks(ah, usecs) * 2;
73 	else
74 		return ath9k_hw_mac_clks(ah, usecs);
75 }
76 
77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
78 {
79 	int i;
80 
81 	BUG_ON(timeout < AH_TIME_QUANTUM);
82 
83 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
84 		if ((REG_READ(ah, reg) & mask) == val)
85 			return true;
86 
87 		udelay(AH_TIME_QUANTUM);
88 	}
89 
90 	ath_print(ath9k_hw_common(ah), ATH_DBG_ANY,
91 		  "timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 		  timeout, reg, REG_READ(ah, reg), mask, val);
93 
94 	return false;
95 }
96 EXPORT_SYMBOL(ath9k_hw_wait);
97 
98 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
99 {
100 	u32 retval;
101 	int i;
102 
103 	for (i = 0, retval = 0; i < n; i++) {
104 		retval = (retval << 1) | (val & 1);
105 		val >>= 1;
106 	}
107 	return retval;
108 }
109 
110 bool ath9k_get_channel_edges(struct ath_hw *ah,
111 			     u16 flags, u16 *low,
112 			     u16 *high)
113 {
114 	struct ath9k_hw_capabilities *pCap = &ah->caps;
115 
116 	if (flags & CHANNEL_5GHZ) {
117 		*low = pCap->low_5ghz_chan;
118 		*high = pCap->high_5ghz_chan;
119 		return true;
120 	}
121 	if ((flags & CHANNEL_2GHZ)) {
122 		*low = pCap->low_2ghz_chan;
123 		*high = pCap->high_2ghz_chan;
124 		return true;
125 	}
126 	return false;
127 }
128 
129 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
130 			   u8 phy, int kbps,
131 			   u32 frameLen, u16 rateix,
132 			   bool shortPreamble)
133 {
134 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
135 
136 	if (kbps == 0)
137 		return 0;
138 
139 	switch (phy) {
140 	case WLAN_RC_PHY_CCK:
141 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
142 		if (shortPreamble)
143 			phyTime >>= 1;
144 		numBits = frameLen << 3;
145 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
146 		break;
147 	case WLAN_RC_PHY_OFDM:
148 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
149 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
150 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
151 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
152 			txTime = OFDM_SIFS_TIME_QUARTER
153 				+ OFDM_PREAMBLE_TIME_QUARTER
154 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
155 		} else if (ah->curchan &&
156 			   IS_CHAN_HALF_RATE(ah->curchan)) {
157 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
158 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
159 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
160 			txTime = OFDM_SIFS_TIME_HALF +
161 				OFDM_PREAMBLE_TIME_HALF
162 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
163 		} else {
164 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
165 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
166 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
167 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
168 				+ (numSymbols * OFDM_SYMBOL_TIME);
169 		}
170 		break;
171 	default:
172 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
173 			  "Unknown phy %u (rate ix %u)\n", phy, rateix);
174 		txTime = 0;
175 		break;
176 	}
177 
178 	return txTime;
179 }
180 EXPORT_SYMBOL(ath9k_hw_computetxtime);
181 
182 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
183 				  struct ath9k_channel *chan,
184 				  struct chan_centers *centers)
185 {
186 	int8_t extoff;
187 
188 	if (!IS_CHAN_HT40(chan)) {
189 		centers->ctl_center = centers->ext_center =
190 			centers->synth_center = chan->channel;
191 		return;
192 	}
193 
194 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
195 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
196 		centers->synth_center =
197 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
198 		extoff = 1;
199 	} else {
200 		centers->synth_center =
201 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
202 		extoff = -1;
203 	}
204 
205 	centers->ctl_center =
206 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
207 	/* 25 MHz spacing is supported by hw but not on upper layers */
208 	centers->ext_center =
209 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
210 }
211 
212 /******************/
213 /* Chip Revisions */
214 /******************/
215 
216 static void ath9k_hw_read_revisions(struct ath_hw *ah)
217 {
218 	u32 val;
219 
220 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
221 
222 	if (val == 0xFF) {
223 		val = REG_READ(ah, AR_SREV);
224 		ah->hw_version.macVersion =
225 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
226 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
227 		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
228 	} else {
229 		if (!AR_SREV_9100(ah))
230 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
231 
232 		ah->hw_version.macRev = val & AR_SREV_REVISION;
233 
234 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
235 			ah->is_pciexpress = true;
236 	}
237 }
238 
239 static int ath9k_hw_get_radiorev(struct ath_hw *ah)
240 {
241 	u32 val;
242 	int i;
243 
244 	REG_WRITE(ah, AR_PHY(0x36), 0x00007058);
245 
246 	for (i = 0; i < 8; i++)
247 		REG_WRITE(ah, AR_PHY(0x20), 0x00010000);
248 	val = (REG_READ(ah, AR_PHY(256)) >> 24) & 0xff;
249 	val = ((val & 0xf0) >> 4) | ((val & 0x0f) << 4);
250 
251 	return ath9k_hw_reverse_bits(val, 8);
252 }
253 
254 /************************************/
255 /* HW Attach, Detach, Init Routines */
256 /************************************/
257 
258 static void ath9k_hw_disablepcie(struct ath_hw *ah)
259 {
260 	if (AR_SREV_9100(ah))
261 		return;
262 
263 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
264 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
265 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
266 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
267 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
268 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
269 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
270 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
271 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
272 
273 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
274 }
275 
276 static bool ath9k_hw_chip_test(struct ath_hw *ah)
277 {
278 	struct ath_common *common = ath9k_hw_common(ah);
279 	u32 regAddr[2] = { AR_STA_ID0, AR_PHY_BASE + (8 << 2) };
280 	u32 regHold[2];
281 	u32 patternData[4] = { 0x55555555,
282 			       0xaaaaaaaa,
283 			       0x66666666,
284 			       0x99999999 };
285 	int i, j;
286 
287 	for (i = 0; i < 2; i++) {
288 		u32 addr = regAddr[i];
289 		u32 wrData, rdData;
290 
291 		regHold[i] = REG_READ(ah, addr);
292 		for (j = 0; j < 0x100; j++) {
293 			wrData = (j << 16) | j;
294 			REG_WRITE(ah, addr, wrData);
295 			rdData = REG_READ(ah, addr);
296 			if (rdData != wrData) {
297 				ath_print(common, ATH_DBG_FATAL,
298 					  "address test failed "
299 					  "addr: 0x%08x - wr:0x%08x != "
300 					  "rd:0x%08x\n",
301 					  addr, wrData, rdData);
302 				return false;
303 			}
304 		}
305 		for (j = 0; j < 4; j++) {
306 			wrData = patternData[j];
307 			REG_WRITE(ah, addr, wrData);
308 			rdData = REG_READ(ah, addr);
309 			if (wrData != rdData) {
310 				ath_print(common, ATH_DBG_FATAL,
311 					  "address test failed "
312 					  "addr: 0x%08x - wr:0x%08x != "
313 					  "rd:0x%08x\n",
314 					  addr, wrData, rdData);
315 				return false;
316 			}
317 		}
318 		REG_WRITE(ah, regAddr[i], regHold[i]);
319 	}
320 	udelay(100);
321 
322 	return true;
323 }
324 
325 static void ath9k_hw_init_config(struct ath_hw *ah)
326 {
327 	int i;
328 
329 	ah->config.dma_beacon_response_time = 2;
330 	ah->config.sw_beacon_response_time = 10;
331 	ah->config.additional_swba_backoff = 0;
332 	ah->config.ack_6mb = 0x0;
333 	ah->config.cwm_ignore_extcca = 0;
334 	ah->config.pcie_powersave_enable = 0;
335 	ah->config.pcie_clock_req = 0;
336 	ah->config.pcie_waen = 0;
337 	ah->config.analog_shiftreg = 1;
338 	ah->config.ofdm_trig_low = 200;
339 	ah->config.ofdm_trig_high = 500;
340 	ah->config.cck_trig_high = 200;
341 	ah->config.cck_trig_low = 100;
342 	ah->config.enable_ani = 1;
343 
344 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
345 		ah->config.spurchans[i][0] = AR_NO_SPUR;
346 		ah->config.spurchans[i][1] = AR_NO_SPUR;
347 	}
348 
349 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
350 		ah->config.ht_enable = 1;
351 	else
352 		ah->config.ht_enable = 0;
353 
354 	ah->config.rx_intr_mitigation = true;
355 
356 	/*
357 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
358 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
359 	 * This means we use it for all AR5416 devices, and the few
360 	 * minor PCI AR9280 devices out there.
361 	 *
362 	 * Serialization is required because these devices do not handle
363 	 * well the case of two concurrent reads/writes due to the latency
364 	 * involved. During one read/write another read/write can be issued
365 	 * on another CPU while the previous read/write may still be working
366 	 * on our hardware, if we hit this case the hardware poops in a loop.
367 	 * We prevent this by serializing reads and writes.
368 	 *
369 	 * This issue is not present on PCI-Express devices or pre-AR5416
370 	 * devices (legacy, 802.11abg).
371 	 */
372 	if (num_possible_cpus() > 1)
373 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
374 }
375 EXPORT_SYMBOL(ath9k_hw_init);
376 
377 static void ath9k_hw_init_defaults(struct ath_hw *ah)
378 {
379 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
380 
381 	regulatory->country_code = CTRY_DEFAULT;
382 	regulatory->power_limit = MAX_RATE_POWER;
383 	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
384 
385 	ah->hw_version.magic = AR5416_MAGIC;
386 	ah->hw_version.subvendorid = 0;
387 
388 	ah->ah_flags = 0;
389 	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
390 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
391 	if (!AR_SREV_9100(ah))
392 		ah->ah_flags = AH_USE_EEPROM;
393 
394 	ah->atim_window = 0;
395 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE;
396 	ah->beacon_interval = 100;
397 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
398 	ah->slottime = (u32) -1;
399 	ah->globaltxtimeout = (u32) -1;
400 	ah->power_mode = ATH9K_PM_UNDEFINED;
401 }
402 
403 static int ath9k_hw_rf_claim(struct ath_hw *ah)
404 {
405 	u32 val;
406 
407 	REG_WRITE(ah, AR_PHY(0), 0x00000007);
408 
409 	val = ath9k_hw_get_radiorev(ah);
410 	switch (val & AR_RADIO_SREV_MAJOR) {
411 	case 0:
412 		val = AR_RAD5133_SREV_MAJOR;
413 		break;
414 	case AR_RAD5133_SREV_MAJOR:
415 	case AR_RAD5122_SREV_MAJOR:
416 	case AR_RAD2133_SREV_MAJOR:
417 	case AR_RAD2122_SREV_MAJOR:
418 		break;
419 	default:
420 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
421 			  "Radio Chip Rev 0x%02X not supported\n",
422 			  val & AR_RADIO_SREV_MAJOR);
423 		return -EOPNOTSUPP;
424 	}
425 
426 	ah->hw_version.analog5GhzRev = val;
427 
428 	return 0;
429 }
430 
431 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
432 {
433 	struct ath_common *common = ath9k_hw_common(ah);
434 	u32 sum;
435 	int i;
436 	u16 eeval;
437 
438 	sum = 0;
439 	for (i = 0; i < 3; i++) {
440 		eeval = ah->eep_ops->get_eeprom(ah, AR_EEPROM_MAC(i));
441 		sum += eeval;
442 		common->macaddr[2 * i] = eeval >> 8;
443 		common->macaddr[2 * i + 1] = eeval & 0xff;
444 	}
445 	if (sum == 0 || sum == 0xffff * 3)
446 		return -EADDRNOTAVAIL;
447 
448 	return 0;
449 }
450 
451 static void ath9k_hw_init_rxgain_ini(struct ath_hw *ah)
452 {
453 	u32 rxgain_type;
454 
455 	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_17) {
456 		rxgain_type = ah->eep_ops->get_eeprom(ah, EEP_RXGAIN_TYPE);
457 
458 		if (rxgain_type == AR5416_EEP_RXGAIN_13DB_BACKOFF)
459 			INIT_INI_ARRAY(&ah->iniModesRxGain,
460 			ar9280Modes_backoff_13db_rxgain_9280_2,
461 			ARRAY_SIZE(ar9280Modes_backoff_13db_rxgain_9280_2), 6);
462 		else if (rxgain_type == AR5416_EEP_RXGAIN_23DB_BACKOFF)
463 			INIT_INI_ARRAY(&ah->iniModesRxGain,
464 			ar9280Modes_backoff_23db_rxgain_9280_2,
465 			ARRAY_SIZE(ar9280Modes_backoff_23db_rxgain_9280_2), 6);
466 		else
467 			INIT_INI_ARRAY(&ah->iniModesRxGain,
468 			ar9280Modes_original_rxgain_9280_2,
469 			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
470 	} else {
471 		INIT_INI_ARRAY(&ah->iniModesRxGain,
472 			ar9280Modes_original_rxgain_9280_2,
473 			ARRAY_SIZE(ar9280Modes_original_rxgain_9280_2), 6);
474 	}
475 }
476 
477 static void ath9k_hw_init_txgain_ini(struct ath_hw *ah)
478 {
479 	u32 txgain_type;
480 
481 	if (ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) >= AR5416_EEP_MINOR_VER_19) {
482 		txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
483 
484 		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER)
485 			INIT_INI_ARRAY(&ah->iniModesTxGain,
486 			ar9280Modes_high_power_tx_gain_9280_2,
487 			ARRAY_SIZE(ar9280Modes_high_power_tx_gain_9280_2), 6);
488 		else
489 			INIT_INI_ARRAY(&ah->iniModesTxGain,
490 			ar9280Modes_original_tx_gain_9280_2,
491 			ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
492 	} else {
493 		INIT_INI_ARRAY(&ah->iniModesTxGain,
494 		ar9280Modes_original_tx_gain_9280_2,
495 		ARRAY_SIZE(ar9280Modes_original_tx_gain_9280_2), 6);
496 	}
497 }
498 
499 static int ath9k_hw_post_init(struct ath_hw *ah)
500 {
501 	int ecode;
502 
503 	if (!ath9k_hw_chip_test(ah))
504 		return -ENODEV;
505 
506 	ecode = ath9k_hw_rf_claim(ah);
507 	if (ecode != 0)
508 		return ecode;
509 
510 	ecode = ath9k_hw_eeprom_init(ah);
511 	if (ecode != 0)
512 		return ecode;
513 
514 	ath_print(ath9k_hw_common(ah), ATH_DBG_CONFIG,
515 		  "Eeprom VER: %d, REV: %d\n",
516 		  ah->eep_ops->get_eeprom_ver(ah),
517 		  ah->eep_ops->get_eeprom_rev(ah));
518 
519         if (!AR_SREV_9280_10_OR_LATER(ah)) {
520 		ecode = ath9k_hw_rf_alloc_ext_banks(ah);
521 		if (ecode) {
522 			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
523 				  "Failed allocating banks for "
524 				  "external radio\n");
525 			return ecode;
526 		}
527 	}
528 
529 	if (!AR_SREV_9100(ah)) {
530 		ath9k_hw_ani_setup(ah);
531 		ath9k_hw_ani_init(ah);
532 	}
533 
534 	return 0;
535 }
536 
537 static bool ath9k_hw_devid_supported(u16 devid)
538 {
539 	switch (devid) {
540 	case AR5416_DEVID_PCI:
541 	case AR5416_DEVID_PCIE:
542 	case AR5416_AR9100_DEVID:
543 	case AR9160_DEVID_PCI:
544 	case AR9280_DEVID_PCI:
545 	case AR9280_DEVID_PCIE:
546 	case AR9285_DEVID_PCIE:
547 	case AR5416_DEVID_AR9287_PCI:
548 	case AR5416_DEVID_AR9287_PCIE:
549 	case AR9271_USB:
550 	case AR2427_DEVID_PCIE:
551 		return true;
552 	default:
553 		break;
554 	}
555 	return false;
556 }
557 
558 static bool ath9k_hw_macversion_supported(u32 macversion)
559 {
560 	switch (macversion) {
561 	case AR_SREV_VERSION_5416_PCI:
562 	case AR_SREV_VERSION_5416_PCIE:
563 	case AR_SREV_VERSION_9160:
564 	case AR_SREV_VERSION_9100:
565 	case AR_SREV_VERSION_9280:
566 	case AR_SREV_VERSION_9285:
567 	case AR_SREV_VERSION_9287:
568 	case AR_SREV_VERSION_9271:
569 		return true;
570 	default:
571 		break;
572 	}
573 	return false;
574 }
575 
576 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
577 {
578 	if (AR_SREV_9160_10_OR_LATER(ah)) {
579 		if (AR_SREV_9280_10_OR_LATER(ah)) {
580 			ah->iq_caldata.calData = &iq_cal_single_sample;
581 			ah->adcgain_caldata.calData =
582 				&adc_gain_cal_single_sample;
583 			ah->adcdc_caldata.calData =
584 				&adc_dc_cal_single_sample;
585 			ah->adcdc_calinitdata.calData =
586 				&adc_init_dc_cal;
587 		} else {
588 			ah->iq_caldata.calData = &iq_cal_multi_sample;
589 			ah->adcgain_caldata.calData =
590 				&adc_gain_cal_multi_sample;
591 			ah->adcdc_caldata.calData =
592 				&adc_dc_cal_multi_sample;
593 			ah->adcdc_calinitdata.calData =
594 				&adc_init_dc_cal;
595 		}
596 		ah->supp_cals = ADC_GAIN_CAL | ADC_DC_CAL | IQ_MISMATCH_CAL;
597 	}
598 }
599 
600 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
601 {
602 	if (AR_SREV_9271(ah)) {
603 		INIT_INI_ARRAY(&ah->iniModes, ar9271Modes_9271,
604 			       ARRAY_SIZE(ar9271Modes_9271), 6);
605 		INIT_INI_ARRAY(&ah->iniCommon, ar9271Common_9271,
606 			       ARRAY_SIZE(ar9271Common_9271), 2);
607 		INIT_INI_ARRAY(&ah->iniModes_9271_1_0_only,
608 			       ar9271Modes_9271_1_0_only,
609 			       ARRAY_SIZE(ar9271Modes_9271_1_0_only), 6);
610 		return;
611 	}
612 
613 	if (AR_SREV_9287_11_OR_LATER(ah)) {
614 		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_1,
615 				ARRAY_SIZE(ar9287Modes_9287_1_1), 6);
616 		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_1,
617 				ARRAY_SIZE(ar9287Common_9287_1_1), 2);
618 		if (ah->config.pcie_clock_req)
619 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
620 			ar9287PciePhy_clkreq_off_L1_9287_1_1,
621 			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_1), 2);
622 		else
623 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
624 			ar9287PciePhy_clkreq_always_on_L1_9287_1_1,
625 			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_1),
626 					2);
627 	} else if (AR_SREV_9287_10_OR_LATER(ah)) {
628 		INIT_INI_ARRAY(&ah->iniModes, ar9287Modes_9287_1_0,
629 				ARRAY_SIZE(ar9287Modes_9287_1_0), 6);
630 		INIT_INI_ARRAY(&ah->iniCommon, ar9287Common_9287_1_0,
631 				ARRAY_SIZE(ar9287Common_9287_1_0), 2);
632 
633 		if (ah->config.pcie_clock_req)
634 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
635 			ar9287PciePhy_clkreq_off_L1_9287_1_0,
636 			ARRAY_SIZE(ar9287PciePhy_clkreq_off_L1_9287_1_0), 2);
637 		else
638 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
639 			ar9287PciePhy_clkreq_always_on_L1_9287_1_0,
640 			ARRAY_SIZE(ar9287PciePhy_clkreq_always_on_L1_9287_1_0),
641 				  2);
642 	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
643 
644 
645 		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285_1_2,
646 			       ARRAY_SIZE(ar9285Modes_9285_1_2), 6);
647 		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285_1_2,
648 			       ARRAY_SIZE(ar9285Common_9285_1_2), 2);
649 
650 		if (ah->config.pcie_clock_req) {
651 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
652 			ar9285PciePhy_clkreq_off_L1_9285_1_2,
653 			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285_1_2), 2);
654 		} else {
655 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
656 			ar9285PciePhy_clkreq_always_on_L1_9285_1_2,
657 			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285_1_2),
658 				  2);
659 		}
660 	} else if (AR_SREV_9285_10_OR_LATER(ah)) {
661 		INIT_INI_ARRAY(&ah->iniModes, ar9285Modes_9285,
662 			       ARRAY_SIZE(ar9285Modes_9285), 6);
663 		INIT_INI_ARRAY(&ah->iniCommon, ar9285Common_9285,
664 			       ARRAY_SIZE(ar9285Common_9285), 2);
665 
666 		if (ah->config.pcie_clock_req) {
667 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
668 			ar9285PciePhy_clkreq_off_L1_9285,
669 			ARRAY_SIZE(ar9285PciePhy_clkreq_off_L1_9285), 2);
670 		} else {
671 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
672 			ar9285PciePhy_clkreq_always_on_L1_9285,
673 			ARRAY_SIZE(ar9285PciePhy_clkreq_always_on_L1_9285), 2);
674 		}
675 	} else if (AR_SREV_9280_20_OR_LATER(ah)) {
676 		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280_2,
677 			       ARRAY_SIZE(ar9280Modes_9280_2), 6);
678 		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280_2,
679 			       ARRAY_SIZE(ar9280Common_9280_2), 2);
680 
681 		if (ah->config.pcie_clock_req) {
682 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
683 			       ar9280PciePhy_clkreq_off_L1_9280,
684 			       ARRAY_SIZE(ar9280PciePhy_clkreq_off_L1_9280),2);
685 		} else {
686 			INIT_INI_ARRAY(&ah->iniPcieSerdes,
687 			       ar9280PciePhy_clkreq_always_on_L1_9280,
688 			       ARRAY_SIZE(ar9280PciePhy_clkreq_always_on_L1_9280), 2);
689 		}
690 		INIT_INI_ARRAY(&ah->iniModesAdditional,
691 			       ar9280Modes_fast_clock_9280_2,
692 			       ARRAY_SIZE(ar9280Modes_fast_clock_9280_2), 3);
693 	} else if (AR_SREV_9280_10_OR_LATER(ah)) {
694 		INIT_INI_ARRAY(&ah->iniModes, ar9280Modes_9280,
695 			       ARRAY_SIZE(ar9280Modes_9280), 6);
696 		INIT_INI_ARRAY(&ah->iniCommon, ar9280Common_9280,
697 			       ARRAY_SIZE(ar9280Common_9280), 2);
698 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
699 		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9160,
700 			       ARRAY_SIZE(ar5416Modes_9160), 6);
701 		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9160,
702 			       ARRAY_SIZE(ar5416Common_9160), 2);
703 		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9160,
704 			       ARRAY_SIZE(ar5416Bank0_9160), 2);
705 		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9160,
706 			       ARRAY_SIZE(ar5416BB_RfGain_9160), 3);
707 		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9160,
708 			       ARRAY_SIZE(ar5416Bank1_9160), 2);
709 		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9160,
710 			       ARRAY_SIZE(ar5416Bank2_9160), 2);
711 		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9160,
712 			       ARRAY_SIZE(ar5416Bank3_9160), 3);
713 		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9160,
714 			       ARRAY_SIZE(ar5416Bank6_9160), 3);
715 		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9160,
716 			       ARRAY_SIZE(ar5416Bank6TPC_9160), 3);
717 		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9160,
718 			       ARRAY_SIZE(ar5416Bank7_9160), 2);
719 		if (AR_SREV_9160_11(ah)) {
720 			INIT_INI_ARRAY(&ah->iniAddac,
721 				       ar5416Addac_91601_1,
722 				       ARRAY_SIZE(ar5416Addac_91601_1), 2);
723 		} else {
724 			INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9160,
725 				       ARRAY_SIZE(ar5416Addac_9160), 2);
726 		}
727 	} else if (AR_SREV_9100_OR_LATER(ah)) {
728 		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes_9100,
729 			       ARRAY_SIZE(ar5416Modes_9100), 6);
730 		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common_9100,
731 			       ARRAY_SIZE(ar5416Common_9100), 2);
732 		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0_9100,
733 			       ARRAY_SIZE(ar5416Bank0_9100), 2);
734 		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain_9100,
735 			       ARRAY_SIZE(ar5416BB_RfGain_9100), 3);
736 		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1_9100,
737 			       ARRAY_SIZE(ar5416Bank1_9100), 2);
738 		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2_9100,
739 			       ARRAY_SIZE(ar5416Bank2_9100), 2);
740 		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3_9100,
741 			       ARRAY_SIZE(ar5416Bank3_9100), 3);
742 		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6_9100,
743 			       ARRAY_SIZE(ar5416Bank6_9100), 3);
744 		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC_9100,
745 			       ARRAY_SIZE(ar5416Bank6TPC_9100), 3);
746 		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7_9100,
747 			       ARRAY_SIZE(ar5416Bank7_9100), 2);
748 		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac_9100,
749 			       ARRAY_SIZE(ar5416Addac_9100), 2);
750 	} else {
751 		INIT_INI_ARRAY(&ah->iniModes, ar5416Modes,
752 			       ARRAY_SIZE(ar5416Modes), 6);
753 		INIT_INI_ARRAY(&ah->iniCommon, ar5416Common,
754 			       ARRAY_SIZE(ar5416Common), 2);
755 		INIT_INI_ARRAY(&ah->iniBank0, ar5416Bank0,
756 			       ARRAY_SIZE(ar5416Bank0), 2);
757 		INIT_INI_ARRAY(&ah->iniBB_RfGain, ar5416BB_RfGain,
758 			       ARRAY_SIZE(ar5416BB_RfGain), 3);
759 		INIT_INI_ARRAY(&ah->iniBank1, ar5416Bank1,
760 			       ARRAY_SIZE(ar5416Bank1), 2);
761 		INIT_INI_ARRAY(&ah->iniBank2, ar5416Bank2,
762 			       ARRAY_SIZE(ar5416Bank2), 2);
763 		INIT_INI_ARRAY(&ah->iniBank3, ar5416Bank3,
764 			       ARRAY_SIZE(ar5416Bank3), 3);
765 		INIT_INI_ARRAY(&ah->iniBank6, ar5416Bank6,
766 			       ARRAY_SIZE(ar5416Bank6), 3);
767 		INIT_INI_ARRAY(&ah->iniBank6TPC, ar5416Bank6TPC,
768 			       ARRAY_SIZE(ar5416Bank6TPC), 3);
769 		INIT_INI_ARRAY(&ah->iniBank7, ar5416Bank7,
770 			       ARRAY_SIZE(ar5416Bank7), 2);
771 		INIT_INI_ARRAY(&ah->iniAddac, ar5416Addac,
772 			       ARRAY_SIZE(ar5416Addac), 2);
773 	}
774 }
775 
776 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
777 {
778 	if (AR_SREV_9287_11_OR_LATER(ah))
779 		INIT_INI_ARRAY(&ah->iniModesRxGain,
780 		ar9287Modes_rx_gain_9287_1_1,
781 		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_1), 6);
782 	else if (AR_SREV_9287_10(ah))
783 		INIT_INI_ARRAY(&ah->iniModesRxGain,
784 		ar9287Modes_rx_gain_9287_1_0,
785 		ARRAY_SIZE(ar9287Modes_rx_gain_9287_1_0), 6);
786 	else if (AR_SREV_9280_20(ah))
787 		ath9k_hw_init_rxgain_ini(ah);
788 
789 	if (AR_SREV_9287_11_OR_LATER(ah)) {
790 		INIT_INI_ARRAY(&ah->iniModesTxGain,
791 		ar9287Modes_tx_gain_9287_1_1,
792 		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_1), 6);
793 	} else if (AR_SREV_9287_10(ah)) {
794 		INIT_INI_ARRAY(&ah->iniModesTxGain,
795 		ar9287Modes_tx_gain_9287_1_0,
796 		ARRAY_SIZE(ar9287Modes_tx_gain_9287_1_0), 6);
797 	} else if (AR_SREV_9280_20(ah)) {
798 		ath9k_hw_init_txgain_ini(ah);
799 	} else if (AR_SREV_9285_12_OR_LATER(ah)) {
800 		u32 txgain_type = ah->eep_ops->get_eeprom(ah, EEP_TXGAIN_TYPE);
801 
802 		/* txgain table */
803 		if (txgain_type == AR5416_EEP_TXGAIN_HIGH_POWER) {
804 			INIT_INI_ARRAY(&ah->iniModesTxGain,
805 			ar9285Modes_high_power_tx_gain_9285_1_2,
806 			ARRAY_SIZE(ar9285Modes_high_power_tx_gain_9285_1_2), 6);
807 		} else {
808 			INIT_INI_ARRAY(&ah->iniModesTxGain,
809 			ar9285Modes_original_tx_gain_9285_1_2,
810 			ARRAY_SIZE(ar9285Modes_original_tx_gain_9285_1_2), 6);
811 		}
812 
813 	}
814 }
815 
816 static void ath9k_hw_init_eeprom_fix(struct ath_hw *ah)
817 {
818 	u32 i, j;
819 
820 	if (ah->hw_version.devid == AR9280_DEVID_PCI) {
821 
822 		/* EEPROM Fixup */
823 		for (i = 0; i < ah->iniModes.ia_rows; i++) {
824 			u32 reg = INI_RA(&ah->iniModes, i, 0);
825 
826 			for (j = 1; j < ah->iniModes.ia_columns; j++) {
827 				u32 val = INI_RA(&ah->iniModes, i, j);
828 
829 				INI_RA(&ah->iniModes, i, j) =
830 					ath9k_hw_ini_fixup(ah,
831 							   &ah->eeprom.def,
832 							   reg, val);
833 			}
834 		}
835 	}
836 }
837 
838 int ath9k_hw_init(struct ath_hw *ah)
839 {
840 	struct ath_common *common = ath9k_hw_common(ah);
841 	int r = 0;
842 
843 	if (!ath9k_hw_devid_supported(ah->hw_version.devid)) {
844 		ath_print(common, ATH_DBG_FATAL,
845 			  "Unsupported device ID: 0x%0x\n",
846 			  ah->hw_version.devid);
847 		return -EOPNOTSUPP;
848 	}
849 
850 	ath9k_hw_init_defaults(ah);
851 	ath9k_hw_init_config(ah);
852 
853 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
854 		ath_print(common, ATH_DBG_FATAL,
855 			  "Couldn't reset chip\n");
856 		return -EIO;
857 	}
858 
859 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
860 		ath_print(common, ATH_DBG_FATAL, "Couldn't wakeup chip\n");
861 		return -EIO;
862 	}
863 
864 	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
865 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
866 		    (AR_SREV_9280(ah) && !ah->is_pciexpress)) {
867 			ah->config.serialize_regmode =
868 				SER_REG_MODE_ON;
869 		} else {
870 			ah->config.serialize_regmode =
871 				SER_REG_MODE_OFF;
872 		}
873 	}
874 
875 	ath_print(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
876 		ah->config.serialize_regmode);
877 
878 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
879 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
880 	else
881 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
882 
883 	if (!ath9k_hw_macversion_supported(ah->hw_version.macVersion)) {
884 		ath_print(common, ATH_DBG_FATAL,
885 			  "Mac Chip Rev 0x%02x.%x is not supported by "
886 			  "this driver\n", ah->hw_version.macVersion,
887 			  ah->hw_version.macRev);
888 		return -EOPNOTSUPP;
889 	}
890 
891 	if (AR_SREV_9100(ah)) {
892 		ah->iq_caldata.calData = &iq_cal_multi_sample;
893 		ah->supp_cals = IQ_MISMATCH_CAL;
894 		ah->is_pciexpress = false;
895 	}
896 
897 	if (AR_SREV_9271(ah))
898 		ah->is_pciexpress = false;
899 
900 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
901 
902 	ath9k_hw_init_cal_settings(ah);
903 
904 	ah->ani_function = ATH9K_ANI_ALL;
905 	if (AR_SREV_9280_10_OR_LATER(ah)) {
906 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
907 		ah->ath9k_hw_rf_set_freq = &ath9k_hw_ar9280_set_channel;
908 		ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_9280_spur_mitigate;
909 	} else {
910 		ah->ath9k_hw_rf_set_freq = &ath9k_hw_set_channel;
911 		ah->ath9k_hw_spur_mitigate_freq = &ath9k_hw_spur_mitigate;
912 	}
913 
914 	ath9k_hw_init_mode_regs(ah);
915 
916 	if (ah->is_pciexpress)
917 		ath9k_hw_configpcipowersave(ah, 0, 0);
918 	else
919 		ath9k_hw_disablepcie(ah);
920 
921 	/* Support for Japan ch.14 (2484) spread */
922 	if (AR_SREV_9287_11_OR_LATER(ah)) {
923 		INIT_INI_ARRAY(&ah->iniCckfirNormal,
924 		       ar9287Common_normal_cck_fir_coeff_92871_1,
925 		       ARRAY_SIZE(ar9287Common_normal_cck_fir_coeff_92871_1), 2);
926 		INIT_INI_ARRAY(&ah->iniCckfirJapan2484,
927 		       ar9287Common_japan_2484_cck_fir_coeff_92871_1,
928 		       ARRAY_SIZE(ar9287Common_japan_2484_cck_fir_coeff_92871_1), 2);
929 	}
930 
931 	r = ath9k_hw_post_init(ah);
932 	if (r)
933 		return r;
934 
935 	ath9k_hw_init_mode_gain_regs(ah);
936 	r = ath9k_hw_fill_cap_info(ah);
937 	if (r)
938 		return r;
939 
940 	ath9k_hw_init_eeprom_fix(ah);
941 
942 	r = ath9k_hw_init_macaddr(ah);
943 	if (r) {
944 		ath_print(common, ATH_DBG_FATAL,
945 			  "Failed to initialize MAC address\n");
946 		return r;
947 	}
948 
949 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
950 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
951 	else
952 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
953 
954 	ath9k_init_nfcal_hist_buffer(ah);
955 
956 	common->state = ATH_HW_INITIALIZED;
957 
958 	return 0;
959 }
960 
961 static void ath9k_hw_init_bb(struct ath_hw *ah,
962 			     struct ath9k_channel *chan)
963 {
964 	u32 synthDelay;
965 
966 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
967 	if (IS_CHAN_B(chan))
968 		synthDelay = (4 * synthDelay) / 22;
969 	else
970 		synthDelay /= 10;
971 
972 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_EN);
973 
974 	udelay(synthDelay + BASE_ACTIVATE_DELAY);
975 }
976 
977 static void ath9k_hw_init_qos(struct ath_hw *ah)
978 {
979 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
980 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
981 
982 	REG_WRITE(ah, AR_QOS_NO_ACK,
983 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
984 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
985 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
986 
987 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
988 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
989 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
990 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
991 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
992 }
993 
994 static void ath9k_hw_change_target_baud(struct ath_hw *ah, u32 freq, u32 baud)
995 {
996 	u32 lcr;
997 	u32 baud_divider = freq * 1000 * 1000 / 16 / baud;
998 
999 	lcr = REG_READ(ah , 0x5100c);
1000 	lcr |= 0x80;
1001 
1002 	REG_WRITE(ah, 0x5100c, lcr);
1003 	REG_WRITE(ah, 0x51004, (baud_divider >> 8));
1004 	REG_WRITE(ah, 0x51000, (baud_divider & 0xff));
1005 
1006 	lcr &= ~0x80;
1007 	REG_WRITE(ah, 0x5100c, lcr);
1008 }
1009 
1010 static void ath9k_hw_init_pll(struct ath_hw *ah,
1011 			      struct ath9k_channel *chan)
1012 {
1013 	u32 pll;
1014 
1015 	if (AR_SREV_9100(ah)) {
1016 		if (chan && IS_CHAN_5GHZ(chan))
1017 			pll = 0x1450;
1018 		else
1019 			pll = 0x1458;
1020 	} else {
1021 		if (AR_SREV_9280_10_OR_LATER(ah)) {
1022 			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1023 
1024 			if (chan && IS_CHAN_HALF_RATE(chan))
1025 				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1026 			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1027 				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1028 
1029 			if (chan && IS_CHAN_5GHZ(chan)) {
1030 				pll |= SM(0x28, AR_RTC_9160_PLL_DIV);
1031 
1032 
1033 				if (AR_SREV_9280_20(ah)) {
1034 					if (((chan->channel % 20) == 0)
1035 					    || ((chan->channel % 10) == 0))
1036 						pll = 0x2850;
1037 					else
1038 						pll = 0x142c;
1039 				}
1040 			} else {
1041 				pll |= SM(0x2c, AR_RTC_9160_PLL_DIV);
1042 			}
1043 
1044 		} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1045 
1046 			pll = SM(0x5, AR_RTC_9160_PLL_REFDIV);
1047 
1048 			if (chan && IS_CHAN_HALF_RATE(chan))
1049 				pll |= SM(0x1, AR_RTC_9160_PLL_CLKSEL);
1050 			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1051 				pll |= SM(0x2, AR_RTC_9160_PLL_CLKSEL);
1052 
1053 			if (chan && IS_CHAN_5GHZ(chan))
1054 				pll |= SM(0x50, AR_RTC_9160_PLL_DIV);
1055 			else
1056 				pll |= SM(0x58, AR_RTC_9160_PLL_DIV);
1057 		} else {
1058 			pll = AR_RTC_PLL_REFDIV_5 | AR_RTC_PLL_DIV2;
1059 
1060 			if (chan && IS_CHAN_HALF_RATE(chan))
1061 				pll |= SM(0x1, AR_RTC_PLL_CLKSEL);
1062 			else if (chan && IS_CHAN_QUARTER_RATE(chan))
1063 				pll |= SM(0x2, AR_RTC_PLL_CLKSEL);
1064 
1065 			if (chan && IS_CHAN_5GHZ(chan))
1066 				pll |= SM(0xa, AR_RTC_PLL_DIV);
1067 			else
1068 				pll |= SM(0xb, AR_RTC_PLL_DIV);
1069 		}
1070 	}
1071 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
1072 
1073 	/* Switch the core clock for ar9271 to 117Mhz */
1074 	if (AR_SREV_9271(ah)) {
1075 		if ((pll == 0x142c) || (pll == 0x2850) ) {
1076 			udelay(500);
1077 			/* set CLKOBS to output AHB clock */
1078 			REG_WRITE(ah, 0x7020, 0xe);
1079 			/*
1080 			 * 0x304: 117Mhz, ahb_ratio: 1x1
1081 			 * 0x306: 40Mhz, ahb_ratio: 1x1
1082 			 */
1083 			REG_WRITE(ah, 0x50040, 0x304);
1084 			/*
1085 			 * makes adjustments for the baud dividor to keep the
1086 			 * targetted baud rate based on the used core clock.
1087 			 */
1088 			ath9k_hw_change_target_baud(ah, AR9271_CORE_CLOCK,
1089 						    AR9271_TARGET_BAUD_RATE);
1090 		}
1091 	}
1092 
1093 	udelay(RTC_PLL_SETTLE_DELAY);
1094 
1095 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
1096 }
1097 
1098 static void ath9k_hw_init_chain_masks(struct ath_hw *ah)
1099 {
1100 	int rx_chainmask, tx_chainmask;
1101 
1102 	rx_chainmask = ah->rxchainmask;
1103 	tx_chainmask = ah->txchainmask;
1104 
1105 	switch (rx_chainmask) {
1106 	case 0x5:
1107 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1108 			    AR_PHY_SWAP_ALT_CHAIN);
1109 	case 0x3:
1110 		if (ah->hw_version.macVersion == AR_SREV_REVISION_5416_10) {
1111 			REG_WRITE(ah, AR_PHY_RX_CHAINMASK, 0x7);
1112 			REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, 0x7);
1113 			break;
1114 		}
1115 	case 0x1:
1116 	case 0x2:
1117 	case 0x7:
1118 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
1119 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
1120 		break;
1121 	default:
1122 		break;
1123 	}
1124 
1125 	REG_WRITE(ah, AR_SELFGEN_MASK, tx_chainmask);
1126 	if (tx_chainmask == 0x5) {
1127 		REG_SET_BIT(ah, AR_PHY_ANALOG_SWAP,
1128 			    AR_PHY_SWAP_ALT_CHAIN);
1129 	}
1130 	if (AR_SREV_9100(ah))
1131 		REG_WRITE(ah, AR_PHY_ANALOG_SWAP,
1132 			  REG_READ(ah, AR_PHY_ANALOG_SWAP) | 0x00000001);
1133 }
1134 
1135 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
1136 					  enum nl80211_iftype opmode)
1137 {
1138 	ah->mask_reg = AR_IMR_TXERR |
1139 		AR_IMR_TXURN |
1140 		AR_IMR_RXERR |
1141 		AR_IMR_RXORN |
1142 		AR_IMR_BCNMISC;
1143 
1144 	if (ah->config.rx_intr_mitigation)
1145 		ah->mask_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
1146 	else
1147 		ah->mask_reg |= AR_IMR_RXOK;
1148 
1149 	ah->mask_reg |= AR_IMR_TXOK;
1150 
1151 	if (opmode == NL80211_IFTYPE_AP)
1152 		ah->mask_reg |= AR_IMR_MIB;
1153 
1154 	REG_WRITE(ah, AR_IMR, ah->mask_reg);
1155 	REG_WRITE(ah, AR_IMR_S2, REG_READ(ah, AR_IMR_S2) | AR_IMR_S2_GTT);
1156 
1157 	if (!AR_SREV_9100(ah)) {
1158 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
1159 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
1160 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
1161 	}
1162 }
1163 
1164 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
1165 {
1166 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1167 	val = min(val, (u32) 0xFFFF);
1168 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1169 }
1170 
1171 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1172 {
1173 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1174 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1175 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1176 }
1177 
1178 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1179 {
1180 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1181 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1182 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1183 }
1184 
1185 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1186 {
1187 	if (tu > 0xFFFF) {
1188 		ath_print(ath9k_hw_common(ah), ATH_DBG_XMIT,
1189 			  "bad global tx timeout %u\n", tu);
1190 		ah->globaltxtimeout = (u32) -1;
1191 		return false;
1192 	} else {
1193 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1194 		ah->globaltxtimeout = tu;
1195 		return true;
1196 	}
1197 }
1198 
1199 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1200 {
1201 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
1202 	int acktimeout;
1203 	int slottime;
1204 	int sifstime;
1205 
1206 	ath_print(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
1207 		  ah->misc_mode);
1208 
1209 	if (ah->misc_mode != 0)
1210 		REG_WRITE(ah, AR_PCU_MISC,
1211 			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
1212 
1213 	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
1214 		sifstime = 16;
1215 	else
1216 		sifstime = 10;
1217 
1218 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1219 	slottime = ah->slottime + 3 * ah->coverage_class;
1220 	acktimeout = slottime + sifstime;
1221 
1222 	/*
1223 	 * Workaround for early ACK timeouts, add an offset to match the
1224 	 * initval's 64us ack timeout value.
1225 	 * This was initially only meant to work around an issue with delayed
1226 	 * BA frames in some implementations, but it has been found to fix ACK
1227 	 * timeout issues in other cases as well.
1228 	 */
1229 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
1230 		acktimeout += 64 - sifstime - ah->slottime;
1231 
1232 	ath9k_hw_setslottime(ah, slottime);
1233 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1234 	ath9k_hw_set_cts_timeout(ah, acktimeout);
1235 	if (ah->globaltxtimeout != (u32) -1)
1236 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1237 }
1238 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1239 
1240 void ath9k_hw_deinit(struct ath_hw *ah)
1241 {
1242 	struct ath_common *common = ath9k_hw_common(ah);
1243 
1244 	if (common->state <= ATH_HW_INITIALIZED)
1245 		goto free_hw;
1246 
1247 	if (!AR_SREV_9100(ah))
1248 		ath9k_hw_ani_disable(ah);
1249 
1250 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1251 
1252 free_hw:
1253 	if (!AR_SREV_9280_10_OR_LATER(ah))
1254 		ath9k_hw_rf_free_ext_banks(ah);
1255 	kfree(ah);
1256 	ah = NULL;
1257 }
1258 EXPORT_SYMBOL(ath9k_hw_deinit);
1259 
1260 /*******/
1261 /* INI */
1262 /*******/
1263 
1264 static void ath9k_hw_override_ini(struct ath_hw *ah,
1265 				  struct ath9k_channel *chan)
1266 {
1267 	u32 val;
1268 
1269 	if (AR_SREV_9271(ah)) {
1270 		/*
1271 		 * Enable spectral scan to solution for issues with stuck
1272 		 * beacons on AR9271 1.0. The beacon stuck issue is not seeon on
1273 		 * AR9271 1.1
1274 		 */
1275 		if (AR_SREV_9271_10(ah)) {
1276 			val = REG_READ(ah, AR_PHY_SPECTRAL_SCAN) |
1277 			      AR_PHY_SPECTRAL_SCAN_ENABLE;
1278 			REG_WRITE(ah, AR_PHY_SPECTRAL_SCAN, val);
1279 		}
1280 		else if (AR_SREV_9271_11(ah))
1281 			/*
1282 			 * change AR_PHY_RF_CTL3 setting to fix MAC issue
1283 			 * present on AR9271 1.1
1284 			 */
1285 			REG_WRITE(ah, AR_PHY_RF_CTL3, 0x3a020001);
1286 		return;
1287 	}
1288 
1289 	/*
1290 	 * Set the RX_ABORT and RX_DIS and clear if off only after
1291 	 * RXE is set for MAC. This prevents frames with corrupted
1292 	 * descriptor status.
1293 	 */
1294 	REG_SET_BIT(ah, AR_DIAG_SW, (AR_DIAG_RX_DIS | AR_DIAG_RX_ABORT));
1295 
1296 	if (AR_SREV_9280_10_OR_LATER(ah)) {
1297 		val = REG_READ(ah, AR_PCU_MISC_MODE2) &
1298 			       (~AR_PCU_MISC_MODE2_HWWAR1);
1299 
1300 		if (AR_SREV_9287_10_OR_LATER(ah))
1301 			val = val & (~AR_PCU_MISC_MODE2_HWWAR2);
1302 
1303 		REG_WRITE(ah, AR_PCU_MISC_MODE2, val);
1304 	}
1305 
1306 	if (!AR_SREV_5416_20_OR_LATER(ah) ||
1307 	    AR_SREV_9280_10_OR_LATER(ah))
1308 		return;
1309 	/*
1310 	 * Disable BB clock gating
1311 	 * Necessary to avoid issues on AR5416 2.0
1312 	 */
1313 	REG_WRITE(ah, 0x9800 + (651 << 2), 0x11);
1314 
1315 	/*
1316 	 * Disable RIFS search on some chips to avoid baseband
1317 	 * hang issues.
1318 	 */
1319 	if (AR_SREV_9100(ah) || AR_SREV_9160(ah)) {
1320 		val = REG_READ(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS);
1321 		val &= ~AR_PHY_RIFS_INIT_DELAY;
1322 		REG_WRITE(ah, AR_PHY_HEAVY_CLIP_FACTOR_RIFS, val);
1323 	}
1324 }
1325 
1326 static u32 ath9k_hw_def_ini_fixup(struct ath_hw *ah,
1327 			      struct ar5416_eeprom_def *pEepData,
1328 			      u32 reg, u32 value)
1329 {
1330 	struct base_eep_header *pBase = &(pEepData->baseEepHeader);
1331 	struct ath_common *common = ath9k_hw_common(ah);
1332 
1333 	switch (ah->hw_version.devid) {
1334 	case AR9280_DEVID_PCI:
1335 		if (reg == 0x7894) {
1336 			ath_print(common, ATH_DBG_EEPROM,
1337 				"ini VAL: %x  EEPROM: %x\n", value,
1338 				(pBase->version & 0xff));
1339 
1340 			if ((pBase->version & 0xff) > 0x0a) {
1341 				ath_print(common, ATH_DBG_EEPROM,
1342 					  "PWDCLKIND: %d\n",
1343 					  pBase->pwdclkind);
1344 				value &= ~AR_AN_TOP2_PWDCLKIND;
1345 				value |= AR_AN_TOP2_PWDCLKIND &
1346 					(pBase->pwdclkind << AR_AN_TOP2_PWDCLKIND_S);
1347 			} else {
1348 				ath_print(common, ATH_DBG_EEPROM,
1349 					  "PWDCLKIND Earlier Rev\n");
1350 			}
1351 
1352 			ath_print(common, ATH_DBG_EEPROM,
1353 				  "final ini VAL: %x\n", value);
1354 		}
1355 		break;
1356 	}
1357 
1358 	return value;
1359 }
1360 
1361 static u32 ath9k_hw_ini_fixup(struct ath_hw *ah,
1362 			      struct ar5416_eeprom_def *pEepData,
1363 			      u32 reg, u32 value)
1364 {
1365 	if (ah->eep_map == EEP_MAP_4KBITS)
1366 		return value;
1367 	else
1368 		return ath9k_hw_def_ini_fixup(ah, pEepData, reg, value);
1369 }
1370 
1371 static void ath9k_olc_init(struct ath_hw *ah)
1372 {
1373 	u32 i;
1374 
1375 	if (OLC_FOR_AR9287_10_LATER) {
1376 		REG_SET_BIT(ah, AR_PHY_TX_PWRCTRL9,
1377 				AR_PHY_TX_PWRCTRL9_RES_DC_REMOVAL);
1378 		ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TXPC0,
1379 				AR9287_AN_TXPC0_TXPCMODE,
1380 				AR9287_AN_TXPC0_TXPCMODE_S,
1381 				AR9287_AN_TXPC0_TXPCMODE_TEMPSENSE);
1382 		udelay(100);
1383 	} else {
1384 		for (i = 0; i < AR9280_TX_GAIN_TABLE_SIZE; i++)
1385 			ah->originalGain[i] =
1386 				MS(REG_READ(ah, AR_PHY_TX_GAIN_TBL1 + i * 4),
1387 						AR_PHY_TX_GAIN);
1388 		ah->PDADCdelta = 0;
1389 	}
1390 }
1391 
1392 static u32 ath9k_regd_get_ctl(struct ath_regulatory *reg,
1393 			      struct ath9k_channel *chan)
1394 {
1395 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1396 
1397 	if (IS_CHAN_B(chan))
1398 		ctl |= CTL_11B;
1399 	else if (IS_CHAN_G(chan))
1400 		ctl |= CTL_11G;
1401 	else
1402 		ctl |= CTL_11A;
1403 
1404 	return ctl;
1405 }
1406 
1407 static int ath9k_hw_process_ini(struct ath_hw *ah,
1408 				struct ath9k_channel *chan)
1409 {
1410 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1411 	int i, regWrites = 0;
1412 	struct ieee80211_channel *channel = chan->chan;
1413 	u32 modesIndex, freqIndex;
1414 
1415 	switch (chan->chanmode) {
1416 	case CHANNEL_A:
1417 	case CHANNEL_A_HT20:
1418 		modesIndex = 1;
1419 		freqIndex = 1;
1420 		break;
1421 	case CHANNEL_A_HT40PLUS:
1422 	case CHANNEL_A_HT40MINUS:
1423 		modesIndex = 2;
1424 		freqIndex = 1;
1425 		break;
1426 	case CHANNEL_G:
1427 	case CHANNEL_G_HT20:
1428 	case CHANNEL_B:
1429 		modesIndex = 4;
1430 		freqIndex = 2;
1431 		break;
1432 	case CHANNEL_G_HT40PLUS:
1433 	case CHANNEL_G_HT40MINUS:
1434 		modesIndex = 3;
1435 		freqIndex = 2;
1436 		break;
1437 
1438 	default:
1439 		return -EINVAL;
1440 	}
1441 
1442 	REG_WRITE(ah, AR_PHY(0), 0x00000007);
1443 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_EXTERNAL_RADIO);
1444 	ah->eep_ops->set_addac(ah, chan);
1445 
1446 	if (AR_SREV_5416_22_OR_LATER(ah)) {
1447 		REG_WRITE_ARRAY(&ah->iniAddac, 1, regWrites);
1448 	} else {
1449 		struct ar5416IniArray temp;
1450 		u32 addacSize =
1451 			sizeof(u32) * ah->iniAddac.ia_rows *
1452 			ah->iniAddac.ia_columns;
1453 
1454 		memcpy(ah->addac5416_21,
1455 		       ah->iniAddac.ia_array, addacSize);
1456 
1457 		(ah->addac5416_21)[31 * ah->iniAddac.ia_columns + 1] = 0;
1458 
1459 		temp.ia_array = ah->addac5416_21;
1460 		temp.ia_columns = ah->iniAddac.ia_columns;
1461 		temp.ia_rows = ah->iniAddac.ia_rows;
1462 		REG_WRITE_ARRAY(&temp, 1, regWrites);
1463 	}
1464 
1465 	REG_WRITE(ah, AR_PHY_ADC_SERIAL_CTL, AR_PHY_SEL_INTERNAL_ADDAC);
1466 
1467 	for (i = 0; i < ah->iniModes.ia_rows; i++) {
1468 		u32 reg = INI_RA(&ah->iniModes, i, 0);
1469 		u32 val = INI_RA(&ah->iniModes, i, modesIndex);
1470 
1471 		REG_WRITE(ah, reg, val);
1472 
1473 		if (reg >= 0x7800 && reg < 0x78a0
1474 		    && ah->config.analog_shiftreg) {
1475 			udelay(100);
1476 		}
1477 
1478 		DO_DELAY(regWrites);
1479 	}
1480 
1481 	if (AR_SREV_9280(ah) || AR_SREV_9287_10_OR_LATER(ah))
1482 		REG_WRITE_ARRAY(&ah->iniModesRxGain, modesIndex, regWrites);
1483 
1484 	if (AR_SREV_9280(ah) || AR_SREV_9285_12_OR_LATER(ah) ||
1485 	    AR_SREV_9287_10_OR_LATER(ah))
1486 		REG_WRITE_ARRAY(&ah->iniModesTxGain, modesIndex, regWrites);
1487 
1488 	for (i = 0; i < ah->iniCommon.ia_rows; i++) {
1489 		u32 reg = INI_RA(&ah->iniCommon, i, 0);
1490 		u32 val = INI_RA(&ah->iniCommon, i, 1);
1491 
1492 		REG_WRITE(ah, reg, val);
1493 
1494 		if (reg >= 0x7800 && reg < 0x78a0
1495 		    && ah->config.analog_shiftreg) {
1496 			udelay(100);
1497 		}
1498 
1499 		DO_DELAY(regWrites);
1500 	}
1501 
1502 	ath9k_hw_write_regs(ah, freqIndex, regWrites);
1503 
1504 	if (AR_SREV_9271_10(ah))
1505 		REG_WRITE_ARRAY(&ah->iniModes_9271_1_0_only,
1506 				modesIndex, regWrites);
1507 
1508 	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan)) {
1509 		REG_WRITE_ARRAY(&ah->iniModesAdditional, modesIndex,
1510 				regWrites);
1511 	}
1512 
1513 	ath9k_hw_override_ini(ah, chan);
1514 	ath9k_hw_set_regs(ah, chan);
1515 	ath9k_hw_init_chain_masks(ah);
1516 
1517 	if (OLC_FOR_AR9280_20_LATER)
1518 		ath9k_olc_init(ah);
1519 
1520 	ah->eep_ops->set_txpower(ah, chan,
1521 				 ath9k_regd_get_ctl(regulatory, chan),
1522 				 channel->max_antenna_gain * 2,
1523 				 channel->max_power * 2,
1524 				 min((u32) MAX_RATE_POWER,
1525 				 (u32) regulatory->power_limit));
1526 
1527 	if (!ath9k_hw_set_rf_regs(ah, chan, freqIndex)) {
1528 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
1529 			  "ar5416SetRfRegs failed\n");
1530 		return -EIO;
1531 	}
1532 
1533 	return 0;
1534 }
1535 
1536 /****************************************/
1537 /* Reset and Channel Switching Routines */
1538 /****************************************/
1539 
1540 static void ath9k_hw_set_rfmode(struct ath_hw *ah, struct ath9k_channel *chan)
1541 {
1542 	u32 rfMode = 0;
1543 
1544 	if (chan == NULL)
1545 		return;
1546 
1547 	rfMode |= (IS_CHAN_B(chan) || IS_CHAN_G(chan))
1548 		? AR_PHY_MODE_DYNAMIC : AR_PHY_MODE_OFDM;
1549 
1550 	if (!AR_SREV_9280_10_OR_LATER(ah))
1551 		rfMode |= (IS_CHAN_5GHZ(chan)) ?
1552 			AR_PHY_MODE_RF5GHZ : AR_PHY_MODE_RF2GHZ;
1553 
1554 	if (AR_SREV_9280_20(ah) && IS_CHAN_A_5MHZ_SPACED(chan))
1555 		rfMode |= (AR_PHY_MODE_DYNAMIC | AR_PHY_MODE_DYN_CCK_DISABLE);
1556 
1557 	REG_WRITE(ah, AR_PHY_MODE, rfMode);
1558 }
1559 
1560 static void ath9k_hw_mark_phy_inactive(struct ath_hw *ah)
1561 {
1562 	REG_WRITE(ah, AR_PHY_ACTIVE, AR_PHY_ACTIVE_DIS);
1563 }
1564 
1565 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1566 {
1567 	u32 regval;
1568 
1569 	/*
1570 	 * set AHB_MODE not to do cacheline prefetches
1571 	*/
1572 	regval = REG_READ(ah, AR_AHB_MODE);
1573 	REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
1574 
1575 	/*
1576 	 * let mac dma reads be in 128 byte chunks
1577 	 */
1578 	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
1579 	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
1580 
1581 	/*
1582 	 * Restore TX Trigger Level to its pre-reset value.
1583 	 * The initial value depends on whether aggregation is enabled, and is
1584 	 * adjusted whenever underruns are detected.
1585 	 */
1586 	REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1587 
1588 	/*
1589 	 * let mac dma writes be in 128 byte chunks
1590 	 */
1591 	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
1592 	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
1593 
1594 	/*
1595 	 * Setup receive FIFO threshold to hold off TX activities
1596 	 */
1597 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1598 
1599 	/*
1600 	 * reduce the number of usable entries in PCU TXBUF to avoid
1601 	 * wrap around issues.
1602 	 */
1603 	if (AR_SREV_9285(ah)) {
1604 		/* For AR9285 the number of Fifos are reduced to half.
1605 		 * So set the usable tx buf size also to half to
1606 		 * avoid data/delimiter underruns
1607 		 */
1608 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1609 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
1610 	} else if (!AR_SREV_9271(ah)) {
1611 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
1612 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
1613 	}
1614 }
1615 
1616 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1617 {
1618 	u32 val;
1619 
1620 	val = REG_READ(ah, AR_STA_ID1);
1621 	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
1622 	switch (opmode) {
1623 	case NL80211_IFTYPE_AP:
1624 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
1625 			  | AR_STA_ID1_KSRCH_MODE);
1626 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1627 		break;
1628 	case NL80211_IFTYPE_ADHOC:
1629 	case NL80211_IFTYPE_MESH_POINT:
1630 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
1631 			  | AR_STA_ID1_KSRCH_MODE);
1632 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1633 		break;
1634 	case NL80211_IFTYPE_STATION:
1635 	case NL80211_IFTYPE_MONITOR:
1636 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
1637 		break;
1638 	}
1639 }
1640 
1641 static inline void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah,
1642 						 u32 coef_scaled,
1643 						 u32 *coef_mantissa,
1644 						 u32 *coef_exponent)
1645 {
1646 	u32 coef_exp, coef_man;
1647 
1648 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1649 		if ((coef_scaled >> coef_exp) & 0x1)
1650 			break;
1651 
1652 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1653 
1654 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1655 
1656 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1657 	*coef_exponent = coef_exp - 16;
1658 }
1659 
1660 static void ath9k_hw_set_delta_slope(struct ath_hw *ah,
1661 				     struct ath9k_channel *chan)
1662 {
1663 	u32 coef_scaled, ds_coef_exp, ds_coef_man;
1664 	u32 clockMhzScaled = 0x64000000;
1665 	struct chan_centers centers;
1666 
1667 	if (IS_CHAN_HALF_RATE(chan))
1668 		clockMhzScaled = clockMhzScaled >> 1;
1669 	else if (IS_CHAN_QUARTER_RATE(chan))
1670 		clockMhzScaled = clockMhzScaled >> 2;
1671 
1672 	ath9k_hw_get_channel_centers(ah, chan, &centers);
1673 	coef_scaled = clockMhzScaled / centers.synth_center;
1674 
1675 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1676 				      &ds_coef_exp);
1677 
1678 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1679 		      AR_PHY_TIMING3_DSC_MAN, ds_coef_man);
1680 	REG_RMW_FIELD(ah, AR_PHY_TIMING3,
1681 		      AR_PHY_TIMING3_DSC_EXP, ds_coef_exp);
1682 
1683 	coef_scaled = (9 * coef_scaled) / 10;
1684 
1685 	ath9k_hw_get_delta_slope_vals(ah, coef_scaled, &ds_coef_man,
1686 				      &ds_coef_exp);
1687 
1688 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1689 		      AR_PHY_HALFGI_DSC_MAN, ds_coef_man);
1690 	REG_RMW_FIELD(ah, AR_PHY_HALFGI,
1691 		      AR_PHY_HALFGI_DSC_EXP, ds_coef_exp);
1692 }
1693 
1694 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1695 {
1696 	u32 rst_flags;
1697 	u32 tmpReg;
1698 
1699 	if (AR_SREV_9100(ah)) {
1700 		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
1701 		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
1702 		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
1703 		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
1704 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1705 	}
1706 
1707 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1708 		  AR_RTC_FORCE_WAKE_ON_INT);
1709 
1710 	if (AR_SREV_9100(ah)) {
1711 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1712 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1713 	} else {
1714 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1715 		if (tmpReg &
1716 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1717 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1718 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1719 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1720 		} else {
1721 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1722 		}
1723 
1724 		rst_flags = AR_RTC_RC_MAC_WARM;
1725 		if (type == ATH9K_RESET_COLD)
1726 			rst_flags |= AR_RTC_RC_MAC_COLD;
1727 	}
1728 
1729 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1730 	udelay(50);
1731 
1732 	REG_WRITE(ah, AR_RTC_RC, 0);
1733 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1734 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1735 			  "RTC stuck in MAC reset\n");
1736 		return false;
1737 	}
1738 
1739 	if (!AR_SREV_9100(ah))
1740 		REG_WRITE(ah, AR_RC, 0);
1741 
1742 	if (AR_SREV_9100(ah))
1743 		udelay(50);
1744 
1745 	return true;
1746 }
1747 
1748 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1749 {
1750 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1751 		  AR_RTC_FORCE_WAKE_ON_INT);
1752 
1753 	if (!AR_SREV_9100(ah))
1754 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1755 
1756 	REG_WRITE(ah, AR_RTC_RESET, 0);
1757 	udelay(2);
1758 
1759 	if (!AR_SREV_9100(ah))
1760 		REG_WRITE(ah, AR_RC, 0);
1761 
1762 	REG_WRITE(ah, AR_RTC_RESET, 1);
1763 
1764 	if (!ath9k_hw_wait(ah,
1765 			   AR_RTC_STATUS,
1766 			   AR_RTC_STATUS_M,
1767 			   AR_RTC_STATUS_ON,
1768 			   AH_WAIT_TIMEOUT)) {
1769 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
1770 			  "RTC not waking up\n");
1771 		return false;
1772 	}
1773 
1774 	ath9k_hw_read_revisions(ah);
1775 
1776 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1777 }
1778 
1779 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1780 {
1781 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1782 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1783 
1784 	switch (type) {
1785 	case ATH9K_RESET_POWER_ON:
1786 		return ath9k_hw_set_reset_power_on(ah);
1787 	case ATH9K_RESET_WARM:
1788 	case ATH9K_RESET_COLD:
1789 		return ath9k_hw_set_reset(ah, type);
1790 	default:
1791 		return false;
1792 	}
1793 }
1794 
1795 static void ath9k_hw_set_regs(struct ath_hw *ah, struct ath9k_channel *chan)
1796 {
1797 	u32 phymode;
1798 	u32 enableDacFifo = 0;
1799 
1800 	if (AR_SREV_9285_10_OR_LATER(ah))
1801 		enableDacFifo = (REG_READ(ah, AR_PHY_TURBO) &
1802 					 AR_PHY_FC_ENABLE_DAC_FIFO);
1803 
1804 	phymode = AR_PHY_FC_HT_EN | AR_PHY_FC_SHORT_GI_40
1805 		| AR_PHY_FC_SINGLE_HT_LTF1 | AR_PHY_FC_WALSH | enableDacFifo;
1806 
1807 	if (IS_CHAN_HT40(chan)) {
1808 		phymode |= AR_PHY_FC_DYN2040_EN;
1809 
1810 		if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
1811 		    (chan->chanmode == CHANNEL_G_HT40PLUS))
1812 			phymode |= AR_PHY_FC_DYN2040_PRI_CH;
1813 
1814 	}
1815 	REG_WRITE(ah, AR_PHY_TURBO, phymode);
1816 
1817 	ath9k_hw_set11nmac2040(ah);
1818 
1819 	REG_WRITE(ah, AR_GTXTO, 25 << AR_GTXTO_TIMEOUT_LIMIT_S);
1820 	REG_WRITE(ah, AR_CST, 0xF << AR_CST_TIMEOUT_LIMIT_S);
1821 }
1822 
1823 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1824 				struct ath9k_channel *chan)
1825 {
1826 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1827 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1828 			return false;
1829 	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1830 		return false;
1831 
1832 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1833 		return false;
1834 
1835 	ah->chip_fullsleep = false;
1836 	ath9k_hw_init_pll(ah, chan);
1837 	ath9k_hw_set_rfmode(ah, chan);
1838 
1839 	return true;
1840 }
1841 
1842 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1843 				    struct ath9k_channel *chan)
1844 {
1845 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1846 	struct ath_common *common = ath9k_hw_common(ah);
1847 	struct ieee80211_channel *channel = chan->chan;
1848 	u32 synthDelay, qnum;
1849 	int r;
1850 
1851 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1852 		if (ath9k_hw_numtxpending(ah, qnum)) {
1853 			ath_print(common, ATH_DBG_QUEUE,
1854 				  "Transmit frames pending on "
1855 				  "queue %d\n", qnum);
1856 			return false;
1857 		}
1858 	}
1859 
1860 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, AR_PHY_RFBUS_REQ_EN);
1861 	if (!ath9k_hw_wait(ah, AR_PHY_RFBUS_GRANT, AR_PHY_RFBUS_GRANT_EN,
1862 			   AR_PHY_RFBUS_GRANT_EN, AH_WAIT_TIMEOUT)) {
1863 		ath_print(common, ATH_DBG_FATAL,
1864 			  "Could not kill baseband RX\n");
1865 		return false;
1866 	}
1867 
1868 	ath9k_hw_set_regs(ah, chan);
1869 
1870 	r = ah->ath9k_hw_rf_set_freq(ah, chan);
1871 	if (r) {
1872 		ath_print(common, ATH_DBG_FATAL,
1873 			  "Failed to set channel\n");
1874 		return false;
1875 	}
1876 
1877 	ah->eep_ops->set_txpower(ah, chan,
1878 			     ath9k_regd_get_ctl(regulatory, chan),
1879 			     channel->max_antenna_gain * 2,
1880 			     channel->max_power * 2,
1881 			     min((u32) MAX_RATE_POWER,
1882 			     (u32) regulatory->power_limit));
1883 
1884 	synthDelay = REG_READ(ah, AR_PHY_RX_DELAY) & AR_PHY_RX_DELAY_DELAY;
1885 	if (IS_CHAN_B(chan))
1886 		synthDelay = (4 * synthDelay) / 22;
1887 	else
1888 		synthDelay /= 10;
1889 
1890 	udelay(synthDelay + BASE_ACTIVATE_DELAY);
1891 
1892 	REG_WRITE(ah, AR_PHY_RFBUS_REQ, 0);
1893 
1894 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1895 		ath9k_hw_set_delta_slope(ah, chan);
1896 
1897 	ah->ath9k_hw_spur_mitigate_freq(ah, chan);
1898 
1899 	if (!chan->oneTimeCalsDone)
1900 		chan->oneTimeCalsDone = true;
1901 
1902 	return true;
1903 }
1904 
1905 static void ath9k_enable_rfkill(struct ath_hw *ah)
1906 {
1907 	REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL,
1908 		    AR_GPIO_INPUT_EN_VAL_RFSILENT_BB);
1909 
1910 	REG_CLR_BIT(ah, AR_GPIO_INPUT_MUX2,
1911 		    AR_GPIO_INPUT_MUX2_RFSILENT);
1912 
1913 	ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1914 	REG_SET_BIT(ah, AR_PHY_TEST, RFSILENT_BB);
1915 }
1916 
1917 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1918 		    bool bChannelChange)
1919 {
1920 	struct ath_common *common = ath9k_hw_common(ah);
1921 	u32 saveLedState;
1922 	struct ath9k_channel *curchan = ah->curchan;
1923 	u32 saveDefAntenna;
1924 	u32 macStaId1;
1925 	u64 tsf = 0;
1926 	int i, rx_chainmask, r;
1927 
1928 	ah->txchainmask = common->tx_chainmask;
1929 	ah->rxchainmask = common->rx_chainmask;
1930 
1931 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1932 		return -EIO;
1933 
1934 	if (curchan && !ah->chip_fullsleep)
1935 		ath9k_hw_getnf(ah, curchan);
1936 
1937 	if (bChannelChange &&
1938 	    (ah->chip_fullsleep != true) &&
1939 	    (ah->curchan != NULL) &&
1940 	    (chan->channel != ah->curchan->channel) &&
1941 	    ((chan->channelFlags & CHANNEL_ALL) ==
1942 	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1943 	     !(AR_SREV_9280(ah) || IS_CHAN_A_5MHZ_SPACED(chan) ||
1944 	     IS_CHAN_A_5MHZ_SPACED(ah->curchan))) {
1945 
1946 		if (ath9k_hw_channel_change(ah, chan)) {
1947 			ath9k_hw_loadnf(ah, ah->curchan);
1948 			ath9k_hw_start_nfcal(ah);
1949 			return 0;
1950 		}
1951 	}
1952 
1953 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1954 	if (saveDefAntenna == 0)
1955 		saveDefAntenna = 1;
1956 
1957 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1958 
1959 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1960 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1961 		tsf = ath9k_hw_gettsf64(ah);
1962 
1963 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1964 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1965 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1966 
1967 	ath9k_hw_mark_phy_inactive(ah);
1968 
1969 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1970 		REG_WRITE(ah,
1971 			  AR9271_RESET_POWER_DOWN_CONTROL,
1972 			  AR9271_RADIO_RF_RST);
1973 		udelay(50);
1974 	}
1975 
1976 	if (!ath9k_hw_chip_reset(ah, chan)) {
1977 		ath_print(common, ATH_DBG_FATAL, "Chip reset failed\n");
1978 		return -EINVAL;
1979 	}
1980 
1981 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1982 		ah->htc_reset_init = false;
1983 		REG_WRITE(ah,
1984 			  AR9271_RESET_POWER_DOWN_CONTROL,
1985 			  AR9271_GATE_MAC_CTL);
1986 		udelay(50);
1987 	}
1988 
1989 	/* Restore TSF */
1990 	if (tsf && AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1991 		ath9k_hw_settsf64(ah, tsf);
1992 
1993 	if (AR_SREV_9280_10_OR_LATER(ah))
1994 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1995 
1996 	if (AR_SREV_9287_12_OR_LATER(ah)) {
1997 		/* Enable ASYNC FIFO */
1998 		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
1999 				AR_MAC_PCU_ASYNC_FIFO_REG3_DATAPATH_SEL);
2000 		REG_SET_BIT(ah, AR_PHY_MODE, AR_PHY_MODE_ASYNCFIFO);
2001 		REG_CLR_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2002 				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2003 		REG_SET_BIT(ah, AR_MAC_PCU_ASYNC_FIFO_REG3,
2004 				AR_MAC_PCU_ASYNC_FIFO_REG3_SOFT_RESET);
2005 	}
2006 	r = ath9k_hw_process_ini(ah, chan);
2007 	if (r)
2008 		return r;
2009 
2010 	/* Setup MFP options for CCMP */
2011 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2012 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
2013 		 * frames when constructing CCMP AAD. */
2014 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
2015 			      0xc7ff);
2016 		ah->sw_mgmt_crypto = false;
2017 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
2018 		/* Disable hardware crypto for management frames */
2019 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
2020 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
2021 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2022 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
2023 		ah->sw_mgmt_crypto = true;
2024 	} else
2025 		ah->sw_mgmt_crypto = true;
2026 
2027 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
2028 		ath9k_hw_set_delta_slope(ah, chan);
2029 
2030 	ah->ath9k_hw_spur_mitigate_freq(ah, chan);
2031 	ah->eep_ops->set_board_values(ah, chan);
2032 
2033 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
2034 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
2035 		  | macStaId1
2036 		  | AR_STA_ID1_RTS_USE_DEF
2037 		  | (ah->config.
2038 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
2039 		  | ah->sta_id1_defaults);
2040 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2041 
2042 	ath_hw_setbssidmask(common);
2043 
2044 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
2045 
2046 	ath9k_hw_write_associd(ah);
2047 
2048 	REG_WRITE(ah, AR_ISR, ~0);
2049 
2050 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
2051 
2052 	r = ah->ath9k_hw_rf_set_freq(ah, chan);
2053 	if (r)
2054 		return r;
2055 
2056 	for (i = 0; i < AR_NUM_DCU; i++)
2057 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
2058 
2059 	ah->intr_txqs = 0;
2060 	for (i = 0; i < ah->caps.total_queues; i++)
2061 		ath9k_hw_resettxqueue(ah, i);
2062 
2063 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
2064 	ath9k_hw_init_qos(ah);
2065 
2066 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
2067 		ath9k_enable_rfkill(ah);
2068 
2069 	ath9k_hw_init_global_settings(ah);
2070 
2071 	if (AR_SREV_9287_12_OR_LATER(ah)) {
2072 		REG_WRITE(ah, AR_D_GBL_IFS_SIFS,
2073 			  AR_D_GBL_IFS_SIFS_ASYNC_FIFO_DUR);
2074 		REG_WRITE(ah, AR_D_GBL_IFS_SLOT,
2075 			  AR_D_GBL_IFS_SLOT_ASYNC_FIFO_DUR);
2076 		REG_WRITE(ah, AR_D_GBL_IFS_EIFS,
2077 			  AR_D_GBL_IFS_EIFS_ASYNC_FIFO_DUR);
2078 
2079 		REG_WRITE(ah, AR_TIME_OUT, AR_TIME_OUT_ACK_CTS_ASYNC_FIFO_DUR);
2080 		REG_WRITE(ah, AR_USEC, AR_USEC_ASYNC_FIFO_DUR);
2081 
2082 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
2083 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
2084 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
2085 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
2086 	}
2087 	if (AR_SREV_9287_12_OR_LATER(ah)) {
2088 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
2089 				AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
2090 	}
2091 
2092 	REG_WRITE(ah, AR_STA_ID1,
2093 		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
2094 
2095 	ath9k_hw_set_dma(ah);
2096 
2097 	REG_WRITE(ah, AR_OBS, 8);
2098 
2099 	if (ah->config.rx_intr_mitigation) {
2100 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2101 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2102 	}
2103 
2104 	ath9k_hw_init_bb(ah, chan);
2105 
2106 	if (!ath9k_hw_init_cal(ah, chan))
2107 		return -EIO;
2108 
2109 	rx_chainmask = ah->rxchainmask;
2110 	if ((rx_chainmask == 0x5) || (rx_chainmask == 0x3)) {
2111 		REG_WRITE(ah, AR_PHY_RX_CHAINMASK, rx_chainmask);
2112 		REG_WRITE(ah, AR_PHY_CAL_CHAINMASK, rx_chainmask);
2113 	}
2114 
2115 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2116 
2117 	/*
2118 	 * For big endian systems turn on swapping for descriptors
2119 	 */
2120 	if (AR_SREV_9100(ah)) {
2121 		u32 mask;
2122 		mask = REG_READ(ah, AR_CFG);
2123 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
2124 			ath_print(common, ATH_DBG_RESET,
2125 				"CFG Byte Swap Set 0x%x\n", mask);
2126 		} else {
2127 			mask =
2128 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
2129 			REG_WRITE(ah, AR_CFG, mask);
2130 			ath_print(common, ATH_DBG_RESET,
2131 				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
2132 		}
2133 	} else {
2134 		/* Configure AR9271 target WLAN */
2135                 if (AR_SREV_9271(ah))
2136 			REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
2137 #ifdef __BIG_ENDIAN
2138                 else
2139 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
2140 #endif
2141 	}
2142 
2143 	if (ah->btcoex_hw.enabled)
2144 		ath9k_hw_btcoex_enable(ah);
2145 
2146 	return 0;
2147 }
2148 EXPORT_SYMBOL(ath9k_hw_reset);
2149 
2150 /************************/
2151 /* Key Cache Management */
2152 /************************/
2153 
2154 bool ath9k_hw_keyreset(struct ath_hw *ah, u16 entry)
2155 {
2156 	u32 keyType;
2157 
2158 	if (entry >= ah->caps.keycache_size) {
2159 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2160 			  "keychache entry %u out of range\n", entry);
2161 		return false;
2162 	}
2163 
2164 	keyType = REG_READ(ah, AR_KEYTABLE_TYPE(entry));
2165 
2166 	REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), 0);
2167 	REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), 0);
2168 	REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), 0);
2169 	REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), 0);
2170 	REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), 0);
2171 	REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), AR_KEYTABLE_TYPE_CLR);
2172 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), 0);
2173 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), 0);
2174 
2175 	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2176 		u16 micentry = entry + 64;
2177 
2178 		REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), 0);
2179 		REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2180 		REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), 0);
2181 		REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2182 
2183 	}
2184 
2185 	return true;
2186 }
2187 EXPORT_SYMBOL(ath9k_hw_keyreset);
2188 
2189 bool ath9k_hw_keysetmac(struct ath_hw *ah, u16 entry, const u8 *mac)
2190 {
2191 	u32 macHi, macLo;
2192 
2193 	if (entry >= ah->caps.keycache_size) {
2194 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2195 			  "keychache entry %u out of range\n", entry);
2196 		return false;
2197 	}
2198 
2199 	if (mac != NULL) {
2200 		macHi = (mac[5] << 8) | mac[4];
2201 		macLo = (mac[3] << 24) |
2202 			(mac[2] << 16) |
2203 			(mac[1] << 8) |
2204 			mac[0];
2205 		macLo >>= 1;
2206 		macLo |= (macHi & 1) << 31;
2207 		macHi >>= 1;
2208 	} else {
2209 		macLo = macHi = 0;
2210 	}
2211 	REG_WRITE(ah, AR_KEYTABLE_MAC0(entry), macLo);
2212 	REG_WRITE(ah, AR_KEYTABLE_MAC1(entry), macHi | AR_KEYTABLE_VALID);
2213 
2214 	return true;
2215 }
2216 EXPORT_SYMBOL(ath9k_hw_keysetmac);
2217 
2218 bool ath9k_hw_set_keycache_entry(struct ath_hw *ah, u16 entry,
2219 				 const struct ath9k_keyval *k,
2220 				 const u8 *mac)
2221 {
2222 	const struct ath9k_hw_capabilities *pCap = &ah->caps;
2223 	struct ath_common *common = ath9k_hw_common(ah);
2224 	u32 key0, key1, key2, key3, key4;
2225 	u32 keyType;
2226 
2227 	if (entry >= pCap->keycache_size) {
2228 		ath_print(common, ATH_DBG_FATAL,
2229 			  "keycache entry %u out of range\n", entry);
2230 		return false;
2231 	}
2232 
2233 	switch (k->kv_type) {
2234 	case ATH9K_CIPHER_AES_OCB:
2235 		keyType = AR_KEYTABLE_TYPE_AES;
2236 		break;
2237 	case ATH9K_CIPHER_AES_CCM:
2238 		if (!(pCap->hw_caps & ATH9K_HW_CAP_CIPHER_AESCCM)) {
2239 			ath_print(common, ATH_DBG_ANY,
2240 				  "AES-CCM not supported by mac rev 0x%x\n",
2241 				  ah->hw_version.macRev);
2242 			return false;
2243 		}
2244 		keyType = AR_KEYTABLE_TYPE_CCM;
2245 		break;
2246 	case ATH9K_CIPHER_TKIP:
2247 		keyType = AR_KEYTABLE_TYPE_TKIP;
2248 		if (ATH9K_IS_MIC_ENABLED(ah)
2249 		    && entry + 64 >= pCap->keycache_size) {
2250 			ath_print(common, ATH_DBG_ANY,
2251 				  "entry %u inappropriate for TKIP\n", entry);
2252 			return false;
2253 		}
2254 		break;
2255 	case ATH9K_CIPHER_WEP:
2256 		if (k->kv_len < WLAN_KEY_LEN_WEP40) {
2257 			ath_print(common, ATH_DBG_ANY,
2258 				  "WEP key length %u too small\n", k->kv_len);
2259 			return false;
2260 		}
2261 		if (k->kv_len <= WLAN_KEY_LEN_WEP40)
2262 			keyType = AR_KEYTABLE_TYPE_40;
2263 		else if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2264 			keyType = AR_KEYTABLE_TYPE_104;
2265 		else
2266 			keyType = AR_KEYTABLE_TYPE_128;
2267 		break;
2268 	case ATH9K_CIPHER_CLR:
2269 		keyType = AR_KEYTABLE_TYPE_CLR;
2270 		break;
2271 	default:
2272 		ath_print(common, ATH_DBG_FATAL,
2273 			  "cipher %u not supported\n", k->kv_type);
2274 		return false;
2275 	}
2276 
2277 	key0 = get_unaligned_le32(k->kv_val + 0);
2278 	key1 = get_unaligned_le16(k->kv_val + 4);
2279 	key2 = get_unaligned_le32(k->kv_val + 6);
2280 	key3 = get_unaligned_le16(k->kv_val + 10);
2281 	key4 = get_unaligned_le32(k->kv_val + 12);
2282 	if (k->kv_len <= WLAN_KEY_LEN_WEP104)
2283 		key4 &= 0xff;
2284 
2285 	/*
2286 	 * Note: Key cache registers access special memory area that requires
2287 	 * two 32-bit writes to actually update the values in the internal
2288 	 * memory. Consequently, the exact order and pairs used here must be
2289 	 * maintained.
2290 	 */
2291 
2292 	if (keyType == AR_KEYTABLE_TYPE_TKIP && ATH9K_IS_MIC_ENABLED(ah)) {
2293 		u16 micentry = entry + 64;
2294 
2295 		/*
2296 		 * Write inverted key[47:0] first to avoid Michael MIC errors
2297 		 * on frames that could be sent or received at the same time.
2298 		 * The correct key will be written in the end once everything
2299 		 * else is ready.
2300 		 */
2301 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), ~key0);
2302 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), ~key1);
2303 
2304 		/* Write key[95:48] */
2305 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2306 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2307 
2308 		/* Write key[127:96] and key type */
2309 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2310 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2311 
2312 		/* Write MAC address for the entry */
2313 		(void) ath9k_hw_keysetmac(ah, entry, mac);
2314 
2315 		if (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) {
2316 			/*
2317 			 * TKIP uses two key cache entries:
2318 			 * Michael MIC TX/RX keys in the same key cache entry
2319 			 * (idx = main index + 64):
2320 			 * key0 [31:0] = RX key [31:0]
2321 			 * key1 [15:0] = TX key [31:16]
2322 			 * key1 [31:16] = reserved
2323 			 * key2 [31:0] = RX key [63:32]
2324 			 * key3 [15:0] = TX key [15:0]
2325 			 * key3 [31:16] = reserved
2326 			 * key4 [31:0] = TX key [63:32]
2327 			 */
2328 			u32 mic0, mic1, mic2, mic3, mic4;
2329 
2330 			mic0 = get_unaligned_le32(k->kv_mic + 0);
2331 			mic2 = get_unaligned_le32(k->kv_mic + 4);
2332 			mic1 = get_unaligned_le16(k->kv_txmic + 2) & 0xffff;
2333 			mic3 = get_unaligned_le16(k->kv_txmic + 0) & 0xffff;
2334 			mic4 = get_unaligned_le32(k->kv_txmic + 4);
2335 
2336 			/* Write RX[31:0] and TX[31:16] */
2337 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2338 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), mic1);
2339 
2340 			/* Write RX[63:32] and TX[15:0] */
2341 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2342 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), mic3);
2343 
2344 			/* Write TX[63:32] and keyType(reserved) */
2345 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), mic4);
2346 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2347 				  AR_KEYTABLE_TYPE_CLR);
2348 
2349 		} else {
2350 			/*
2351 			 * TKIP uses four key cache entries (two for group
2352 			 * keys):
2353 			 * Michael MIC TX/RX keys are in different key cache
2354 			 * entries (idx = main index + 64 for TX and
2355 			 * main index + 32 + 96 for RX):
2356 			 * key0 [31:0] = TX/RX MIC key [31:0]
2357 			 * key1 [31:0] = reserved
2358 			 * key2 [31:0] = TX/RX MIC key [63:32]
2359 			 * key3 [31:0] = reserved
2360 			 * key4 [31:0] = reserved
2361 			 *
2362 			 * Upper layer code will call this function separately
2363 			 * for TX and RX keys when these registers offsets are
2364 			 * used.
2365 			 */
2366 			u32 mic0, mic2;
2367 
2368 			mic0 = get_unaligned_le32(k->kv_mic + 0);
2369 			mic2 = get_unaligned_le32(k->kv_mic + 4);
2370 
2371 			/* Write MIC key[31:0] */
2372 			REG_WRITE(ah, AR_KEYTABLE_KEY0(micentry), mic0);
2373 			REG_WRITE(ah, AR_KEYTABLE_KEY1(micentry), 0);
2374 
2375 			/* Write MIC key[63:32] */
2376 			REG_WRITE(ah, AR_KEYTABLE_KEY2(micentry), mic2);
2377 			REG_WRITE(ah, AR_KEYTABLE_KEY3(micentry), 0);
2378 
2379 			/* Write TX[63:32] and keyType(reserved) */
2380 			REG_WRITE(ah, AR_KEYTABLE_KEY4(micentry), 0);
2381 			REG_WRITE(ah, AR_KEYTABLE_TYPE(micentry),
2382 				  AR_KEYTABLE_TYPE_CLR);
2383 		}
2384 
2385 		/* MAC address registers are reserved for the MIC entry */
2386 		REG_WRITE(ah, AR_KEYTABLE_MAC0(micentry), 0);
2387 		REG_WRITE(ah, AR_KEYTABLE_MAC1(micentry), 0);
2388 
2389 		/*
2390 		 * Write the correct (un-inverted) key[47:0] last to enable
2391 		 * TKIP now that all other registers are set with correct
2392 		 * values.
2393 		 */
2394 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2395 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2396 	} else {
2397 		/* Write key[47:0] */
2398 		REG_WRITE(ah, AR_KEYTABLE_KEY0(entry), key0);
2399 		REG_WRITE(ah, AR_KEYTABLE_KEY1(entry), key1);
2400 
2401 		/* Write key[95:48] */
2402 		REG_WRITE(ah, AR_KEYTABLE_KEY2(entry), key2);
2403 		REG_WRITE(ah, AR_KEYTABLE_KEY3(entry), key3);
2404 
2405 		/* Write key[127:96] and key type */
2406 		REG_WRITE(ah, AR_KEYTABLE_KEY4(entry), key4);
2407 		REG_WRITE(ah, AR_KEYTABLE_TYPE(entry), keyType);
2408 
2409 		/* Write MAC address for the entry */
2410 		(void) ath9k_hw_keysetmac(ah, entry, mac);
2411 	}
2412 
2413 	return true;
2414 }
2415 EXPORT_SYMBOL(ath9k_hw_set_keycache_entry);
2416 
2417 bool ath9k_hw_keyisvalid(struct ath_hw *ah, u16 entry)
2418 {
2419 	if (entry < ah->caps.keycache_size) {
2420 		u32 val = REG_READ(ah, AR_KEYTABLE_MAC1(entry));
2421 		if (val & AR_KEYTABLE_VALID)
2422 			return true;
2423 	}
2424 	return false;
2425 }
2426 EXPORT_SYMBOL(ath9k_hw_keyisvalid);
2427 
2428 /******************************/
2429 /* Power Management (Chipset) */
2430 /******************************/
2431 
2432 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
2433 {
2434 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2435 	if (setChip) {
2436 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2437 			    AR_RTC_FORCE_WAKE_EN);
2438 		if (!AR_SREV_9100(ah))
2439 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2440 
2441 		if(!AR_SREV_5416(ah))
2442 			REG_CLR_BIT(ah, (AR_RTC_RESET),
2443 				    AR_RTC_RESET_EN);
2444 	}
2445 }
2446 
2447 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
2448 {
2449 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2450 	if (setChip) {
2451 		struct ath9k_hw_capabilities *pCap = &ah->caps;
2452 
2453 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2454 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2455 				  AR_RTC_FORCE_WAKE_ON_INT);
2456 		} else {
2457 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
2458 				    AR_RTC_FORCE_WAKE_EN);
2459 		}
2460 	}
2461 }
2462 
2463 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
2464 {
2465 	u32 val;
2466 	int i;
2467 
2468 	if (setChip) {
2469 		if ((REG_READ(ah, AR_RTC_STATUS) &
2470 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2471 			if (ath9k_hw_set_reset_reg(ah,
2472 					   ATH9K_RESET_POWER_ON) != true) {
2473 				return false;
2474 			}
2475 			ath9k_hw_init_pll(ah, NULL);
2476 		}
2477 		if (AR_SREV_9100(ah))
2478 			REG_SET_BIT(ah, AR_RTC_RESET,
2479 				    AR_RTC_RESET_EN);
2480 
2481 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2482 			    AR_RTC_FORCE_WAKE_EN);
2483 		udelay(50);
2484 
2485 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
2486 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2487 			if (val == AR_RTC_STATUS_ON)
2488 				break;
2489 			udelay(50);
2490 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2491 				    AR_RTC_FORCE_WAKE_EN);
2492 		}
2493 		if (i == 0) {
2494 			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
2495 				  "Failed to wakeup in %uus\n",
2496 				  POWER_UP_TIME / 20);
2497 			return false;
2498 		}
2499 	}
2500 
2501 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2502 
2503 	return true;
2504 }
2505 
2506 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2507 {
2508 	struct ath_common *common = ath9k_hw_common(ah);
2509 	int status = true, setChip = true;
2510 	static const char *modes[] = {
2511 		"AWAKE",
2512 		"FULL-SLEEP",
2513 		"NETWORK SLEEP",
2514 		"UNDEFINED"
2515 	};
2516 
2517 	if (ah->power_mode == mode)
2518 		return status;
2519 
2520 	ath_print(common, ATH_DBG_RESET, "%s -> %s\n",
2521 		  modes[ah->power_mode], modes[mode]);
2522 
2523 	switch (mode) {
2524 	case ATH9K_PM_AWAKE:
2525 		status = ath9k_hw_set_power_awake(ah, setChip);
2526 		break;
2527 	case ATH9K_PM_FULL_SLEEP:
2528 		ath9k_set_power_sleep(ah, setChip);
2529 		ah->chip_fullsleep = true;
2530 		break;
2531 	case ATH9K_PM_NETWORK_SLEEP:
2532 		ath9k_set_power_network_sleep(ah, setChip);
2533 		break;
2534 	default:
2535 		ath_print(common, ATH_DBG_FATAL,
2536 			  "Unknown power mode %u\n", mode);
2537 		return false;
2538 	}
2539 	ah->power_mode = mode;
2540 
2541 	return status;
2542 }
2543 EXPORT_SYMBOL(ath9k_hw_setpower);
2544 
2545 /*
2546  * Helper for ASPM support.
2547  *
2548  * Disable PLL when in L0s as well as receiver clock when in L1.
2549  * This power saving option must be enabled through the SerDes.
2550  *
2551  * Programming the SerDes must go through the same 288 bit serial shift
2552  * register as the other analog registers.  Hence the 9 writes.
2553  */
2554 void ath9k_hw_configpcipowersave(struct ath_hw *ah, int restore, int power_off)
2555 {
2556 	u8 i;
2557 	u32 val;
2558 
2559 	if (ah->is_pciexpress != true)
2560 		return;
2561 
2562 	/* Do not touch SerDes registers */
2563 	if (ah->config.pcie_powersave_enable == 2)
2564 		return;
2565 
2566 	/* Nothing to do on restore for 11N */
2567 	if (!restore) {
2568 		if (AR_SREV_9280_20_OR_LATER(ah)) {
2569 			/*
2570 			 * AR9280 2.0 or later chips use SerDes values from the
2571 			 * initvals.h initialized depending on chipset during
2572 			 * ath9k_hw_init()
2573 			 */
2574 			for (i = 0; i < ah->iniPcieSerdes.ia_rows; i++) {
2575 				REG_WRITE(ah, INI_RA(&ah->iniPcieSerdes, i, 0),
2576 					  INI_RA(&ah->iniPcieSerdes, i, 1));
2577 			}
2578 		} else if (AR_SREV_9280(ah) &&
2579 			   (ah->hw_version.macRev == AR_SREV_REVISION_9280_10)) {
2580 			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fd00);
2581 			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2582 
2583 			/* RX shut off when elecidle is asserted */
2584 			REG_WRITE(ah, AR_PCIE_SERDES, 0xa8000019);
2585 			REG_WRITE(ah, AR_PCIE_SERDES, 0x13160820);
2586 			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980560);
2587 
2588 			/* Shut off CLKREQ active in L1 */
2589 			if (ah->config.pcie_clock_req)
2590 				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffc);
2591 			else
2592 				REG_WRITE(ah, AR_PCIE_SERDES, 0x401deffd);
2593 
2594 			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2595 			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2596 			REG_WRITE(ah, AR_PCIE_SERDES, 0x00043007);
2597 
2598 			/* Load the new settings */
2599 			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2600 
2601 		} else {
2602 			REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
2603 			REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
2604 
2605 			/* RX shut off when elecidle is asserted */
2606 			REG_WRITE(ah, AR_PCIE_SERDES, 0x28000039);
2607 			REG_WRITE(ah, AR_PCIE_SERDES, 0x53160824);
2608 			REG_WRITE(ah, AR_PCIE_SERDES, 0xe5980579);
2609 
2610 			/*
2611 			 * Ignore ah->ah_config.pcie_clock_req setting for
2612 			 * pre-AR9280 11n
2613 			 */
2614 			REG_WRITE(ah, AR_PCIE_SERDES, 0x001defff);
2615 
2616 			REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
2617 			REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
2618 			REG_WRITE(ah, AR_PCIE_SERDES, 0x000e3007);
2619 
2620 			/* Load the new settings */
2621 			REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
2622 		}
2623 
2624 		udelay(1000);
2625 
2626 		/* set bit 19 to allow forcing of pcie core into L1 state */
2627 		REG_SET_BIT(ah, AR_PCIE_PM_CTRL, AR_PCIE_PM_CTRL_ENA);
2628 
2629 		/* Several PCIe massages to ensure proper behaviour */
2630 		if (ah->config.pcie_waen) {
2631 			val = ah->config.pcie_waen;
2632 			if (!power_off)
2633 				val &= (~AR_WA_D3_L1_DISABLE);
2634 		} else {
2635 			if (AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2636 			    AR_SREV_9287(ah)) {
2637 				val = AR9285_WA_DEFAULT;
2638 				if (!power_off)
2639 					val &= (~AR_WA_D3_L1_DISABLE);
2640 			} else if (AR_SREV_9280(ah)) {
2641 				/*
2642 				 * On AR9280 chips bit 22 of 0x4004 needs to be
2643 				 * set otherwise card may disappear.
2644 				 */
2645 				val = AR9280_WA_DEFAULT;
2646 				if (!power_off)
2647 					val &= (~AR_WA_D3_L1_DISABLE);
2648 			} else
2649 				val = AR_WA_DEFAULT;
2650 		}
2651 
2652 		REG_WRITE(ah, AR_WA, val);
2653 	}
2654 
2655 	if (power_off) {
2656 		/*
2657 		 * Set PCIe workaround bits
2658 		 * bit 14 in WA register (disable L1) should only
2659 		 * be set when device enters D3 and be cleared
2660 		 * when device comes back to D0.
2661 		 */
2662 		if (ah->config.pcie_waen) {
2663 			if (ah->config.pcie_waen & AR_WA_D3_L1_DISABLE)
2664 				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2665 		} else {
2666 			if (((AR_SREV_9285(ah) || AR_SREV_9271(ah) ||
2667 			      AR_SREV_9287(ah)) &&
2668 			     (AR9285_WA_DEFAULT & AR_WA_D3_L1_DISABLE)) ||
2669 			    (AR_SREV_9280(ah) &&
2670 			     (AR9280_WA_DEFAULT & AR_WA_D3_L1_DISABLE))) {
2671 				REG_SET_BIT(ah, AR_WA, AR_WA_D3_L1_DISABLE);
2672 			}
2673 		}
2674 	}
2675 }
2676 EXPORT_SYMBOL(ath9k_hw_configpcipowersave);
2677 
2678 /**********************/
2679 /* Interrupt Handling */
2680 /**********************/
2681 
2682 bool ath9k_hw_intrpend(struct ath_hw *ah)
2683 {
2684 	u32 host_isr;
2685 
2686 	if (AR_SREV_9100(ah))
2687 		return true;
2688 
2689 	host_isr = REG_READ(ah, AR_INTR_ASYNC_CAUSE);
2690 	if ((host_isr & AR_INTR_MAC_IRQ) && (host_isr != AR_INTR_SPURIOUS))
2691 		return true;
2692 
2693 	host_isr = REG_READ(ah, AR_INTR_SYNC_CAUSE);
2694 	if ((host_isr & AR_INTR_SYNC_DEFAULT)
2695 	    && (host_isr != AR_INTR_SPURIOUS))
2696 		return true;
2697 
2698 	return false;
2699 }
2700 EXPORT_SYMBOL(ath9k_hw_intrpend);
2701 
2702 bool ath9k_hw_getisr(struct ath_hw *ah, enum ath9k_int *masked)
2703 {
2704 	u32 isr = 0;
2705 	u32 mask2 = 0;
2706 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2707 	u32 sync_cause = 0;
2708 	bool fatal_int = false;
2709 	struct ath_common *common = ath9k_hw_common(ah);
2710 
2711 	if (!AR_SREV_9100(ah)) {
2712 		if (REG_READ(ah, AR_INTR_ASYNC_CAUSE) & AR_INTR_MAC_IRQ) {
2713 			if ((REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M)
2714 			    == AR_RTC_STATUS_ON) {
2715 				isr = REG_READ(ah, AR_ISR);
2716 			}
2717 		}
2718 
2719 		sync_cause = REG_READ(ah, AR_INTR_SYNC_CAUSE) &
2720 			AR_INTR_SYNC_DEFAULT;
2721 
2722 		*masked = 0;
2723 
2724 		if (!isr && !sync_cause)
2725 			return false;
2726 	} else {
2727 		*masked = 0;
2728 		isr = REG_READ(ah, AR_ISR);
2729 	}
2730 
2731 	if (isr) {
2732 		if (isr & AR_ISR_BCNMISC) {
2733 			u32 isr2;
2734 			isr2 = REG_READ(ah, AR_ISR_S2);
2735 			if (isr2 & AR_ISR_S2_TIM)
2736 				mask2 |= ATH9K_INT_TIM;
2737 			if (isr2 & AR_ISR_S2_DTIM)
2738 				mask2 |= ATH9K_INT_DTIM;
2739 			if (isr2 & AR_ISR_S2_DTIMSYNC)
2740 				mask2 |= ATH9K_INT_DTIMSYNC;
2741 			if (isr2 & (AR_ISR_S2_CABEND))
2742 				mask2 |= ATH9K_INT_CABEND;
2743 			if (isr2 & AR_ISR_S2_GTT)
2744 				mask2 |= ATH9K_INT_GTT;
2745 			if (isr2 & AR_ISR_S2_CST)
2746 				mask2 |= ATH9K_INT_CST;
2747 			if (isr2 & AR_ISR_S2_TSFOOR)
2748 				mask2 |= ATH9K_INT_TSFOOR;
2749 		}
2750 
2751 		isr = REG_READ(ah, AR_ISR_RAC);
2752 		if (isr == 0xffffffff) {
2753 			*masked = 0;
2754 			return false;
2755 		}
2756 
2757 		*masked = isr & ATH9K_INT_COMMON;
2758 
2759 		if (ah->config.rx_intr_mitigation) {
2760 			if (isr & (AR_ISR_RXMINTR | AR_ISR_RXINTM))
2761 				*masked |= ATH9K_INT_RX;
2762 		}
2763 
2764 		if (isr & (AR_ISR_RXOK | AR_ISR_RXERR))
2765 			*masked |= ATH9K_INT_RX;
2766 		if (isr &
2767 		    (AR_ISR_TXOK | AR_ISR_TXDESC | AR_ISR_TXERR |
2768 		     AR_ISR_TXEOL)) {
2769 			u32 s0_s, s1_s;
2770 
2771 			*masked |= ATH9K_INT_TX;
2772 
2773 			s0_s = REG_READ(ah, AR_ISR_S0_S);
2774 			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXOK);
2775 			ah->intr_txqs |= MS(s0_s, AR_ISR_S0_QCU_TXDESC);
2776 
2777 			s1_s = REG_READ(ah, AR_ISR_S1_S);
2778 			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXERR);
2779 			ah->intr_txqs |= MS(s1_s, AR_ISR_S1_QCU_TXEOL);
2780 		}
2781 
2782 		if (isr & AR_ISR_RXORN) {
2783 			ath_print(common, ATH_DBG_INTERRUPT,
2784 				  "receive FIFO overrun interrupt\n");
2785 		}
2786 
2787 		if (!AR_SREV_9100(ah)) {
2788 			if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2789 				u32 isr5 = REG_READ(ah, AR_ISR_S5_S);
2790 				if (isr5 & AR_ISR_S5_TIM_TIMER)
2791 					*masked |= ATH9K_INT_TIM_TIMER;
2792 			}
2793 		}
2794 
2795 		*masked |= mask2;
2796 	}
2797 
2798 	if (AR_SREV_9100(ah))
2799 		return true;
2800 
2801 	if (isr & AR_ISR_GENTMR) {
2802 		u32 s5_s;
2803 
2804 		s5_s = REG_READ(ah, AR_ISR_S5_S);
2805 		if (isr & AR_ISR_GENTMR) {
2806 			ah->intr_gen_timer_trigger =
2807 				MS(s5_s, AR_ISR_S5_GENTIMER_TRIG);
2808 
2809 			ah->intr_gen_timer_thresh =
2810 				MS(s5_s, AR_ISR_S5_GENTIMER_THRESH);
2811 
2812 			if (ah->intr_gen_timer_trigger)
2813 				*masked |= ATH9K_INT_GENTIMER;
2814 
2815 		}
2816 	}
2817 
2818 	if (sync_cause) {
2819 		fatal_int =
2820 			(sync_cause &
2821 			 (AR_INTR_SYNC_HOST1_FATAL | AR_INTR_SYNC_HOST1_PERR))
2822 			? true : false;
2823 
2824 		if (fatal_int) {
2825 			if (sync_cause & AR_INTR_SYNC_HOST1_FATAL) {
2826 				ath_print(common, ATH_DBG_ANY,
2827 					  "received PCI FATAL interrupt\n");
2828 			}
2829 			if (sync_cause & AR_INTR_SYNC_HOST1_PERR) {
2830 				ath_print(common, ATH_DBG_ANY,
2831 					  "received PCI PERR interrupt\n");
2832 			}
2833 			*masked |= ATH9K_INT_FATAL;
2834 		}
2835 		if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT) {
2836 			ath_print(common, ATH_DBG_INTERRUPT,
2837 				  "AR_INTR_SYNC_RADM_CPL_TIMEOUT\n");
2838 			REG_WRITE(ah, AR_RC, AR_RC_HOSTIF);
2839 			REG_WRITE(ah, AR_RC, 0);
2840 			*masked |= ATH9K_INT_FATAL;
2841 		}
2842 		if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT) {
2843 			ath_print(common, ATH_DBG_INTERRUPT,
2844 				  "AR_INTR_SYNC_LOCAL_TIMEOUT\n");
2845 		}
2846 
2847 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE_CLR, sync_cause);
2848 		(void) REG_READ(ah, AR_INTR_SYNC_CAUSE_CLR);
2849 	}
2850 
2851 	return true;
2852 }
2853 EXPORT_SYMBOL(ath9k_hw_getisr);
2854 
2855 enum ath9k_int ath9k_hw_set_interrupts(struct ath_hw *ah, enum ath9k_int ints)
2856 {
2857 	u32 omask = ah->mask_reg;
2858 	u32 mask, mask2;
2859 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2860 	struct ath_common *common = ath9k_hw_common(ah);
2861 
2862 	ath_print(common, ATH_DBG_INTERRUPT, "0x%x => 0x%x\n", omask, ints);
2863 
2864 	if (omask & ATH9K_INT_GLOBAL) {
2865 		ath_print(common, ATH_DBG_INTERRUPT, "disable IER\n");
2866 		REG_WRITE(ah, AR_IER, AR_IER_DISABLE);
2867 		(void) REG_READ(ah, AR_IER);
2868 		if (!AR_SREV_9100(ah)) {
2869 			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE, 0);
2870 			(void) REG_READ(ah, AR_INTR_ASYNC_ENABLE);
2871 
2872 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
2873 			(void) REG_READ(ah, AR_INTR_SYNC_ENABLE);
2874 		}
2875 	}
2876 
2877 	mask = ints & ATH9K_INT_COMMON;
2878 	mask2 = 0;
2879 
2880 	if (ints & ATH9K_INT_TX) {
2881 		if (ah->txok_interrupt_mask)
2882 			mask |= AR_IMR_TXOK;
2883 		if (ah->txdesc_interrupt_mask)
2884 			mask |= AR_IMR_TXDESC;
2885 		if (ah->txerr_interrupt_mask)
2886 			mask |= AR_IMR_TXERR;
2887 		if (ah->txeol_interrupt_mask)
2888 			mask |= AR_IMR_TXEOL;
2889 	}
2890 	if (ints & ATH9K_INT_RX) {
2891 		mask |= AR_IMR_RXERR;
2892 		if (ah->config.rx_intr_mitigation)
2893 			mask |= AR_IMR_RXMINTR | AR_IMR_RXINTM;
2894 		else
2895 			mask |= AR_IMR_RXOK | AR_IMR_RXDESC;
2896 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP))
2897 			mask |= AR_IMR_GENTMR;
2898 	}
2899 
2900 	if (ints & (ATH9K_INT_BMISC)) {
2901 		mask |= AR_IMR_BCNMISC;
2902 		if (ints & ATH9K_INT_TIM)
2903 			mask2 |= AR_IMR_S2_TIM;
2904 		if (ints & ATH9K_INT_DTIM)
2905 			mask2 |= AR_IMR_S2_DTIM;
2906 		if (ints & ATH9K_INT_DTIMSYNC)
2907 			mask2 |= AR_IMR_S2_DTIMSYNC;
2908 		if (ints & ATH9K_INT_CABEND)
2909 			mask2 |= AR_IMR_S2_CABEND;
2910 		if (ints & ATH9K_INT_TSFOOR)
2911 			mask2 |= AR_IMR_S2_TSFOOR;
2912 	}
2913 
2914 	if (ints & (ATH9K_INT_GTT | ATH9K_INT_CST)) {
2915 		mask |= AR_IMR_BCNMISC;
2916 		if (ints & ATH9K_INT_GTT)
2917 			mask2 |= AR_IMR_S2_GTT;
2918 		if (ints & ATH9K_INT_CST)
2919 			mask2 |= AR_IMR_S2_CST;
2920 	}
2921 
2922 	ath_print(common, ATH_DBG_INTERRUPT, "new IMR 0x%x\n", mask);
2923 	REG_WRITE(ah, AR_IMR, mask);
2924 	mask = REG_READ(ah, AR_IMR_S2) & ~(AR_IMR_S2_TIM |
2925 					   AR_IMR_S2_DTIM |
2926 					   AR_IMR_S2_DTIMSYNC |
2927 					   AR_IMR_S2_CABEND |
2928 					   AR_IMR_S2_CABTO |
2929 					   AR_IMR_S2_TSFOOR |
2930 					   AR_IMR_S2_GTT | AR_IMR_S2_CST);
2931 	REG_WRITE(ah, AR_IMR_S2, mask | mask2);
2932 	ah->mask_reg = ints;
2933 
2934 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2935 		if (ints & ATH9K_INT_TIM_TIMER)
2936 			REG_SET_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2937 		else
2938 			REG_CLR_BIT(ah, AR_IMR_S5, AR_IMR_S5_TIM_TIMER);
2939 	}
2940 
2941 	if (ints & ATH9K_INT_GLOBAL) {
2942 		ath_print(common, ATH_DBG_INTERRUPT, "enable IER\n");
2943 		REG_WRITE(ah, AR_IER, AR_IER_ENABLE);
2944 		if (!AR_SREV_9100(ah)) {
2945 			REG_WRITE(ah, AR_INTR_ASYNC_ENABLE,
2946 				  AR_INTR_MAC_IRQ);
2947 			REG_WRITE(ah, AR_INTR_ASYNC_MASK, AR_INTR_MAC_IRQ);
2948 
2949 
2950 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE,
2951 				  AR_INTR_SYNC_DEFAULT);
2952 			REG_WRITE(ah, AR_INTR_SYNC_MASK,
2953 				  AR_INTR_SYNC_DEFAULT);
2954 		}
2955 		ath_print(common, ATH_DBG_INTERRUPT, "AR_IMR 0x%x IER 0x%x\n",
2956 			  REG_READ(ah, AR_IMR), REG_READ(ah, AR_IER));
2957 	}
2958 
2959 	return omask;
2960 }
2961 EXPORT_SYMBOL(ath9k_hw_set_interrupts);
2962 
2963 /*******************/
2964 /* Beacon Handling */
2965 /*******************/
2966 
2967 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2968 {
2969 	int flags = 0;
2970 
2971 	ah->beacon_interval = beacon_period;
2972 
2973 	switch (ah->opmode) {
2974 	case NL80211_IFTYPE_STATION:
2975 	case NL80211_IFTYPE_MONITOR:
2976 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2977 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, 0xffff);
2978 		REG_WRITE(ah, AR_NEXT_SWBA, 0x7ffff);
2979 		flags |= AR_TBTT_TIMER_EN;
2980 		break;
2981 	case NL80211_IFTYPE_ADHOC:
2982 	case NL80211_IFTYPE_MESH_POINT:
2983 		REG_SET_BIT(ah, AR_TXCFG,
2984 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2985 		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
2986 			  TU_TO_USEC(next_beacon +
2987 				     (ah->atim_window ? ah->
2988 				      atim_window : 1)));
2989 		flags |= AR_NDP_TIMER_EN;
2990 	case NL80211_IFTYPE_AP:
2991 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
2992 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
2993 			  TU_TO_USEC(next_beacon -
2994 				     ah->config.
2995 				     dma_beacon_response_time));
2996 		REG_WRITE(ah, AR_NEXT_SWBA,
2997 			  TU_TO_USEC(next_beacon -
2998 				     ah->config.
2999 				     sw_beacon_response_time));
3000 		flags |=
3001 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
3002 		break;
3003 	default:
3004 		ath_print(ath9k_hw_common(ah), ATH_DBG_BEACON,
3005 			  "%s: unsupported opmode: %d\n",
3006 			  __func__, ah->opmode);
3007 		return;
3008 		break;
3009 	}
3010 
3011 	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3012 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
3013 	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
3014 	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
3015 
3016 	beacon_period &= ~ATH9K_BEACON_ENA;
3017 	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
3018 		ath9k_hw_reset_tsf(ah);
3019 	}
3020 
3021 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
3022 }
3023 EXPORT_SYMBOL(ath9k_hw_beaconinit);
3024 
3025 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
3026 				    const struct ath9k_beacon_state *bs)
3027 {
3028 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
3029 	struct ath9k_hw_capabilities *pCap = &ah->caps;
3030 	struct ath_common *common = ath9k_hw_common(ah);
3031 
3032 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
3033 
3034 	REG_WRITE(ah, AR_BEACON_PERIOD,
3035 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3036 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
3037 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
3038 
3039 	REG_RMW_FIELD(ah, AR_RSSI_THR,
3040 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
3041 
3042 	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
3043 
3044 	if (bs->bs_sleepduration > beaconintval)
3045 		beaconintval = bs->bs_sleepduration;
3046 
3047 	dtimperiod = bs->bs_dtimperiod;
3048 	if (bs->bs_sleepduration > dtimperiod)
3049 		dtimperiod = bs->bs_sleepduration;
3050 
3051 	if (beaconintval == dtimperiod)
3052 		nextTbtt = bs->bs_nextdtim;
3053 	else
3054 		nextTbtt = bs->bs_nexttbtt;
3055 
3056 	ath_print(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
3057 	ath_print(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
3058 	ath_print(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
3059 	ath_print(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
3060 
3061 	REG_WRITE(ah, AR_NEXT_DTIM,
3062 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
3063 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
3064 
3065 	REG_WRITE(ah, AR_SLEEP1,
3066 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
3067 		  | AR_SLEEP1_ASSUME_DTIM);
3068 
3069 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
3070 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
3071 	else
3072 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
3073 
3074 	REG_WRITE(ah, AR_SLEEP2,
3075 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
3076 
3077 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
3078 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
3079 
3080 	REG_SET_BIT(ah, AR_TIMER_MODE,
3081 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
3082 		    AR_DTIM_TIMER_EN);
3083 
3084 	/* TSF Out of Range Threshold */
3085 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
3086 }
3087 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
3088 
3089 /*******************/
3090 /* HW Capabilities */
3091 /*******************/
3092 
3093 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
3094 {
3095 	struct ath9k_hw_capabilities *pCap = &ah->caps;
3096 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3097 	struct ath_common *common = ath9k_hw_common(ah);
3098 	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
3099 
3100 	u16 capField = 0, eeval;
3101 
3102 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
3103 	regulatory->current_rd = eeval;
3104 
3105 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
3106 	if (AR_SREV_9285_10_OR_LATER(ah))
3107 		eeval |= AR9285_RDEXT_DEFAULT;
3108 	regulatory->current_rd_ext = eeval;
3109 
3110 	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
3111 
3112 	if (ah->opmode != NL80211_IFTYPE_AP &&
3113 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
3114 		if (regulatory->current_rd == 0x64 ||
3115 		    regulatory->current_rd == 0x65)
3116 			regulatory->current_rd += 5;
3117 		else if (regulatory->current_rd == 0x41)
3118 			regulatory->current_rd = 0x43;
3119 		ath_print(common, ATH_DBG_REGULATORY,
3120 			  "regdomain mapped to 0x%x\n", regulatory->current_rd);
3121 	}
3122 
3123 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
3124 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
3125 		ath_print(common, ATH_DBG_FATAL,
3126 			  "no band has been marked as supported in EEPROM.\n");
3127 		return -EINVAL;
3128 	}
3129 
3130 	bitmap_zero(pCap->wireless_modes, ATH9K_MODE_MAX);
3131 
3132 	if (eeval & AR5416_OPFLAGS_11A) {
3133 		set_bit(ATH9K_MODE_11A, pCap->wireless_modes);
3134 		if (ah->config.ht_enable) {
3135 			if (!(eeval & AR5416_OPFLAGS_N_5G_HT20))
3136 				set_bit(ATH9K_MODE_11NA_HT20,
3137 					pCap->wireless_modes);
3138 			if (!(eeval & AR5416_OPFLAGS_N_5G_HT40)) {
3139 				set_bit(ATH9K_MODE_11NA_HT40PLUS,
3140 					pCap->wireless_modes);
3141 				set_bit(ATH9K_MODE_11NA_HT40MINUS,
3142 					pCap->wireless_modes);
3143 			}
3144 		}
3145 	}
3146 
3147 	if (eeval & AR5416_OPFLAGS_11G) {
3148 		set_bit(ATH9K_MODE_11G, pCap->wireless_modes);
3149 		if (ah->config.ht_enable) {
3150 			if (!(eeval & AR5416_OPFLAGS_N_2G_HT20))
3151 				set_bit(ATH9K_MODE_11NG_HT20,
3152 					pCap->wireless_modes);
3153 			if (!(eeval & AR5416_OPFLAGS_N_2G_HT40)) {
3154 				set_bit(ATH9K_MODE_11NG_HT40PLUS,
3155 					pCap->wireless_modes);
3156 				set_bit(ATH9K_MODE_11NG_HT40MINUS,
3157 					pCap->wireless_modes);
3158 			}
3159 		}
3160 	}
3161 
3162 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
3163 	/*
3164 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
3165 	 * the EEPROM.
3166 	 */
3167 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
3168 	    !(eeval & AR5416_OPFLAGS_11A) &&
3169 	    !(AR_SREV_9271(ah)))
3170 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
3171 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
3172 	else
3173 		/* Use rx_chainmask from EEPROM. */
3174 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
3175 
3176 	if (!(AR_SREV_9280(ah) && (ah->hw_version.macRev == 0)))
3177 		ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
3178 
3179 	pCap->low_2ghz_chan = 2312;
3180 	pCap->high_2ghz_chan = 2732;
3181 
3182 	pCap->low_5ghz_chan = 4920;
3183 	pCap->high_5ghz_chan = 6100;
3184 
3185 	pCap->hw_caps &= ~ATH9K_HW_CAP_CIPHER_CKIP;
3186 	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_TKIP;
3187 	pCap->hw_caps |= ATH9K_HW_CAP_CIPHER_AESCCM;
3188 
3189 	pCap->hw_caps &= ~ATH9K_HW_CAP_MIC_CKIP;
3190 	pCap->hw_caps |= ATH9K_HW_CAP_MIC_TKIP;
3191 	pCap->hw_caps |= ATH9K_HW_CAP_MIC_AESCCM;
3192 
3193 	if (ah->config.ht_enable)
3194 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
3195 	else
3196 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
3197 
3198 	pCap->hw_caps |= ATH9K_HW_CAP_GTT;
3199 	pCap->hw_caps |= ATH9K_HW_CAP_VEOL;
3200 	pCap->hw_caps |= ATH9K_HW_CAP_BSSIDMASK;
3201 	pCap->hw_caps &= ~ATH9K_HW_CAP_MCAST_KEYSEARCH;
3202 
3203 	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
3204 		pCap->total_queues =
3205 			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
3206 	else
3207 		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
3208 
3209 	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
3210 		pCap->keycache_size =
3211 			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
3212 	else
3213 		pCap->keycache_size = AR_KEYTABLE_SIZE;
3214 
3215 	pCap->hw_caps |= ATH9K_HW_CAP_FASTCC;
3216 
3217 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
3218 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
3219 	else
3220 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
3221 
3222 	if (AR_SREV_9285_10_OR_LATER(ah))
3223 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
3224 	else if (AR_SREV_9280_10_OR_LATER(ah))
3225 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
3226 	else
3227 		pCap->num_gpio_pins = AR_NUM_GPIO;
3228 
3229 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
3230 		pCap->hw_caps |= ATH9K_HW_CAP_CST;
3231 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
3232 	} else {
3233 		pCap->rts_aggr_limit = (8 * 1024);
3234 	}
3235 
3236 	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
3237 
3238 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
3239 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
3240 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
3241 		ah->rfkill_gpio =
3242 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
3243 		ah->rfkill_polarity =
3244 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
3245 
3246 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
3247 	}
3248 #endif
3249 
3250 	pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
3251 
3252 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
3253 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
3254 	else
3255 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
3256 
3257 	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
3258 		pCap->reg_cap =
3259 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3260 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
3261 			AR_EEPROM_EEREGCAP_EN_KK_U2 |
3262 			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
3263 	} else {
3264 		pCap->reg_cap =
3265 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
3266 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
3267 	}
3268 
3269 	/* Advertise midband for AR5416 with FCC midband set in eeprom */
3270 	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
3271 	    AR_SREV_5416(ah))
3272 		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
3273 
3274 	pCap->num_antcfg_5ghz =
3275 		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_5GHZ);
3276 	pCap->num_antcfg_2ghz =
3277 		ah->eep_ops->get_num_ant_config(ah, ATH9K_HAL_FREQ_BAND_2GHZ);
3278 
3279 	if (AR_SREV_9280_10_OR_LATER(ah) &&
3280 	    ath9k_hw_btcoex_supported(ah)) {
3281 		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
3282 		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
3283 
3284 		if (AR_SREV_9285(ah)) {
3285 			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
3286 			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
3287 		} else {
3288 			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
3289 		}
3290 	} else {
3291 		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
3292 	}
3293 
3294 	return 0;
3295 }
3296 
3297 bool ath9k_hw_getcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3298 			    u32 capability, u32 *result)
3299 {
3300 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3301 	switch (type) {
3302 	case ATH9K_CAP_CIPHER:
3303 		switch (capability) {
3304 		case ATH9K_CIPHER_AES_CCM:
3305 		case ATH9K_CIPHER_AES_OCB:
3306 		case ATH9K_CIPHER_TKIP:
3307 		case ATH9K_CIPHER_WEP:
3308 		case ATH9K_CIPHER_MIC:
3309 		case ATH9K_CIPHER_CLR:
3310 			return true;
3311 		default:
3312 			return false;
3313 		}
3314 	case ATH9K_CAP_TKIP_MIC:
3315 		switch (capability) {
3316 		case 0:
3317 			return true;
3318 		case 1:
3319 			return (ah->sta_id1_defaults &
3320 				AR_STA_ID1_CRPT_MIC_ENABLE) ? true :
3321 			false;
3322 		}
3323 	case ATH9K_CAP_TKIP_SPLIT:
3324 		return (ah->misc_mode & AR_PCU_MIC_NEW_LOC_ENA) ?
3325 			false : true;
3326 	case ATH9K_CAP_DIVERSITY:
3327 		return (REG_READ(ah, AR_PHY_CCK_DETECT) &
3328 			AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV) ?
3329 			true : false;
3330 	case ATH9K_CAP_MCAST_KEYSRCH:
3331 		switch (capability) {
3332 		case 0:
3333 			return true;
3334 		case 1:
3335 			if (REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_ADHOC) {
3336 				return false;
3337 			} else {
3338 				return (ah->sta_id1_defaults &
3339 					AR_STA_ID1_MCAST_KSRCH) ? true :
3340 					false;
3341 			}
3342 		}
3343 		return false;
3344 	case ATH9K_CAP_TXPOW:
3345 		switch (capability) {
3346 		case 0:
3347 			return 0;
3348 		case 1:
3349 			*result = regulatory->power_limit;
3350 			return 0;
3351 		case 2:
3352 			*result = regulatory->max_power_level;
3353 			return 0;
3354 		case 3:
3355 			*result = regulatory->tp_scale;
3356 			return 0;
3357 		}
3358 		return false;
3359 	case ATH9K_CAP_DS:
3360 		return (AR_SREV_9280_20_OR_LATER(ah) &&
3361 			(ah->eep_ops->get_eeprom(ah, EEP_RC_CHAIN_MASK) == 1))
3362 			? false : true;
3363 	default:
3364 		return false;
3365 	}
3366 }
3367 EXPORT_SYMBOL(ath9k_hw_getcapability);
3368 
3369 bool ath9k_hw_setcapability(struct ath_hw *ah, enum ath9k_capability_type type,
3370 			    u32 capability, u32 setting, int *status)
3371 {
3372 	u32 v;
3373 
3374 	switch (type) {
3375 	case ATH9K_CAP_TKIP_MIC:
3376 		if (setting)
3377 			ah->sta_id1_defaults |=
3378 				AR_STA_ID1_CRPT_MIC_ENABLE;
3379 		else
3380 			ah->sta_id1_defaults &=
3381 				~AR_STA_ID1_CRPT_MIC_ENABLE;
3382 		return true;
3383 	case ATH9K_CAP_DIVERSITY:
3384 		v = REG_READ(ah, AR_PHY_CCK_DETECT);
3385 		if (setting)
3386 			v |= AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3387 		else
3388 			v &= ~AR_PHY_CCK_DETECT_BB_ENABLE_ANT_FAST_DIV;
3389 		REG_WRITE(ah, AR_PHY_CCK_DETECT, v);
3390 		return true;
3391 	case ATH9K_CAP_MCAST_KEYSRCH:
3392 		if (setting)
3393 			ah->sta_id1_defaults |= AR_STA_ID1_MCAST_KSRCH;
3394 		else
3395 			ah->sta_id1_defaults &= ~AR_STA_ID1_MCAST_KSRCH;
3396 		return true;
3397 	default:
3398 		return false;
3399 	}
3400 }
3401 EXPORT_SYMBOL(ath9k_hw_setcapability);
3402 
3403 /****************************/
3404 /* GPIO / RFKILL / Antennae */
3405 /****************************/
3406 
3407 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
3408 					 u32 gpio, u32 type)
3409 {
3410 	int addr;
3411 	u32 gpio_shift, tmp;
3412 
3413 	if (gpio > 11)
3414 		addr = AR_GPIO_OUTPUT_MUX3;
3415 	else if (gpio > 5)
3416 		addr = AR_GPIO_OUTPUT_MUX2;
3417 	else
3418 		addr = AR_GPIO_OUTPUT_MUX1;
3419 
3420 	gpio_shift = (gpio % 6) * 5;
3421 
3422 	if (AR_SREV_9280_20_OR_LATER(ah)
3423 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
3424 		REG_RMW(ah, addr, (type << gpio_shift),
3425 			(0x1f << gpio_shift));
3426 	} else {
3427 		tmp = REG_READ(ah, addr);
3428 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
3429 		tmp &= ~(0x1f << gpio_shift);
3430 		tmp |= (type << gpio_shift);
3431 		REG_WRITE(ah, addr, tmp);
3432 	}
3433 }
3434 
3435 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
3436 {
3437 	u32 gpio_shift;
3438 
3439 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
3440 
3441 	gpio_shift = gpio << 1;
3442 
3443 	REG_RMW(ah,
3444 		AR_GPIO_OE_OUT,
3445 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
3446 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3447 }
3448 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
3449 
3450 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
3451 {
3452 #define MS_REG_READ(x, y) \
3453 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
3454 
3455 	if (gpio >= ah->caps.num_gpio_pins)
3456 		return 0xffffffff;
3457 
3458 	if (AR_SREV_9287_10_OR_LATER(ah))
3459 		return MS_REG_READ(AR9287, gpio) != 0;
3460 	else if (AR_SREV_9285_10_OR_LATER(ah))
3461 		return MS_REG_READ(AR9285, gpio) != 0;
3462 	else if (AR_SREV_9280_10_OR_LATER(ah))
3463 		return MS_REG_READ(AR928X, gpio) != 0;
3464 	else
3465 		return MS_REG_READ(AR, gpio) != 0;
3466 }
3467 EXPORT_SYMBOL(ath9k_hw_gpio_get);
3468 
3469 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
3470 			 u32 ah_signal_type)
3471 {
3472 	u32 gpio_shift;
3473 
3474 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
3475 
3476 	gpio_shift = 2 * gpio;
3477 
3478 	REG_RMW(ah,
3479 		AR_GPIO_OE_OUT,
3480 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
3481 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
3482 }
3483 EXPORT_SYMBOL(ath9k_hw_cfg_output);
3484 
3485 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
3486 {
3487 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
3488 		AR_GPIO_BIT(gpio));
3489 }
3490 EXPORT_SYMBOL(ath9k_hw_set_gpio);
3491 
3492 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
3493 {
3494 	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
3495 }
3496 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
3497 
3498 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
3499 {
3500 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
3501 }
3502 EXPORT_SYMBOL(ath9k_hw_setantenna);
3503 
3504 /*********************/
3505 /* General Operation */
3506 /*********************/
3507 
3508 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
3509 {
3510 	u32 bits = REG_READ(ah, AR_RX_FILTER);
3511 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
3512 
3513 	if (phybits & AR_PHY_ERR_RADAR)
3514 		bits |= ATH9K_RX_FILTER_PHYRADAR;
3515 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
3516 		bits |= ATH9K_RX_FILTER_PHYERR;
3517 
3518 	return bits;
3519 }
3520 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
3521 
3522 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
3523 {
3524 	u32 phybits;
3525 
3526 	REG_WRITE(ah, AR_RX_FILTER, bits);
3527 
3528 	phybits = 0;
3529 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
3530 		phybits |= AR_PHY_ERR_RADAR;
3531 	if (bits & ATH9K_RX_FILTER_PHYERR)
3532 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
3533 	REG_WRITE(ah, AR_PHY_ERR, phybits);
3534 
3535 	if (phybits)
3536 		REG_WRITE(ah, AR_RXCFG,
3537 			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
3538 	else
3539 		REG_WRITE(ah, AR_RXCFG,
3540 			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
3541 }
3542 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
3543 
3544 bool ath9k_hw_phy_disable(struct ath_hw *ah)
3545 {
3546 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
3547 		return false;
3548 
3549 	ath9k_hw_init_pll(ah, NULL);
3550 	return true;
3551 }
3552 EXPORT_SYMBOL(ath9k_hw_phy_disable);
3553 
3554 bool ath9k_hw_disable(struct ath_hw *ah)
3555 {
3556 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
3557 		return false;
3558 
3559 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
3560 		return false;
3561 
3562 	ath9k_hw_init_pll(ah, NULL);
3563 	return true;
3564 }
3565 EXPORT_SYMBOL(ath9k_hw_disable);
3566 
3567 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit)
3568 {
3569 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
3570 	struct ath9k_channel *chan = ah->curchan;
3571 	struct ieee80211_channel *channel = chan->chan;
3572 
3573 	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
3574 
3575 	ah->eep_ops->set_txpower(ah, chan,
3576 				 ath9k_regd_get_ctl(regulatory, chan),
3577 				 channel->max_antenna_gain * 2,
3578 				 channel->max_power * 2,
3579 				 min((u32) MAX_RATE_POWER,
3580 				 (u32) regulatory->power_limit));
3581 }
3582 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
3583 
3584 void ath9k_hw_setmac(struct ath_hw *ah, const u8 *mac)
3585 {
3586 	memcpy(ath9k_hw_common(ah)->macaddr, mac, ETH_ALEN);
3587 }
3588 EXPORT_SYMBOL(ath9k_hw_setmac);
3589 
3590 void ath9k_hw_setopmode(struct ath_hw *ah)
3591 {
3592 	ath9k_hw_set_operating_mode(ah, ah->opmode);
3593 }
3594 EXPORT_SYMBOL(ath9k_hw_setopmode);
3595 
3596 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
3597 {
3598 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
3599 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
3600 }
3601 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
3602 
3603 void ath9k_hw_write_associd(struct ath_hw *ah)
3604 {
3605 	struct ath_common *common = ath9k_hw_common(ah);
3606 
3607 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
3608 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
3609 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
3610 }
3611 EXPORT_SYMBOL(ath9k_hw_write_associd);
3612 
3613 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
3614 {
3615 	u64 tsf;
3616 
3617 	tsf = REG_READ(ah, AR_TSF_U32);
3618 	tsf = (tsf << 32) | REG_READ(ah, AR_TSF_L32);
3619 
3620 	return tsf;
3621 }
3622 EXPORT_SYMBOL(ath9k_hw_gettsf64);
3623 
3624 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
3625 {
3626 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
3627 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
3628 }
3629 EXPORT_SYMBOL(ath9k_hw_settsf64);
3630 
3631 void ath9k_hw_reset_tsf(struct ath_hw *ah)
3632 {
3633 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
3634 			   AH_TSF_WRITE_TIMEOUT))
3635 		ath_print(ath9k_hw_common(ah), ATH_DBG_RESET,
3636 			  "AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3637 
3638 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3639 }
3640 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3641 
3642 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
3643 {
3644 	if (setting)
3645 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3646 	else
3647 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3648 }
3649 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3650 
3651 /*
3652  *  Extend 15-bit time stamp from rx descriptor to
3653  *  a full 64-bit TSF using the current h/w TSF.
3654 */
3655 u64 ath9k_hw_extend_tsf(struct ath_hw *ah, u32 rstamp)
3656 {
3657 	u64 tsf;
3658 
3659 	tsf = ath9k_hw_gettsf64(ah);
3660 	if ((tsf & 0x7fff) < rstamp)
3661 		tsf -= 0x8000;
3662 	return (tsf & ~0x7fff) | rstamp;
3663 }
3664 EXPORT_SYMBOL(ath9k_hw_extend_tsf);
3665 
3666 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
3667 {
3668 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
3669 	u32 macmode;
3670 
3671 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
3672 		macmode = AR_2040_JOINED_RX_CLEAR;
3673 	else
3674 		macmode = 0;
3675 
3676 	REG_WRITE(ah, AR_2040_MODE, macmode);
3677 }
3678 
3679 /* HW Generic timers configuration */
3680 
3681 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3682 {
3683 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3684 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3685 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3686 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3687 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3688 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3689 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3690 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3691 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3692 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3693 				AR_NDP2_TIMER_MODE, 0x0002},
3694 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3695 				AR_NDP2_TIMER_MODE, 0x0004},
3696 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3697 				AR_NDP2_TIMER_MODE, 0x0008},
3698 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3699 				AR_NDP2_TIMER_MODE, 0x0010},
3700 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3701 				AR_NDP2_TIMER_MODE, 0x0020},
3702 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3703 				AR_NDP2_TIMER_MODE, 0x0040},
3704 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3705 				AR_NDP2_TIMER_MODE, 0x0080}
3706 };
3707 
3708 /* HW generic timer primitives */
3709 
3710 /* compute and clear index of rightmost 1 */
3711 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
3712 {
3713 	u32 b;
3714 
3715 	b = *mask;
3716 	b &= (0-b);
3717 	*mask &= ~b;
3718 	b *= debruijn32;
3719 	b >>= 27;
3720 
3721 	return timer_table->gen_timer_index[b];
3722 }
3723 
3724 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3725 {
3726 	return REG_READ(ah, AR_TSF_L32);
3727 }
3728 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3729 
3730 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3731 					  void (*trigger)(void *),
3732 					  void (*overflow)(void *),
3733 					  void *arg,
3734 					  u8 timer_index)
3735 {
3736 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3737 	struct ath_gen_timer *timer;
3738 
3739 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3740 
3741 	if (timer == NULL) {
3742 		ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
3743 			  "Failed to allocate memory"
3744 			  "for hw timer[%d]\n", timer_index);
3745 		return NULL;
3746 	}
3747 
3748 	/* allocate a hardware generic timer slot */
3749 	timer_table->timers[timer_index] = timer;
3750 	timer->index = timer_index;
3751 	timer->trigger = trigger;
3752 	timer->overflow = overflow;
3753 	timer->arg = arg;
3754 
3755 	return timer;
3756 }
3757 EXPORT_SYMBOL(ath_gen_timer_alloc);
3758 
3759 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3760 			      struct ath_gen_timer *timer,
3761 			      u32 timer_next,
3762 			      u32 timer_period)
3763 {
3764 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3765 	u32 tsf;
3766 
3767 	BUG_ON(!timer_period);
3768 
3769 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3770 
3771 	tsf = ath9k_hw_gettsf32(ah);
3772 
3773 	ath_print(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
3774 		  "curent tsf %x period %x"
3775 		  "timer_next %x\n", tsf, timer_period, timer_next);
3776 
3777 	/*
3778 	 * Pull timer_next forward if the current TSF already passed it
3779 	 * because of software latency
3780 	 */
3781 	if (timer_next < tsf)
3782 		timer_next = tsf + timer_period;
3783 
3784 	/*
3785 	 * Program generic timer registers
3786 	 */
3787 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3788 		 timer_next);
3789 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3790 		  timer_period);
3791 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3792 		    gen_tmr_configuration[timer->index].mode_mask);
3793 
3794 	/* Enable both trigger and thresh interrupt masks */
3795 	REG_SET_BIT(ah, AR_IMR_S5,
3796 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3797 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3798 }
3799 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3800 
3801 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3802 {
3803 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3804 
3805 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3806 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3807 		return;
3808 	}
3809 
3810 	/* Clear generic timer enable bits. */
3811 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3812 			gen_tmr_configuration[timer->index].mode_mask);
3813 
3814 	/* Disable both trigger and thresh interrupt masks */
3815 	REG_CLR_BIT(ah, AR_IMR_S5,
3816 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3817 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3818 
3819 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3820 }
3821 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3822 
3823 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3824 {
3825 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3826 
3827 	/* free the hardware generic timer slot */
3828 	timer_table->timers[timer->index] = NULL;
3829 	kfree(timer);
3830 }
3831 EXPORT_SYMBOL(ath_gen_timer_free);
3832 
3833 /*
3834  * Generic Timer Interrupts handling
3835  */
3836 void ath_gen_timer_isr(struct ath_hw *ah)
3837 {
3838 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3839 	struct ath_gen_timer *timer;
3840 	struct ath_common *common = ath9k_hw_common(ah);
3841 	u32 trigger_mask, thresh_mask, index;
3842 
3843 	/* get hardware generic timer interrupt status */
3844 	trigger_mask = ah->intr_gen_timer_trigger;
3845 	thresh_mask = ah->intr_gen_timer_thresh;
3846 	trigger_mask &= timer_table->timer_mask.val;
3847 	thresh_mask &= timer_table->timer_mask.val;
3848 
3849 	trigger_mask &= ~thresh_mask;
3850 
3851 	while (thresh_mask) {
3852 		index = rightmost_index(timer_table, &thresh_mask);
3853 		timer = timer_table->timers[index];
3854 		BUG_ON(!timer);
3855 		ath_print(common, ATH_DBG_HWTIMER,
3856 			  "TSF overflow for Gen timer %d\n", index);
3857 		timer->overflow(timer->arg);
3858 	}
3859 
3860 	while (trigger_mask) {
3861 		index = rightmost_index(timer_table, &trigger_mask);
3862 		timer = timer_table->timers[index];
3863 		BUG_ON(!timer);
3864 		ath_print(common, ATH_DBG_HWTIMER,
3865 			  "Gen timer[%d] trigger\n", index);
3866 		timer->trigger(timer->arg);
3867 	}
3868 }
3869 EXPORT_SYMBOL(ath_gen_timer_isr);
3870 
3871 static struct {
3872 	u32 version;
3873 	const char * name;
3874 } ath_mac_bb_names[] = {
3875 	/* Devices with external radios */
3876 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3877 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3878 	{ AR_SREV_VERSION_9100,		"9100" },
3879 	{ AR_SREV_VERSION_9160,		"9160" },
3880 	/* Single-chip solutions */
3881 	{ AR_SREV_VERSION_9280,		"9280" },
3882 	{ AR_SREV_VERSION_9285,		"9285" },
3883 	{ AR_SREV_VERSION_9287,         "9287" },
3884 	{ AR_SREV_VERSION_9271,         "9271" },
3885 };
3886 
3887 /* For devices with external radios */
3888 static struct {
3889 	u16 version;
3890 	const char * name;
3891 } ath_rf_names[] = {
3892 	{ 0,				"5133" },
3893 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3894 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3895 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3896 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3897 };
3898 
3899 /*
3900  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3901  */
3902 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3903 {
3904 	int i;
3905 
3906 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3907 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3908 			return ath_mac_bb_names[i].name;
3909 		}
3910 	}
3911 
3912 	return "????";
3913 }
3914 
3915 /*
3916  * Return the RF name. "????" is returned if the RF is unknown.
3917  * Used for devices with external radios.
3918  */
3919 static const char *ath9k_hw_rf_name(u16 rf_version)
3920 {
3921 	int i;
3922 
3923 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3924 		if (ath_rf_names[i].version == rf_version) {
3925 			return ath_rf_names[i].name;
3926 		}
3927 	}
3928 
3929 	return "????";
3930 }
3931 
3932 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3933 {
3934 	int used;
3935 
3936 	/* chipsets >= AR9280 are single-chip */
3937 	if (AR_SREV_9280_10_OR_LATER(ah)) {
3938 		used = snprintf(hw_name, len,
3939 			       "Atheros AR%s Rev:%x",
3940 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3941 			       ah->hw_version.macRev);
3942 	}
3943 	else {
3944 		used = snprintf(hw_name, len,
3945 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3946 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3947 			       ah->hw_version.macRev,
3948 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3949 						AR_RADIO_SREV_MAJOR)),
3950 			       ah->hw_version.phyRev);
3951 	}
3952 
3953 	hw_name[used] = '\0';
3954 }
3955 EXPORT_SYMBOL(ath9k_hw_name);
3956