xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 3e26a691)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <linux/gpio.h>
24 #include <asm/unaligned.h>
25 
26 #include "hw.h"
27 #include "hw-ops.h"
28 #include "ar9003_mac.h"
29 #include "ar9003_mci.h"
30 #include "ar9003_phy.h"
31 #include "ath9k.h"
32 
33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
34 
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
39 
40 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
41 {
42 	struct ath_common *common = ath9k_hw_common(ah);
43 	struct ath9k_channel *chan = ah->curchan;
44 	unsigned int clockrate;
45 
46 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
48 		clockrate = 117;
49 	else if (!chan) /* should really check for CCK instead */
50 		clockrate = ATH9K_CLOCK_RATE_CCK;
51 	else if (IS_CHAN_2GHZ(chan))
52 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
53 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
54 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
55 	else
56 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
57 
58 	if (chan) {
59 		if (IS_CHAN_HT40(chan))
60 			clockrate *= 2;
61 		if (IS_CHAN_HALF_RATE(chan))
62 			clockrate /= 2;
63 		if (IS_CHAN_QUARTER_RATE(chan))
64 			clockrate /= 4;
65 	}
66 
67 	common->clockrate = clockrate;
68 }
69 
70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
71 {
72 	struct ath_common *common = ath9k_hw_common(ah);
73 
74 	return usecs * common->clockrate;
75 }
76 
77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
78 {
79 	int i;
80 
81 	BUG_ON(timeout < AH_TIME_QUANTUM);
82 
83 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
84 		if ((REG_READ(ah, reg) & mask) == val)
85 			return true;
86 
87 		udelay(AH_TIME_QUANTUM);
88 	}
89 
90 	ath_dbg(ath9k_hw_common(ah), ANY,
91 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 		timeout, reg, REG_READ(ah, reg), mask, val);
93 
94 	return false;
95 }
96 EXPORT_SYMBOL(ath9k_hw_wait);
97 
98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
99 			  int hw_delay)
100 {
101 	hw_delay /= 10;
102 
103 	if (IS_CHAN_HALF_RATE(chan))
104 		hw_delay *= 2;
105 	else if (IS_CHAN_QUARTER_RATE(chan))
106 		hw_delay *= 4;
107 
108 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
109 }
110 
111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
112 			  int column, unsigned int *writecnt)
113 {
114 	int r;
115 
116 	ENABLE_REGWRITE_BUFFER(ah);
117 	for (r = 0; r < array->ia_rows; r++) {
118 		REG_WRITE(ah, INI_RA(array, r, 0),
119 			  INI_RA(array, r, column));
120 		DO_DELAY(*writecnt);
121 	}
122 	REGWRITE_BUFFER_FLUSH(ah);
123 }
124 
125 void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
126 {
127 	u32 *tmp_reg_list, *tmp_data;
128 	int i;
129 
130 	tmp_reg_list = kmalloc(size * sizeof(u32), GFP_KERNEL);
131 	if (!tmp_reg_list) {
132 		dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
133 		return;
134 	}
135 
136 	tmp_data = kmalloc(size * sizeof(u32), GFP_KERNEL);
137 	if (!tmp_data) {
138 		dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
139 		goto error_tmp_data;
140 	}
141 
142 	for (i = 0; i < size; i++)
143 		tmp_reg_list[i] = array[i][0];
144 
145 	REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
146 
147 	for (i = 0; i < size; i++)
148 		array[i][1] = tmp_data[i];
149 
150 	kfree(tmp_data);
151 error_tmp_data:
152 	kfree(tmp_reg_list);
153 }
154 
155 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
156 {
157 	u32 retval;
158 	int i;
159 
160 	for (i = 0, retval = 0; i < n; i++) {
161 		retval = (retval << 1) | (val & 1);
162 		val >>= 1;
163 	}
164 	return retval;
165 }
166 
167 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
168 			   u8 phy, int kbps,
169 			   u32 frameLen, u16 rateix,
170 			   bool shortPreamble)
171 {
172 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
173 
174 	if (kbps == 0)
175 		return 0;
176 
177 	switch (phy) {
178 	case WLAN_RC_PHY_CCK:
179 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
180 		if (shortPreamble)
181 			phyTime >>= 1;
182 		numBits = frameLen << 3;
183 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
184 		break;
185 	case WLAN_RC_PHY_OFDM:
186 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
187 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
188 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
189 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
190 			txTime = OFDM_SIFS_TIME_QUARTER
191 				+ OFDM_PREAMBLE_TIME_QUARTER
192 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
193 		} else if (ah->curchan &&
194 			   IS_CHAN_HALF_RATE(ah->curchan)) {
195 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
196 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
197 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
198 			txTime = OFDM_SIFS_TIME_HALF +
199 				OFDM_PREAMBLE_TIME_HALF
200 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
201 		} else {
202 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
203 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
204 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
205 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
206 				+ (numSymbols * OFDM_SYMBOL_TIME);
207 		}
208 		break;
209 	default:
210 		ath_err(ath9k_hw_common(ah),
211 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
212 		txTime = 0;
213 		break;
214 	}
215 
216 	return txTime;
217 }
218 EXPORT_SYMBOL(ath9k_hw_computetxtime);
219 
220 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
221 				  struct ath9k_channel *chan,
222 				  struct chan_centers *centers)
223 {
224 	int8_t extoff;
225 
226 	if (!IS_CHAN_HT40(chan)) {
227 		centers->ctl_center = centers->ext_center =
228 			centers->synth_center = chan->channel;
229 		return;
230 	}
231 
232 	if (IS_CHAN_HT40PLUS(chan)) {
233 		centers->synth_center =
234 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
235 		extoff = 1;
236 	} else {
237 		centers->synth_center =
238 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
239 		extoff = -1;
240 	}
241 
242 	centers->ctl_center =
243 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
244 	/* 25 MHz spacing is supported by hw but not on upper layers */
245 	centers->ext_center =
246 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
247 }
248 
249 /******************/
250 /* Chip Revisions */
251 /******************/
252 
253 static void ath9k_hw_read_revisions(struct ath_hw *ah)
254 {
255 	u32 val;
256 
257 	if (ah->get_mac_revision)
258 		ah->hw_version.macRev = ah->get_mac_revision();
259 
260 	switch (ah->hw_version.devid) {
261 	case AR5416_AR9100_DEVID:
262 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
263 		break;
264 	case AR9300_DEVID_AR9330:
265 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
266 		if (!ah->get_mac_revision) {
267 			val = REG_READ(ah, AR_SREV);
268 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
269 		}
270 		return;
271 	case AR9300_DEVID_AR9340:
272 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
273 		return;
274 	case AR9300_DEVID_QCA955X:
275 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
276 		return;
277 	case AR9300_DEVID_AR953X:
278 		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
279 		return;
280 	case AR9300_DEVID_QCA956X:
281 		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
282 		return;
283 	}
284 
285 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
286 
287 	if (val == 0xFF) {
288 		val = REG_READ(ah, AR_SREV);
289 		ah->hw_version.macVersion =
290 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
291 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
292 
293 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
294 			ah->is_pciexpress = true;
295 		else
296 			ah->is_pciexpress = (val &
297 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
298 	} else {
299 		if (!AR_SREV_9100(ah))
300 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
301 
302 		ah->hw_version.macRev = val & AR_SREV_REVISION;
303 
304 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
305 			ah->is_pciexpress = true;
306 	}
307 }
308 
309 /************************************/
310 /* HW Attach, Detach, Init Routines */
311 /************************************/
312 
313 static void ath9k_hw_disablepcie(struct ath_hw *ah)
314 {
315 	if (!AR_SREV_5416(ah))
316 		return;
317 
318 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
319 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
320 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
321 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
322 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
323 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
324 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
325 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
326 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
327 
328 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
329 }
330 
331 /* This should work for all families including legacy */
332 static bool ath9k_hw_chip_test(struct ath_hw *ah)
333 {
334 	struct ath_common *common = ath9k_hw_common(ah);
335 	u32 regAddr[2] = { AR_STA_ID0 };
336 	u32 regHold[2];
337 	static const u32 patternData[4] = {
338 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
339 	};
340 	int i, j, loop_max;
341 
342 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
343 		loop_max = 2;
344 		regAddr[1] = AR_PHY_BASE + (8 << 2);
345 	} else
346 		loop_max = 1;
347 
348 	for (i = 0; i < loop_max; i++) {
349 		u32 addr = regAddr[i];
350 		u32 wrData, rdData;
351 
352 		regHold[i] = REG_READ(ah, addr);
353 		for (j = 0; j < 0x100; j++) {
354 			wrData = (j << 16) | j;
355 			REG_WRITE(ah, addr, wrData);
356 			rdData = REG_READ(ah, addr);
357 			if (rdData != wrData) {
358 				ath_err(common,
359 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
360 					addr, wrData, rdData);
361 				return false;
362 			}
363 		}
364 		for (j = 0; j < 4; j++) {
365 			wrData = patternData[j];
366 			REG_WRITE(ah, addr, wrData);
367 			rdData = REG_READ(ah, addr);
368 			if (wrData != rdData) {
369 				ath_err(common,
370 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
371 					addr, wrData, rdData);
372 				return false;
373 			}
374 		}
375 		REG_WRITE(ah, regAddr[i], regHold[i]);
376 	}
377 	udelay(100);
378 
379 	return true;
380 }
381 
382 static void ath9k_hw_init_config(struct ath_hw *ah)
383 {
384 	struct ath_common *common = ath9k_hw_common(ah);
385 
386 	ah->config.dma_beacon_response_time = 1;
387 	ah->config.sw_beacon_response_time = 6;
388 	ah->config.cwm_ignore_extcca = false;
389 	ah->config.analog_shiftreg = 1;
390 
391 	ah->config.rx_intr_mitigation = true;
392 
393 	if (AR_SREV_9300_20_OR_LATER(ah)) {
394 		ah->config.rimt_last = 500;
395 		ah->config.rimt_first = 2000;
396 	} else {
397 		ah->config.rimt_last = 250;
398 		ah->config.rimt_first = 700;
399 	}
400 
401 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
402 		ah->config.pll_pwrsave = 7;
403 
404 	/*
405 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
406 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
407 	 * This means we use it for all AR5416 devices, and the few
408 	 * minor PCI AR9280 devices out there.
409 	 *
410 	 * Serialization is required because these devices do not handle
411 	 * well the case of two concurrent reads/writes due to the latency
412 	 * involved. During one read/write another read/write can be issued
413 	 * on another CPU while the previous read/write may still be working
414 	 * on our hardware, if we hit this case the hardware poops in a loop.
415 	 * We prevent this by serializing reads and writes.
416 	 *
417 	 * This issue is not present on PCI-Express devices or pre-AR5416
418 	 * devices (legacy, 802.11abg).
419 	 */
420 	if (num_possible_cpus() > 1)
421 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
422 
423 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
424 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
425 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
426 		     !ah->is_pciexpress)) {
427 			ah->config.serialize_regmode = SER_REG_MODE_ON;
428 		} else {
429 			ah->config.serialize_regmode = SER_REG_MODE_OFF;
430 		}
431 	}
432 
433 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
434 		ah->config.serialize_regmode);
435 
436 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
437 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
438 	else
439 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
440 }
441 
442 static void ath9k_hw_init_defaults(struct ath_hw *ah)
443 {
444 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
445 
446 	regulatory->country_code = CTRY_DEFAULT;
447 	regulatory->power_limit = MAX_RATE_POWER;
448 
449 	ah->hw_version.magic = AR5416_MAGIC;
450 	ah->hw_version.subvendorid = 0;
451 
452 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
453 			       AR_STA_ID1_MCAST_KSRCH;
454 	if (AR_SREV_9100(ah))
455 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
456 
457 	ah->slottime = ATH9K_SLOT_TIME_9;
458 	ah->globaltxtimeout = (u32) -1;
459 	ah->power_mode = ATH9K_PM_UNDEFINED;
460 	ah->htc_reset_init = true;
461 
462 	ah->tpc_enabled = false;
463 
464 	ah->ani_function = ATH9K_ANI_ALL;
465 	if (!AR_SREV_9300_20_OR_LATER(ah))
466 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
467 
468 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
469 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
470 	else
471 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
472 }
473 
474 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
475 {
476 	struct ath_common *common = ath9k_hw_common(ah);
477 	u32 sum;
478 	int i;
479 	u16 eeval;
480 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
481 
482 	sum = 0;
483 	for (i = 0; i < 3; i++) {
484 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
485 		sum += eeval;
486 		common->macaddr[2 * i] = eeval >> 8;
487 		common->macaddr[2 * i + 1] = eeval & 0xff;
488 	}
489 	if (!is_valid_ether_addr(common->macaddr)) {
490 		ath_err(common,
491 			"eeprom contains invalid mac address: %pM\n",
492 			common->macaddr);
493 
494 		random_ether_addr(common->macaddr);
495 		ath_err(common,
496 			"random mac address will be used: %pM\n",
497 			common->macaddr);
498 	}
499 
500 	return 0;
501 }
502 
503 static int ath9k_hw_post_init(struct ath_hw *ah)
504 {
505 	struct ath_common *common = ath9k_hw_common(ah);
506 	int ecode;
507 
508 	if (common->bus_ops->ath_bus_type != ATH_USB) {
509 		if (!ath9k_hw_chip_test(ah))
510 			return -ENODEV;
511 	}
512 
513 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
514 		ecode = ar9002_hw_rf_claim(ah);
515 		if (ecode != 0)
516 			return ecode;
517 	}
518 
519 	ecode = ath9k_hw_eeprom_init(ah);
520 	if (ecode != 0)
521 		return ecode;
522 
523 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
524 		ah->eep_ops->get_eeprom_ver(ah),
525 		ah->eep_ops->get_eeprom_rev(ah));
526 
527 	ath9k_hw_ani_init(ah);
528 
529 	/*
530 	 * EEPROM needs to be initialized before we do this.
531 	 * This is required for regulatory compliance.
532 	 */
533 	if (AR_SREV_9300_20_OR_LATER(ah)) {
534 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
535 		if ((regdmn & 0xF0) == CTL_FCC) {
536 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
537 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
538 		}
539 	}
540 
541 	return 0;
542 }
543 
544 static int ath9k_hw_attach_ops(struct ath_hw *ah)
545 {
546 	if (!AR_SREV_9300_20_OR_LATER(ah))
547 		return ar9002_hw_attach_ops(ah);
548 
549 	ar9003_hw_attach_ops(ah);
550 	return 0;
551 }
552 
553 /* Called for all hardware families */
554 static int __ath9k_hw_init(struct ath_hw *ah)
555 {
556 	struct ath_common *common = ath9k_hw_common(ah);
557 	int r = 0;
558 
559 	ath9k_hw_read_revisions(ah);
560 
561 	switch (ah->hw_version.macVersion) {
562 	case AR_SREV_VERSION_5416_PCI:
563 	case AR_SREV_VERSION_5416_PCIE:
564 	case AR_SREV_VERSION_9160:
565 	case AR_SREV_VERSION_9100:
566 	case AR_SREV_VERSION_9280:
567 	case AR_SREV_VERSION_9285:
568 	case AR_SREV_VERSION_9287:
569 	case AR_SREV_VERSION_9271:
570 	case AR_SREV_VERSION_9300:
571 	case AR_SREV_VERSION_9330:
572 	case AR_SREV_VERSION_9485:
573 	case AR_SREV_VERSION_9340:
574 	case AR_SREV_VERSION_9462:
575 	case AR_SREV_VERSION_9550:
576 	case AR_SREV_VERSION_9565:
577 	case AR_SREV_VERSION_9531:
578 	case AR_SREV_VERSION_9561:
579 		break;
580 	default:
581 		ath_err(common,
582 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
583 			ah->hw_version.macVersion, ah->hw_version.macRev);
584 		return -EOPNOTSUPP;
585 	}
586 
587 	/*
588 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
589 	 * We need to do this to avoid RMW of this register. We cannot
590 	 * read the reg when chip is asleep.
591 	 */
592 	if (AR_SREV_9300_20_OR_LATER(ah)) {
593 		ah->WARegVal = REG_READ(ah, AR_WA);
594 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
595 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
596 	}
597 
598 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
599 		ath_err(common, "Couldn't reset chip\n");
600 		return -EIO;
601 	}
602 
603 	if (AR_SREV_9565(ah)) {
604 		ah->WARegVal |= AR_WA_BIT22;
605 		REG_WRITE(ah, AR_WA, ah->WARegVal);
606 	}
607 
608 	ath9k_hw_init_defaults(ah);
609 	ath9k_hw_init_config(ah);
610 
611 	r = ath9k_hw_attach_ops(ah);
612 	if (r)
613 		return r;
614 
615 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
616 		ath_err(common, "Couldn't wakeup chip\n");
617 		return -EIO;
618 	}
619 
620 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
621 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
622 		ah->is_pciexpress = false;
623 
624 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
625 	ath9k_hw_init_cal_settings(ah);
626 
627 	if (!ah->is_pciexpress)
628 		ath9k_hw_disablepcie(ah);
629 
630 	r = ath9k_hw_post_init(ah);
631 	if (r)
632 		return r;
633 
634 	ath9k_hw_init_mode_gain_regs(ah);
635 	r = ath9k_hw_fill_cap_info(ah);
636 	if (r)
637 		return r;
638 
639 	r = ath9k_hw_init_macaddr(ah);
640 	if (r) {
641 		ath_err(common, "Failed to initialize MAC address\n");
642 		return r;
643 	}
644 
645 	ath9k_hw_init_hang_checks(ah);
646 
647 	common->state = ATH_HW_INITIALIZED;
648 
649 	return 0;
650 }
651 
652 int ath9k_hw_init(struct ath_hw *ah)
653 {
654 	int ret;
655 	struct ath_common *common = ath9k_hw_common(ah);
656 
657 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
658 	switch (ah->hw_version.devid) {
659 	case AR5416_DEVID_PCI:
660 	case AR5416_DEVID_PCIE:
661 	case AR5416_AR9100_DEVID:
662 	case AR9160_DEVID_PCI:
663 	case AR9280_DEVID_PCI:
664 	case AR9280_DEVID_PCIE:
665 	case AR9285_DEVID_PCIE:
666 	case AR9287_DEVID_PCI:
667 	case AR9287_DEVID_PCIE:
668 	case AR2427_DEVID_PCIE:
669 	case AR9300_DEVID_PCIE:
670 	case AR9300_DEVID_AR9485_PCIE:
671 	case AR9300_DEVID_AR9330:
672 	case AR9300_DEVID_AR9340:
673 	case AR9300_DEVID_QCA955X:
674 	case AR9300_DEVID_AR9580:
675 	case AR9300_DEVID_AR9462:
676 	case AR9485_DEVID_AR1111:
677 	case AR9300_DEVID_AR9565:
678 	case AR9300_DEVID_AR953X:
679 	case AR9300_DEVID_QCA956X:
680 		break;
681 	default:
682 		if (common->bus_ops->ath_bus_type == ATH_USB)
683 			break;
684 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
685 			ah->hw_version.devid);
686 		return -EOPNOTSUPP;
687 	}
688 
689 	ret = __ath9k_hw_init(ah);
690 	if (ret) {
691 		ath_err(common,
692 			"Unable to initialize hardware; initialization status: %d\n",
693 			ret);
694 		return ret;
695 	}
696 
697 	ath_dynack_init(ah);
698 
699 	return 0;
700 }
701 EXPORT_SYMBOL(ath9k_hw_init);
702 
703 static void ath9k_hw_init_qos(struct ath_hw *ah)
704 {
705 	ENABLE_REGWRITE_BUFFER(ah);
706 
707 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
708 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
709 
710 	REG_WRITE(ah, AR_QOS_NO_ACK,
711 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
712 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
713 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
714 
715 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
716 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
717 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
718 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
719 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
720 
721 	REGWRITE_BUFFER_FLUSH(ah);
722 }
723 
724 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
725 {
726 	struct ath_common *common = ath9k_hw_common(ah);
727 	int i = 0;
728 
729 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
730 	udelay(100);
731 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
732 
733 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
734 
735 		udelay(100);
736 
737 		if (WARN_ON_ONCE(i >= 100)) {
738 			ath_err(common, "PLL4 meaurement not done\n");
739 			break;
740 		}
741 
742 		i++;
743 	}
744 
745 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
746 }
747 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
748 
749 static void ath9k_hw_init_pll(struct ath_hw *ah,
750 			      struct ath9k_channel *chan)
751 {
752 	u32 pll;
753 
754 	pll = ath9k_hw_compute_pll_control(ah, chan);
755 
756 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
757 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
758 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
759 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
760 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
761 			      AR_CH0_DPLL2_KD, 0x40);
762 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
763 			      AR_CH0_DPLL2_KI, 0x4);
764 
765 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
766 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
767 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
768 			      AR_CH0_BB_DPLL1_NINI, 0x58);
769 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
770 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
771 
772 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
773 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
774 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
775 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
776 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
777 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
778 
779 		/* program BB PLL phase_shift to 0x6 */
780 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
781 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
782 
783 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
784 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
785 		udelay(1000);
786 	} else if (AR_SREV_9330(ah)) {
787 		u32 ddr_dpll2, pll_control2, kd;
788 
789 		if (ah->is_clk_25mhz) {
790 			ddr_dpll2 = 0x18e82f01;
791 			pll_control2 = 0xe04a3d;
792 			kd = 0x1d;
793 		} else {
794 			ddr_dpll2 = 0x19e82f01;
795 			pll_control2 = 0x886666;
796 			kd = 0x3d;
797 		}
798 
799 		/* program DDR PLL ki and kd value */
800 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
801 
802 		/* program DDR PLL phase_shift */
803 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
804 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
805 
806 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
807 			  pll | AR_RTC_9300_PLL_BYPASS);
808 		udelay(1000);
809 
810 		/* program refdiv, nint, frac to RTC register */
811 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
812 
813 		/* program BB PLL kd and ki value */
814 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
815 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
816 
817 		/* program BB PLL phase_shift */
818 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
819 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
820 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
821 		   AR_SREV_9561(ah)) {
822 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
823 
824 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
825 			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
826 		udelay(1000);
827 
828 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
829 		udelay(100);
830 
831 		if (ah->is_clk_25mhz) {
832 			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
833 				pll2_divint = 0x1c;
834 				pll2_divfrac = 0xa3d2;
835 				refdiv = 1;
836 			} else {
837 				pll2_divint = 0x54;
838 				pll2_divfrac = 0x1eb85;
839 				refdiv = 3;
840 			}
841 		} else {
842 			if (AR_SREV_9340(ah)) {
843 				pll2_divint = 88;
844 				pll2_divfrac = 0;
845 				refdiv = 5;
846 			} else {
847 				pll2_divint = 0x11;
848 				pll2_divfrac = (AR_SREV_9531(ah) ||
849 						AR_SREV_9561(ah)) ?
850 						0x26665 : 0x26666;
851 				refdiv = 1;
852 			}
853 		}
854 
855 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
856 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
857 			regval |= (0x1 << 22);
858 		else
859 			regval |= (0x1 << 16);
860 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
861 		udelay(100);
862 
863 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
864 			  (pll2_divint << 18) | pll2_divfrac);
865 		udelay(100);
866 
867 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
868 		if (AR_SREV_9340(ah))
869 			regval = (regval & 0x80071fff) |
870 				(0x1 << 30) |
871 				(0x1 << 13) |
872 				(0x4 << 26) |
873 				(0x18 << 19);
874 		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
875 			regval = (regval & 0x01c00fff) |
876 				(0x1 << 31) |
877 				(0x2 << 29) |
878 				(0xa << 25) |
879 				(0x1 << 19);
880 
881 			if (AR_SREV_9531(ah))
882 				regval |= (0x6 << 12);
883 		} else
884 			regval = (regval & 0x80071fff) |
885 				(0x3 << 30) |
886 				(0x1 << 13) |
887 				(0x4 << 26) |
888 				(0x60 << 19);
889 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
890 
891 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
892 			REG_WRITE(ah, AR_PHY_PLL_MODE,
893 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
894 		else
895 			REG_WRITE(ah, AR_PHY_PLL_MODE,
896 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
897 
898 		udelay(1000);
899 	}
900 
901 	if (AR_SREV_9565(ah))
902 		pll |= 0x40000;
903 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
904 
905 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
906 	    AR_SREV_9550(ah))
907 		udelay(1000);
908 
909 	/* Switch the core clock for ar9271 to 117Mhz */
910 	if (AR_SREV_9271(ah)) {
911 		udelay(500);
912 		REG_WRITE(ah, 0x50040, 0x304);
913 	}
914 
915 	udelay(RTC_PLL_SETTLE_DELAY);
916 
917 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
918 }
919 
920 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
921 					  enum nl80211_iftype opmode)
922 {
923 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
924 	u32 imr_reg = AR_IMR_TXERR |
925 		AR_IMR_TXURN |
926 		AR_IMR_RXERR |
927 		AR_IMR_RXORN |
928 		AR_IMR_BCNMISC;
929 
930 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
931 	    AR_SREV_9561(ah))
932 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
933 
934 	if (AR_SREV_9300_20_OR_LATER(ah)) {
935 		imr_reg |= AR_IMR_RXOK_HP;
936 		if (ah->config.rx_intr_mitigation)
937 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
938 		else
939 			imr_reg |= AR_IMR_RXOK_LP;
940 
941 	} else {
942 		if (ah->config.rx_intr_mitigation)
943 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
944 		else
945 			imr_reg |= AR_IMR_RXOK;
946 	}
947 
948 	if (ah->config.tx_intr_mitigation)
949 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
950 	else
951 		imr_reg |= AR_IMR_TXOK;
952 
953 	ENABLE_REGWRITE_BUFFER(ah);
954 
955 	REG_WRITE(ah, AR_IMR, imr_reg);
956 	ah->imrs2_reg |= AR_IMR_S2_GTT;
957 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
958 
959 	if (!AR_SREV_9100(ah)) {
960 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
961 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
962 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
963 	}
964 
965 	REGWRITE_BUFFER_FLUSH(ah);
966 
967 	if (AR_SREV_9300_20_OR_LATER(ah)) {
968 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
969 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
970 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
971 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
972 	}
973 }
974 
975 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
976 {
977 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
978 	val = min(val, (u32) 0xFFFF);
979 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
980 }
981 
982 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
983 {
984 	u32 val = ath9k_hw_mac_to_clks(ah, us);
985 	val = min(val, (u32) 0xFFFF);
986 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
987 }
988 
989 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
990 {
991 	u32 val = ath9k_hw_mac_to_clks(ah, us);
992 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
993 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
994 }
995 
996 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
997 {
998 	u32 val = ath9k_hw_mac_to_clks(ah, us);
999 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1000 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1001 }
1002 
1003 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1004 {
1005 	if (tu > 0xFFFF) {
1006 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1007 			tu);
1008 		ah->globaltxtimeout = (u32) -1;
1009 		return false;
1010 	} else {
1011 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1012 		ah->globaltxtimeout = tu;
1013 		return true;
1014 	}
1015 }
1016 
1017 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1018 {
1019 	struct ath_common *common = ath9k_hw_common(ah);
1020 	const struct ath9k_channel *chan = ah->curchan;
1021 	int acktimeout, ctstimeout, ack_offset = 0;
1022 	int slottime;
1023 	int sifstime;
1024 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1025 	u32 reg;
1026 
1027 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1028 		ah->misc_mode);
1029 
1030 	if (!chan)
1031 		return;
1032 
1033 	if (ah->misc_mode != 0)
1034 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1035 
1036 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1037 		rx_lat = 41;
1038 	else
1039 		rx_lat = 37;
1040 	tx_lat = 54;
1041 
1042 	if (IS_CHAN_5GHZ(chan))
1043 		sifstime = 16;
1044 	else
1045 		sifstime = 10;
1046 
1047 	if (IS_CHAN_HALF_RATE(chan)) {
1048 		eifs = 175;
1049 		rx_lat *= 2;
1050 		tx_lat *= 2;
1051 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1052 		    tx_lat += 11;
1053 
1054 		sifstime = 32;
1055 		ack_offset = 16;
1056 		slottime = 13;
1057 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1058 		eifs = 340;
1059 		rx_lat = (rx_lat * 4) - 1;
1060 		tx_lat *= 4;
1061 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1062 		    tx_lat += 22;
1063 
1064 		sifstime = 64;
1065 		ack_offset = 32;
1066 		slottime = 21;
1067 	} else {
1068 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1069 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1070 			reg = AR_USEC_ASYNC_FIFO;
1071 		} else {
1072 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1073 				common->clockrate;
1074 			reg = REG_READ(ah, AR_USEC);
1075 		}
1076 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1077 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1078 
1079 		slottime = ah->slottime;
1080 	}
1081 
1082 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1083 	slottime += 3 * ah->coverage_class;
1084 	acktimeout = slottime + sifstime + ack_offset;
1085 	ctstimeout = acktimeout;
1086 
1087 	/*
1088 	 * Workaround for early ACK timeouts, add an offset to match the
1089 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1090 	 * This was initially only meant to work around an issue with delayed
1091 	 * BA frames in some implementations, but it has been found to fix ACK
1092 	 * timeout issues in other cases as well.
1093 	 */
1094 	if (IS_CHAN_2GHZ(chan) &&
1095 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1096 		acktimeout += 64 - sifstime - ah->slottime;
1097 		ctstimeout += 48 - sifstime - ah->slottime;
1098 	}
1099 
1100 	if (ah->dynack.enabled) {
1101 		acktimeout = ah->dynack.ackto;
1102 		ctstimeout = acktimeout;
1103 		slottime = (acktimeout - 3) / 2;
1104 	} else {
1105 		ah->dynack.ackto = acktimeout;
1106 	}
1107 
1108 	ath9k_hw_set_sifs_time(ah, sifstime);
1109 	ath9k_hw_setslottime(ah, slottime);
1110 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1111 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1112 	if (ah->globaltxtimeout != (u32) -1)
1113 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1114 
1115 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1116 	REG_RMW(ah, AR_USEC,
1117 		(common->clockrate - 1) |
1118 		SM(rx_lat, AR_USEC_RX_LAT) |
1119 		SM(tx_lat, AR_USEC_TX_LAT),
1120 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1121 
1122 }
1123 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1124 
1125 void ath9k_hw_deinit(struct ath_hw *ah)
1126 {
1127 	struct ath_common *common = ath9k_hw_common(ah);
1128 
1129 	if (common->state < ATH_HW_INITIALIZED)
1130 		return;
1131 
1132 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1133 }
1134 EXPORT_SYMBOL(ath9k_hw_deinit);
1135 
1136 /*******/
1137 /* INI */
1138 /*******/
1139 
1140 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1141 {
1142 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1143 
1144 	if (IS_CHAN_2GHZ(chan))
1145 		ctl |= CTL_11G;
1146 	else
1147 		ctl |= CTL_11A;
1148 
1149 	return ctl;
1150 }
1151 
1152 /****************************************/
1153 /* Reset and Channel Switching Routines */
1154 /****************************************/
1155 
1156 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1157 {
1158 	struct ath_common *common = ath9k_hw_common(ah);
1159 	int txbuf_size;
1160 
1161 	ENABLE_REGWRITE_BUFFER(ah);
1162 
1163 	/*
1164 	 * set AHB_MODE not to do cacheline prefetches
1165 	*/
1166 	if (!AR_SREV_9300_20_OR_LATER(ah))
1167 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1168 
1169 	/*
1170 	 * let mac dma reads be in 128 byte chunks
1171 	 */
1172 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1173 
1174 	REGWRITE_BUFFER_FLUSH(ah);
1175 
1176 	/*
1177 	 * Restore TX Trigger Level to its pre-reset value.
1178 	 * The initial value depends on whether aggregation is enabled, and is
1179 	 * adjusted whenever underruns are detected.
1180 	 */
1181 	if (!AR_SREV_9300_20_OR_LATER(ah))
1182 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1183 
1184 	ENABLE_REGWRITE_BUFFER(ah);
1185 
1186 	/*
1187 	 * let mac dma writes be in 128 byte chunks
1188 	 */
1189 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1190 
1191 	/*
1192 	 * Setup receive FIFO threshold to hold off TX activities
1193 	 */
1194 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1195 
1196 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1197 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1198 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1199 
1200 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1201 			ah->caps.rx_status_len);
1202 	}
1203 
1204 	/*
1205 	 * reduce the number of usable entries in PCU TXBUF to avoid
1206 	 * wrap around issues.
1207 	 */
1208 	if (AR_SREV_9285(ah)) {
1209 		/* For AR9285 the number of Fifos are reduced to half.
1210 		 * So set the usable tx buf size also to half to
1211 		 * avoid data/delimiter underruns
1212 		 */
1213 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1214 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1215 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1216 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1217 	} else {
1218 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1219 	}
1220 
1221 	if (!AR_SREV_9271(ah))
1222 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1223 
1224 	REGWRITE_BUFFER_FLUSH(ah);
1225 
1226 	if (AR_SREV_9300_20_OR_LATER(ah))
1227 		ath9k_hw_reset_txstatus_ring(ah);
1228 }
1229 
1230 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1231 {
1232 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1233 	u32 set = AR_STA_ID1_KSRCH_MODE;
1234 
1235 	ENABLE_REG_RMW_BUFFER(ah);
1236 	switch (opmode) {
1237 	case NL80211_IFTYPE_ADHOC:
1238 		if (!AR_SREV_9340_13(ah)) {
1239 			set |= AR_STA_ID1_ADHOC;
1240 			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1241 			break;
1242 		}
1243 		/* fall through */
1244 	case NL80211_IFTYPE_OCB:
1245 	case NL80211_IFTYPE_MESH_POINT:
1246 	case NL80211_IFTYPE_AP:
1247 		set |= AR_STA_ID1_STA_AP;
1248 		/* fall through */
1249 	case NL80211_IFTYPE_STATION:
1250 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1251 		break;
1252 	default:
1253 		if (!ah->is_monitoring)
1254 			set = 0;
1255 		break;
1256 	}
1257 	REG_RMW(ah, AR_STA_ID1, set, mask);
1258 	REG_RMW_BUFFER_FLUSH(ah);
1259 }
1260 
1261 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1262 				   u32 *coef_mantissa, u32 *coef_exponent)
1263 {
1264 	u32 coef_exp, coef_man;
1265 
1266 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1267 		if ((coef_scaled >> coef_exp) & 0x1)
1268 			break;
1269 
1270 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1271 
1272 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1273 
1274 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1275 	*coef_exponent = coef_exp - 16;
1276 }
1277 
1278 /* AR9330 WAR:
1279  * call external reset function to reset WMAC if:
1280  * - doing a cold reset
1281  * - we have pending frames in the TX queues.
1282  */
1283 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1284 {
1285 	int i, npend = 0;
1286 
1287 	for (i = 0; i < AR_NUM_QCU; i++) {
1288 		npend = ath9k_hw_numtxpending(ah, i);
1289 		if (npend)
1290 			break;
1291 	}
1292 
1293 	if (ah->external_reset &&
1294 	    (npend || type == ATH9K_RESET_COLD)) {
1295 		int reset_err = 0;
1296 
1297 		ath_dbg(ath9k_hw_common(ah), RESET,
1298 			"reset MAC via external reset\n");
1299 
1300 		reset_err = ah->external_reset();
1301 		if (reset_err) {
1302 			ath_err(ath9k_hw_common(ah),
1303 				"External reset failed, err=%d\n",
1304 				reset_err);
1305 			return false;
1306 		}
1307 
1308 		REG_WRITE(ah, AR_RTC_RESET, 1);
1309 	}
1310 
1311 	return true;
1312 }
1313 
1314 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1315 {
1316 	u32 rst_flags;
1317 	u32 tmpReg;
1318 
1319 	if (AR_SREV_9100(ah)) {
1320 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1321 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1322 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1323 	}
1324 
1325 	ENABLE_REGWRITE_BUFFER(ah);
1326 
1327 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1328 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1329 		udelay(10);
1330 	}
1331 
1332 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1333 		  AR_RTC_FORCE_WAKE_ON_INT);
1334 
1335 	if (AR_SREV_9100(ah)) {
1336 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1337 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1338 	} else {
1339 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1340 		if (AR_SREV_9340(ah))
1341 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1342 		else
1343 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1344 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1345 
1346 		if (tmpReg) {
1347 			u32 val;
1348 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1349 
1350 			val = AR_RC_HOSTIF;
1351 			if (!AR_SREV_9300_20_OR_LATER(ah))
1352 				val |= AR_RC_AHB;
1353 			REG_WRITE(ah, AR_RC, val);
1354 
1355 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1356 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1357 
1358 		rst_flags = AR_RTC_RC_MAC_WARM;
1359 		if (type == ATH9K_RESET_COLD)
1360 			rst_flags |= AR_RTC_RC_MAC_COLD;
1361 	}
1362 
1363 	if (AR_SREV_9330(ah)) {
1364 		if (!ath9k_hw_ar9330_reset_war(ah, type))
1365 			return false;
1366 	}
1367 
1368 	if (ath9k_hw_mci_is_enabled(ah))
1369 		ar9003_mci_check_gpm_offset(ah);
1370 
1371 	/* DMA HALT added to resolve ar9300 and ar9580 bus error during
1372 	 * RTC_RC reg read
1373 	 */
1374 	if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1375 		REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1376 		ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1377 			      20 * AH_WAIT_TIMEOUT);
1378 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1379 	}
1380 
1381 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1382 
1383 	REGWRITE_BUFFER_FLUSH(ah);
1384 
1385 	if (AR_SREV_9300_20_OR_LATER(ah))
1386 		udelay(50);
1387 	else if (AR_SREV_9100(ah))
1388 		mdelay(10);
1389 	else
1390 		udelay(100);
1391 
1392 	REG_WRITE(ah, AR_RTC_RC, 0);
1393 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1394 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1395 		return false;
1396 	}
1397 
1398 	if (!AR_SREV_9100(ah))
1399 		REG_WRITE(ah, AR_RC, 0);
1400 
1401 	if (AR_SREV_9100(ah))
1402 		udelay(50);
1403 
1404 	return true;
1405 }
1406 
1407 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1408 {
1409 	ENABLE_REGWRITE_BUFFER(ah);
1410 
1411 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1412 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1413 		udelay(10);
1414 	}
1415 
1416 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1417 		  AR_RTC_FORCE_WAKE_ON_INT);
1418 
1419 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1420 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1421 
1422 	REG_WRITE(ah, AR_RTC_RESET, 0);
1423 
1424 	REGWRITE_BUFFER_FLUSH(ah);
1425 
1426 	udelay(2);
1427 
1428 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1429 		REG_WRITE(ah, AR_RC, 0);
1430 
1431 	REG_WRITE(ah, AR_RTC_RESET, 1);
1432 
1433 	if (!ath9k_hw_wait(ah,
1434 			   AR_RTC_STATUS,
1435 			   AR_RTC_STATUS_M,
1436 			   AR_RTC_STATUS_ON,
1437 			   AH_WAIT_TIMEOUT)) {
1438 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1439 		return false;
1440 	}
1441 
1442 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1443 }
1444 
1445 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1446 {
1447 	bool ret = false;
1448 
1449 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1450 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1451 		udelay(10);
1452 	}
1453 
1454 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1455 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1456 
1457 	if (!ah->reset_power_on)
1458 		type = ATH9K_RESET_POWER_ON;
1459 
1460 	switch (type) {
1461 	case ATH9K_RESET_POWER_ON:
1462 		ret = ath9k_hw_set_reset_power_on(ah);
1463 		if (ret)
1464 			ah->reset_power_on = true;
1465 		break;
1466 	case ATH9K_RESET_WARM:
1467 	case ATH9K_RESET_COLD:
1468 		ret = ath9k_hw_set_reset(ah, type);
1469 		break;
1470 	default:
1471 		break;
1472 	}
1473 
1474 	return ret;
1475 }
1476 
1477 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1478 				struct ath9k_channel *chan)
1479 {
1480 	int reset_type = ATH9K_RESET_WARM;
1481 
1482 	if (AR_SREV_9280(ah)) {
1483 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1484 			reset_type = ATH9K_RESET_POWER_ON;
1485 		else
1486 			reset_type = ATH9K_RESET_COLD;
1487 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1488 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1489 		reset_type = ATH9K_RESET_COLD;
1490 
1491 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1492 		return false;
1493 
1494 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1495 		return false;
1496 
1497 	ah->chip_fullsleep = false;
1498 
1499 	if (AR_SREV_9330(ah))
1500 		ar9003_hw_internal_regulator_apply(ah);
1501 	ath9k_hw_init_pll(ah, chan);
1502 
1503 	return true;
1504 }
1505 
1506 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1507 				    struct ath9k_channel *chan)
1508 {
1509 	struct ath_common *common = ath9k_hw_common(ah);
1510 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1511 	bool band_switch = false, mode_diff = false;
1512 	u8 ini_reloaded = 0;
1513 	u32 qnum;
1514 	int r;
1515 
1516 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1517 		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1518 		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1519 		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1520 	}
1521 
1522 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1523 		if (ath9k_hw_numtxpending(ah, qnum)) {
1524 			ath_dbg(common, QUEUE,
1525 				"Transmit frames pending on queue %d\n", qnum);
1526 			return false;
1527 		}
1528 	}
1529 
1530 	if (!ath9k_hw_rfbus_req(ah)) {
1531 		ath_err(common, "Could not kill baseband RX\n");
1532 		return false;
1533 	}
1534 
1535 	if (band_switch || mode_diff) {
1536 		ath9k_hw_mark_phy_inactive(ah);
1537 		udelay(5);
1538 
1539 		if (band_switch)
1540 			ath9k_hw_init_pll(ah, chan);
1541 
1542 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1543 			ath_err(common, "Failed to do fast channel change\n");
1544 			return false;
1545 		}
1546 	}
1547 
1548 	ath9k_hw_set_channel_regs(ah, chan);
1549 
1550 	r = ath9k_hw_rf_set_freq(ah, chan);
1551 	if (r) {
1552 		ath_err(common, "Failed to set channel\n");
1553 		return false;
1554 	}
1555 	ath9k_hw_set_clockrate(ah);
1556 	ath9k_hw_apply_txpower(ah, chan, false);
1557 
1558 	ath9k_hw_set_delta_slope(ah, chan);
1559 	ath9k_hw_spur_mitigate_freq(ah, chan);
1560 
1561 	if (band_switch || ini_reloaded)
1562 		ah->eep_ops->set_board_values(ah, chan);
1563 
1564 	ath9k_hw_init_bb(ah, chan);
1565 	ath9k_hw_rfbus_done(ah);
1566 
1567 	if (band_switch || ini_reloaded) {
1568 		ah->ah_flags |= AH_FASTCC;
1569 		ath9k_hw_init_cal(ah, chan);
1570 		ah->ah_flags &= ~AH_FASTCC;
1571 	}
1572 
1573 	return true;
1574 }
1575 
1576 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1577 {
1578 	u32 gpio_mask = ah->gpio_mask;
1579 	int i;
1580 
1581 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1582 		if (!(gpio_mask & 1))
1583 			continue;
1584 
1585 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1586 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1587 	}
1588 }
1589 
1590 void ath9k_hw_check_nav(struct ath_hw *ah)
1591 {
1592 	struct ath_common *common = ath9k_hw_common(ah);
1593 	u32 val;
1594 
1595 	val = REG_READ(ah, AR_NAV);
1596 	if (val != 0xdeadbeef && val > 0x7fff) {
1597 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1598 		REG_WRITE(ah, AR_NAV, 0);
1599 	}
1600 }
1601 EXPORT_SYMBOL(ath9k_hw_check_nav);
1602 
1603 bool ath9k_hw_check_alive(struct ath_hw *ah)
1604 {
1605 	int count = 50;
1606 	u32 reg, last_val;
1607 
1608 	if (AR_SREV_9300(ah))
1609 		return !ath9k_hw_detect_mac_hang(ah);
1610 
1611 	if (AR_SREV_9285_12_OR_LATER(ah))
1612 		return true;
1613 
1614 	last_val = REG_READ(ah, AR_OBS_BUS_1);
1615 	do {
1616 		reg = REG_READ(ah, AR_OBS_BUS_1);
1617 		if (reg != last_val)
1618 			return true;
1619 
1620 		udelay(1);
1621 		last_val = reg;
1622 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1623 			continue;
1624 
1625 		switch (reg & 0x7E000B00) {
1626 		case 0x1E000000:
1627 		case 0x52000B00:
1628 		case 0x18000B00:
1629 			continue;
1630 		default:
1631 			return true;
1632 		}
1633 	} while (count-- > 0);
1634 
1635 	return false;
1636 }
1637 EXPORT_SYMBOL(ath9k_hw_check_alive);
1638 
1639 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1640 {
1641 	/* Setup MFP options for CCMP */
1642 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1643 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1644 		 * frames when constructing CCMP AAD. */
1645 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1646 			      0xc7ff);
1647 		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1648 			ah->sw_mgmt_crypto_tx = true;
1649 		else
1650 			ah->sw_mgmt_crypto_tx = false;
1651 		ah->sw_mgmt_crypto_rx = false;
1652 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1653 		/* Disable hardware crypto for management frames */
1654 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1655 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1656 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1657 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1658 		ah->sw_mgmt_crypto_tx = true;
1659 		ah->sw_mgmt_crypto_rx = true;
1660 	} else {
1661 		ah->sw_mgmt_crypto_tx = true;
1662 		ah->sw_mgmt_crypto_rx = true;
1663 	}
1664 }
1665 
1666 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1667 				  u32 macStaId1, u32 saveDefAntenna)
1668 {
1669 	struct ath_common *common = ath9k_hw_common(ah);
1670 
1671 	ENABLE_REGWRITE_BUFFER(ah);
1672 
1673 	REG_RMW(ah, AR_STA_ID1, macStaId1
1674 		  | AR_STA_ID1_RTS_USE_DEF
1675 		  | ah->sta_id1_defaults,
1676 		  ~AR_STA_ID1_SADH_MASK);
1677 	ath_hw_setbssidmask(common);
1678 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1679 	ath9k_hw_write_associd(ah);
1680 	REG_WRITE(ah, AR_ISR, ~0);
1681 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1682 
1683 	REGWRITE_BUFFER_FLUSH(ah);
1684 
1685 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1686 }
1687 
1688 static void ath9k_hw_init_queues(struct ath_hw *ah)
1689 {
1690 	int i;
1691 
1692 	ENABLE_REGWRITE_BUFFER(ah);
1693 
1694 	for (i = 0; i < AR_NUM_DCU; i++)
1695 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1696 
1697 	REGWRITE_BUFFER_FLUSH(ah);
1698 
1699 	ah->intr_txqs = 0;
1700 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1701 		ath9k_hw_resettxqueue(ah, i);
1702 }
1703 
1704 /*
1705  * For big endian systems turn on swapping for descriptors
1706  */
1707 static void ath9k_hw_init_desc(struct ath_hw *ah)
1708 {
1709 	struct ath_common *common = ath9k_hw_common(ah);
1710 
1711 	if (AR_SREV_9100(ah)) {
1712 		u32 mask;
1713 		mask = REG_READ(ah, AR_CFG);
1714 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1715 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1716 				mask);
1717 		} else {
1718 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1719 			REG_WRITE(ah, AR_CFG, mask);
1720 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1721 				REG_READ(ah, AR_CFG));
1722 		}
1723 	} else {
1724 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1725 			/* Configure AR9271 target WLAN */
1726 			if (AR_SREV_9271(ah))
1727 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1728 			else
1729 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1730 		}
1731 #ifdef __BIG_ENDIAN
1732 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1733 			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1734 			 AR_SREV_9561(ah))
1735 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1736 		else
1737 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1738 #endif
1739 	}
1740 }
1741 
1742 /*
1743  * Fast channel change:
1744  * (Change synthesizer based on channel freq without resetting chip)
1745  */
1746 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1747 {
1748 	struct ath_common *common = ath9k_hw_common(ah);
1749 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1750 	int ret;
1751 
1752 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1753 		goto fail;
1754 
1755 	if (ah->chip_fullsleep)
1756 		goto fail;
1757 
1758 	if (!ah->curchan)
1759 		goto fail;
1760 
1761 	if (chan->channel == ah->curchan->channel)
1762 		goto fail;
1763 
1764 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1765 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1766 		goto fail;
1767 
1768 	/*
1769 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1770 	 */
1771 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1772 	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1773 		goto fail;
1774 
1775 	if (!ath9k_hw_check_alive(ah))
1776 		goto fail;
1777 
1778 	/*
1779 	 * For AR9462, make sure that calibration data for
1780 	 * re-using are present.
1781 	 */
1782 	if (AR_SREV_9462(ah) && (ah->caldata &&
1783 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1784 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1785 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1786 		goto fail;
1787 
1788 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1789 		ah->curchan->channel, chan->channel);
1790 
1791 	ret = ath9k_hw_channel_change(ah, chan);
1792 	if (!ret)
1793 		goto fail;
1794 
1795 	if (ath9k_hw_mci_is_enabled(ah))
1796 		ar9003_mci_2g5g_switch(ah, false);
1797 
1798 	ath9k_hw_loadnf(ah, ah->curchan);
1799 	ath9k_hw_start_nfcal(ah, true);
1800 
1801 	if (AR_SREV_9271(ah))
1802 		ar9002_hw_load_ani_reg(ah, chan);
1803 
1804 	return 0;
1805 fail:
1806 	return -EINVAL;
1807 }
1808 
1809 u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1810 {
1811 	struct timespec ts;
1812 	s64 usec;
1813 
1814 	if (!cur) {
1815 		getrawmonotonic(&ts);
1816 		cur = &ts;
1817 	}
1818 
1819 	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1820 	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1821 
1822 	return (u32) usec;
1823 }
1824 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1825 
1826 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1827 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1828 {
1829 	struct ath_common *common = ath9k_hw_common(ah);
1830 	u32 saveLedState;
1831 	u32 saveDefAntenna;
1832 	u32 macStaId1;
1833 	u64 tsf = 0;
1834 	s64 usec = 0;
1835 	int r;
1836 	bool start_mci_reset = false;
1837 	bool save_fullsleep = ah->chip_fullsleep;
1838 
1839 	if (ath9k_hw_mci_is_enabled(ah)) {
1840 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1841 		if (start_mci_reset)
1842 			return 0;
1843 	}
1844 
1845 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1846 		return -EIO;
1847 
1848 	if (ah->curchan && !ah->chip_fullsleep)
1849 		ath9k_hw_getnf(ah, ah->curchan);
1850 
1851 	ah->caldata = caldata;
1852 	if (caldata && (chan->channel != caldata->channel ||
1853 			chan->channelFlags != caldata->channelFlags)) {
1854 		/* Operating channel changed, reset channel calibration data */
1855 		memset(caldata, 0, sizeof(*caldata));
1856 		ath9k_init_nfcal_hist_buffer(ah, chan);
1857 	} else if (caldata) {
1858 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1859 	}
1860 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1861 
1862 	if (fastcc) {
1863 		r = ath9k_hw_do_fastcc(ah, chan);
1864 		if (!r)
1865 			return r;
1866 	}
1867 
1868 	if (ath9k_hw_mci_is_enabled(ah))
1869 		ar9003_mci_stop_bt(ah, save_fullsleep);
1870 
1871 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1872 	if (saveDefAntenna == 0)
1873 		saveDefAntenna = 1;
1874 
1875 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1876 
1877 	/* Save TSF before chip reset, a cold reset clears it */
1878 	tsf = ath9k_hw_gettsf64(ah);
1879 	usec = ktime_to_us(ktime_get_raw());
1880 
1881 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1882 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1883 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1884 
1885 	ath9k_hw_mark_phy_inactive(ah);
1886 
1887 	ah->paprd_table_write_done = false;
1888 
1889 	/* Only required on the first reset */
1890 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1891 		REG_WRITE(ah,
1892 			  AR9271_RESET_POWER_DOWN_CONTROL,
1893 			  AR9271_RADIO_RF_RST);
1894 		udelay(50);
1895 	}
1896 
1897 	if (!ath9k_hw_chip_reset(ah, chan)) {
1898 		ath_err(common, "Chip reset failed\n");
1899 		return -EINVAL;
1900 	}
1901 
1902 	/* Only required on the first reset */
1903 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1904 		ah->htc_reset_init = false;
1905 		REG_WRITE(ah,
1906 			  AR9271_RESET_POWER_DOWN_CONTROL,
1907 			  AR9271_GATE_MAC_CTL);
1908 		udelay(50);
1909 	}
1910 
1911 	/* Restore TSF */
1912 	usec = ktime_to_us(ktime_get_raw()) - usec;
1913 	ath9k_hw_settsf64(ah, tsf + usec);
1914 
1915 	if (AR_SREV_9280_20_OR_LATER(ah))
1916 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1917 
1918 	if (!AR_SREV_9300_20_OR_LATER(ah))
1919 		ar9002_hw_enable_async_fifo(ah);
1920 
1921 	r = ath9k_hw_process_ini(ah, chan);
1922 	if (r)
1923 		return r;
1924 
1925 	ath9k_hw_set_rfmode(ah, chan);
1926 
1927 	if (ath9k_hw_mci_is_enabled(ah))
1928 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1929 
1930 	/*
1931 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1932 	 * right after the chip reset. When that happens, write a new
1933 	 * value after the initvals have been applied, with an offset
1934 	 * based on measured time difference
1935 	 */
1936 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1937 		tsf += 1500;
1938 		ath9k_hw_settsf64(ah, tsf);
1939 	}
1940 
1941 	ath9k_hw_init_mfp(ah);
1942 
1943 	ath9k_hw_set_delta_slope(ah, chan);
1944 	ath9k_hw_spur_mitigate_freq(ah, chan);
1945 	ah->eep_ops->set_board_values(ah, chan);
1946 
1947 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1948 
1949 	r = ath9k_hw_rf_set_freq(ah, chan);
1950 	if (r)
1951 		return r;
1952 
1953 	ath9k_hw_set_clockrate(ah);
1954 
1955 	ath9k_hw_init_queues(ah);
1956 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1957 	ath9k_hw_ani_cache_ini_regs(ah);
1958 	ath9k_hw_init_qos(ah);
1959 
1960 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1961 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1962 
1963 	ath9k_hw_init_global_settings(ah);
1964 
1965 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1966 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1967 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1968 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1969 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1970 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1971 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1972 	}
1973 
1974 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1975 
1976 	ath9k_hw_set_dma(ah);
1977 
1978 	if (!ath9k_hw_mci_is_enabled(ah))
1979 		REG_WRITE(ah, AR_OBS, 8);
1980 
1981 	ENABLE_REG_RMW_BUFFER(ah);
1982 	if (ah->config.rx_intr_mitigation) {
1983 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1984 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1985 	}
1986 
1987 	if (ah->config.tx_intr_mitigation) {
1988 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1989 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1990 	}
1991 	REG_RMW_BUFFER_FLUSH(ah);
1992 
1993 	ath9k_hw_init_bb(ah, chan);
1994 
1995 	if (caldata) {
1996 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1997 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1998 	}
1999 	if (!ath9k_hw_init_cal(ah, chan))
2000 		return -EIO;
2001 
2002 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2003 		return -EIO;
2004 
2005 	ENABLE_REGWRITE_BUFFER(ah);
2006 
2007 	ath9k_hw_restore_chainmask(ah);
2008 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2009 
2010 	REGWRITE_BUFFER_FLUSH(ah);
2011 
2012 	ath9k_hw_gen_timer_start_tsf2(ah);
2013 
2014 	ath9k_hw_init_desc(ah);
2015 
2016 	if (ath9k_hw_btcoex_is_enabled(ah))
2017 		ath9k_hw_btcoex_enable(ah);
2018 
2019 	if (ath9k_hw_mci_is_enabled(ah))
2020 		ar9003_mci_check_bt(ah);
2021 
2022 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2023 		ath9k_hw_loadnf(ah, chan);
2024 		ath9k_hw_start_nfcal(ah, true);
2025 	}
2026 
2027 	if (AR_SREV_9300_20_OR_LATER(ah))
2028 		ar9003_hw_bb_watchdog_config(ah);
2029 
2030 	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2031 		ar9003_hw_disable_phy_restart(ah);
2032 
2033 	ath9k_hw_apply_gpio_override(ah);
2034 
2035 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2036 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2037 
2038 	if (ah->hw->conf.radar_enabled) {
2039 		/* set HW specific DFS configuration */
2040 		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2041 		ath9k_hw_set_radar_params(ah);
2042 	}
2043 
2044 	return 0;
2045 }
2046 EXPORT_SYMBOL(ath9k_hw_reset);
2047 
2048 /******************************/
2049 /* Power Management (Chipset) */
2050 /******************************/
2051 
2052 /*
2053  * Notify Power Mgt is disabled in self-generated frames.
2054  * If requested, force chip to sleep.
2055  */
2056 static void ath9k_set_power_sleep(struct ath_hw *ah)
2057 {
2058 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2059 
2060 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2061 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2062 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2063 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2064 		/* xxx Required for WLAN only case ? */
2065 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2066 		udelay(100);
2067 	}
2068 
2069 	/*
2070 	 * Clear the RTC force wake bit to allow the
2071 	 * mac to go to sleep.
2072 	 */
2073 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2074 
2075 	if (ath9k_hw_mci_is_enabled(ah))
2076 		udelay(100);
2077 
2078 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2079 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2080 
2081 	/* Shutdown chip. Active low */
2082 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2083 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2084 		udelay(2);
2085 	}
2086 
2087 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2088 	if (AR_SREV_9300_20_OR_LATER(ah))
2089 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2090 }
2091 
2092 /*
2093  * Notify Power Management is enabled in self-generating
2094  * frames. If request, set power mode of chip to
2095  * auto/normal.  Duration in units of 128us (1/8 TU).
2096  */
2097 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2098 {
2099 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2100 
2101 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2102 
2103 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2104 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2105 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2106 			  AR_RTC_FORCE_WAKE_ON_INT);
2107 	} else {
2108 
2109 		/* When chip goes into network sleep, it could be waken
2110 		 * up by MCI_INT interrupt caused by BT's HW messages
2111 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2112 		 * rate (~100us). This will cause chip to leave and
2113 		 * re-enter network sleep mode frequently, which in
2114 		 * consequence will have WLAN MCI HW to generate lots of
2115 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2116 		 * BT CPU to busy to process.
2117 		 */
2118 		if (ath9k_hw_mci_is_enabled(ah))
2119 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2120 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2121 		/*
2122 		 * Clear the RTC force wake bit to allow the
2123 		 * mac to go to sleep.
2124 		 */
2125 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2126 
2127 		if (ath9k_hw_mci_is_enabled(ah))
2128 			udelay(30);
2129 	}
2130 
2131 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2132 	if (AR_SREV_9300_20_OR_LATER(ah))
2133 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2134 }
2135 
2136 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2137 {
2138 	u32 val;
2139 	int i;
2140 
2141 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2142 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2143 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2144 		udelay(10);
2145 	}
2146 
2147 	if ((REG_READ(ah, AR_RTC_STATUS) &
2148 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2149 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2150 			return false;
2151 		}
2152 		if (!AR_SREV_9300_20_OR_LATER(ah))
2153 			ath9k_hw_init_pll(ah, NULL);
2154 	}
2155 	if (AR_SREV_9100(ah))
2156 		REG_SET_BIT(ah, AR_RTC_RESET,
2157 			    AR_RTC_RESET_EN);
2158 
2159 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2160 		    AR_RTC_FORCE_WAKE_EN);
2161 	if (AR_SREV_9100(ah))
2162 		mdelay(10);
2163 	else
2164 		udelay(50);
2165 
2166 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2167 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2168 		if (val == AR_RTC_STATUS_ON)
2169 			break;
2170 		udelay(50);
2171 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2172 			    AR_RTC_FORCE_WAKE_EN);
2173 	}
2174 	if (i == 0) {
2175 		ath_err(ath9k_hw_common(ah),
2176 			"Failed to wakeup in %uus\n",
2177 			POWER_UP_TIME / 20);
2178 		return false;
2179 	}
2180 
2181 	if (ath9k_hw_mci_is_enabled(ah))
2182 		ar9003_mci_set_power_awake(ah);
2183 
2184 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2185 
2186 	return true;
2187 }
2188 
2189 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2190 {
2191 	struct ath_common *common = ath9k_hw_common(ah);
2192 	int status = true;
2193 	static const char *modes[] = {
2194 		"AWAKE",
2195 		"FULL-SLEEP",
2196 		"NETWORK SLEEP",
2197 		"UNDEFINED"
2198 	};
2199 
2200 	if (ah->power_mode == mode)
2201 		return status;
2202 
2203 	ath_dbg(common, RESET, "%s -> %s\n",
2204 		modes[ah->power_mode], modes[mode]);
2205 
2206 	switch (mode) {
2207 	case ATH9K_PM_AWAKE:
2208 		status = ath9k_hw_set_power_awake(ah);
2209 		break;
2210 	case ATH9K_PM_FULL_SLEEP:
2211 		if (ath9k_hw_mci_is_enabled(ah))
2212 			ar9003_mci_set_full_sleep(ah);
2213 
2214 		ath9k_set_power_sleep(ah);
2215 		ah->chip_fullsleep = true;
2216 		break;
2217 	case ATH9K_PM_NETWORK_SLEEP:
2218 		ath9k_set_power_network_sleep(ah);
2219 		break;
2220 	default:
2221 		ath_err(common, "Unknown power mode %u\n", mode);
2222 		return false;
2223 	}
2224 	ah->power_mode = mode;
2225 
2226 	/*
2227 	 * XXX: If this warning never comes up after a while then
2228 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2229 	 * ath9k_hw_setpower() return type void.
2230 	 */
2231 
2232 	if (!(ah->ah_flags & AH_UNPLUGGED))
2233 		ATH_DBG_WARN_ON_ONCE(!status);
2234 
2235 	return status;
2236 }
2237 EXPORT_SYMBOL(ath9k_hw_setpower);
2238 
2239 /*******************/
2240 /* Beacon Handling */
2241 /*******************/
2242 
2243 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2244 {
2245 	int flags = 0;
2246 
2247 	ENABLE_REGWRITE_BUFFER(ah);
2248 
2249 	switch (ah->opmode) {
2250 	case NL80211_IFTYPE_ADHOC:
2251 		REG_SET_BIT(ah, AR_TXCFG,
2252 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2253 	case NL80211_IFTYPE_MESH_POINT:
2254 	case NL80211_IFTYPE_AP:
2255 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2256 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2257 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2258 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2259 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2260 		flags |=
2261 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2262 		break;
2263 	default:
2264 		ath_dbg(ath9k_hw_common(ah), BEACON,
2265 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2266 		return;
2267 		break;
2268 	}
2269 
2270 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2271 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2272 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2273 
2274 	REGWRITE_BUFFER_FLUSH(ah);
2275 
2276 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2277 }
2278 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2279 
2280 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2281 				    const struct ath9k_beacon_state *bs)
2282 {
2283 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2284 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2285 	struct ath_common *common = ath9k_hw_common(ah);
2286 
2287 	ENABLE_REGWRITE_BUFFER(ah);
2288 
2289 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2290 	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2291 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2292 
2293 	REGWRITE_BUFFER_FLUSH(ah);
2294 
2295 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2296 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2297 
2298 	beaconintval = bs->bs_intval;
2299 
2300 	if (bs->bs_sleepduration > beaconintval)
2301 		beaconintval = bs->bs_sleepduration;
2302 
2303 	dtimperiod = bs->bs_dtimperiod;
2304 	if (bs->bs_sleepduration > dtimperiod)
2305 		dtimperiod = bs->bs_sleepduration;
2306 
2307 	if (beaconintval == dtimperiod)
2308 		nextTbtt = bs->bs_nextdtim;
2309 	else
2310 		nextTbtt = bs->bs_nexttbtt;
2311 
2312 	ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2313 	ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2314 	ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2315 	ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2316 
2317 	ENABLE_REGWRITE_BUFFER(ah);
2318 
2319 	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2320 	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2321 
2322 	REG_WRITE(ah, AR_SLEEP1,
2323 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2324 		  | AR_SLEEP1_ASSUME_DTIM);
2325 
2326 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2327 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2328 	else
2329 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2330 
2331 	REG_WRITE(ah, AR_SLEEP2,
2332 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2333 
2334 	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2335 	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2336 
2337 	REGWRITE_BUFFER_FLUSH(ah);
2338 
2339 	REG_SET_BIT(ah, AR_TIMER_MODE,
2340 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2341 		    AR_DTIM_TIMER_EN);
2342 
2343 	/* TSF Out of Range Threshold */
2344 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2345 }
2346 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2347 
2348 /*******************/
2349 /* HW Capabilities */
2350 /*******************/
2351 
2352 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2353 {
2354 	eeprom_chainmask &= chip_chainmask;
2355 	if (eeprom_chainmask)
2356 		return eeprom_chainmask;
2357 	else
2358 		return chip_chainmask;
2359 }
2360 
2361 /**
2362  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2363  * @ah: the atheros hardware data structure
2364  *
2365  * We enable DFS support upstream on chipsets which have passed a series
2366  * of tests. The testing requirements are going to be documented. Desired
2367  * test requirements are documented at:
2368  *
2369  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2370  *
2371  * Once a new chipset gets properly tested an individual commit can be used
2372  * to document the testing for DFS for that chipset.
2373  */
2374 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2375 {
2376 
2377 	switch (ah->hw_version.macVersion) {
2378 	/* for temporary testing DFS with 9280 */
2379 	case AR_SREV_VERSION_9280:
2380 	/* AR9580 will likely be our first target to get testing on */
2381 	case AR_SREV_VERSION_9580:
2382 		return true;
2383 	default:
2384 		return false;
2385 	}
2386 }
2387 
2388 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2389 {
2390 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2391 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2392 	struct ath_common *common = ath9k_hw_common(ah);
2393 
2394 	u16 eeval;
2395 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2396 
2397 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2398 	regulatory->current_rd = eeval;
2399 
2400 	if (ah->opmode != NL80211_IFTYPE_AP &&
2401 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2402 		if (regulatory->current_rd == 0x64 ||
2403 		    regulatory->current_rd == 0x65)
2404 			regulatory->current_rd += 5;
2405 		else if (regulatory->current_rd == 0x41)
2406 			regulatory->current_rd = 0x43;
2407 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2408 			regulatory->current_rd);
2409 	}
2410 
2411 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2412 
2413 	if (eeval & AR5416_OPFLAGS_11A) {
2414 		if (ah->disable_5ghz)
2415 			ath_warn(common, "disabling 5GHz band\n");
2416 		else
2417 			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2418 	}
2419 
2420 	if (eeval & AR5416_OPFLAGS_11G) {
2421 		if (ah->disable_2ghz)
2422 			ath_warn(common, "disabling 2GHz band\n");
2423 		else
2424 			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2425 	}
2426 
2427 	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2428 		ath_err(common, "both bands are disabled\n");
2429 		return -EINVAL;
2430 	}
2431 
2432 	if (AR_SREV_9485(ah) ||
2433 	    AR_SREV_9285(ah) ||
2434 	    AR_SREV_9330(ah) ||
2435 	    AR_SREV_9565(ah))
2436 		pCap->chip_chainmask = 1;
2437 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2438 		pCap->chip_chainmask = 7;
2439 	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2440 		 AR_SREV_9340(ah) ||
2441 		 AR_SREV_9462(ah) ||
2442 		 AR_SREV_9531(ah))
2443 		pCap->chip_chainmask = 3;
2444 	else
2445 		pCap->chip_chainmask = 7;
2446 
2447 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2448 	/*
2449 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2450 	 * the EEPROM.
2451 	 */
2452 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2453 	    !(eeval & AR5416_OPFLAGS_11A) &&
2454 	    !(AR_SREV_9271(ah)))
2455 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2456 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2457 	else if (AR_SREV_9100(ah))
2458 		pCap->rx_chainmask = 0x7;
2459 	else
2460 		/* Use rx_chainmask from EEPROM. */
2461 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2462 
2463 	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2464 	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2465 	ah->txchainmask = pCap->tx_chainmask;
2466 	ah->rxchainmask = pCap->rx_chainmask;
2467 
2468 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2469 
2470 	/* enable key search for every frame in an aggregate */
2471 	if (AR_SREV_9300_20_OR_LATER(ah))
2472 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2473 
2474 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2475 
2476 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2477 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2478 	else
2479 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2480 
2481 	if (AR_SREV_9271(ah))
2482 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2483 	else if (AR_DEVID_7010(ah))
2484 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2485 	else if (AR_SREV_9300_20_OR_LATER(ah))
2486 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2487 	else if (AR_SREV_9287_11_OR_LATER(ah))
2488 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2489 	else if (AR_SREV_9285_12_OR_LATER(ah))
2490 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2491 	else if (AR_SREV_9280_20_OR_LATER(ah))
2492 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2493 	else
2494 		pCap->num_gpio_pins = AR_NUM_GPIO;
2495 
2496 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2497 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2498 	else
2499 		pCap->rts_aggr_limit = (8 * 1024);
2500 
2501 #ifdef CONFIG_ATH9K_RFKILL
2502 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2503 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2504 		ah->rfkill_gpio =
2505 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2506 		ah->rfkill_polarity =
2507 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2508 
2509 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2510 	}
2511 #endif
2512 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2513 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2514 	else
2515 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2516 
2517 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2518 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2519 	else
2520 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2521 
2522 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2523 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2524 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2525 		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2526 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2527 
2528 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2529 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2530 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2531 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2532 		pCap->txs_len = sizeof(struct ar9003_txs);
2533 	} else {
2534 		pCap->tx_desc_len = sizeof(struct ath_desc);
2535 		if (AR_SREV_9280_20(ah))
2536 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2537 	}
2538 
2539 	if (AR_SREV_9300_20_OR_LATER(ah))
2540 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2541 
2542 	if (AR_SREV_9561(ah))
2543 		ah->ent_mode = 0x3BDA000;
2544 	else if (AR_SREV_9300_20_OR_LATER(ah))
2545 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2546 
2547 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2548 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2549 
2550 	if (AR_SREV_9285(ah)) {
2551 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2552 			ant_div_ctl1 =
2553 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2554 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2555 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2556 				ath_info(common, "Enable LNA combining\n");
2557 			}
2558 		}
2559 	}
2560 
2561 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2562 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2563 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2564 	}
2565 
2566 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2567 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2568 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2569 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2570 			ath_info(common, "Enable LNA combining\n");
2571 		}
2572 	}
2573 
2574 	if (ath9k_hw_dfs_tested(ah))
2575 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2576 
2577 	tx_chainmask = pCap->tx_chainmask;
2578 	rx_chainmask = pCap->rx_chainmask;
2579 	while (tx_chainmask || rx_chainmask) {
2580 		if (tx_chainmask & BIT(0))
2581 			pCap->max_txchains++;
2582 		if (rx_chainmask & BIT(0))
2583 			pCap->max_rxchains++;
2584 
2585 		tx_chainmask >>= 1;
2586 		rx_chainmask >>= 1;
2587 	}
2588 
2589 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2590 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2591 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2592 
2593 		if (AR_SREV_9462_20_OR_LATER(ah))
2594 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2595 	}
2596 
2597 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2598 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2599 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2600 
2601 #ifdef CONFIG_ATH9K_WOW
2602 	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2603 		ah->wow.max_patterns = MAX_NUM_PATTERN;
2604 	else
2605 		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2606 #endif
2607 
2608 	return 0;
2609 }
2610 
2611 /****************************/
2612 /* GPIO / RFKILL / Antennae */
2613 /****************************/
2614 
2615 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2616 					 u32 gpio, u32 type)
2617 {
2618 	int addr;
2619 	u32 gpio_shift, tmp;
2620 
2621 	if (gpio > 11)
2622 		addr = AR_GPIO_OUTPUT_MUX3;
2623 	else if (gpio > 5)
2624 		addr = AR_GPIO_OUTPUT_MUX2;
2625 	else
2626 		addr = AR_GPIO_OUTPUT_MUX1;
2627 
2628 	gpio_shift = (gpio % 6) * 5;
2629 
2630 	if (AR_SREV_9280_20_OR_LATER(ah)
2631 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2632 		REG_RMW(ah, addr, (type << gpio_shift),
2633 			(0x1f << gpio_shift));
2634 	} else {
2635 		tmp = REG_READ(ah, addr);
2636 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2637 		tmp &= ~(0x1f << gpio_shift);
2638 		tmp |= (type << gpio_shift);
2639 		REG_WRITE(ah, addr, tmp);
2640 	}
2641 }
2642 
2643 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2644 {
2645 	u32 gpio_shift;
2646 
2647 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2648 
2649 	if (AR_DEVID_7010(ah)) {
2650 		gpio_shift = gpio;
2651 		REG_RMW(ah, AR7010_GPIO_OE,
2652 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2653 			(AR7010_GPIO_OE_MASK << gpio_shift));
2654 		return;
2655 	}
2656 
2657 	gpio_shift = gpio << 1;
2658 	REG_RMW(ah,
2659 		AR_GPIO_OE_OUT,
2660 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2661 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2662 }
2663 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2664 
2665 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2666 {
2667 #define MS_REG_READ(x, y) \
2668 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2669 
2670 	if (gpio >= ah->caps.num_gpio_pins)
2671 		return 0xffffffff;
2672 
2673 	if (AR_DEVID_7010(ah)) {
2674 		u32 val;
2675 		val = REG_READ(ah, AR7010_GPIO_IN);
2676 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2677 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2678 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2679 			AR_GPIO_BIT(gpio)) != 0;
2680 	else if (AR_SREV_9271(ah))
2681 		return MS_REG_READ(AR9271, gpio) != 0;
2682 	else if (AR_SREV_9287_11_OR_LATER(ah))
2683 		return MS_REG_READ(AR9287, gpio) != 0;
2684 	else if (AR_SREV_9285_12_OR_LATER(ah))
2685 		return MS_REG_READ(AR9285, gpio) != 0;
2686 	else if (AR_SREV_9280_20_OR_LATER(ah))
2687 		return MS_REG_READ(AR928X, gpio) != 0;
2688 	else
2689 		return MS_REG_READ(AR, gpio) != 0;
2690 }
2691 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2692 
2693 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2694 			 u32 ah_signal_type)
2695 {
2696 	u32 gpio_shift;
2697 
2698 	if (AR_DEVID_7010(ah)) {
2699 		gpio_shift = gpio;
2700 		REG_RMW(ah, AR7010_GPIO_OE,
2701 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2702 			(AR7010_GPIO_OE_MASK << gpio_shift));
2703 		return;
2704 	}
2705 
2706 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2707 	gpio_shift = 2 * gpio;
2708 	REG_RMW(ah,
2709 		AR_GPIO_OE_OUT,
2710 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2711 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2712 }
2713 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2714 
2715 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2716 {
2717 	if (AR_DEVID_7010(ah)) {
2718 		val = val ? 0 : 1;
2719 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2720 			AR_GPIO_BIT(gpio));
2721 		return;
2722 	}
2723 
2724 	if (AR_SREV_9271(ah))
2725 		val = ~val;
2726 
2727 	if ((1 << gpio) & AR_GPIO_OE_OUT_MASK)
2728 		REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2729 			AR_GPIO_BIT(gpio));
2730 	else
2731 		gpio_set_value(gpio, val & 1);
2732 }
2733 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2734 
2735 void ath9k_hw_request_gpio(struct ath_hw *ah, u32 gpio, const char *label)
2736 {
2737 	if (gpio >= ah->caps.num_gpio_pins)
2738 		return;
2739 
2740 	gpio_request_one(gpio, GPIOF_DIR_OUT | GPIOF_INIT_LOW, label);
2741 }
2742 EXPORT_SYMBOL(ath9k_hw_request_gpio);
2743 
2744 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2745 {
2746 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2747 }
2748 EXPORT_SYMBOL(ath9k_hw_setantenna);
2749 
2750 /*********************/
2751 /* General Operation */
2752 /*********************/
2753 
2754 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2755 {
2756 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2757 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2758 
2759 	if (phybits & AR_PHY_ERR_RADAR)
2760 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2761 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2762 		bits |= ATH9K_RX_FILTER_PHYERR;
2763 
2764 	return bits;
2765 }
2766 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2767 
2768 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2769 {
2770 	u32 phybits;
2771 
2772 	ENABLE_REGWRITE_BUFFER(ah);
2773 
2774 	REG_WRITE(ah, AR_RX_FILTER, bits);
2775 
2776 	phybits = 0;
2777 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2778 		phybits |= AR_PHY_ERR_RADAR;
2779 	if (bits & ATH9K_RX_FILTER_PHYERR)
2780 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2781 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2782 
2783 	if (phybits)
2784 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2785 	else
2786 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2787 
2788 	REGWRITE_BUFFER_FLUSH(ah);
2789 }
2790 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2791 
2792 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2793 {
2794 	if (ath9k_hw_mci_is_enabled(ah))
2795 		ar9003_mci_bt_gain_ctrl(ah);
2796 
2797 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2798 		return false;
2799 
2800 	ath9k_hw_init_pll(ah, NULL);
2801 	ah->htc_reset_init = true;
2802 	return true;
2803 }
2804 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2805 
2806 bool ath9k_hw_disable(struct ath_hw *ah)
2807 {
2808 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2809 		return false;
2810 
2811 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2812 		return false;
2813 
2814 	ath9k_hw_init_pll(ah, NULL);
2815 	return true;
2816 }
2817 EXPORT_SYMBOL(ath9k_hw_disable);
2818 
2819 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2820 {
2821 	enum eeprom_param gain_param;
2822 
2823 	if (IS_CHAN_2GHZ(chan))
2824 		gain_param = EEP_ANTENNA_GAIN_2G;
2825 	else
2826 		gain_param = EEP_ANTENNA_GAIN_5G;
2827 
2828 	return ah->eep_ops->get_eeprom(ah, gain_param);
2829 }
2830 
2831 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2832 			    bool test)
2833 {
2834 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2835 	struct ieee80211_channel *channel;
2836 	int chan_pwr, new_pwr, max_gain;
2837 	int ant_gain, ant_reduction = 0;
2838 
2839 	if (!chan)
2840 		return;
2841 
2842 	channel = chan->chan;
2843 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2844 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2845 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2846 
2847 	ant_gain = get_antenna_gain(ah, chan);
2848 	if (ant_gain > max_gain)
2849 		ant_reduction = ant_gain - max_gain;
2850 
2851 	ah->eep_ops->set_txpower(ah, chan,
2852 				 ath9k_regd_get_ctl(reg, chan),
2853 				 ant_reduction, new_pwr, test);
2854 }
2855 
2856 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2857 {
2858 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2859 	struct ath9k_channel *chan = ah->curchan;
2860 	struct ieee80211_channel *channel = chan->chan;
2861 
2862 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2863 	if (test)
2864 		channel->max_power = MAX_RATE_POWER / 2;
2865 
2866 	ath9k_hw_apply_txpower(ah, chan, test);
2867 
2868 	if (test)
2869 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2870 }
2871 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2872 
2873 void ath9k_hw_setopmode(struct ath_hw *ah)
2874 {
2875 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2876 }
2877 EXPORT_SYMBOL(ath9k_hw_setopmode);
2878 
2879 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2880 {
2881 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2882 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2883 }
2884 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2885 
2886 void ath9k_hw_write_associd(struct ath_hw *ah)
2887 {
2888 	struct ath_common *common = ath9k_hw_common(ah);
2889 
2890 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2891 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2892 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2893 }
2894 EXPORT_SYMBOL(ath9k_hw_write_associd);
2895 
2896 #define ATH9K_MAX_TSF_READ 10
2897 
2898 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2899 {
2900 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2901 	int i;
2902 
2903 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2904 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2905 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2906 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2907 		if (tsf_upper2 == tsf_upper1)
2908 			break;
2909 		tsf_upper1 = tsf_upper2;
2910 	}
2911 
2912 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2913 
2914 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2915 }
2916 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2917 
2918 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2919 {
2920 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2921 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2922 }
2923 EXPORT_SYMBOL(ath9k_hw_settsf64);
2924 
2925 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2926 {
2927 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2928 			   AH_TSF_WRITE_TIMEOUT))
2929 		ath_dbg(ath9k_hw_common(ah), RESET,
2930 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2931 
2932 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2933 }
2934 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2935 
2936 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2937 {
2938 	if (set)
2939 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2940 	else
2941 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2942 }
2943 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2944 
2945 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
2946 {
2947 	u32 macmode;
2948 
2949 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
2950 		macmode = AR_2040_JOINED_RX_CLEAR;
2951 	else
2952 		macmode = 0;
2953 
2954 	REG_WRITE(ah, AR_2040_MODE, macmode);
2955 }
2956 
2957 /* HW Generic timers configuration */
2958 
2959 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2960 {
2961 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2962 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2963 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2964 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2965 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2966 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2967 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2968 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2969 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2970 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2971 				AR_NDP2_TIMER_MODE, 0x0002},
2972 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2973 				AR_NDP2_TIMER_MODE, 0x0004},
2974 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2975 				AR_NDP2_TIMER_MODE, 0x0008},
2976 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2977 				AR_NDP2_TIMER_MODE, 0x0010},
2978 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2979 				AR_NDP2_TIMER_MODE, 0x0020},
2980 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2981 				AR_NDP2_TIMER_MODE, 0x0040},
2982 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2983 				AR_NDP2_TIMER_MODE, 0x0080}
2984 };
2985 
2986 /* HW generic timer primitives */
2987 
2988 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2989 {
2990 	return REG_READ(ah, AR_TSF_L32);
2991 }
2992 EXPORT_SYMBOL(ath9k_hw_gettsf32);
2993 
2994 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
2995 {
2996 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2997 
2998 	if (timer_table->tsf2_enabled) {
2999 		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3000 		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3001 	}
3002 }
3003 
3004 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3005 					  void (*trigger)(void *),
3006 					  void (*overflow)(void *),
3007 					  void *arg,
3008 					  u8 timer_index)
3009 {
3010 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3011 	struct ath_gen_timer *timer;
3012 
3013 	if ((timer_index < AR_FIRST_NDP_TIMER) ||
3014 	    (timer_index >= ATH_MAX_GEN_TIMER))
3015 		return NULL;
3016 
3017 	if ((timer_index > AR_FIRST_NDP_TIMER) &&
3018 	    !AR_SREV_9300_20_OR_LATER(ah))
3019 		return NULL;
3020 
3021 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3022 	if (timer == NULL)
3023 		return NULL;
3024 
3025 	/* allocate a hardware generic timer slot */
3026 	timer_table->timers[timer_index] = timer;
3027 	timer->index = timer_index;
3028 	timer->trigger = trigger;
3029 	timer->overflow = overflow;
3030 	timer->arg = arg;
3031 
3032 	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3033 		timer_table->tsf2_enabled = true;
3034 		ath9k_hw_gen_timer_start_tsf2(ah);
3035 	}
3036 
3037 	return timer;
3038 }
3039 EXPORT_SYMBOL(ath_gen_timer_alloc);
3040 
3041 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3042 			      struct ath_gen_timer *timer,
3043 			      u32 timer_next,
3044 			      u32 timer_period)
3045 {
3046 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3047 	u32 mask = 0;
3048 
3049 	timer_table->timer_mask |= BIT(timer->index);
3050 
3051 	/*
3052 	 * Program generic timer registers
3053 	 */
3054 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3055 		 timer_next);
3056 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3057 		  timer_period);
3058 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3059 		    gen_tmr_configuration[timer->index].mode_mask);
3060 
3061 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3062 		/*
3063 		 * Starting from AR9462, each generic timer can select which tsf
3064 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3065 		 * 8 - 15  use tsf2.
3066 		 */
3067 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3068 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3069 				       (1 << timer->index));
3070 		else
3071 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3072 				       (1 << timer->index));
3073 	}
3074 
3075 	if (timer->trigger)
3076 		mask |= SM(AR_GENTMR_BIT(timer->index),
3077 			   AR_IMR_S5_GENTIMER_TRIG);
3078 	if (timer->overflow)
3079 		mask |= SM(AR_GENTMR_BIT(timer->index),
3080 			   AR_IMR_S5_GENTIMER_THRESH);
3081 
3082 	REG_SET_BIT(ah, AR_IMR_S5, mask);
3083 
3084 	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3085 		ah->imask |= ATH9K_INT_GENTIMER;
3086 		ath9k_hw_set_interrupts(ah);
3087 	}
3088 }
3089 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3090 
3091 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3092 {
3093 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3094 
3095 	/* Clear generic timer enable bits. */
3096 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3097 			gen_tmr_configuration[timer->index].mode_mask);
3098 
3099 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3100 		/*
3101 		 * Need to switch back to TSF if it was using TSF2.
3102 		 */
3103 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3104 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3105 				    (1 << timer->index));
3106 		}
3107 	}
3108 
3109 	/* Disable both trigger and thresh interrupt masks */
3110 	REG_CLR_BIT(ah, AR_IMR_S5,
3111 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3112 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3113 
3114 	timer_table->timer_mask &= ~BIT(timer->index);
3115 
3116 	if (timer_table->timer_mask == 0) {
3117 		ah->imask &= ~ATH9K_INT_GENTIMER;
3118 		ath9k_hw_set_interrupts(ah);
3119 	}
3120 }
3121 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3122 
3123 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3124 {
3125 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3126 
3127 	/* free the hardware generic timer slot */
3128 	timer_table->timers[timer->index] = NULL;
3129 	kfree(timer);
3130 }
3131 EXPORT_SYMBOL(ath_gen_timer_free);
3132 
3133 /*
3134  * Generic Timer Interrupts handling
3135  */
3136 void ath_gen_timer_isr(struct ath_hw *ah)
3137 {
3138 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3139 	struct ath_gen_timer *timer;
3140 	unsigned long trigger_mask, thresh_mask;
3141 	unsigned int index;
3142 
3143 	/* get hardware generic timer interrupt status */
3144 	trigger_mask = ah->intr_gen_timer_trigger;
3145 	thresh_mask = ah->intr_gen_timer_thresh;
3146 	trigger_mask &= timer_table->timer_mask;
3147 	thresh_mask &= timer_table->timer_mask;
3148 
3149 	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3150 		timer = timer_table->timers[index];
3151 		if (!timer)
3152 		    continue;
3153 		if (!timer->overflow)
3154 		    continue;
3155 
3156 		trigger_mask &= ~BIT(index);
3157 		timer->overflow(timer->arg);
3158 	}
3159 
3160 	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3161 		timer = timer_table->timers[index];
3162 		if (!timer)
3163 		    continue;
3164 		if (!timer->trigger)
3165 		    continue;
3166 		timer->trigger(timer->arg);
3167 	}
3168 }
3169 EXPORT_SYMBOL(ath_gen_timer_isr);
3170 
3171 /********/
3172 /* HTC  */
3173 /********/
3174 
3175 static struct {
3176 	u32 version;
3177 	const char * name;
3178 } ath_mac_bb_names[] = {
3179 	/* Devices with external radios */
3180 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3181 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3182 	{ AR_SREV_VERSION_9100,		"9100" },
3183 	{ AR_SREV_VERSION_9160,		"9160" },
3184 	/* Single-chip solutions */
3185 	{ AR_SREV_VERSION_9280,		"9280" },
3186 	{ AR_SREV_VERSION_9285,		"9285" },
3187 	{ AR_SREV_VERSION_9287,         "9287" },
3188 	{ AR_SREV_VERSION_9271,         "9271" },
3189 	{ AR_SREV_VERSION_9300,         "9300" },
3190 	{ AR_SREV_VERSION_9330,         "9330" },
3191 	{ AR_SREV_VERSION_9340,		"9340" },
3192 	{ AR_SREV_VERSION_9485,         "9485" },
3193 	{ AR_SREV_VERSION_9462,         "9462" },
3194 	{ AR_SREV_VERSION_9550,         "9550" },
3195 	{ AR_SREV_VERSION_9565,         "9565" },
3196 	{ AR_SREV_VERSION_9531,         "9531" },
3197 	{ AR_SREV_VERSION_9561,         "9561" },
3198 };
3199 
3200 /* For devices with external radios */
3201 static struct {
3202 	u16 version;
3203 	const char * name;
3204 } ath_rf_names[] = {
3205 	{ 0,				"5133" },
3206 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3207 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3208 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3209 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3210 };
3211 
3212 /*
3213  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3214  */
3215 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3216 {
3217 	int i;
3218 
3219 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3220 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3221 			return ath_mac_bb_names[i].name;
3222 		}
3223 	}
3224 
3225 	return "????";
3226 }
3227 
3228 /*
3229  * Return the RF name. "????" is returned if the RF is unknown.
3230  * Used for devices with external radios.
3231  */
3232 static const char *ath9k_hw_rf_name(u16 rf_version)
3233 {
3234 	int i;
3235 
3236 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3237 		if (ath_rf_names[i].version == rf_version) {
3238 			return ath_rf_names[i].name;
3239 		}
3240 	}
3241 
3242 	return "????";
3243 }
3244 
3245 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3246 {
3247 	int used;
3248 
3249 	/* chipsets >= AR9280 are single-chip */
3250 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3251 		used = scnprintf(hw_name, len,
3252 				 "Atheros AR%s Rev:%x",
3253 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3254 				 ah->hw_version.macRev);
3255 	}
3256 	else {
3257 		used = scnprintf(hw_name, len,
3258 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3259 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3260 				 ah->hw_version.macRev,
3261 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3262 						  & AR_RADIO_SREV_MAJOR)),
3263 				 ah->hw_version.phyRev);
3264 	}
3265 
3266 	hw_name[used] = '\0';
3267 }
3268 EXPORT_SYMBOL(ath9k_hw_name);
3269