xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 4800cd83)
1 /*
2  * Copyright (c) 2008-2010 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
20 
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
25 
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27 
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
32 
33 static int __init ath9k_init(void)
34 {
35 	return 0;
36 }
37 module_init(ath9k_init);
38 
39 static void __exit ath9k_exit(void)
40 {
41 	return;
42 }
43 module_exit(ath9k_exit);
44 
45 /* Private hardware callbacks */
46 
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48 {
49 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50 }
51 
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55 }
56 
57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 					struct ath9k_channel *chan)
59 {
60 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62 
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 		return;
67 
68 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70 
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 	/* You will not have this callback if using the old ANI */
74 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 		return;
76 
77 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79 
80 /********************/
81 /* Helper Functions */
82 /********************/
83 
84 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85 {
86 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87 	struct ath_common *common = ath9k_hw_common(ah);
88 	unsigned int clockrate;
89 
90 	if (!ah->curchan) /* should really check for CCK instead */
91 		clockrate = ATH9K_CLOCK_RATE_CCK;
92 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
93 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
94 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
95 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
96 	else
97 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
98 
99 	if (conf_is_ht40(conf))
100 		clockrate *= 2;
101 
102 	common->clockrate = clockrate;
103 }
104 
105 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
106 {
107 	struct ath_common *common = ath9k_hw_common(ah);
108 
109 	return usecs * common->clockrate;
110 }
111 
112 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
113 {
114 	int i;
115 
116 	BUG_ON(timeout < AH_TIME_QUANTUM);
117 
118 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
119 		if ((REG_READ(ah, reg) & mask) == val)
120 			return true;
121 
122 		udelay(AH_TIME_QUANTUM);
123 	}
124 
125 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
126 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
127 		timeout, reg, REG_READ(ah, reg), mask, val);
128 
129 	return false;
130 }
131 EXPORT_SYMBOL(ath9k_hw_wait);
132 
133 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
134 {
135 	u32 retval;
136 	int i;
137 
138 	for (i = 0, retval = 0; i < n; i++) {
139 		retval = (retval << 1) | (val & 1);
140 		val >>= 1;
141 	}
142 	return retval;
143 }
144 
145 bool ath9k_get_channel_edges(struct ath_hw *ah,
146 			     u16 flags, u16 *low,
147 			     u16 *high)
148 {
149 	struct ath9k_hw_capabilities *pCap = &ah->caps;
150 
151 	if (flags & CHANNEL_5GHZ) {
152 		*low = pCap->low_5ghz_chan;
153 		*high = pCap->high_5ghz_chan;
154 		return true;
155 	}
156 	if ((flags & CHANNEL_2GHZ)) {
157 		*low = pCap->low_2ghz_chan;
158 		*high = pCap->high_2ghz_chan;
159 		return true;
160 	}
161 	return false;
162 }
163 
164 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
165 			   u8 phy, int kbps,
166 			   u32 frameLen, u16 rateix,
167 			   bool shortPreamble)
168 {
169 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
170 
171 	if (kbps == 0)
172 		return 0;
173 
174 	switch (phy) {
175 	case WLAN_RC_PHY_CCK:
176 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
177 		if (shortPreamble)
178 			phyTime >>= 1;
179 		numBits = frameLen << 3;
180 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
181 		break;
182 	case WLAN_RC_PHY_OFDM:
183 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
184 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
185 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
186 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
187 			txTime = OFDM_SIFS_TIME_QUARTER
188 				+ OFDM_PREAMBLE_TIME_QUARTER
189 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
190 		} else if (ah->curchan &&
191 			   IS_CHAN_HALF_RATE(ah->curchan)) {
192 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
193 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
194 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
195 			txTime = OFDM_SIFS_TIME_HALF +
196 				OFDM_PREAMBLE_TIME_HALF
197 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
198 		} else {
199 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
200 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
201 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
202 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
203 				+ (numSymbols * OFDM_SYMBOL_TIME);
204 		}
205 		break;
206 	default:
207 		ath_err(ath9k_hw_common(ah),
208 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
209 		txTime = 0;
210 		break;
211 	}
212 
213 	return txTime;
214 }
215 EXPORT_SYMBOL(ath9k_hw_computetxtime);
216 
217 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
218 				  struct ath9k_channel *chan,
219 				  struct chan_centers *centers)
220 {
221 	int8_t extoff;
222 
223 	if (!IS_CHAN_HT40(chan)) {
224 		centers->ctl_center = centers->ext_center =
225 			centers->synth_center = chan->channel;
226 		return;
227 	}
228 
229 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
230 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
231 		centers->synth_center =
232 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
233 		extoff = 1;
234 	} else {
235 		centers->synth_center =
236 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
237 		extoff = -1;
238 	}
239 
240 	centers->ctl_center =
241 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
242 	/* 25 MHz spacing is supported by hw but not on upper layers */
243 	centers->ext_center =
244 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
245 }
246 
247 /******************/
248 /* Chip Revisions */
249 /******************/
250 
251 static void ath9k_hw_read_revisions(struct ath_hw *ah)
252 {
253 	u32 val;
254 
255 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
256 
257 	if (val == 0xFF) {
258 		val = REG_READ(ah, AR_SREV);
259 		ah->hw_version.macVersion =
260 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
261 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
262 		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
263 	} else {
264 		if (!AR_SREV_9100(ah))
265 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
266 
267 		ah->hw_version.macRev = val & AR_SREV_REVISION;
268 
269 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
270 			ah->is_pciexpress = true;
271 	}
272 }
273 
274 /************************************/
275 /* HW Attach, Detach, Init Routines */
276 /************************************/
277 
278 static void ath9k_hw_disablepcie(struct ath_hw *ah)
279 {
280 	if (!AR_SREV_5416(ah))
281 		return;
282 
283 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
284 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
285 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
286 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
287 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
288 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
289 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
290 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
291 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
292 
293 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
294 }
295 
296 /* This should work for all families including legacy */
297 static bool ath9k_hw_chip_test(struct ath_hw *ah)
298 {
299 	struct ath_common *common = ath9k_hw_common(ah);
300 	u32 regAddr[2] = { AR_STA_ID0 };
301 	u32 regHold[2];
302 	static const u32 patternData[4] = {
303 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
304 	};
305 	int i, j, loop_max;
306 
307 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
308 		loop_max = 2;
309 		regAddr[1] = AR_PHY_BASE + (8 << 2);
310 	} else
311 		loop_max = 1;
312 
313 	for (i = 0; i < loop_max; i++) {
314 		u32 addr = regAddr[i];
315 		u32 wrData, rdData;
316 
317 		regHold[i] = REG_READ(ah, addr);
318 		for (j = 0; j < 0x100; j++) {
319 			wrData = (j << 16) | j;
320 			REG_WRITE(ah, addr, wrData);
321 			rdData = REG_READ(ah, addr);
322 			if (rdData != wrData) {
323 				ath_err(common,
324 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
325 					addr, wrData, rdData);
326 				return false;
327 			}
328 		}
329 		for (j = 0; j < 4; j++) {
330 			wrData = patternData[j];
331 			REG_WRITE(ah, addr, wrData);
332 			rdData = REG_READ(ah, addr);
333 			if (wrData != rdData) {
334 				ath_err(common,
335 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
336 					addr, wrData, rdData);
337 				return false;
338 			}
339 		}
340 		REG_WRITE(ah, regAddr[i], regHold[i]);
341 	}
342 	udelay(100);
343 
344 	return true;
345 }
346 
347 static void ath9k_hw_init_config(struct ath_hw *ah)
348 {
349 	int i;
350 
351 	ah->config.dma_beacon_response_time = 2;
352 	ah->config.sw_beacon_response_time = 10;
353 	ah->config.additional_swba_backoff = 0;
354 	ah->config.ack_6mb = 0x0;
355 	ah->config.cwm_ignore_extcca = 0;
356 	ah->config.pcie_powersave_enable = 0;
357 	ah->config.pcie_clock_req = 0;
358 	ah->config.pcie_waen = 0;
359 	ah->config.analog_shiftreg = 1;
360 	ah->config.enable_ani = true;
361 
362 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
363 		ah->config.spurchans[i][0] = AR_NO_SPUR;
364 		ah->config.spurchans[i][1] = AR_NO_SPUR;
365 	}
366 
367 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
368 		ah->config.ht_enable = 1;
369 	else
370 		ah->config.ht_enable = 0;
371 
372 	/* PAPRD needs some more work to be enabled */
373 	ah->config.paprd_disable = 1;
374 
375 	ah->config.rx_intr_mitigation = true;
376 	ah->config.pcieSerDesWrite = true;
377 
378 	/*
379 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
380 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
381 	 * This means we use it for all AR5416 devices, and the few
382 	 * minor PCI AR9280 devices out there.
383 	 *
384 	 * Serialization is required because these devices do not handle
385 	 * well the case of two concurrent reads/writes due to the latency
386 	 * involved. During one read/write another read/write can be issued
387 	 * on another CPU while the previous read/write may still be working
388 	 * on our hardware, if we hit this case the hardware poops in a loop.
389 	 * We prevent this by serializing reads and writes.
390 	 *
391 	 * This issue is not present on PCI-Express devices or pre-AR5416
392 	 * devices (legacy, 802.11abg).
393 	 */
394 	if (num_possible_cpus() > 1)
395 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
396 }
397 
398 static void ath9k_hw_init_defaults(struct ath_hw *ah)
399 {
400 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
401 
402 	regulatory->country_code = CTRY_DEFAULT;
403 	regulatory->power_limit = MAX_RATE_POWER;
404 	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
405 
406 	ah->hw_version.magic = AR5416_MAGIC;
407 	ah->hw_version.subvendorid = 0;
408 
409 	ah->atim_window = 0;
410 	ah->sta_id1_defaults =
411 		AR_STA_ID1_CRPT_MIC_ENABLE |
412 		AR_STA_ID1_MCAST_KSRCH;
413 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
414 	ah->slottime = 20;
415 	ah->globaltxtimeout = (u32) -1;
416 	ah->power_mode = ATH9K_PM_UNDEFINED;
417 }
418 
419 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
420 {
421 	struct ath_common *common = ath9k_hw_common(ah);
422 	u32 sum;
423 	int i;
424 	u16 eeval;
425 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
426 
427 	sum = 0;
428 	for (i = 0; i < 3; i++) {
429 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
430 		sum += eeval;
431 		common->macaddr[2 * i] = eeval >> 8;
432 		common->macaddr[2 * i + 1] = eeval & 0xff;
433 	}
434 	if (sum == 0 || sum == 0xffff * 3)
435 		return -EADDRNOTAVAIL;
436 
437 	return 0;
438 }
439 
440 static int ath9k_hw_post_init(struct ath_hw *ah)
441 {
442 	struct ath_common *common = ath9k_hw_common(ah);
443 	int ecode;
444 
445 	if (common->bus_ops->ath_bus_type != ATH_USB) {
446 		if (!ath9k_hw_chip_test(ah))
447 			return -ENODEV;
448 	}
449 
450 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
451 		ecode = ar9002_hw_rf_claim(ah);
452 		if (ecode != 0)
453 			return ecode;
454 	}
455 
456 	ecode = ath9k_hw_eeprom_init(ah);
457 	if (ecode != 0)
458 		return ecode;
459 
460 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
461 		"Eeprom VER: %d, REV: %d\n",
462 		ah->eep_ops->get_eeprom_ver(ah),
463 		ah->eep_ops->get_eeprom_rev(ah));
464 
465 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
466 	if (ecode) {
467 		ath_err(ath9k_hw_common(ah),
468 			"Failed allocating banks for external radio\n");
469 		ath9k_hw_rf_free_ext_banks(ah);
470 		return ecode;
471 	}
472 
473 	if (!AR_SREV_9100(ah)) {
474 		ath9k_hw_ani_setup(ah);
475 		ath9k_hw_ani_init(ah);
476 	}
477 
478 	return 0;
479 }
480 
481 static void ath9k_hw_attach_ops(struct ath_hw *ah)
482 {
483 	if (AR_SREV_9300_20_OR_LATER(ah))
484 		ar9003_hw_attach_ops(ah);
485 	else
486 		ar9002_hw_attach_ops(ah);
487 }
488 
489 /* Called for all hardware families */
490 static int __ath9k_hw_init(struct ath_hw *ah)
491 {
492 	struct ath_common *common = ath9k_hw_common(ah);
493 	int r = 0;
494 
495 	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
496 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
497 
498 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
499 		ath_err(common, "Couldn't reset chip\n");
500 		return -EIO;
501 	}
502 
503 	ath9k_hw_init_defaults(ah);
504 	ath9k_hw_init_config(ah);
505 
506 	ath9k_hw_attach_ops(ah);
507 
508 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
509 		ath_err(common, "Couldn't wakeup chip\n");
510 		return -EIO;
511 	}
512 
513 	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
514 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
515 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
516 		     !ah->is_pciexpress)) {
517 			ah->config.serialize_regmode =
518 				SER_REG_MODE_ON;
519 		} else {
520 			ah->config.serialize_regmode =
521 				SER_REG_MODE_OFF;
522 		}
523 	}
524 
525 	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
526 		ah->config.serialize_regmode);
527 
528 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
529 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
530 	else
531 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
532 
533 	switch (ah->hw_version.macVersion) {
534 	case AR_SREV_VERSION_5416_PCI:
535 	case AR_SREV_VERSION_5416_PCIE:
536 	case AR_SREV_VERSION_9160:
537 	case AR_SREV_VERSION_9100:
538 	case AR_SREV_VERSION_9280:
539 	case AR_SREV_VERSION_9285:
540 	case AR_SREV_VERSION_9287:
541 	case AR_SREV_VERSION_9271:
542 	case AR_SREV_VERSION_9300:
543 	case AR_SREV_VERSION_9485:
544 		break;
545 	default:
546 		ath_err(common,
547 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
548 			ah->hw_version.macVersion, ah->hw_version.macRev);
549 		return -EOPNOTSUPP;
550 	}
551 
552 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
553 		ah->is_pciexpress = false;
554 
555 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
556 	ath9k_hw_init_cal_settings(ah);
557 
558 	ah->ani_function = ATH9K_ANI_ALL;
559 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
560 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
561 	if (!AR_SREV_9300_20_OR_LATER(ah))
562 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
563 
564 	ath9k_hw_init_mode_regs(ah);
565 
566 	/*
567 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
568 	 * We need to do this to avoid RMW of this register. We cannot
569 	 * read the reg when chip is asleep.
570 	 */
571 	ah->WARegVal = REG_READ(ah, AR_WA);
572 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
573 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
574 
575 	if (ah->is_pciexpress)
576 		ath9k_hw_configpcipowersave(ah, 0, 0);
577 	else
578 		ath9k_hw_disablepcie(ah);
579 
580 	if (!AR_SREV_9300_20_OR_LATER(ah))
581 		ar9002_hw_cck_chan14_spread(ah);
582 
583 	r = ath9k_hw_post_init(ah);
584 	if (r)
585 		return r;
586 
587 	ath9k_hw_init_mode_gain_regs(ah);
588 	r = ath9k_hw_fill_cap_info(ah);
589 	if (r)
590 		return r;
591 
592 	r = ath9k_hw_init_macaddr(ah);
593 	if (r) {
594 		ath_err(common, "Failed to initialize MAC address\n");
595 		return r;
596 	}
597 
598 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
599 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
600 	else
601 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
602 
603 	ah->bb_watchdog_timeout_ms = 25;
604 
605 	common->state = ATH_HW_INITIALIZED;
606 
607 	return 0;
608 }
609 
610 int ath9k_hw_init(struct ath_hw *ah)
611 {
612 	int ret;
613 	struct ath_common *common = ath9k_hw_common(ah);
614 
615 	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
616 	switch (ah->hw_version.devid) {
617 	case AR5416_DEVID_PCI:
618 	case AR5416_DEVID_PCIE:
619 	case AR5416_AR9100_DEVID:
620 	case AR9160_DEVID_PCI:
621 	case AR9280_DEVID_PCI:
622 	case AR9280_DEVID_PCIE:
623 	case AR9285_DEVID_PCIE:
624 	case AR9287_DEVID_PCI:
625 	case AR9287_DEVID_PCIE:
626 	case AR2427_DEVID_PCIE:
627 	case AR9300_DEVID_PCIE:
628 	case AR9300_DEVID_AR9485_PCIE:
629 		break;
630 	default:
631 		if (common->bus_ops->ath_bus_type == ATH_USB)
632 			break;
633 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
634 			ah->hw_version.devid);
635 		return -EOPNOTSUPP;
636 	}
637 
638 	ret = __ath9k_hw_init(ah);
639 	if (ret) {
640 		ath_err(common,
641 			"Unable to initialize hardware; initialization status: %d\n",
642 			ret);
643 		return ret;
644 	}
645 
646 	return 0;
647 }
648 EXPORT_SYMBOL(ath9k_hw_init);
649 
650 static void ath9k_hw_init_qos(struct ath_hw *ah)
651 {
652 	ENABLE_REGWRITE_BUFFER(ah);
653 
654 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
655 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
656 
657 	REG_WRITE(ah, AR_QOS_NO_ACK,
658 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
659 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
660 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
661 
662 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
663 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
664 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
665 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
666 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
667 
668 	REGWRITE_BUFFER_FLUSH(ah);
669 }
670 
671 static void ath9k_hw_init_pll(struct ath_hw *ah,
672 			      struct ath9k_channel *chan)
673 {
674 	u32 pll;
675 
676 	if (AR_SREV_9485(ah))
677 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
678 
679 	pll = ath9k_hw_compute_pll_control(ah, chan);
680 
681 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
682 
683 	/* Switch the core clock for ar9271 to 117Mhz */
684 	if (AR_SREV_9271(ah)) {
685 		udelay(500);
686 		REG_WRITE(ah, 0x50040, 0x304);
687 	}
688 
689 	udelay(RTC_PLL_SETTLE_DELAY);
690 
691 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
692 }
693 
694 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
695 					  enum nl80211_iftype opmode)
696 {
697 	u32 imr_reg = AR_IMR_TXERR |
698 		AR_IMR_TXURN |
699 		AR_IMR_RXERR |
700 		AR_IMR_RXORN |
701 		AR_IMR_BCNMISC;
702 
703 	if (AR_SREV_9300_20_OR_LATER(ah)) {
704 		imr_reg |= AR_IMR_RXOK_HP;
705 		if (ah->config.rx_intr_mitigation)
706 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
707 		else
708 			imr_reg |= AR_IMR_RXOK_LP;
709 
710 	} else {
711 		if (ah->config.rx_intr_mitigation)
712 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
713 		else
714 			imr_reg |= AR_IMR_RXOK;
715 	}
716 
717 	if (ah->config.tx_intr_mitigation)
718 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
719 	else
720 		imr_reg |= AR_IMR_TXOK;
721 
722 	if (opmode == NL80211_IFTYPE_AP)
723 		imr_reg |= AR_IMR_MIB;
724 
725 	ENABLE_REGWRITE_BUFFER(ah);
726 
727 	REG_WRITE(ah, AR_IMR, imr_reg);
728 	ah->imrs2_reg |= AR_IMR_S2_GTT;
729 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
730 
731 	if (!AR_SREV_9100(ah)) {
732 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
733 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
734 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
735 	}
736 
737 	REGWRITE_BUFFER_FLUSH(ah);
738 
739 	if (AR_SREV_9300_20_OR_LATER(ah)) {
740 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
741 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
742 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
743 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
744 	}
745 }
746 
747 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
748 {
749 	u32 val = ath9k_hw_mac_to_clks(ah, us);
750 	val = min(val, (u32) 0xFFFF);
751 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
752 }
753 
754 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
755 {
756 	u32 val = ath9k_hw_mac_to_clks(ah, us);
757 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
758 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
759 }
760 
761 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
762 {
763 	u32 val = ath9k_hw_mac_to_clks(ah, us);
764 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
765 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
766 }
767 
768 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
769 {
770 	if (tu > 0xFFFF) {
771 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
772 			"bad global tx timeout %u\n", tu);
773 		ah->globaltxtimeout = (u32) -1;
774 		return false;
775 	} else {
776 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
777 		ah->globaltxtimeout = tu;
778 		return true;
779 	}
780 }
781 
782 void ath9k_hw_init_global_settings(struct ath_hw *ah)
783 {
784 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
785 	int acktimeout;
786 	int slottime;
787 	int sifstime;
788 
789 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
790 		ah->misc_mode);
791 
792 	if (ah->misc_mode != 0)
793 		REG_WRITE(ah, AR_PCU_MISC,
794 			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
795 
796 	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
797 		sifstime = 16;
798 	else
799 		sifstime = 10;
800 
801 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
802 	slottime = ah->slottime + 3 * ah->coverage_class;
803 	acktimeout = slottime + sifstime;
804 
805 	/*
806 	 * Workaround for early ACK timeouts, add an offset to match the
807 	 * initval's 64us ack timeout value.
808 	 * This was initially only meant to work around an issue with delayed
809 	 * BA frames in some implementations, but it has been found to fix ACK
810 	 * timeout issues in other cases as well.
811 	 */
812 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
813 		acktimeout += 64 - sifstime - ah->slottime;
814 
815 	ath9k_hw_setslottime(ah, ah->slottime);
816 	ath9k_hw_set_ack_timeout(ah, acktimeout);
817 	ath9k_hw_set_cts_timeout(ah, acktimeout);
818 	if (ah->globaltxtimeout != (u32) -1)
819 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
820 }
821 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
822 
823 void ath9k_hw_deinit(struct ath_hw *ah)
824 {
825 	struct ath_common *common = ath9k_hw_common(ah);
826 
827 	if (common->state < ATH_HW_INITIALIZED)
828 		goto free_hw;
829 
830 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
831 
832 free_hw:
833 	ath9k_hw_rf_free_ext_banks(ah);
834 }
835 EXPORT_SYMBOL(ath9k_hw_deinit);
836 
837 /*******/
838 /* INI */
839 /*******/
840 
841 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
842 {
843 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
844 
845 	if (IS_CHAN_B(chan))
846 		ctl |= CTL_11B;
847 	else if (IS_CHAN_G(chan))
848 		ctl |= CTL_11G;
849 	else
850 		ctl |= CTL_11A;
851 
852 	return ctl;
853 }
854 
855 /****************************************/
856 /* Reset and Channel Switching Routines */
857 /****************************************/
858 
859 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
860 {
861 	struct ath_common *common = ath9k_hw_common(ah);
862 	u32 regval;
863 
864 	ENABLE_REGWRITE_BUFFER(ah);
865 
866 	/*
867 	 * set AHB_MODE not to do cacheline prefetches
868 	*/
869 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
870 		regval = REG_READ(ah, AR_AHB_MODE);
871 		REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
872 	}
873 
874 	/*
875 	 * let mac dma reads be in 128 byte chunks
876 	 */
877 	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
878 	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
879 
880 	REGWRITE_BUFFER_FLUSH(ah);
881 
882 	/*
883 	 * Restore TX Trigger Level to its pre-reset value.
884 	 * The initial value depends on whether aggregation is enabled, and is
885 	 * adjusted whenever underruns are detected.
886 	 */
887 	if (!AR_SREV_9300_20_OR_LATER(ah))
888 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
889 
890 	ENABLE_REGWRITE_BUFFER(ah);
891 
892 	/*
893 	 * let mac dma writes be in 128 byte chunks
894 	 */
895 	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
896 	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
897 
898 	/*
899 	 * Setup receive FIFO threshold to hold off TX activities
900 	 */
901 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
902 
903 	if (AR_SREV_9300_20_OR_LATER(ah)) {
904 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
905 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
906 
907 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
908 			ah->caps.rx_status_len);
909 	}
910 
911 	/*
912 	 * reduce the number of usable entries in PCU TXBUF to avoid
913 	 * wrap around issues.
914 	 */
915 	if (AR_SREV_9285(ah)) {
916 		/* For AR9285 the number of Fifos are reduced to half.
917 		 * So set the usable tx buf size also to half to
918 		 * avoid data/delimiter underruns
919 		 */
920 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
921 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
922 	} else if (!AR_SREV_9271(ah)) {
923 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
924 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
925 	}
926 
927 	REGWRITE_BUFFER_FLUSH(ah);
928 
929 	if (AR_SREV_9300_20_OR_LATER(ah))
930 		ath9k_hw_reset_txstatus_ring(ah);
931 }
932 
933 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
934 {
935 	u32 val;
936 
937 	val = REG_READ(ah, AR_STA_ID1);
938 	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
939 	switch (opmode) {
940 	case NL80211_IFTYPE_AP:
941 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
942 			  | AR_STA_ID1_KSRCH_MODE);
943 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
944 		break;
945 	case NL80211_IFTYPE_ADHOC:
946 	case NL80211_IFTYPE_MESH_POINT:
947 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
948 			  | AR_STA_ID1_KSRCH_MODE);
949 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
950 		break;
951 	case NL80211_IFTYPE_STATION:
952 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
953 		break;
954 	default:
955 		if (ah->is_monitoring)
956 			REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
957 		break;
958 	}
959 }
960 
961 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
962 				   u32 *coef_mantissa, u32 *coef_exponent)
963 {
964 	u32 coef_exp, coef_man;
965 
966 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
967 		if ((coef_scaled >> coef_exp) & 0x1)
968 			break;
969 
970 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
971 
972 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
973 
974 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
975 	*coef_exponent = coef_exp - 16;
976 }
977 
978 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
979 {
980 	u32 rst_flags;
981 	u32 tmpReg;
982 
983 	if (AR_SREV_9100(ah)) {
984 		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
985 		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
986 		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
987 		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
988 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
989 	}
990 
991 	ENABLE_REGWRITE_BUFFER(ah);
992 
993 	if (AR_SREV_9300_20_OR_LATER(ah)) {
994 		REG_WRITE(ah, AR_WA, ah->WARegVal);
995 		udelay(10);
996 	}
997 
998 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
999 		  AR_RTC_FORCE_WAKE_ON_INT);
1000 
1001 	if (AR_SREV_9100(ah)) {
1002 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1003 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1004 	} else {
1005 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1006 		if (tmpReg &
1007 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1008 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1009 			u32 val;
1010 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1011 
1012 			val = AR_RC_HOSTIF;
1013 			if (!AR_SREV_9300_20_OR_LATER(ah))
1014 				val |= AR_RC_AHB;
1015 			REG_WRITE(ah, AR_RC, val);
1016 
1017 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1018 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1019 
1020 		rst_flags = AR_RTC_RC_MAC_WARM;
1021 		if (type == ATH9K_RESET_COLD)
1022 			rst_flags |= AR_RTC_RC_MAC_COLD;
1023 	}
1024 
1025 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1026 
1027 	REGWRITE_BUFFER_FLUSH(ah);
1028 
1029 	udelay(50);
1030 
1031 	REG_WRITE(ah, AR_RTC_RC, 0);
1032 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1033 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1034 			"RTC stuck in MAC reset\n");
1035 		return false;
1036 	}
1037 
1038 	if (!AR_SREV_9100(ah))
1039 		REG_WRITE(ah, AR_RC, 0);
1040 
1041 	if (AR_SREV_9100(ah))
1042 		udelay(50);
1043 
1044 	return true;
1045 }
1046 
1047 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1048 {
1049 	ENABLE_REGWRITE_BUFFER(ah);
1050 
1051 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1052 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1053 		udelay(10);
1054 	}
1055 
1056 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1057 		  AR_RTC_FORCE_WAKE_ON_INT);
1058 
1059 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1060 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1061 
1062 	REG_WRITE(ah, AR_RTC_RESET, 0);
1063 	udelay(2);
1064 
1065 	REGWRITE_BUFFER_FLUSH(ah);
1066 
1067 	if (!AR_SREV_9300_20_OR_LATER(ah))
1068 		udelay(2);
1069 
1070 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1071 		REG_WRITE(ah, AR_RC, 0);
1072 
1073 	REG_WRITE(ah, AR_RTC_RESET, 1);
1074 
1075 	if (!ath9k_hw_wait(ah,
1076 			   AR_RTC_STATUS,
1077 			   AR_RTC_STATUS_M,
1078 			   AR_RTC_STATUS_ON,
1079 			   AH_WAIT_TIMEOUT)) {
1080 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1081 			"RTC not waking up\n");
1082 		return false;
1083 	}
1084 
1085 	ath9k_hw_read_revisions(ah);
1086 
1087 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1088 }
1089 
1090 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1091 {
1092 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1093 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1094 		udelay(10);
1095 	}
1096 
1097 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1098 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1099 
1100 	switch (type) {
1101 	case ATH9K_RESET_POWER_ON:
1102 		return ath9k_hw_set_reset_power_on(ah);
1103 	case ATH9K_RESET_WARM:
1104 	case ATH9K_RESET_COLD:
1105 		return ath9k_hw_set_reset(ah, type);
1106 	default:
1107 		return false;
1108 	}
1109 }
1110 
1111 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1112 				struct ath9k_channel *chan)
1113 {
1114 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1115 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1116 			return false;
1117 	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1118 		return false;
1119 
1120 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1121 		return false;
1122 
1123 	ah->chip_fullsleep = false;
1124 	ath9k_hw_init_pll(ah, chan);
1125 	ath9k_hw_set_rfmode(ah, chan);
1126 
1127 	return true;
1128 }
1129 
1130 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1131 				    struct ath9k_channel *chan)
1132 {
1133 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1134 	struct ath_common *common = ath9k_hw_common(ah);
1135 	struct ieee80211_channel *channel = chan->chan;
1136 	u32 qnum;
1137 	int r;
1138 
1139 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1140 		if (ath9k_hw_numtxpending(ah, qnum)) {
1141 			ath_dbg(common, ATH_DBG_QUEUE,
1142 				"Transmit frames pending on queue %d\n", qnum);
1143 			return false;
1144 		}
1145 	}
1146 
1147 	if (!ath9k_hw_rfbus_req(ah)) {
1148 		ath_err(common, "Could not kill baseband RX\n");
1149 		return false;
1150 	}
1151 
1152 	ath9k_hw_set_channel_regs(ah, chan);
1153 
1154 	r = ath9k_hw_rf_set_freq(ah, chan);
1155 	if (r) {
1156 		ath_err(common, "Failed to set channel\n");
1157 		return false;
1158 	}
1159 	ath9k_hw_set_clockrate(ah);
1160 
1161 	ah->eep_ops->set_txpower(ah, chan,
1162 			     ath9k_regd_get_ctl(regulatory, chan),
1163 			     channel->max_antenna_gain * 2,
1164 			     channel->max_power * 2,
1165 			     min((u32) MAX_RATE_POWER,
1166 			     (u32) regulatory->power_limit), false);
1167 
1168 	ath9k_hw_rfbus_done(ah);
1169 
1170 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1171 		ath9k_hw_set_delta_slope(ah, chan);
1172 
1173 	ath9k_hw_spur_mitigate_freq(ah, chan);
1174 
1175 	return true;
1176 }
1177 
1178 bool ath9k_hw_check_alive(struct ath_hw *ah)
1179 {
1180 	int count = 50;
1181 	u32 reg;
1182 
1183 	if (AR_SREV_9285_12_OR_LATER(ah))
1184 		return true;
1185 
1186 	do {
1187 		reg = REG_READ(ah, AR_OBS_BUS_1);
1188 
1189 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1190 			continue;
1191 
1192 		switch (reg & 0x7E000B00) {
1193 		case 0x1E000000:
1194 		case 0x52000B00:
1195 		case 0x18000B00:
1196 			continue;
1197 		default:
1198 			return true;
1199 		}
1200 	} while (count-- > 0);
1201 
1202 	return false;
1203 }
1204 EXPORT_SYMBOL(ath9k_hw_check_alive);
1205 
1206 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1207 		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1208 {
1209 	struct ath_common *common = ath9k_hw_common(ah);
1210 	u32 saveLedState;
1211 	struct ath9k_channel *curchan = ah->curchan;
1212 	u32 saveDefAntenna;
1213 	u32 macStaId1;
1214 	u64 tsf = 0;
1215 	int i, r;
1216 
1217 	ah->txchainmask = common->tx_chainmask;
1218 	ah->rxchainmask = common->rx_chainmask;
1219 
1220 	if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) {
1221 		ath9k_hw_abortpcurecv(ah);
1222 		if (!ath9k_hw_stopdmarecv(ah)) {
1223 			ath_dbg(common, ATH_DBG_XMIT,
1224 				"Failed to stop receive dma\n");
1225 			bChannelChange = false;
1226 		}
1227 	}
1228 
1229 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1230 		return -EIO;
1231 
1232 	if (curchan && !ah->chip_fullsleep)
1233 		ath9k_hw_getnf(ah, curchan);
1234 
1235 	ah->caldata = caldata;
1236 	if (caldata &&
1237 	    (chan->channel != caldata->channel ||
1238 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1239 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1240 		/* Operating channel changed, reset channel calibration data */
1241 		memset(caldata, 0, sizeof(*caldata));
1242 		ath9k_init_nfcal_hist_buffer(ah, chan);
1243 	}
1244 
1245 	if (bChannelChange &&
1246 	    (ah->chip_fullsleep != true) &&
1247 	    (ah->curchan != NULL) &&
1248 	    (chan->channel != ah->curchan->channel) &&
1249 	    ((chan->channelFlags & CHANNEL_ALL) ==
1250 	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1251 	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1252 
1253 		if (ath9k_hw_channel_change(ah, chan)) {
1254 			ath9k_hw_loadnf(ah, ah->curchan);
1255 			ath9k_hw_start_nfcal(ah, true);
1256 			if (AR_SREV_9271(ah))
1257 				ar9002_hw_load_ani_reg(ah, chan);
1258 			return 0;
1259 		}
1260 	}
1261 
1262 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1263 	if (saveDefAntenna == 0)
1264 		saveDefAntenna = 1;
1265 
1266 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1267 
1268 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1269 	if (AR_SREV_9100(ah) ||
1270 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1271 		tsf = ath9k_hw_gettsf64(ah);
1272 
1273 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1274 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1275 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1276 
1277 	ath9k_hw_mark_phy_inactive(ah);
1278 
1279 	ah->paprd_table_write_done = false;
1280 
1281 	/* Only required on the first reset */
1282 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1283 		REG_WRITE(ah,
1284 			  AR9271_RESET_POWER_DOWN_CONTROL,
1285 			  AR9271_RADIO_RF_RST);
1286 		udelay(50);
1287 	}
1288 
1289 	if (!ath9k_hw_chip_reset(ah, chan)) {
1290 		ath_err(common, "Chip reset failed\n");
1291 		return -EINVAL;
1292 	}
1293 
1294 	/* Only required on the first reset */
1295 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1296 		ah->htc_reset_init = false;
1297 		REG_WRITE(ah,
1298 			  AR9271_RESET_POWER_DOWN_CONTROL,
1299 			  AR9271_GATE_MAC_CTL);
1300 		udelay(50);
1301 	}
1302 
1303 	/* Restore TSF */
1304 	if (tsf)
1305 		ath9k_hw_settsf64(ah, tsf);
1306 
1307 	if (AR_SREV_9280_20_OR_LATER(ah))
1308 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1309 
1310 	if (!AR_SREV_9300_20_OR_LATER(ah))
1311 		ar9002_hw_enable_async_fifo(ah);
1312 
1313 	r = ath9k_hw_process_ini(ah, chan);
1314 	if (r)
1315 		return r;
1316 
1317 	/*
1318 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1319 	 * right after the chip reset. When that happens, write a new
1320 	 * value after the initvals have been applied, with an offset
1321 	 * based on measured time difference
1322 	 */
1323 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1324 		tsf += 1500;
1325 		ath9k_hw_settsf64(ah, tsf);
1326 	}
1327 
1328 	/* Setup MFP options for CCMP */
1329 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1330 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1331 		 * frames when constructing CCMP AAD. */
1332 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1333 			      0xc7ff);
1334 		ah->sw_mgmt_crypto = false;
1335 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1336 		/* Disable hardware crypto for management frames */
1337 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1338 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1339 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1340 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1341 		ah->sw_mgmt_crypto = true;
1342 	} else
1343 		ah->sw_mgmt_crypto = true;
1344 
1345 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1346 		ath9k_hw_set_delta_slope(ah, chan);
1347 
1348 	ath9k_hw_spur_mitigate_freq(ah, chan);
1349 	ah->eep_ops->set_board_values(ah, chan);
1350 
1351 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1352 
1353 	ENABLE_REGWRITE_BUFFER(ah);
1354 
1355 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1356 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1357 		  | macStaId1
1358 		  | AR_STA_ID1_RTS_USE_DEF
1359 		  | (ah->config.
1360 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1361 		  | ah->sta_id1_defaults);
1362 	ath_hw_setbssidmask(common);
1363 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1364 	ath9k_hw_write_associd(ah);
1365 	REG_WRITE(ah, AR_ISR, ~0);
1366 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1367 
1368 	REGWRITE_BUFFER_FLUSH(ah);
1369 
1370 	r = ath9k_hw_rf_set_freq(ah, chan);
1371 	if (r)
1372 		return r;
1373 
1374 	ath9k_hw_set_clockrate(ah);
1375 
1376 	ENABLE_REGWRITE_BUFFER(ah);
1377 
1378 	for (i = 0; i < AR_NUM_DCU; i++)
1379 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1380 
1381 	REGWRITE_BUFFER_FLUSH(ah);
1382 
1383 	ah->intr_txqs = 0;
1384 	for (i = 0; i < ah->caps.total_queues; i++)
1385 		ath9k_hw_resettxqueue(ah, i);
1386 
1387 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1388 	ath9k_hw_ani_cache_ini_regs(ah);
1389 	ath9k_hw_init_qos(ah);
1390 
1391 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1392 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1393 
1394 	ath9k_hw_init_global_settings(ah);
1395 
1396 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1397 		ar9002_hw_update_async_fifo(ah);
1398 		ar9002_hw_enable_wep_aggregation(ah);
1399 	}
1400 
1401 	REG_WRITE(ah, AR_STA_ID1,
1402 		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1403 
1404 	ath9k_hw_set_dma(ah);
1405 
1406 	REG_WRITE(ah, AR_OBS, 8);
1407 
1408 	if (ah->config.rx_intr_mitigation) {
1409 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1410 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1411 	}
1412 
1413 	if (ah->config.tx_intr_mitigation) {
1414 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1415 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1416 	}
1417 
1418 	ath9k_hw_init_bb(ah, chan);
1419 
1420 	if (!ath9k_hw_init_cal(ah, chan))
1421 		return -EIO;
1422 
1423 	ENABLE_REGWRITE_BUFFER(ah);
1424 
1425 	ath9k_hw_restore_chainmask(ah);
1426 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1427 
1428 	REGWRITE_BUFFER_FLUSH(ah);
1429 
1430 	/*
1431 	 * For big endian systems turn on swapping for descriptors
1432 	 */
1433 	if (AR_SREV_9100(ah)) {
1434 		u32 mask;
1435 		mask = REG_READ(ah, AR_CFG);
1436 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1437 			ath_dbg(common, ATH_DBG_RESET,
1438 				"CFG Byte Swap Set 0x%x\n", mask);
1439 		} else {
1440 			mask =
1441 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1442 			REG_WRITE(ah, AR_CFG, mask);
1443 			ath_dbg(common, ATH_DBG_RESET,
1444 				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1445 		}
1446 	} else {
1447 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1448 			/* Configure AR9271 target WLAN */
1449 			if (AR_SREV_9271(ah))
1450 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1451 			else
1452 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1453 		}
1454 #ifdef __BIG_ENDIAN
1455                 else
1456 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1457 #endif
1458 	}
1459 
1460 	if (ah->btcoex_hw.enabled)
1461 		ath9k_hw_btcoex_enable(ah);
1462 
1463 	if (AR_SREV_9300_20_OR_LATER(ah))
1464 		ar9003_hw_bb_watchdog_config(ah);
1465 
1466 	return 0;
1467 }
1468 EXPORT_SYMBOL(ath9k_hw_reset);
1469 
1470 /******************************/
1471 /* Power Management (Chipset) */
1472 /******************************/
1473 
1474 /*
1475  * Notify Power Mgt is disabled in self-generated frames.
1476  * If requested, force chip to sleep.
1477  */
1478 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1479 {
1480 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1481 	if (setChip) {
1482 		/*
1483 		 * Clear the RTC force wake bit to allow the
1484 		 * mac to go to sleep.
1485 		 */
1486 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1487 			    AR_RTC_FORCE_WAKE_EN);
1488 		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1489 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1490 
1491 		/* Shutdown chip. Active low */
1492 		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1493 			REG_CLR_BIT(ah, (AR_RTC_RESET),
1494 				    AR_RTC_RESET_EN);
1495 	}
1496 
1497 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1498 	if (AR_SREV_9300_20_OR_LATER(ah))
1499 		REG_WRITE(ah, AR_WA,
1500 			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1501 }
1502 
1503 /*
1504  * Notify Power Management is enabled in self-generating
1505  * frames. If request, set power mode of chip to
1506  * auto/normal.  Duration in units of 128us (1/8 TU).
1507  */
1508 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1509 {
1510 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1511 	if (setChip) {
1512 		struct ath9k_hw_capabilities *pCap = &ah->caps;
1513 
1514 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1515 			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1516 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1517 				  AR_RTC_FORCE_WAKE_ON_INT);
1518 		} else {
1519 			/*
1520 			 * Clear the RTC force wake bit to allow the
1521 			 * mac to go to sleep.
1522 			 */
1523 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1524 				    AR_RTC_FORCE_WAKE_EN);
1525 		}
1526 	}
1527 
1528 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1529 	if (AR_SREV_9300_20_OR_LATER(ah))
1530 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1531 }
1532 
1533 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1534 {
1535 	u32 val;
1536 	int i;
1537 
1538 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1539 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1540 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1541 		udelay(10);
1542 	}
1543 
1544 	if (setChip) {
1545 		if ((REG_READ(ah, AR_RTC_STATUS) &
1546 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1547 			if (ath9k_hw_set_reset_reg(ah,
1548 					   ATH9K_RESET_POWER_ON) != true) {
1549 				return false;
1550 			}
1551 			if (!AR_SREV_9300_20_OR_LATER(ah))
1552 				ath9k_hw_init_pll(ah, NULL);
1553 		}
1554 		if (AR_SREV_9100(ah))
1555 			REG_SET_BIT(ah, AR_RTC_RESET,
1556 				    AR_RTC_RESET_EN);
1557 
1558 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1559 			    AR_RTC_FORCE_WAKE_EN);
1560 		udelay(50);
1561 
1562 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1563 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1564 			if (val == AR_RTC_STATUS_ON)
1565 				break;
1566 			udelay(50);
1567 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1568 				    AR_RTC_FORCE_WAKE_EN);
1569 		}
1570 		if (i == 0) {
1571 			ath_err(ath9k_hw_common(ah),
1572 				"Failed to wakeup in %uus\n",
1573 				POWER_UP_TIME / 20);
1574 			return false;
1575 		}
1576 	}
1577 
1578 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1579 
1580 	return true;
1581 }
1582 
1583 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1584 {
1585 	struct ath_common *common = ath9k_hw_common(ah);
1586 	int status = true, setChip = true;
1587 	static const char *modes[] = {
1588 		"AWAKE",
1589 		"FULL-SLEEP",
1590 		"NETWORK SLEEP",
1591 		"UNDEFINED"
1592 	};
1593 
1594 	if (ah->power_mode == mode)
1595 		return status;
1596 
1597 	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1598 		modes[ah->power_mode], modes[mode]);
1599 
1600 	switch (mode) {
1601 	case ATH9K_PM_AWAKE:
1602 		status = ath9k_hw_set_power_awake(ah, setChip);
1603 		break;
1604 	case ATH9K_PM_FULL_SLEEP:
1605 		ath9k_set_power_sleep(ah, setChip);
1606 		ah->chip_fullsleep = true;
1607 		break;
1608 	case ATH9K_PM_NETWORK_SLEEP:
1609 		ath9k_set_power_network_sleep(ah, setChip);
1610 		break;
1611 	default:
1612 		ath_err(common, "Unknown power mode %u\n", mode);
1613 		return false;
1614 	}
1615 	ah->power_mode = mode;
1616 
1617 	/*
1618 	 * XXX: If this warning never comes up after a while then
1619 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1620 	 * ath9k_hw_setpower() return type void.
1621 	 */
1622 
1623 	if (!(ah->ah_flags & AH_UNPLUGGED))
1624 		ATH_DBG_WARN_ON_ONCE(!status);
1625 
1626 	return status;
1627 }
1628 EXPORT_SYMBOL(ath9k_hw_setpower);
1629 
1630 /*******************/
1631 /* Beacon Handling */
1632 /*******************/
1633 
1634 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1635 {
1636 	int flags = 0;
1637 
1638 	ENABLE_REGWRITE_BUFFER(ah);
1639 
1640 	switch (ah->opmode) {
1641 	case NL80211_IFTYPE_ADHOC:
1642 	case NL80211_IFTYPE_MESH_POINT:
1643 		REG_SET_BIT(ah, AR_TXCFG,
1644 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1645 		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1646 			  TU_TO_USEC(next_beacon +
1647 				     (ah->atim_window ? ah->
1648 				      atim_window : 1)));
1649 		flags |= AR_NDP_TIMER_EN;
1650 	case NL80211_IFTYPE_AP:
1651 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1652 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1653 			  TU_TO_USEC(next_beacon -
1654 				     ah->config.
1655 				     dma_beacon_response_time));
1656 		REG_WRITE(ah, AR_NEXT_SWBA,
1657 			  TU_TO_USEC(next_beacon -
1658 				     ah->config.
1659 				     sw_beacon_response_time));
1660 		flags |=
1661 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1662 		break;
1663 	default:
1664 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1665 			"%s: unsupported opmode: %d\n",
1666 			__func__, ah->opmode);
1667 		return;
1668 		break;
1669 	}
1670 
1671 	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1672 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1673 	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1674 	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1675 
1676 	REGWRITE_BUFFER_FLUSH(ah);
1677 
1678 	beacon_period &= ~ATH9K_BEACON_ENA;
1679 	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1680 		ath9k_hw_reset_tsf(ah);
1681 	}
1682 
1683 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1684 }
1685 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1686 
1687 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1688 				    const struct ath9k_beacon_state *bs)
1689 {
1690 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1691 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1692 	struct ath_common *common = ath9k_hw_common(ah);
1693 
1694 	ENABLE_REGWRITE_BUFFER(ah);
1695 
1696 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1697 
1698 	REG_WRITE(ah, AR_BEACON_PERIOD,
1699 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1700 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1701 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1702 
1703 	REGWRITE_BUFFER_FLUSH(ah);
1704 
1705 	REG_RMW_FIELD(ah, AR_RSSI_THR,
1706 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1707 
1708 	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1709 
1710 	if (bs->bs_sleepduration > beaconintval)
1711 		beaconintval = bs->bs_sleepduration;
1712 
1713 	dtimperiod = bs->bs_dtimperiod;
1714 	if (bs->bs_sleepduration > dtimperiod)
1715 		dtimperiod = bs->bs_sleepduration;
1716 
1717 	if (beaconintval == dtimperiod)
1718 		nextTbtt = bs->bs_nextdtim;
1719 	else
1720 		nextTbtt = bs->bs_nexttbtt;
1721 
1722 	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1723 	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1724 	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1725 	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1726 
1727 	ENABLE_REGWRITE_BUFFER(ah);
1728 
1729 	REG_WRITE(ah, AR_NEXT_DTIM,
1730 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1731 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1732 
1733 	REG_WRITE(ah, AR_SLEEP1,
1734 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1735 		  | AR_SLEEP1_ASSUME_DTIM);
1736 
1737 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1738 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1739 	else
1740 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1741 
1742 	REG_WRITE(ah, AR_SLEEP2,
1743 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1744 
1745 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1746 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1747 
1748 	REGWRITE_BUFFER_FLUSH(ah);
1749 
1750 	REG_SET_BIT(ah, AR_TIMER_MODE,
1751 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1752 		    AR_DTIM_TIMER_EN);
1753 
1754 	/* TSF Out of Range Threshold */
1755 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1756 }
1757 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1758 
1759 /*******************/
1760 /* HW Capabilities */
1761 /*******************/
1762 
1763 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1764 {
1765 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1766 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1767 	struct ath_common *common = ath9k_hw_common(ah);
1768 	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1769 
1770 	u16 capField = 0, eeval;
1771 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
1772 
1773 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1774 	regulatory->current_rd = eeval;
1775 
1776 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1777 	if (AR_SREV_9285_12_OR_LATER(ah))
1778 		eeval |= AR9285_RDEXT_DEFAULT;
1779 	regulatory->current_rd_ext = eeval;
1780 
1781 	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
1782 
1783 	if (ah->opmode != NL80211_IFTYPE_AP &&
1784 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1785 		if (regulatory->current_rd == 0x64 ||
1786 		    regulatory->current_rd == 0x65)
1787 			regulatory->current_rd += 5;
1788 		else if (regulatory->current_rd == 0x41)
1789 			regulatory->current_rd = 0x43;
1790 		ath_dbg(common, ATH_DBG_REGULATORY,
1791 			"regdomain mapped to 0x%x\n", regulatory->current_rd);
1792 	}
1793 
1794 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1795 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1796 		ath_err(common,
1797 			"no band has been marked as supported in EEPROM\n");
1798 		return -EINVAL;
1799 	}
1800 
1801 	if (eeval & AR5416_OPFLAGS_11A)
1802 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1803 
1804 	if (eeval & AR5416_OPFLAGS_11G)
1805 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1806 
1807 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1808 	/*
1809 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
1810 	 * the EEPROM.
1811 	 */
1812 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1813 	    !(eeval & AR5416_OPFLAGS_11A) &&
1814 	    !(AR_SREV_9271(ah)))
1815 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1816 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1817 	else
1818 		/* Use rx_chainmask from EEPROM. */
1819 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1820 
1821 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1822 
1823 	/* enable key search for every frame in an aggregate */
1824 	if (AR_SREV_9300_20_OR_LATER(ah))
1825 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
1826 
1827 	pCap->low_2ghz_chan = 2312;
1828 	pCap->high_2ghz_chan = 2732;
1829 
1830 	pCap->low_5ghz_chan = 4920;
1831 	pCap->high_5ghz_chan = 6100;
1832 
1833 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1834 
1835 	if (ah->config.ht_enable)
1836 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
1837 	else
1838 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1839 
1840 	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
1841 		pCap->total_queues =
1842 			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
1843 	else
1844 		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
1845 
1846 	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
1847 		pCap->keycache_size =
1848 			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
1849 	else
1850 		pCap->keycache_size = AR_KEYTABLE_SIZE;
1851 
1852 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
1853 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
1854 	else
1855 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
1856 
1857 	if (AR_SREV_9271(ah))
1858 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
1859 	else if (AR_DEVID_7010(ah))
1860 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
1861 	else if (AR_SREV_9285_12_OR_LATER(ah))
1862 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
1863 	else if (AR_SREV_9280_20_OR_LATER(ah))
1864 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
1865 	else
1866 		pCap->num_gpio_pins = AR_NUM_GPIO;
1867 
1868 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1869 		pCap->hw_caps |= ATH9K_HW_CAP_CST;
1870 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1871 	} else {
1872 		pCap->rts_aggr_limit = (8 * 1024);
1873 	}
1874 
1875 	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
1876 
1877 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1878 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1879 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1880 		ah->rfkill_gpio =
1881 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1882 		ah->rfkill_polarity =
1883 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1884 
1885 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1886 	}
1887 #endif
1888 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1889 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1890 	else
1891 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1892 
1893 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1894 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1895 	else
1896 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1897 
1898 	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
1899 		pCap->reg_cap =
1900 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1901 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
1902 			AR_EEPROM_EEREGCAP_EN_KK_U2 |
1903 			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
1904 	} else {
1905 		pCap->reg_cap =
1906 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1907 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
1908 	}
1909 
1910 	/* Advertise midband for AR5416 with FCC midband set in eeprom */
1911 	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
1912 	    AR_SREV_5416(ah))
1913 		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
1914 
1915 	if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
1916 		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
1917 		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
1918 
1919 		if (AR_SREV_9285(ah)) {
1920 			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1921 			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
1922 		} else {
1923 			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1924 		}
1925 	} else {
1926 		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1927 	}
1928 
1929 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1930 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
1931 		if (!AR_SREV_9485(ah))
1932 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
1933 
1934 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1935 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1936 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
1937 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
1938 		pCap->txs_len = sizeof(struct ar9003_txs);
1939 		if (!ah->config.paprd_disable &&
1940 		    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1941 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1942 	} else {
1943 		pCap->tx_desc_len = sizeof(struct ath_desc);
1944 		if (AR_SREV_9280_20(ah) &&
1945 		    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1946 		      AR5416_EEP_MINOR_VER_16) ||
1947 		     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
1948 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
1949 	}
1950 
1951 	if (AR_SREV_9300_20_OR_LATER(ah))
1952 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
1953 
1954 	if (AR_SREV_9300_20_OR_LATER(ah))
1955 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
1956 
1957 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
1958 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
1959 
1960 	if (AR_SREV_9285(ah))
1961 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
1962 			ant_div_ctl1 =
1963 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
1964 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
1965 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
1966 		}
1967 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1968 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
1969 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
1970 	}
1971 
1972 
1973 
1974 	if (AR_SREV_9485_10(ah)) {
1975 		pCap->pcie_lcr_extsync_en = true;
1976 		pCap->pcie_lcr_offset = 0x80;
1977 	}
1978 
1979 	tx_chainmask = pCap->tx_chainmask;
1980 	rx_chainmask = pCap->rx_chainmask;
1981 	while (tx_chainmask || rx_chainmask) {
1982 		if (tx_chainmask & BIT(0))
1983 			pCap->max_txchains++;
1984 		if (rx_chainmask & BIT(0))
1985 			pCap->max_rxchains++;
1986 
1987 		tx_chainmask >>= 1;
1988 		rx_chainmask >>= 1;
1989 	}
1990 
1991 	return 0;
1992 }
1993 
1994 /****************************/
1995 /* GPIO / RFKILL / Antennae */
1996 /****************************/
1997 
1998 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
1999 					 u32 gpio, u32 type)
2000 {
2001 	int addr;
2002 	u32 gpio_shift, tmp;
2003 
2004 	if (gpio > 11)
2005 		addr = AR_GPIO_OUTPUT_MUX3;
2006 	else if (gpio > 5)
2007 		addr = AR_GPIO_OUTPUT_MUX2;
2008 	else
2009 		addr = AR_GPIO_OUTPUT_MUX1;
2010 
2011 	gpio_shift = (gpio % 6) * 5;
2012 
2013 	if (AR_SREV_9280_20_OR_LATER(ah)
2014 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2015 		REG_RMW(ah, addr, (type << gpio_shift),
2016 			(0x1f << gpio_shift));
2017 	} else {
2018 		tmp = REG_READ(ah, addr);
2019 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2020 		tmp &= ~(0x1f << gpio_shift);
2021 		tmp |= (type << gpio_shift);
2022 		REG_WRITE(ah, addr, tmp);
2023 	}
2024 }
2025 
2026 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2027 {
2028 	u32 gpio_shift;
2029 
2030 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2031 
2032 	if (AR_DEVID_7010(ah)) {
2033 		gpio_shift = gpio;
2034 		REG_RMW(ah, AR7010_GPIO_OE,
2035 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2036 			(AR7010_GPIO_OE_MASK << gpio_shift));
2037 		return;
2038 	}
2039 
2040 	gpio_shift = gpio << 1;
2041 	REG_RMW(ah,
2042 		AR_GPIO_OE_OUT,
2043 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2044 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2045 }
2046 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2047 
2048 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2049 {
2050 #define MS_REG_READ(x, y) \
2051 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2052 
2053 	if (gpio >= ah->caps.num_gpio_pins)
2054 		return 0xffffffff;
2055 
2056 	if (AR_DEVID_7010(ah)) {
2057 		u32 val;
2058 		val = REG_READ(ah, AR7010_GPIO_IN);
2059 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2060 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2061 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2062 			AR_GPIO_BIT(gpio)) != 0;
2063 	else if (AR_SREV_9271(ah))
2064 		return MS_REG_READ(AR9271, gpio) != 0;
2065 	else if (AR_SREV_9287_11_OR_LATER(ah))
2066 		return MS_REG_READ(AR9287, gpio) != 0;
2067 	else if (AR_SREV_9285_12_OR_LATER(ah))
2068 		return MS_REG_READ(AR9285, gpio) != 0;
2069 	else if (AR_SREV_9280_20_OR_LATER(ah))
2070 		return MS_REG_READ(AR928X, gpio) != 0;
2071 	else
2072 		return MS_REG_READ(AR, gpio) != 0;
2073 }
2074 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2075 
2076 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2077 			 u32 ah_signal_type)
2078 {
2079 	u32 gpio_shift;
2080 
2081 	if (AR_DEVID_7010(ah)) {
2082 		gpio_shift = gpio;
2083 		REG_RMW(ah, AR7010_GPIO_OE,
2084 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2085 			(AR7010_GPIO_OE_MASK << gpio_shift));
2086 		return;
2087 	}
2088 
2089 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2090 	gpio_shift = 2 * gpio;
2091 	REG_RMW(ah,
2092 		AR_GPIO_OE_OUT,
2093 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2094 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2095 }
2096 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2097 
2098 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2099 {
2100 	if (AR_DEVID_7010(ah)) {
2101 		val = val ? 0 : 1;
2102 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2103 			AR_GPIO_BIT(gpio));
2104 		return;
2105 	}
2106 
2107 	if (AR_SREV_9271(ah))
2108 		val = ~val;
2109 
2110 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2111 		AR_GPIO_BIT(gpio));
2112 }
2113 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2114 
2115 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2116 {
2117 	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2118 }
2119 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2120 
2121 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2122 {
2123 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2124 }
2125 EXPORT_SYMBOL(ath9k_hw_setantenna);
2126 
2127 /*********************/
2128 /* General Operation */
2129 /*********************/
2130 
2131 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2132 {
2133 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2134 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2135 
2136 	if (phybits & AR_PHY_ERR_RADAR)
2137 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2138 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2139 		bits |= ATH9K_RX_FILTER_PHYERR;
2140 
2141 	return bits;
2142 }
2143 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2144 
2145 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2146 {
2147 	u32 phybits;
2148 
2149 	ENABLE_REGWRITE_BUFFER(ah);
2150 
2151 	REG_WRITE(ah, AR_RX_FILTER, bits);
2152 
2153 	phybits = 0;
2154 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2155 		phybits |= AR_PHY_ERR_RADAR;
2156 	if (bits & ATH9K_RX_FILTER_PHYERR)
2157 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2158 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2159 
2160 	if (phybits)
2161 		REG_WRITE(ah, AR_RXCFG,
2162 			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2163 	else
2164 		REG_WRITE(ah, AR_RXCFG,
2165 			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2166 
2167 	REGWRITE_BUFFER_FLUSH(ah);
2168 }
2169 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2170 
2171 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2172 {
2173 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2174 		return false;
2175 
2176 	ath9k_hw_init_pll(ah, NULL);
2177 	return true;
2178 }
2179 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2180 
2181 bool ath9k_hw_disable(struct ath_hw *ah)
2182 {
2183 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2184 		return false;
2185 
2186 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2187 		return false;
2188 
2189 	ath9k_hw_init_pll(ah, NULL);
2190 	return true;
2191 }
2192 EXPORT_SYMBOL(ath9k_hw_disable);
2193 
2194 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2195 {
2196 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2197 	struct ath9k_channel *chan = ah->curchan;
2198 	struct ieee80211_channel *channel = chan->chan;
2199 
2200 	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2201 
2202 	ah->eep_ops->set_txpower(ah, chan,
2203 				 ath9k_regd_get_ctl(regulatory, chan),
2204 				 channel->max_antenna_gain * 2,
2205 				 channel->max_power * 2,
2206 				 min((u32) MAX_RATE_POWER,
2207 				 (u32) regulatory->power_limit), test);
2208 }
2209 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2210 
2211 void ath9k_hw_setopmode(struct ath_hw *ah)
2212 {
2213 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2214 }
2215 EXPORT_SYMBOL(ath9k_hw_setopmode);
2216 
2217 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2218 {
2219 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2220 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2221 }
2222 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2223 
2224 void ath9k_hw_write_associd(struct ath_hw *ah)
2225 {
2226 	struct ath_common *common = ath9k_hw_common(ah);
2227 
2228 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2229 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2230 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2231 }
2232 EXPORT_SYMBOL(ath9k_hw_write_associd);
2233 
2234 #define ATH9K_MAX_TSF_READ 10
2235 
2236 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2237 {
2238 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2239 	int i;
2240 
2241 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2242 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2243 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2244 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2245 		if (tsf_upper2 == tsf_upper1)
2246 			break;
2247 		tsf_upper1 = tsf_upper2;
2248 	}
2249 
2250 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2251 
2252 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2253 }
2254 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2255 
2256 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2257 {
2258 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2259 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2260 }
2261 EXPORT_SYMBOL(ath9k_hw_settsf64);
2262 
2263 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2264 {
2265 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2266 			   AH_TSF_WRITE_TIMEOUT))
2267 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2268 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2269 
2270 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2271 }
2272 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2273 
2274 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2275 {
2276 	if (setting)
2277 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2278 	else
2279 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2280 }
2281 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2282 
2283 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2284 {
2285 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2286 	u32 macmode;
2287 
2288 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2289 		macmode = AR_2040_JOINED_RX_CLEAR;
2290 	else
2291 		macmode = 0;
2292 
2293 	REG_WRITE(ah, AR_2040_MODE, macmode);
2294 }
2295 
2296 /* HW Generic timers configuration */
2297 
2298 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2299 {
2300 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2301 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2302 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2303 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2304 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2305 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2306 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2307 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2308 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2309 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2310 				AR_NDP2_TIMER_MODE, 0x0002},
2311 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2312 				AR_NDP2_TIMER_MODE, 0x0004},
2313 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2314 				AR_NDP2_TIMER_MODE, 0x0008},
2315 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2316 				AR_NDP2_TIMER_MODE, 0x0010},
2317 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2318 				AR_NDP2_TIMER_MODE, 0x0020},
2319 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2320 				AR_NDP2_TIMER_MODE, 0x0040},
2321 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2322 				AR_NDP2_TIMER_MODE, 0x0080}
2323 };
2324 
2325 /* HW generic timer primitives */
2326 
2327 /* compute and clear index of rightmost 1 */
2328 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2329 {
2330 	u32 b;
2331 
2332 	b = *mask;
2333 	b &= (0-b);
2334 	*mask &= ~b;
2335 	b *= debruijn32;
2336 	b >>= 27;
2337 
2338 	return timer_table->gen_timer_index[b];
2339 }
2340 
2341 static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2342 {
2343 	return REG_READ(ah, AR_TSF_L32);
2344 }
2345 
2346 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2347 					  void (*trigger)(void *),
2348 					  void (*overflow)(void *),
2349 					  void *arg,
2350 					  u8 timer_index)
2351 {
2352 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2353 	struct ath_gen_timer *timer;
2354 
2355 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2356 
2357 	if (timer == NULL) {
2358 		ath_err(ath9k_hw_common(ah),
2359 			"Failed to allocate memory for hw timer[%d]\n",
2360 			timer_index);
2361 		return NULL;
2362 	}
2363 
2364 	/* allocate a hardware generic timer slot */
2365 	timer_table->timers[timer_index] = timer;
2366 	timer->index = timer_index;
2367 	timer->trigger = trigger;
2368 	timer->overflow = overflow;
2369 	timer->arg = arg;
2370 
2371 	return timer;
2372 }
2373 EXPORT_SYMBOL(ath_gen_timer_alloc);
2374 
2375 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2376 			      struct ath_gen_timer *timer,
2377 			      u32 timer_next,
2378 			      u32 timer_period)
2379 {
2380 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2381 	u32 tsf;
2382 
2383 	BUG_ON(!timer_period);
2384 
2385 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2386 
2387 	tsf = ath9k_hw_gettsf32(ah);
2388 
2389 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2390 		"current tsf %x period %x timer_next %x\n",
2391 		tsf, timer_period, timer_next);
2392 
2393 	/*
2394 	 * Pull timer_next forward if the current TSF already passed it
2395 	 * because of software latency
2396 	 */
2397 	if (timer_next < tsf)
2398 		timer_next = tsf + timer_period;
2399 
2400 	/*
2401 	 * Program generic timer registers
2402 	 */
2403 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2404 		 timer_next);
2405 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2406 		  timer_period);
2407 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2408 		    gen_tmr_configuration[timer->index].mode_mask);
2409 
2410 	/* Enable both trigger and thresh interrupt masks */
2411 	REG_SET_BIT(ah, AR_IMR_S5,
2412 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2413 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2414 }
2415 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2416 
2417 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2418 {
2419 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2420 
2421 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2422 		(timer->index >= ATH_MAX_GEN_TIMER)) {
2423 		return;
2424 	}
2425 
2426 	/* Clear generic timer enable bits. */
2427 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2428 			gen_tmr_configuration[timer->index].mode_mask);
2429 
2430 	/* Disable both trigger and thresh interrupt masks */
2431 	REG_CLR_BIT(ah, AR_IMR_S5,
2432 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2433 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2434 
2435 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2436 }
2437 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2438 
2439 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2440 {
2441 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2442 
2443 	/* free the hardware generic timer slot */
2444 	timer_table->timers[timer->index] = NULL;
2445 	kfree(timer);
2446 }
2447 EXPORT_SYMBOL(ath_gen_timer_free);
2448 
2449 /*
2450  * Generic Timer Interrupts handling
2451  */
2452 void ath_gen_timer_isr(struct ath_hw *ah)
2453 {
2454 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2455 	struct ath_gen_timer *timer;
2456 	struct ath_common *common = ath9k_hw_common(ah);
2457 	u32 trigger_mask, thresh_mask, index;
2458 
2459 	/* get hardware generic timer interrupt status */
2460 	trigger_mask = ah->intr_gen_timer_trigger;
2461 	thresh_mask = ah->intr_gen_timer_thresh;
2462 	trigger_mask &= timer_table->timer_mask.val;
2463 	thresh_mask &= timer_table->timer_mask.val;
2464 
2465 	trigger_mask &= ~thresh_mask;
2466 
2467 	while (thresh_mask) {
2468 		index = rightmost_index(timer_table, &thresh_mask);
2469 		timer = timer_table->timers[index];
2470 		BUG_ON(!timer);
2471 		ath_dbg(common, ATH_DBG_HWTIMER,
2472 			"TSF overflow for Gen timer %d\n", index);
2473 		timer->overflow(timer->arg);
2474 	}
2475 
2476 	while (trigger_mask) {
2477 		index = rightmost_index(timer_table, &trigger_mask);
2478 		timer = timer_table->timers[index];
2479 		BUG_ON(!timer);
2480 		ath_dbg(common, ATH_DBG_HWTIMER,
2481 			"Gen timer[%d] trigger\n", index);
2482 		timer->trigger(timer->arg);
2483 	}
2484 }
2485 EXPORT_SYMBOL(ath_gen_timer_isr);
2486 
2487 /********/
2488 /* HTC  */
2489 /********/
2490 
2491 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2492 {
2493 	ah->htc_reset_init = true;
2494 }
2495 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2496 
2497 static struct {
2498 	u32 version;
2499 	const char * name;
2500 } ath_mac_bb_names[] = {
2501 	/* Devices with external radios */
2502 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2503 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2504 	{ AR_SREV_VERSION_9100,		"9100" },
2505 	{ AR_SREV_VERSION_9160,		"9160" },
2506 	/* Single-chip solutions */
2507 	{ AR_SREV_VERSION_9280,		"9280" },
2508 	{ AR_SREV_VERSION_9285,		"9285" },
2509 	{ AR_SREV_VERSION_9287,         "9287" },
2510 	{ AR_SREV_VERSION_9271,         "9271" },
2511 	{ AR_SREV_VERSION_9300,         "9300" },
2512 };
2513 
2514 /* For devices with external radios */
2515 static struct {
2516 	u16 version;
2517 	const char * name;
2518 } ath_rf_names[] = {
2519 	{ 0,				"5133" },
2520 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2521 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2522 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2523 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2524 };
2525 
2526 /*
2527  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2528  */
2529 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2530 {
2531 	int i;
2532 
2533 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2534 		if (ath_mac_bb_names[i].version == mac_bb_version) {
2535 			return ath_mac_bb_names[i].name;
2536 		}
2537 	}
2538 
2539 	return "????";
2540 }
2541 
2542 /*
2543  * Return the RF name. "????" is returned if the RF is unknown.
2544  * Used for devices with external radios.
2545  */
2546 static const char *ath9k_hw_rf_name(u16 rf_version)
2547 {
2548 	int i;
2549 
2550 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2551 		if (ath_rf_names[i].version == rf_version) {
2552 			return ath_rf_names[i].name;
2553 		}
2554 	}
2555 
2556 	return "????";
2557 }
2558 
2559 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2560 {
2561 	int used;
2562 
2563 	/* chipsets >= AR9280 are single-chip */
2564 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2565 		used = snprintf(hw_name, len,
2566 			       "Atheros AR%s Rev:%x",
2567 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2568 			       ah->hw_version.macRev);
2569 	}
2570 	else {
2571 		used = snprintf(hw_name, len,
2572 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2573 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2574 			       ah->hw_version.macRev,
2575 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2576 						AR_RADIO_SREV_MAJOR)),
2577 			       ah->hw_version.phyRev);
2578 	}
2579 
2580 	hw_name[used] = '\0';
2581 }
2582 EXPORT_SYMBOL(ath9k_hw_name);
2583