xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 293d5b43)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <linux/time.h>
21 #include <linux/bitops.h>
22 #include <linux/etherdevice.h>
23 #include <linux/gpio.h>
24 #include <asm/unaligned.h>
25 
26 #include "hw.h"
27 #include "hw-ops.h"
28 #include "ar9003_mac.h"
29 #include "ar9003_mci.h"
30 #include "ar9003_phy.h"
31 #include "ath9k.h"
32 
33 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
34 
35 MODULE_AUTHOR("Atheros Communications");
36 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
37 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
38 MODULE_LICENSE("Dual BSD/GPL");
39 
40 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
41 {
42 	struct ath_common *common = ath9k_hw_common(ah);
43 	struct ath9k_channel *chan = ah->curchan;
44 	unsigned int clockrate;
45 
46 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
47 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
48 		clockrate = 117;
49 	else if (!chan) /* should really check for CCK instead */
50 		clockrate = ATH9K_CLOCK_RATE_CCK;
51 	else if (IS_CHAN_2GHZ(chan))
52 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
53 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
54 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
55 	else
56 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
57 
58 	if (chan) {
59 		if (IS_CHAN_HT40(chan))
60 			clockrate *= 2;
61 		if (IS_CHAN_HALF_RATE(chan))
62 			clockrate /= 2;
63 		if (IS_CHAN_QUARTER_RATE(chan))
64 			clockrate /= 4;
65 	}
66 
67 	common->clockrate = clockrate;
68 }
69 
70 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
71 {
72 	struct ath_common *common = ath9k_hw_common(ah);
73 
74 	return usecs * common->clockrate;
75 }
76 
77 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
78 {
79 	int i;
80 
81 	BUG_ON(timeout < AH_TIME_QUANTUM);
82 
83 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
84 		if ((REG_READ(ah, reg) & mask) == val)
85 			return true;
86 
87 		udelay(AH_TIME_QUANTUM);
88 	}
89 
90 	ath_dbg(ath9k_hw_common(ah), ANY,
91 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
92 		timeout, reg, REG_READ(ah, reg), mask, val);
93 
94 	return false;
95 }
96 EXPORT_SYMBOL(ath9k_hw_wait);
97 
98 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
99 			  int hw_delay)
100 {
101 	hw_delay /= 10;
102 
103 	if (IS_CHAN_HALF_RATE(chan))
104 		hw_delay *= 2;
105 	else if (IS_CHAN_QUARTER_RATE(chan))
106 		hw_delay *= 4;
107 
108 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
109 }
110 
111 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
112 			  int column, unsigned int *writecnt)
113 {
114 	int r;
115 
116 	ENABLE_REGWRITE_BUFFER(ah);
117 	for (r = 0; r < array->ia_rows; r++) {
118 		REG_WRITE(ah, INI_RA(array, r, 0),
119 			  INI_RA(array, r, column));
120 		DO_DELAY(*writecnt);
121 	}
122 	REGWRITE_BUFFER_FLUSH(ah);
123 }
124 
125 void ath9k_hw_read_array(struct ath_hw *ah, u32 array[][2], int size)
126 {
127 	u32 *tmp_reg_list, *tmp_data;
128 	int i;
129 
130 	tmp_reg_list = kmalloc(size * sizeof(u32), GFP_KERNEL);
131 	if (!tmp_reg_list) {
132 		dev_err(ah->dev, "%s: tmp_reg_list: alloc filed\n", __func__);
133 		return;
134 	}
135 
136 	tmp_data = kmalloc(size * sizeof(u32), GFP_KERNEL);
137 	if (!tmp_data) {
138 		dev_err(ah->dev, "%s tmp_data: alloc filed\n", __func__);
139 		goto error_tmp_data;
140 	}
141 
142 	for (i = 0; i < size; i++)
143 		tmp_reg_list[i] = array[i][0];
144 
145 	REG_READ_MULTI(ah, tmp_reg_list, tmp_data, size);
146 
147 	for (i = 0; i < size; i++)
148 		array[i][1] = tmp_data[i];
149 
150 	kfree(tmp_data);
151 error_tmp_data:
152 	kfree(tmp_reg_list);
153 }
154 
155 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
156 {
157 	u32 retval;
158 	int i;
159 
160 	for (i = 0, retval = 0; i < n; i++) {
161 		retval = (retval << 1) | (val & 1);
162 		val >>= 1;
163 	}
164 	return retval;
165 }
166 
167 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
168 			   u8 phy, int kbps,
169 			   u32 frameLen, u16 rateix,
170 			   bool shortPreamble)
171 {
172 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
173 
174 	if (kbps == 0)
175 		return 0;
176 
177 	switch (phy) {
178 	case WLAN_RC_PHY_CCK:
179 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
180 		if (shortPreamble)
181 			phyTime >>= 1;
182 		numBits = frameLen << 3;
183 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
184 		break;
185 	case WLAN_RC_PHY_OFDM:
186 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
187 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
188 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
189 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
190 			txTime = OFDM_SIFS_TIME_QUARTER
191 				+ OFDM_PREAMBLE_TIME_QUARTER
192 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
193 		} else if (ah->curchan &&
194 			   IS_CHAN_HALF_RATE(ah->curchan)) {
195 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
196 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
197 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
198 			txTime = OFDM_SIFS_TIME_HALF +
199 				OFDM_PREAMBLE_TIME_HALF
200 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
201 		} else {
202 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
203 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
204 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
205 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
206 				+ (numSymbols * OFDM_SYMBOL_TIME);
207 		}
208 		break;
209 	default:
210 		ath_err(ath9k_hw_common(ah),
211 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
212 		txTime = 0;
213 		break;
214 	}
215 
216 	return txTime;
217 }
218 EXPORT_SYMBOL(ath9k_hw_computetxtime);
219 
220 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
221 				  struct ath9k_channel *chan,
222 				  struct chan_centers *centers)
223 {
224 	int8_t extoff;
225 
226 	if (!IS_CHAN_HT40(chan)) {
227 		centers->ctl_center = centers->ext_center =
228 			centers->synth_center = chan->channel;
229 		return;
230 	}
231 
232 	if (IS_CHAN_HT40PLUS(chan)) {
233 		centers->synth_center =
234 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
235 		extoff = 1;
236 	} else {
237 		centers->synth_center =
238 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
239 		extoff = -1;
240 	}
241 
242 	centers->ctl_center =
243 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
244 	/* 25 MHz spacing is supported by hw but not on upper layers */
245 	centers->ext_center =
246 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
247 }
248 
249 /******************/
250 /* Chip Revisions */
251 /******************/
252 
253 static void ath9k_hw_read_revisions(struct ath_hw *ah)
254 {
255 	u32 val;
256 
257 	if (ah->get_mac_revision)
258 		ah->hw_version.macRev = ah->get_mac_revision();
259 
260 	switch (ah->hw_version.devid) {
261 	case AR5416_AR9100_DEVID:
262 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
263 		break;
264 	case AR9300_DEVID_AR9330:
265 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
266 		if (!ah->get_mac_revision) {
267 			val = REG_READ(ah, AR_SREV);
268 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
269 		}
270 		return;
271 	case AR9300_DEVID_AR9340:
272 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
273 		return;
274 	case AR9300_DEVID_QCA955X:
275 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
276 		return;
277 	case AR9300_DEVID_AR953X:
278 		ah->hw_version.macVersion = AR_SREV_VERSION_9531;
279 		return;
280 	case AR9300_DEVID_QCA956X:
281 		ah->hw_version.macVersion = AR_SREV_VERSION_9561;
282 		return;
283 	}
284 
285 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
286 
287 	if (val == 0xFF) {
288 		val = REG_READ(ah, AR_SREV);
289 		ah->hw_version.macVersion =
290 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
291 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
292 
293 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
294 			ah->is_pciexpress = true;
295 		else
296 			ah->is_pciexpress = (val &
297 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
298 	} else {
299 		if (!AR_SREV_9100(ah))
300 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
301 
302 		ah->hw_version.macRev = val & AR_SREV_REVISION;
303 
304 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
305 			ah->is_pciexpress = true;
306 	}
307 }
308 
309 /************************************/
310 /* HW Attach, Detach, Init Routines */
311 /************************************/
312 
313 static void ath9k_hw_disablepcie(struct ath_hw *ah)
314 {
315 	if (!AR_SREV_5416(ah))
316 		return;
317 
318 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
319 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
320 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
321 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
322 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
323 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
324 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
325 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
326 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
327 
328 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
329 }
330 
331 /* This should work for all families including legacy */
332 static bool ath9k_hw_chip_test(struct ath_hw *ah)
333 {
334 	struct ath_common *common = ath9k_hw_common(ah);
335 	u32 regAddr[2] = { AR_STA_ID0 };
336 	u32 regHold[2];
337 	static const u32 patternData[4] = {
338 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
339 	};
340 	int i, j, loop_max;
341 
342 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
343 		loop_max = 2;
344 		regAddr[1] = AR_PHY_BASE + (8 << 2);
345 	} else
346 		loop_max = 1;
347 
348 	for (i = 0; i < loop_max; i++) {
349 		u32 addr = regAddr[i];
350 		u32 wrData, rdData;
351 
352 		regHold[i] = REG_READ(ah, addr);
353 		for (j = 0; j < 0x100; j++) {
354 			wrData = (j << 16) | j;
355 			REG_WRITE(ah, addr, wrData);
356 			rdData = REG_READ(ah, addr);
357 			if (rdData != wrData) {
358 				ath_err(common,
359 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
360 					addr, wrData, rdData);
361 				return false;
362 			}
363 		}
364 		for (j = 0; j < 4; j++) {
365 			wrData = patternData[j];
366 			REG_WRITE(ah, addr, wrData);
367 			rdData = REG_READ(ah, addr);
368 			if (wrData != rdData) {
369 				ath_err(common,
370 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
371 					addr, wrData, rdData);
372 				return false;
373 			}
374 		}
375 		REG_WRITE(ah, regAddr[i], regHold[i]);
376 	}
377 	udelay(100);
378 
379 	return true;
380 }
381 
382 static void ath9k_hw_init_config(struct ath_hw *ah)
383 {
384 	struct ath_common *common = ath9k_hw_common(ah);
385 
386 	ah->config.dma_beacon_response_time = 1;
387 	ah->config.sw_beacon_response_time = 6;
388 	ah->config.cwm_ignore_extcca = false;
389 	ah->config.analog_shiftreg = 1;
390 
391 	ah->config.rx_intr_mitigation = true;
392 
393 	if (AR_SREV_9300_20_OR_LATER(ah)) {
394 		ah->config.rimt_last = 500;
395 		ah->config.rimt_first = 2000;
396 	} else {
397 		ah->config.rimt_last = 250;
398 		ah->config.rimt_first = 700;
399 	}
400 
401 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
402 		ah->config.pll_pwrsave = 7;
403 
404 	/*
405 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
406 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
407 	 * This means we use it for all AR5416 devices, and the few
408 	 * minor PCI AR9280 devices out there.
409 	 *
410 	 * Serialization is required because these devices do not handle
411 	 * well the case of two concurrent reads/writes due to the latency
412 	 * involved. During one read/write another read/write can be issued
413 	 * on another CPU while the previous read/write may still be working
414 	 * on our hardware, if we hit this case the hardware poops in a loop.
415 	 * We prevent this by serializing reads and writes.
416 	 *
417 	 * This issue is not present on PCI-Express devices or pre-AR5416
418 	 * devices (legacy, 802.11abg).
419 	 */
420 	if (num_possible_cpus() > 1)
421 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
422 
423 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
424 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
425 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
426 		     !ah->is_pciexpress)) {
427 			ah->config.serialize_regmode = SER_REG_MODE_ON;
428 		} else {
429 			ah->config.serialize_regmode = SER_REG_MODE_OFF;
430 		}
431 	}
432 
433 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
434 		ah->config.serialize_regmode);
435 
436 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
437 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
438 	else
439 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
440 }
441 
442 static void ath9k_hw_init_defaults(struct ath_hw *ah)
443 {
444 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
445 
446 	regulatory->country_code = CTRY_DEFAULT;
447 	regulatory->power_limit = MAX_RATE_POWER;
448 
449 	ah->hw_version.magic = AR5416_MAGIC;
450 	ah->hw_version.subvendorid = 0;
451 
452 	ah->sta_id1_defaults = AR_STA_ID1_CRPT_MIC_ENABLE |
453 			       AR_STA_ID1_MCAST_KSRCH;
454 	if (AR_SREV_9100(ah))
455 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
456 
457 	ah->slottime = 9;
458 	ah->globaltxtimeout = (u32) -1;
459 	ah->power_mode = ATH9K_PM_UNDEFINED;
460 	ah->htc_reset_init = true;
461 
462 	ah->tpc_enabled = false;
463 
464 	ah->ani_function = ATH9K_ANI_ALL;
465 	if (!AR_SREV_9300_20_OR_LATER(ah))
466 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
467 
468 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
469 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
470 	else
471 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
472 }
473 
474 static void ath9k_hw_init_macaddr(struct ath_hw *ah)
475 {
476 	struct ath_common *common = ath9k_hw_common(ah);
477 	int i;
478 	u16 eeval;
479 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
480 
481 	/* MAC address may already be loaded via ath9k_platform_data */
482 	if (is_valid_ether_addr(common->macaddr))
483 		return;
484 
485 	for (i = 0; i < 3; i++) {
486 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
487 		common->macaddr[2 * i] = eeval >> 8;
488 		common->macaddr[2 * i + 1] = eeval & 0xff;
489 	}
490 
491 	if (is_valid_ether_addr(common->macaddr))
492 		return;
493 
494 	ath_err(common, "eeprom contains invalid mac address: %pM\n",
495 		common->macaddr);
496 
497 	random_ether_addr(common->macaddr);
498 	ath_err(common, "random mac address will be used: %pM\n",
499 		common->macaddr);
500 
501 	return;
502 }
503 
504 static int ath9k_hw_post_init(struct ath_hw *ah)
505 {
506 	struct ath_common *common = ath9k_hw_common(ah);
507 	int ecode;
508 
509 	if (common->bus_ops->ath_bus_type != ATH_USB) {
510 		if (!ath9k_hw_chip_test(ah))
511 			return -ENODEV;
512 	}
513 
514 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
515 		ecode = ar9002_hw_rf_claim(ah);
516 		if (ecode != 0)
517 			return ecode;
518 	}
519 
520 	ecode = ath9k_hw_eeprom_init(ah);
521 	if (ecode != 0)
522 		return ecode;
523 
524 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
525 		ah->eep_ops->get_eeprom_ver(ah),
526 		ah->eep_ops->get_eeprom_rev(ah));
527 
528 	ath9k_hw_ani_init(ah);
529 
530 	/*
531 	 * EEPROM needs to be initialized before we do this.
532 	 * This is required for regulatory compliance.
533 	 */
534 	if (AR_SREV_9300_20_OR_LATER(ah)) {
535 		u16 regdmn = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
536 		if ((regdmn & 0xF0) == CTL_FCC) {
537 			ah->nf_2g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_2GHZ;
538 			ah->nf_5g.max = AR_PHY_CCA_MAX_GOOD_VAL_9300_FCC_5GHZ;
539 		}
540 	}
541 
542 	return 0;
543 }
544 
545 static int ath9k_hw_attach_ops(struct ath_hw *ah)
546 {
547 	if (!AR_SREV_9300_20_OR_LATER(ah))
548 		return ar9002_hw_attach_ops(ah);
549 
550 	ar9003_hw_attach_ops(ah);
551 	return 0;
552 }
553 
554 /* Called for all hardware families */
555 static int __ath9k_hw_init(struct ath_hw *ah)
556 {
557 	struct ath_common *common = ath9k_hw_common(ah);
558 	int r = 0;
559 
560 	ath9k_hw_read_revisions(ah);
561 
562 	switch (ah->hw_version.macVersion) {
563 	case AR_SREV_VERSION_5416_PCI:
564 	case AR_SREV_VERSION_5416_PCIE:
565 	case AR_SREV_VERSION_9160:
566 	case AR_SREV_VERSION_9100:
567 	case AR_SREV_VERSION_9280:
568 	case AR_SREV_VERSION_9285:
569 	case AR_SREV_VERSION_9287:
570 	case AR_SREV_VERSION_9271:
571 	case AR_SREV_VERSION_9300:
572 	case AR_SREV_VERSION_9330:
573 	case AR_SREV_VERSION_9485:
574 	case AR_SREV_VERSION_9340:
575 	case AR_SREV_VERSION_9462:
576 	case AR_SREV_VERSION_9550:
577 	case AR_SREV_VERSION_9565:
578 	case AR_SREV_VERSION_9531:
579 	case AR_SREV_VERSION_9561:
580 		break;
581 	default:
582 		ath_err(common,
583 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
584 			ah->hw_version.macVersion, ah->hw_version.macRev);
585 		return -EOPNOTSUPP;
586 	}
587 
588 	/*
589 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
590 	 * We need to do this to avoid RMW of this register. We cannot
591 	 * read the reg when chip is asleep.
592 	 */
593 	if (AR_SREV_9300_20_OR_LATER(ah)) {
594 		ah->WARegVal = REG_READ(ah, AR_WA);
595 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
596 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
597 	}
598 
599 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
600 		ath_err(common, "Couldn't reset chip\n");
601 		return -EIO;
602 	}
603 
604 	if (AR_SREV_9565(ah)) {
605 		ah->WARegVal |= AR_WA_BIT22;
606 		REG_WRITE(ah, AR_WA, ah->WARegVal);
607 	}
608 
609 	ath9k_hw_init_defaults(ah);
610 	ath9k_hw_init_config(ah);
611 
612 	r = ath9k_hw_attach_ops(ah);
613 	if (r)
614 		return r;
615 
616 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
617 		ath_err(common, "Couldn't wakeup chip\n");
618 		return -EIO;
619 	}
620 
621 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
622 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
623 		ah->is_pciexpress = false;
624 
625 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
626 	ath9k_hw_init_cal_settings(ah);
627 
628 	if (!ah->is_pciexpress)
629 		ath9k_hw_disablepcie(ah);
630 
631 	r = ath9k_hw_post_init(ah);
632 	if (r)
633 		return r;
634 
635 	ath9k_hw_init_mode_gain_regs(ah);
636 	r = ath9k_hw_fill_cap_info(ah);
637 	if (r)
638 		return r;
639 
640 	ath9k_hw_init_macaddr(ah);
641 	ath9k_hw_init_hang_checks(ah);
642 
643 	common->state = ATH_HW_INITIALIZED;
644 
645 	return 0;
646 }
647 
648 int ath9k_hw_init(struct ath_hw *ah)
649 {
650 	int ret;
651 	struct ath_common *common = ath9k_hw_common(ah);
652 
653 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
654 	switch (ah->hw_version.devid) {
655 	case AR5416_DEVID_PCI:
656 	case AR5416_DEVID_PCIE:
657 	case AR5416_AR9100_DEVID:
658 	case AR9160_DEVID_PCI:
659 	case AR9280_DEVID_PCI:
660 	case AR9280_DEVID_PCIE:
661 	case AR9285_DEVID_PCIE:
662 	case AR9287_DEVID_PCI:
663 	case AR9287_DEVID_PCIE:
664 	case AR2427_DEVID_PCIE:
665 	case AR9300_DEVID_PCIE:
666 	case AR9300_DEVID_AR9485_PCIE:
667 	case AR9300_DEVID_AR9330:
668 	case AR9300_DEVID_AR9340:
669 	case AR9300_DEVID_QCA955X:
670 	case AR9300_DEVID_AR9580:
671 	case AR9300_DEVID_AR9462:
672 	case AR9485_DEVID_AR1111:
673 	case AR9300_DEVID_AR9565:
674 	case AR9300_DEVID_AR953X:
675 	case AR9300_DEVID_QCA956X:
676 		break;
677 	default:
678 		if (common->bus_ops->ath_bus_type == ATH_USB)
679 			break;
680 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
681 			ah->hw_version.devid);
682 		return -EOPNOTSUPP;
683 	}
684 
685 	ret = __ath9k_hw_init(ah);
686 	if (ret) {
687 		ath_err(common,
688 			"Unable to initialize hardware; initialization status: %d\n",
689 			ret);
690 		return ret;
691 	}
692 
693 	ath_dynack_init(ah);
694 
695 	return 0;
696 }
697 EXPORT_SYMBOL(ath9k_hw_init);
698 
699 static void ath9k_hw_init_qos(struct ath_hw *ah)
700 {
701 	ENABLE_REGWRITE_BUFFER(ah);
702 
703 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
704 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
705 
706 	REG_WRITE(ah, AR_QOS_NO_ACK,
707 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
708 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
709 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
710 
711 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
712 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
713 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
714 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
715 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
716 
717 	REGWRITE_BUFFER_FLUSH(ah);
718 }
719 
720 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
721 {
722 	struct ath_common *common = ath9k_hw_common(ah);
723 	int i = 0;
724 
725 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
726 	udelay(100);
727 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
728 
729 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
730 
731 		udelay(100);
732 
733 		if (WARN_ON_ONCE(i >= 100)) {
734 			ath_err(common, "PLL4 meaurement not done\n");
735 			break;
736 		}
737 
738 		i++;
739 	}
740 
741 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
742 }
743 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
744 
745 static void ath9k_hw_init_pll(struct ath_hw *ah,
746 			      struct ath9k_channel *chan)
747 {
748 	u32 pll;
749 
750 	pll = ath9k_hw_compute_pll_control(ah, chan);
751 
752 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
753 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
754 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
755 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
756 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
757 			      AR_CH0_DPLL2_KD, 0x40);
758 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
759 			      AR_CH0_DPLL2_KI, 0x4);
760 
761 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
762 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
763 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
764 			      AR_CH0_BB_DPLL1_NINI, 0x58);
765 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
766 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
767 
768 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
769 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
770 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
771 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
772 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
773 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
774 
775 		/* program BB PLL phase_shift to 0x6 */
776 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
777 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
778 
779 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
780 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
781 		udelay(1000);
782 	} else if (AR_SREV_9330(ah)) {
783 		u32 ddr_dpll2, pll_control2, kd;
784 
785 		if (ah->is_clk_25mhz) {
786 			ddr_dpll2 = 0x18e82f01;
787 			pll_control2 = 0xe04a3d;
788 			kd = 0x1d;
789 		} else {
790 			ddr_dpll2 = 0x19e82f01;
791 			pll_control2 = 0x886666;
792 			kd = 0x3d;
793 		}
794 
795 		/* program DDR PLL ki and kd value */
796 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
797 
798 		/* program DDR PLL phase_shift */
799 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
800 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
801 
802 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
803 			  pll | AR_RTC_9300_PLL_BYPASS);
804 		udelay(1000);
805 
806 		/* program refdiv, nint, frac to RTC register */
807 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
808 
809 		/* program BB PLL kd and ki value */
810 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
811 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
812 
813 		/* program BB PLL phase_shift */
814 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
815 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
816 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
817 		   AR_SREV_9561(ah)) {
818 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
819 
820 		REG_WRITE(ah, AR_RTC_PLL_CONTROL,
821 			  pll | AR_RTC_9300_SOC_PLL_BYPASS);
822 		udelay(1000);
823 
824 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
825 		udelay(100);
826 
827 		if (ah->is_clk_25mhz) {
828 			if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
829 				pll2_divint = 0x1c;
830 				pll2_divfrac = 0xa3d2;
831 				refdiv = 1;
832 			} else {
833 				pll2_divint = 0x54;
834 				pll2_divfrac = 0x1eb85;
835 				refdiv = 3;
836 			}
837 		} else {
838 			if (AR_SREV_9340(ah)) {
839 				pll2_divint = 88;
840 				pll2_divfrac = 0;
841 				refdiv = 5;
842 			} else {
843 				pll2_divint = 0x11;
844 				pll2_divfrac = (AR_SREV_9531(ah) ||
845 						AR_SREV_9561(ah)) ?
846 						0x26665 : 0x26666;
847 				refdiv = 1;
848 			}
849 		}
850 
851 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
852 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
853 			regval |= (0x1 << 22);
854 		else
855 			regval |= (0x1 << 16);
856 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
857 		udelay(100);
858 
859 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
860 			  (pll2_divint << 18) | pll2_divfrac);
861 		udelay(100);
862 
863 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
864 		if (AR_SREV_9340(ah))
865 			regval = (regval & 0x80071fff) |
866 				(0x1 << 30) |
867 				(0x1 << 13) |
868 				(0x4 << 26) |
869 				(0x18 << 19);
870 		else if (AR_SREV_9531(ah) || AR_SREV_9561(ah)) {
871 			regval = (regval & 0x01c00fff) |
872 				(0x1 << 31) |
873 				(0x2 << 29) |
874 				(0xa << 25) |
875 				(0x1 << 19);
876 
877 			if (AR_SREV_9531(ah))
878 				regval |= (0x6 << 12);
879 		} else
880 			regval = (regval & 0x80071fff) |
881 				(0x3 << 30) |
882 				(0x1 << 13) |
883 				(0x4 << 26) |
884 				(0x60 << 19);
885 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
886 
887 		if (AR_SREV_9531(ah) || AR_SREV_9561(ah))
888 			REG_WRITE(ah, AR_PHY_PLL_MODE,
889 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xffbfffff);
890 		else
891 			REG_WRITE(ah, AR_PHY_PLL_MODE,
892 				  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
893 
894 		udelay(1000);
895 	}
896 
897 	if (AR_SREV_9565(ah))
898 		pll |= 0x40000;
899 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
900 
901 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
902 	    AR_SREV_9550(ah))
903 		udelay(1000);
904 
905 	/* Switch the core clock for ar9271 to 117Mhz */
906 	if (AR_SREV_9271(ah)) {
907 		udelay(500);
908 		REG_WRITE(ah, 0x50040, 0x304);
909 	}
910 
911 	udelay(RTC_PLL_SETTLE_DELAY);
912 
913 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
914 }
915 
916 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
917 					  enum nl80211_iftype opmode)
918 {
919 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
920 	u32 imr_reg = AR_IMR_TXERR |
921 		AR_IMR_TXURN |
922 		AR_IMR_RXERR |
923 		AR_IMR_RXORN |
924 		AR_IMR_BCNMISC;
925 
926 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
927 	    AR_SREV_9561(ah))
928 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
929 
930 	if (AR_SREV_9300_20_OR_LATER(ah)) {
931 		imr_reg |= AR_IMR_RXOK_HP;
932 		if (ah->config.rx_intr_mitigation)
933 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
934 		else
935 			imr_reg |= AR_IMR_RXOK_LP;
936 
937 	} else {
938 		if (ah->config.rx_intr_mitigation)
939 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
940 		else
941 			imr_reg |= AR_IMR_RXOK;
942 	}
943 
944 	if (ah->config.tx_intr_mitigation)
945 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
946 	else
947 		imr_reg |= AR_IMR_TXOK;
948 
949 	ENABLE_REGWRITE_BUFFER(ah);
950 
951 	REG_WRITE(ah, AR_IMR, imr_reg);
952 	ah->imrs2_reg |= AR_IMR_S2_GTT;
953 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
954 
955 	if (!AR_SREV_9100(ah)) {
956 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
957 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
958 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
959 	}
960 
961 	REGWRITE_BUFFER_FLUSH(ah);
962 
963 	if (AR_SREV_9300_20_OR_LATER(ah)) {
964 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
965 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
966 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
967 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
968 	}
969 }
970 
971 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
972 {
973 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
974 	val = min(val, (u32) 0xFFFF);
975 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
976 }
977 
978 void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
979 {
980 	u32 val = ath9k_hw_mac_to_clks(ah, us);
981 	val = min(val, (u32) 0xFFFF);
982 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
983 }
984 
985 void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
986 {
987 	u32 val = ath9k_hw_mac_to_clks(ah, us);
988 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
989 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
990 }
991 
992 void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
993 {
994 	u32 val = ath9k_hw_mac_to_clks(ah, us);
995 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
996 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
997 }
998 
999 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1000 {
1001 	if (tu > 0xFFFF) {
1002 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1003 			tu);
1004 		ah->globaltxtimeout = (u32) -1;
1005 		return false;
1006 	} else {
1007 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1008 		ah->globaltxtimeout = tu;
1009 		return true;
1010 	}
1011 }
1012 
1013 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1014 {
1015 	struct ath_common *common = ath9k_hw_common(ah);
1016 	const struct ath9k_channel *chan = ah->curchan;
1017 	int acktimeout, ctstimeout, ack_offset = 0;
1018 	int slottime;
1019 	int sifstime;
1020 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1021 	u32 reg;
1022 
1023 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1024 		ah->misc_mode);
1025 
1026 	if (!chan)
1027 		return;
1028 
1029 	if (ah->misc_mode != 0)
1030 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1031 
1032 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1033 		rx_lat = 41;
1034 	else
1035 		rx_lat = 37;
1036 	tx_lat = 54;
1037 
1038 	if (IS_CHAN_5GHZ(chan))
1039 		sifstime = 16;
1040 	else
1041 		sifstime = 10;
1042 
1043 	if (IS_CHAN_HALF_RATE(chan)) {
1044 		eifs = 175;
1045 		rx_lat *= 2;
1046 		tx_lat *= 2;
1047 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1048 		    tx_lat += 11;
1049 
1050 		sifstime = 32;
1051 		ack_offset = 16;
1052 		slottime = 13;
1053 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1054 		eifs = 340;
1055 		rx_lat = (rx_lat * 4) - 1;
1056 		tx_lat *= 4;
1057 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1058 		    tx_lat += 22;
1059 
1060 		sifstime = 64;
1061 		ack_offset = 32;
1062 		slottime = 21;
1063 	} else {
1064 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1065 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1066 			reg = AR_USEC_ASYNC_FIFO;
1067 		} else {
1068 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1069 				common->clockrate;
1070 			reg = REG_READ(ah, AR_USEC);
1071 		}
1072 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1073 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1074 
1075 		slottime = ah->slottime;
1076 	}
1077 
1078 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1079 	slottime += 3 * ah->coverage_class;
1080 	acktimeout = slottime + sifstime + ack_offset;
1081 	ctstimeout = acktimeout;
1082 
1083 	/*
1084 	 * Workaround for early ACK timeouts, add an offset to match the
1085 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1086 	 * This was initially only meant to work around an issue with delayed
1087 	 * BA frames in some implementations, but it has been found to fix ACK
1088 	 * timeout issues in other cases as well.
1089 	 */
1090 	if (IS_CHAN_2GHZ(chan) &&
1091 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1092 		acktimeout += 64 - sifstime - ah->slottime;
1093 		ctstimeout += 48 - sifstime - ah->slottime;
1094 	}
1095 
1096 	if (ah->dynack.enabled) {
1097 		acktimeout = ah->dynack.ackto;
1098 		ctstimeout = acktimeout;
1099 		slottime = (acktimeout - 3) / 2;
1100 	} else {
1101 		ah->dynack.ackto = acktimeout;
1102 	}
1103 
1104 	ath9k_hw_set_sifs_time(ah, sifstime);
1105 	ath9k_hw_setslottime(ah, slottime);
1106 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1107 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1108 	if (ah->globaltxtimeout != (u32) -1)
1109 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1110 
1111 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1112 	REG_RMW(ah, AR_USEC,
1113 		(common->clockrate - 1) |
1114 		SM(rx_lat, AR_USEC_RX_LAT) |
1115 		SM(tx_lat, AR_USEC_TX_LAT),
1116 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1117 
1118 }
1119 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1120 
1121 void ath9k_hw_deinit(struct ath_hw *ah)
1122 {
1123 	struct ath_common *common = ath9k_hw_common(ah);
1124 
1125 	if (common->state < ATH_HW_INITIALIZED)
1126 		return;
1127 
1128 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1129 }
1130 EXPORT_SYMBOL(ath9k_hw_deinit);
1131 
1132 /*******/
1133 /* INI */
1134 /*******/
1135 
1136 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1137 {
1138 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1139 
1140 	if (IS_CHAN_2GHZ(chan))
1141 		ctl |= CTL_11G;
1142 	else
1143 		ctl |= CTL_11A;
1144 
1145 	return ctl;
1146 }
1147 
1148 /****************************************/
1149 /* Reset and Channel Switching Routines */
1150 /****************************************/
1151 
1152 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1153 {
1154 	struct ath_common *common = ath9k_hw_common(ah);
1155 	int txbuf_size;
1156 
1157 	ENABLE_REGWRITE_BUFFER(ah);
1158 
1159 	/*
1160 	 * set AHB_MODE not to do cacheline prefetches
1161 	*/
1162 	if (!AR_SREV_9300_20_OR_LATER(ah))
1163 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1164 
1165 	/*
1166 	 * let mac dma reads be in 128 byte chunks
1167 	 */
1168 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1169 
1170 	REGWRITE_BUFFER_FLUSH(ah);
1171 
1172 	/*
1173 	 * Restore TX Trigger Level to its pre-reset value.
1174 	 * The initial value depends on whether aggregation is enabled, and is
1175 	 * adjusted whenever underruns are detected.
1176 	 */
1177 	if (!AR_SREV_9300_20_OR_LATER(ah))
1178 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1179 
1180 	ENABLE_REGWRITE_BUFFER(ah);
1181 
1182 	/*
1183 	 * let mac dma writes be in 128 byte chunks
1184 	 */
1185 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1186 
1187 	/*
1188 	 * Setup receive FIFO threshold to hold off TX activities
1189 	 */
1190 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1191 
1192 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1193 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1194 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1195 
1196 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1197 			ah->caps.rx_status_len);
1198 	}
1199 
1200 	/*
1201 	 * reduce the number of usable entries in PCU TXBUF to avoid
1202 	 * wrap around issues.
1203 	 */
1204 	if (AR_SREV_9285(ah)) {
1205 		/* For AR9285 the number of Fifos are reduced to half.
1206 		 * So set the usable tx buf size also to half to
1207 		 * avoid data/delimiter underruns
1208 		 */
1209 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1210 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1211 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1212 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1213 	} else {
1214 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1215 	}
1216 
1217 	if (!AR_SREV_9271(ah))
1218 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1219 
1220 	REGWRITE_BUFFER_FLUSH(ah);
1221 
1222 	if (AR_SREV_9300_20_OR_LATER(ah))
1223 		ath9k_hw_reset_txstatus_ring(ah);
1224 }
1225 
1226 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1227 {
1228 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1229 	u32 set = AR_STA_ID1_KSRCH_MODE;
1230 
1231 	ENABLE_REG_RMW_BUFFER(ah);
1232 	switch (opmode) {
1233 	case NL80211_IFTYPE_ADHOC:
1234 		if (!AR_SREV_9340_13(ah)) {
1235 			set |= AR_STA_ID1_ADHOC;
1236 			REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1237 			break;
1238 		}
1239 		/* fall through */
1240 	case NL80211_IFTYPE_OCB:
1241 	case NL80211_IFTYPE_MESH_POINT:
1242 	case NL80211_IFTYPE_AP:
1243 		set |= AR_STA_ID1_STA_AP;
1244 		/* fall through */
1245 	case NL80211_IFTYPE_STATION:
1246 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1247 		break;
1248 	default:
1249 		if (!ah->is_monitoring)
1250 			set = 0;
1251 		break;
1252 	}
1253 	REG_RMW(ah, AR_STA_ID1, set, mask);
1254 	REG_RMW_BUFFER_FLUSH(ah);
1255 }
1256 
1257 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1258 				   u32 *coef_mantissa, u32 *coef_exponent)
1259 {
1260 	u32 coef_exp, coef_man;
1261 
1262 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1263 		if ((coef_scaled >> coef_exp) & 0x1)
1264 			break;
1265 
1266 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1267 
1268 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1269 
1270 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1271 	*coef_exponent = coef_exp - 16;
1272 }
1273 
1274 /* AR9330 WAR:
1275  * call external reset function to reset WMAC if:
1276  * - doing a cold reset
1277  * - we have pending frames in the TX queues.
1278  */
1279 static bool ath9k_hw_ar9330_reset_war(struct ath_hw *ah, int type)
1280 {
1281 	int i, npend = 0;
1282 
1283 	for (i = 0; i < AR_NUM_QCU; i++) {
1284 		npend = ath9k_hw_numtxpending(ah, i);
1285 		if (npend)
1286 			break;
1287 	}
1288 
1289 	if (ah->external_reset &&
1290 	    (npend || type == ATH9K_RESET_COLD)) {
1291 		int reset_err = 0;
1292 
1293 		ath_dbg(ath9k_hw_common(ah), RESET,
1294 			"reset MAC via external reset\n");
1295 
1296 		reset_err = ah->external_reset();
1297 		if (reset_err) {
1298 			ath_err(ath9k_hw_common(ah),
1299 				"External reset failed, err=%d\n",
1300 				reset_err);
1301 			return false;
1302 		}
1303 
1304 		REG_WRITE(ah, AR_RTC_RESET, 1);
1305 	}
1306 
1307 	return true;
1308 }
1309 
1310 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1311 {
1312 	u32 rst_flags;
1313 	u32 tmpReg;
1314 
1315 	if (AR_SREV_9100(ah)) {
1316 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1317 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1318 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1319 	}
1320 
1321 	ENABLE_REGWRITE_BUFFER(ah);
1322 
1323 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1324 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1325 		udelay(10);
1326 	}
1327 
1328 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1329 		  AR_RTC_FORCE_WAKE_ON_INT);
1330 
1331 	if (AR_SREV_9100(ah)) {
1332 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1333 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1334 	} else {
1335 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1336 		if (AR_SREV_9340(ah))
1337 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1338 		else
1339 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1340 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1341 
1342 		if (tmpReg) {
1343 			u32 val;
1344 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1345 
1346 			val = AR_RC_HOSTIF;
1347 			if (!AR_SREV_9300_20_OR_LATER(ah))
1348 				val |= AR_RC_AHB;
1349 			REG_WRITE(ah, AR_RC, val);
1350 
1351 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1352 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1353 
1354 		rst_flags = AR_RTC_RC_MAC_WARM;
1355 		if (type == ATH9K_RESET_COLD)
1356 			rst_flags |= AR_RTC_RC_MAC_COLD;
1357 	}
1358 
1359 	if (AR_SREV_9330(ah)) {
1360 		if (!ath9k_hw_ar9330_reset_war(ah, type))
1361 			return false;
1362 	}
1363 
1364 	if (ath9k_hw_mci_is_enabled(ah))
1365 		ar9003_mci_check_gpm_offset(ah);
1366 
1367 	/* DMA HALT added to resolve ar9300 and ar9580 bus error during
1368 	 * RTC_RC reg read
1369 	 */
1370 	if (AR_SREV_9300(ah) || AR_SREV_9580(ah)) {
1371 		REG_SET_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1372 		ath9k_hw_wait(ah, AR_CFG, AR_CFG_HALT_ACK, AR_CFG_HALT_ACK,
1373 			      20 * AH_WAIT_TIMEOUT);
1374 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_HALT_REQ);
1375 	}
1376 
1377 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1378 
1379 	REGWRITE_BUFFER_FLUSH(ah);
1380 
1381 	if (AR_SREV_9300_20_OR_LATER(ah))
1382 		udelay(50);
1383 	else if (AR_SREV_9100(ah))
1384 		mdelay(10);
1385 	else
1386 		udelay(100);
1387 
1388 	REG_WRITE(ah, AR_RTC_RC, 0);
1389 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1390 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1391 		return false;
1392 	}
1393 
1394 	if (!AR_SREV_9100(ah))
1395 		REG_WRITE(ah, AR_RC, 0);
1396 
1397 	if (AR_SREV_9100(ah))
1398 		udelay(50);
1399 
1400 	return true;
1401 }
1402 
1403 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1404 {
1405 	ENABLE_REGWRITE_BUFFER(ah);
1406 
1407 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1408 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1409 		udelay(10);
1410 	}
1411 
1412 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1413 		  AR_RTC_FORCE_WAKE_ON_INT);
1414 
1415 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1416 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1417 
1418 	REG_WRITE(ah, AR_RTC_RESET, 0);
1419 
1420 	REGWRITE_BUFFER_FLUSH(ah);
1421 
1422 	udelay(2);
1423 
1424 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1425 		REG_WRITE(ah, AR_RC, 0);
1426 
1427 	REG_WRITE(ah, AR_RTC_RESET, 1);
1428 
1429 	if (!ath9k_hw_wait(ah,
1430 			   AR_RTC_STATUS,
1431 			   AR_RTC_STATUS_M,
1432 			   AR_RTC_STATUS_ON,
1433 			   AH_WAIT_TIMEOUT)) {
1434 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1435 		return false;
1436 	}
1437 
1438 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1439 }
1440 
1441 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1442 {
1443 	bool ret = false;
1444 
1445 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1446 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1447 		udelay(10);
1448 	}
1449 
1450 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1451 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1452 
1453 	if (!ah->reset_power_on)
1454 		type = ATH9K_RESET_POWER_ON;
1455 
1456 	switch (type) {
1457 	case ATH9K_RESET_POWER_ON:
1458 		ret = ath9k_hw_set_reset_power_on(ah);
1459 		if (ret)
1460 			ah->reset_power_on = true;
1461 		break;
1462 	case ATH9K_RESET_WARM:
1463 	case ATH9K_RESET_COLD:
1464 		ret = ath9k_hw_set_reset(ah, type);
1465 		break;
1466 	default:
1467 		break;
1468 	}
1469 
1470 	return ret;
1471 }
1472 
1473 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1474 				struct ath9k_channel *chan)
1475 {
1476 	int reset_type = ATH9K_RESET_WARM;
1477 
1478 	if (AR_SREV_9280(ah)) {
1479 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1480 			reset_type = ATH9K_RESET_POWER_ON;
1481 		else
1482 			reset_type = ATH9K_RESET_COLD;
1483 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1484 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1485 		reset_type = ATH9K_RESET_COLD;
1486 
1487 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1488 		return false;
1489 
1490 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1491 		return false;
1492 
1493 	ah->chip_fullsleep = false;
1494 
1495 	if (AR_SREV_9330(ah))
1496 		ar9003_hw_internal_regulator_apply(ah);
1497 	ath9k_hw_init_pll(ah, chan);
1498 
1499 	return true;
1500 }
1501 
1502 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1503 				    struct ath9k_channel *chan)
1504 {
1505 	struct ath_common *common = ath9k_hw_common(ah);
1506 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1507 	bool band_switch = false, mode_diff = false;
1508 	u8 ini_reloaded = 0;
1509 	u32 qnum;
1510 	int r;
1511 
1512 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1513 		u32 flags_diff = chan->channelFlags ^ ah->curchan->channelFlags;
1514 		band_switch = !!(flags_diff & CHANNEL_5GHZ);
1515 		mode_diff = !!(flags_diff & ~CHANNEL_HT);
1516 	}
1517 
1518 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1519 		if (ath9k_hw_numtxpending(ah, qnum)) {
1520 			ath_dbg(common, QUEUE,
1521 				"Transmit frames pending on queue %d\n", qnum);
1522 			return false;
1523 		}
1524 	}
1525 
1526 	if (!ath9k_hw_rfbus_req(ah)) {
1527 		ath_err(common, "Could not kill baseband RX\n");
1528 		return false;
1529 	}
1530 
1531 	if (band_switch || mode_diff) {
1532 		ath9k_hw_mark_phy_inactive(ah);
1533 		udelay(5);
1534 
1535 		if (band_switch)
1536 			ath9k_hw_init_pll(ah, chan);
1537 
1538 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1539 			ath_err(common, "Failed to do fast channel change\n");
1540 			return false;
1541 		}
1542 	}
1543 
1544 	ath9k_hw_set_channel_regs(ah, chan);
1545 
1546 	r = ath9k_hw_rf_set_freq(ah, chan);
1547 	if (r) {
1548 		ath_err(common, "Failed to set channel\n");
1549 		return false;
1550 	}
1551 	ath9k_hw_set_clockrate(ah);
1552 	ath9k_hw_apply_txpower(ah, chan, false);
1553 
1554 	ath9k_hw_set_delta_slope(ah, chan);
1555 	ath9k_hw_spur_mitigate_freq(ah, chan);
1556 
1557 	if (band_switch || ini_reloaded)
1558 		ah->eep_ops->set_board_values(ah, chan);
1559 
1560 	ath9k_hw_init_bb(ah, chan);
1561 	ath9k_hw_rfbus_done(ah);
1562 
1563 	if (band_switch || ini_reloaded) {
1564 		ah->ah_flags |= AH_FASTCC;
1565 		ath9k_hw_init_cal(ah, chan);
1566 		ah->ah_flags &= ~AH_FASTCC;
1567 	}
1568 
1569 	return true;
1570 }
1571 
1572 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1573 {
1574 	u32 gpio_mask = ah->gpio_mask;
1575 	int i;
1576 
1577 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1578 		if (!(gpio_mask & 1))
1579 			continue;
1580 
1581 		ath9k_hw_gpio_request_out(ah, i, NULL,
1582 					  AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1583 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1584 		ath9k_hw_gpio_free(ah, i);
1585 	}
1586 }
1587 
1588 void ath9k_hw_check_nav(struct ath_hw *ah)
1589 {
1590 	struct ath_common *common = ath9k_hw_common(ah);
1591 	u32 val;
1592 
1593 	val = REG_READ(ah, AR_NAV);
1594 	if (val != 0xdeadbeef && val > 0x7fff) {
1595 		ath_dbg(common, BSTUCK, "Abnormal NAV: 0x%x\n", val);
1596 		REG_WRITE(ah, AR_NAV, 0);
1597 	}
1598 }
1599 EXPORT_SYMBOL(ath9k_hw_check_nav);
1600 
1601 bool ath9k_hw_check_alive(struct ath_hw *ah)
1602 {
1603 	int count = 50;
1604 	u32 reg, last_val;
1605 
1606 	if (AR_SREV_9300(ah))
1607 		return !ath9k_hw_detect_mac_hang(ah);
1608 
1609 	if (AR_SREV_9285_12_OR_LATER(ah))
1610 		return true;
1611 
1612 	last_val = REG_READ(ah, AR_OBS_BUS_1);
1613 	do {
1614 		reg = REG_READ(ah, AR_OBS_BUS_1);
1615 		if (reg != last_val)
1616 			return true;
1617 
1618 		udelay(1);
1619 		last_val = reg;
1620 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1621 			continue;
1622 
1623 		switch (reg & 0x7E000B00) {
1624 		case 0x1E000000:
1625 		case 0x52000B00:
1626 		case 0x18000B00:
1627 			continue;
1628 		default:
1629 			return true;
1630 		}
1631 	} while (count-- > 0);
1632 
1633 	return false;
1634 }
1635 EXPORT_SYMBOL(ath9k_hw_check_alive);
1636 
1637 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1638 {
1639 	/* Setup MFP options for CCMP */
1640 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1641 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1642 		 * frames when constructing CCMP AAD. */
1643 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1644 			      0xc7ff);
1645 		if (AR_SREV_9271(ah) || AR_DEVID_7010(ah))
1646 			ah->sw_mgmt_crypto_tx = true;
1647 		else
1648 			ah->sw_mgmt_crypto_tx = false;
1649 		ah->sw_mgmt_crypto_rx = false;
1650 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1651 		/* Disable hardware crypto for management frames */
1652 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1653 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1654 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1655 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1656 		ah->sw_mgmt_crypto_tx = true;
1657 		ah->sw_mgmt_crypto_rx = true;
1658 	} else {
1659 		ah->sw_mgmt_crypto_tx = true;
1660 		ah->sw_mgmt_crypto_rx = true;
1661 	}
1662 }
1663 
1664 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1665 				  u32 macStaId1, u32 saveDefAntenna)
1666 {
1667 	struct ath_common *common = ath9k_hw_common(ah);
1668 
1669 	ENABLE_REGWRITE_BUFFER(ah);
1670 
1671 	REG_RMW(ah, AR_STA_ID1, macStaId1
1672 		  | AR_STA_ID1_RTS_USE_DEF
1673 		  | ah->sta_id1_defaults,
1674 		  ~AR_STA_ID1_SADH_MASK);
1675 	ath_hw_setbssidmask(common);
1676 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1677 	ath9k_hw_write_associd(ah);
1678 	REG_WRITE(ah, AR_ISR, ~0);
1679 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1680 
1681 	REGWRITE_BUFFER_FLUSH(ah);
1682 
1683 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1684 }
1685 
1686 static void ath9k_hw_init_queues(struct ath_hw *ah)
1687 {
1688 	int i;
1689 
1690 	ENABLE_REGWRITE_BUFFER(ah);
1691 
1692 	for (i = 0; i < AR_NUM_DCU; i++)
1693 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1694 
1695 	REGWRITE_BUFFER_FLUSH(ah);
1696 
1697 	ah->intr_txqs = 0;
1698 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1699 		ath9k_hw_resettxqueue(ah, i);
1700 }
1701 
1702 /*
1703  * For big endian systems turn on swapping for descriptors
1704  */
1705 static void ath9k_hw_init_desc(struct ath_hw *ah)
1706 {
1707 	struct ath_common *common = ath9k_hw_common(ah);
1708 
1709 	if (AR_SREV_9100(ah)) {
1710 		u32 mask;
1711 		mask = REG_READ(ah, AR_CFG);
1712 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1713 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1714 				mask);
1715 		} else {
1716 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1717 			REG_WRITE(ah, AR_CFG, mask);
1718 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1719 				REG_READ(ah, AR_CFG));
1720 		}
1721 	} else {
1722 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1723 			/* Configure AR9271 target WLAN */
1724 			if (AR_SREV_9271(ah))
1725 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1726 			else
1727 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1728 		}
1729 #ifdef __BIG_ENDIAN
1730 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1731 			 AR_SREV_9550(ah) || AR_SREV_9531(ah) ||
1732 			 AR_SREV_9561(ah))
1733 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1734 		else
1735 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1736 #endif
1737 	}
1738 }
1739 
1740 /*
1741  * Fast channel change:
1742  * (Change synthesizer based on channel freq without resetting chip)
1743  */
1744 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1745 {
1746 	struct ath_common *common = ath9k_hw_common(ah);
1747 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1748 	int ret;
1749 
1750 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1751 		goto fail;
1752 
1753 	if (ah->chip_fullsleep)
1754 		goto fail;
1755 
1756 	if (!ah->curchan)
1757 		goto fail;
1758 
1759 	if (chan->channel == ah->curchan->channel)
1760 		goto fail;
1761 
1762 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1763 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1764 		goto fail;
1765 
1766 	/*
1767 	 * If cross-band fcc is not supoprted, bail out if channelFlags differ.
1768 	 */
1769 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) &&
1770 	    ((chan->channelFlags ^ ah->curchan->channelFlags) & ~CHANNEL_HT))
1771 		goto fail;
1772 
1773 	if (!ath9k_hw_check_alive(ah))
1774 		goto fail;
1775 
1776 	/*
1777 	 * For AR9462, make sure that calibration data for
1778 	 * re-using are present.
1779 	 */
1780 	if (AR_SREV_9462(ah) && (ah->caldata &&
1781 				 (!test_bit(TXIQCAL_DONE, &ah->caldata->cal_flags) ||
1782 				  !test_bit(TXCLCAL_DONE, &ah->caldata->cal_flags) ||
1783 				  !test_bit(RTT_DONE, &ah->caldata->cal_flags))))
1784 		goto fail;
1785 
1786 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1787 		ah->curchan->channel, chan->channel);
1788 
1789 	ret = ath9k_hw_channel_change(ah, chan);
1790 	if (!ret)
1791 		goto fail;
1792 
1793 	if (ath9k_hw_mci_is_enabled(ah))
1794 		ar9003_mci_2g5g_switch(ah, false);
1795 
1796 	ath9k_hw_loadnf(ah, ah->curchan);
1797 	ath9k_hw_start_nfcal(ah, true);
1798 
1799 	if (AR_SREV_9271(ah))
1800 		ar9002_hw_load_ani_reg(ah, chan);
1801 
1802 	return 0;
1803 fail:
1804 	return -EINVAL;
1805 }
1806 
1807 u32 ath9k_hw_get_tsf_offset(struct timespec *last, struct timespec *cur)
1808 {
1809 	struct timespec ts;
1810 	s64 usec;
1811 
1812 	if (!cur) {
1813 		getrawmonotonic(&ts);
1814 		cur = &ts;
1815 	}
1816 
1817 	usec = cur->tv_sec * 1000000ULL + cur->tv_nsec / 1000;
1818 	usec -= last->tv_sec * 1000000ULL + last->tv_nsec / 1000;
1819 
1820 	return (u32) usec;
1821 }
1822 EXPORT_SYMBOL(ath9k_hw_get_tsf_offset);
1823 
1824 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1825 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1826 {
1827 	struct ath_common *common = ath9k_hw_common(ah);
1828 	u32 saveLedState;
1829 	u32 saveDefAntenna;
1830 	u32 macStaId1;
1831 	struct timespec tsf_ts;
1832 	u32 tsf_offset;
1833 	u64 tsf = 0;
1834 	int r;
1835 	bool start_mci_reset = false;
1836 	bool save_fullsleep = ah->chip_fullsleep;
1837 
1838 	if (ath9k_hw_mci_is_enabled(ah)) {
1839 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1840 		if (start_mci_reset)
1841 			return 0;
1842 	}
1843 
1844 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1845 		return -EIO;
1846 
1847 	if (ah->curchan && !ah->chip_fullsleep)
1848 		ath9k_hw_getnf(ah, ah->curchan);
1849 
1850 	ah->caldata = caldata;
1851 	if (caldata && (chan->channel != caldata->channel ||
1852 			chan->channelFlags != caldata->channelFlags)) {
1853 		/* Operating channel changed, reset channel calibration data */
1854 		memset(caldata, 0, sizeof(*caldata));
1855 		ath9k_init_nfcal_hist_buffer(ah, chan);
1856 	} else if (caldata) {
1857 		clear_bit(PAPRD_PACKET_SENT, &caldata->cal_flags);
1858 	}
1859 	ah->noise = ath9k_hw_getchan_noise(ah, chan, chan->noisefloor);
1860 
1861 	if (fastcc) {
1862 		r = ath9k_hw_do_fastcc(ah, chan);
1863 		if (!r)
1864 			return r;
1865 	}
1866 
1867 	if (ath9k_hw_mci_is_enabled(ah))
1868 		ar9003_mci_stop_bt(ah, save_fullsleep);
1869 
1870 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1871 	if (saveDefAntenna == 0)
1872 		saveDefAntenna = 1;
1873 
1874 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1875 
1876 	/* Save TSF before chip reset, a cold reset clears it */
1877 	getrawmonotonic(&tsf_ts);
1878 	tsf = ath9k_hw_gettsf64(ah);
1879 
1880 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1881 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1882 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1883 
1884 	ath9k_hw_mark_phy_inactive(ah);
1885 
1886 	ah->paprd_table_write_done = false;
1887 
1888 	/* Only required on the first reset */
1889 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1890 		REG_WRITE(ah,
1891 			  AR9271_RESET_POWER_DOWN_CONTROL,
1892 			  AR9271_RADIO_RF_RST);
1893 		udelay(50);
1894 	}
1895 
1896 	if (!ath9k_hw_chip_reset(ah, chan)) {
1897 		ath_err(common, "Chip reset failed\n");
1898 		return -EINVAL;
1899 	}
1900 
1901 	/* Only required on the first reset */
1902 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1903 		ah->htc_reset_init = false;
1904 		REG_WRITE(ah,
1905 			  AR9271_RESET_POWER_DOWN_CONTROL,
1906 			  AR9271_GATE_MAC_CTL);
1907 		udelay(50);
1908 	}
1909 
1910 	/* Restore TSF */
1911 	tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1912 	ath9k_hw_settsf64(ah, tsf + tsf_offset);
1913 
1914 	if (AR_SREV_9280_20_OR_LATER(ah))
1915 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1916 
1917 	if (!AR_SREV_9300_20_OR_LATER(ah))
1918 		ar9002_hw_enable_async_fifo(ah);
1919 
1920 	r = ath9k_hw_process_ini(ah, chan);
1921 	if (r)
1922 		return r;
1923 
1924 	ath9k_hw_set_rfmode(ah, chan);
1925 
1926 	if (ath9k_hw_mci_is_enabled(ah))
1927 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1928 
1929 	/*
1930 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1931 	 * right after the chip reset. When that happens, write a new
1932 	 * value after the initvals have been applied.
1933 	 */
1934 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1935 		tsf_offset = ath9k_hw_get_tsf_offset(&tsf_ts, NULL);
1936 		ath9k_hw_settsf64(ah, tsf + tsf_offset);
1937 	}
1938 
1939 	ath9k_hw_init_mfp(ah);
1940 
1941 	ath9k_hw_set_delta_slope(ah, chan);
1942 	ath9k_hw_spur_mitigate_freq(ah, chan);
1943 	ah->eep_ops->set_board_values(ah, chan);
1944 
1945 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1946 
1947 	r = ath9k_hw_rf_set_freq(ah, chan);
1948 	if (r)
1949 		return r;
1950 
1951 	ath9k_hw_set_clockrate(ah);
1952 
1953 	ath9k_hw_init_queues(ah);
1954 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1955 	ath9k_hw_ani_cache_ini_regs(ah);
1956 	ath9k_hw_init_qos(ah);
1957 
1958 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1959 		ath9k_hw_gpio_request_in(ah, ah->rfkill_gpio, "ath9k-rfkill");
1960 
1961 	ath9k_hw_init_global_settings(ah);
1962 
1963 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1964 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1965 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1966 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1967 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1968 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1969 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1970 	}
1971 
1972 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
1973 
1974 	ath9k_hw_set_dma(ah);
1975 
1976 	if (!ath9k_hw_mci_is_enabled(ah))
1977 		REG_WRITE(ah, AR_OBS, 8);
1978 
1979 	ENABLE_REG_RMW_BUFFER(ah);
1980 	if (ah->config.rx_intr_mitigation) {
1981 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, ah->config.rimt_last);
1982 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, ah->config.rimt_first);
1983 	}
1984 
1985 	if (ah->config.tx_intr_mitigation) {
1986 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1987 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1988 	}
1989 	REG_RMW_BUFFER_FLUSH(ah);
1990 
1991 	ath9k_hw_init_bb(ah, chan);
1992 
1993 	if (caldata) {
1994 		clear_bit(TXIQCAL_DONE, &caldata->cal_flags);
1995 		clear_bit(TXCLCAL_DONE, &caldata->cal_flags);
1996 	}
1997 	if (!ath9k_hw_init_cal(ah, chan))
1998 		return -EIO;
1999 
2000 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2001 		return -EIO;
2002 
2003 	ENABLE_REGWRITE_BUFFER(ah);
2004 
2005 	ath9k_hw_restore_chainmask(ah);
2006 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2007 
2008 	REGWRITE_BUFFER_FLUSH(ah);
2009 
2010 	ath9k_hw_gen_timer_start_tsf2(ah);
2011 
2012 	ath9k_hw_init_desc(ah);
2013 
2014 	if (ath9k_hw_btcoex_is_enabled(ah))
2015 		ath9k_hw_btcoex_enable(ah);
2016 
2017 	if (ath9k_hw_mci_is_enabled(ah))
2018 		ar9003_mci_check_bt(ah);
2019 
2020 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2021 		ath9k_hw_loadnf(ah, chan);
2022 		ath9k_hw_start_nfcal(ah, true);
2023 	}
2024 
2025 	if (AR_SREV_9300_20_OR_LATER(ah))
2026 		ar9003_hw_bb_watchdog_config(ah);
2027 
2028 	if (ah->config.hw_hang_checks & HW_PHYRESTART_CLC_WAR)
2029 		ar9003_hw_disable_phy_restart(ah);
2030 
2031 	ath9k_hw_apply_gpio_override(ah);
2032 
2033 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2034 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2035 
2036 	if (ah->hw->conf.radar_enabled) {
2037 		/* set HW specific DFS configuration */
2038 		ah->radar_conf.ext_channel = IS_CHAN_HT40(chan);
2039 		ath9k_hw_set_radar_params(ah);
2040 	}
2041 
2042 	return 0;
2043 }
2044 EXPORT_SYMBOL(ath9k_hw_reset);
2045 
2046 /******************************/
2047 /* Power Management (Chipset) */
2048 /******************************/
2049 
2050 /*
2051  * Notify Power Mgt is disabled in self-generated frames.
2052  * If requested, force chip to sleep.
2053  */
2054 static void ath9k_set_power_sleep(struct ath_hw *ah)
2055 {
2056 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2057 
2058 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2059 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2060 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2061 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2062 		/* xxx Required for WLAN only case ? */
2063 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2064 		udelay(100);
2065 	}
2066 
2067 	/*
2068 	 * Clear the RTC force wake bit to allow the
2069 	 * mac to go to sleep.
2070 	 */
2071 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2072 
2073 	if (ath9k_hw_mci_is_enabled(ah))
2074 		udelay(100);
2075 
2076 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2077 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2078 
2079 	/* Shutdown chip. Active low */
2080 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2081 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2082 		udelay(2);
2083 	}
2084 
2085 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2086 	if (AR_SREV_9300_20_OR_LATER(ah))
2087 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2088 }
2089 
2090 /*
2091  * Notify Power Management is enabled in self-generating
2092  * frames. If request, set power mode of chip to
2093  * auto/normal.  Duration in units of 128us (1/8 TU).
2094  */
2095 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2096 {
2097 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2098 
2099 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2100 
2101 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2102 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2103 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2104 			  AR_RTC_FORCE_WAKE_ON_INT);
2105 	} else {
2106 
2107 		/* When chip goes into network sleep, it could be waken
2108 		 * up by MCI_INT interrupt caused by BT's HW messages
2109 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2110 		 * rate (~100us). This will cause chip to leave and
2111 		 * re-enter network sleep mode frequently, which in
2112 		 * consequence will have WLAN MCI HW to generate lots of
2113 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2114 		 * BT CPU to busy to process.
2115 		 */
2116 		if (ath9k_hw_mci_is_enabled(ah))
2117 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2118 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2119 		/*
2120 		 * Clear the RTC force wake bit to allow the
2121 		 * mac to go to sleep.
2122 		 */
2123 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2124 
2125 		if (ath9k_hw_mci_is_enabled(ah))
2126 			udelay(30);
2127 	}
2128 
2129 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2130 	if (AR_SREV_9300_20_OR_LATER(ah))
2131 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2132 }
2133 
2134 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2135 {
2136 	u32 val;
2137 	int i;
2138 
2139 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2140 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2141 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2142 		udelay(10);
2143 	}
2144 
2145 	if ((REG_READ(ah, AR_RTC_STATUS) &
2146 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2147 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2148 			return false;
2149 		}
2150 		if (!AR_SREV_9300_20_OR_LATER(ah))
2151 			ath9k_hw_init_pll(ah, NULL);
2152 	}
2153 	if (AR_SREV_9100(ah))
2154 		REG_SET_BIT(ah, AR_RTC_RESET,
2155 			    AR_RTC_RESET_EN);
2156 
2157 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2158 		    AR_RTC_FORCE_WAKE_EN);
2159 	if (AR_SREV_9100(ah))
2160 		mdelay(10);
2161 	else
2162 		udelay(50);
2163 
2164 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2165 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2166 		if (val == AR_RTC_STATUS_ON)
2167 			break;
2168 		udelay(50);
2169 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2170 			    AR_RTC_FORCE_WAKE_EN);
2171 	}
2172 	if (i == 0) {
2173 		ath_err(ath9k_hw_common(ah),
2174 			"Failed to wakeup in %uus\n",
2175 			POWER_UP_TIME / 20);
2176 		return false;
2177 	}
2178 
2179 	if (ath9k_hw_mci_is_enabled(ah))
2180 		ar9003_mci_set_power_awake(ah);
2181 
2182 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2183 
2184 	return true;
2185 }
2186 
2187 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2188 {
2189 	struct ath_common *common = ath9k_hw_common(ah);
2190 	int status = true;
2191 	static const char *modes[] = {
2192 		"AWAKE",
2193 		"FULL-SLEEP",
2194 		"NETWORK SLEEP",
2195 		"UNDEFINED"
2196 	};
2197 
2198 	if (ah->power_mode == mode)
2199 		return status;
2200 
2201 	ath_dbg(common, RESET, "%s -> %s\n",
2202 		modes[ah->power_mode], modes[mode]);
2203 
2204 	switch (mode) {
2205 	case ATH9K_PM_AWAKE:
2206 		status = ath9k_hw_set_power_awake(ah);
2207 		break;
2208 	case ATH9K_PM_FULL_SLEEP:
2209 		if (ath9k_hw_mci_is_enabled(ah))
2210 			ar9003_mci_set_full_sleep(ah);
2211 
2212 		ath9k_set_power_sleep(ah);
2213 		ah->chip_fullsleep = true;
2214 		break;
2215 	case ATH9K_PM_NETWORK_SLEEP:
2216 		ath9k_set_power_network_sleep(ah);
2217 		break;
2218 	default:
2219 		ath_err(common, "Unknown power mode %u\n", mode);
2220 		return false;
2221 	}
2222 	ah->power_mode = mode;
2223 
2224 	/*
2225 	 * XXX: If this warning never comes up after a while then
2226 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2227 	 * ath9k_hw_setpower() return type void.
2228 	 */
2229 
2230 	if (!(ah->ah_flags & AH_UNPLUGGED))
2231 		ATH_DBG_WARN_ON_ONCE(!status);
2232 
2233 	return status;
2234 }
2235 EXPORT_SYMBOL(ath9k_hw_setpower);
2236 
2237 /*******************/
2238 /* Beacon Handling */
2239 /*******************/
2240 
2241 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2242 {
2243 	int flags = 0;
2244 
2245 	ENABLE_REGWRITE_BUFFER(ah);
2246 
2247 	switch (ah->opmode) {
2248 	case NL80211_IFTYPE_ADHOC:
2249 		REG_SET_BIT(ah, AR_TXCFG,
2250 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2251 	case NL80211_IFTYPE_MESH_POINT:
2252 	case NL80211_IFTYPE_AP:
2253 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2254 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2255 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2256 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2257 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2258 		flags |=
2259 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2260 		break;
2261 	default:
2262 		ath_dbg(ath9k_hw_common(ah), BEACON,
2263 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2264 		return;
2265 		break;
2266 	}
2267 
2268 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2269 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2270 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2271 
2272 	REGWRITE_BUFFER_FLUSH(ah);
2273 
2274 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2275 }
2276 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2277 
2278 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2279 				    const struct ath9k_beacon_state *bs)
2280 {
2281 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2282 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2283 	struct ath_common *common = ath9k_hw_common(ah);
2284 
2285 	ENABLE_REGWRITE_BUFFER(ah);
2286 
2287 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, bs->bs_nexttbtt);
2288 	REG_WRITE(ah, AR_BEACON_PERIOD, bs->bs_intval);
2289 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, bs->bs_intval);
2290 
2291 	REGWRITE_BUFFER_FLUSH(ah);
2292 
2293 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2294 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2295 
2296 	beaconintval = bs->bs_intval;
2297 
2298 	if (bs->bs_sleepduration > beaconintval)
2299 		beaconintval = bs->bs_sleepduration;
2300 
2301 	dtimperiod = bs->bs_dtimperiod;
2302 	if (bs->bs_sleepduration > dtimperiod)
2303 		dtimperiod = bs->bs_sleepduration;
2304 
2305 	if (beaconintval == dtimperiod)
2306 		nextTbtt = bs->bs_nextdtim;
2307 	else
2308 		nextTbtt = bs->bs_nexttbtt;
2309 
2310 	ath_dbg(common, BEACON, "next DTIM %u\n", bs->bs_nextdtim);
2311 	ath_dbg(common, BEACON, "next beacon %u\n", nextTbtt);
2312 	ath_dbg(common, BEACON, "beacon period %u\n", beaconintval);
2313 	ath_dbg(common, BEACON, "DTIM period %u\n", dtimperiod);
2314 
2315 	ENABLE_REGWRITE_BUFFER(ah);
2316 
2317 	REG_WRITE(ah, AR_NEXT_DTIM, bs->bs_nextdtim - SLEEP_SLOP);
2318 	REG_WRITE(ah, AR_NEXT_TIM, nextTbtt - SLEEP_SLOP);
2319 
2320 	REG_WRITE(ah, AR_SLEEP1,
2321 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2322 		  | AR_SLEEP1_ASSUME_DTIM);
2323 
2324 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2325 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2326 	else
2327 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2328 
2329 	REG_WRITE(ah, AR_SLEEP2,
2330 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2331 
2332 	REG_WRITE(ah, AR_TIM_PERIOD, beaconintval);
2333 	REG_WRITE(ah, AR_DTIM_PERIOD, dtimperiod);
2334 
2335 	REGWRITE_BUFFER_FLUSH(ah);
2336 
2337 	REG_SET_BIT(ah, AR_TIMER_MODE,
2338 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2339 		    AR_DTIM_TIMER_EN);
2340 
2341 	/* TSF Out of Range Threshold */
2342 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2343 }
2344 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2345 
2346 /*******************/
2347 /* HW Capabilities */
2348 /*******************/
2349 
2350 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2351 {
2352 	eeprom_chainmask &= chip_chainmask;
2353 	if (eeprom_chainmask)
2354 		return eeprom_chainmask;
2355 	else
2356 		return chip_chainmask;
2357 }
2358 
2359 /**
2360  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2361  * @ah: the atheros hardware data structure
2362  *
2363  * We enable DFS support upstream on chipsets which have passed a series
2364  * of tests. The testing requirements are going to be documented. Desired
2365  * test requirements are documented at:
2366  *
2367  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2368  *
2369  * Once a new chipset gets properly tested an individual commit can be used
2370  * to document the testing for DFS for that chipset.
2371  */
2372 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2373 {
2374 
2375 	switch (ah->hw_version.macVersion) {
2376 	/* for temporary testing DFS with 9280 */
2377 	case AR_SREV_VERSION_9280:
2378 	/* AR9580 will likely be our first target to get testing on */
2379 	case AR_SREV_VERSION_9580:
2380 		return true;
2381 	default:
2382 		return false;
2383 	}
2384 }
2385 
2386 static void ath9k_gpio_cap_init(struct ath_hw *ah)
2387 {
2388 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2389 
2390 	if (AR_SREV_9271(ah)) {
2391 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2392 		pCap->gpio_mask = AR9271_GPIO_MASK;
2393 	} else if (AR_DEVID_7010(ah)) {
2394 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2395 		pCap->gpio_mask = AR7010_GPIO_MASK;
2396 	} else if (AR_SREV_9287(ah)) {
2397 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2398 		pCap->gpio_mask = AR9287_GPIO_MASK;
2399 	} else if (AR_SREV_9285(ah)) {
2400 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2401 		pCap->gpio_mask = AR9285_GPIO_MASK;
2402 	} else if (AR_SREV_9280(ah)) {
2403 		pCap->num_gpio_pins = AR9280_NUM_GPIO;
2404 		pCap->gpio_mask = AR9280_GPIO_MASK;
2405 	} else if (AR_SREV_9300(ah)) {
2406 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2407 		pCap->gpio_mask = AR9300_GPIO_MASK;
2408 	} else if (AR_SREV_9330(ah)) {
2409 		pCap->num_gpio_pins = AR9330_NUM_GPIO;
2410 		pCap->gpio_mask = AR9330_GPIO_MASK;
2411 	} else if (AR_SREV_9340(ah)) {
2412 		pCap->num_gpio_pins = AR9340_NUM_GPIO;
2413 		pCap->gpio_mask = AR9340_GPIO_MASK;
2414 	} else if (AR_SREV_9462(ah)) {
2415 		pCap->num_gpio_pins = AR9462_NUM_GPIO;
2416 		pCap->gpio_mask = AR9462_GPIO_MASK;
2417 	} else if (AR_SREV_9485(ah)) {
2418 		pCap->num_gpio_pins = AR9485_NUM_GPIO;
2419 		pCap->gpio_mask = AR9485_GPIO_MASK;
2420 	} else if (AR_SREV_9531(ah)) {
2421 		pCap->num_gpio_pins = AR9531_NUM_GPIO;
2422 		pCap->gpio_mask = AR9531_GPIO_MASK;
2423 	} else if (AR_SREV_9550(ah)) {
2424 		pCap->num_gpio_pins = AR9550_NUM_GPIO;
2425 		pCap->gpio_mask = AR9550_GPIO_MASK;
2426 	} else if (AR_SREV_9561(ah)) {
2427 		pCap->num_gpio_pins = AR9561_NUM_GPIO;
2428 		pCap->gpio_mask = AR9561_GPIO_MASK;
2429 	} else if (AR_SREV_9565(ah)) {
2430 		pCap->num_gpio_pins = AR9565_NUM_GPIO;
2431 		pCap->gpio_mask = AR9565_GPIO_MASK;
2432 	} else if (AR_SREV_9580(ah)) {
2433 		pCap->num_gpio_pins = AR9580_NUM_GPIO;
2434 		pCap->gpio_mask = AR9580_GPIO_MASK;
2435 	} else {
2436 		pCap->num_gpio_pins = AR_NUM_GPIO;
2437 		pCap->gpio_mask = AR_GPIO_MASK;
2438 	}
2439 }
2440 
2441 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2442 {
2443 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2444 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2445 	struct ath_common *common = ath9k_hw_common(ah);
2446 
2447 	u16 eeval;
2448 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2449 
2450 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2451 	regulatory->current_rd = eeval;
2452 
2453 	if (ah->opmode != NL80211_IFTYPE_AP &&
2454 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2455 		if (regulatory->current_rd == 0x64 ||
2456 		    regulatory->current_rd == 0x65)
2457 			regulatory->current_rd += 5;
2458 		else if (regulatory->current_rd == 0x41)
2459 			regulatory->current_rd = 0x43;
2460 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2461 			regulatory->current_rd);
2462 	}
2463 
2464 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2465 
2466 	if (eeval & AR5416_OPFLAGS_11A) {
2467 		if (ah->disable_5ghz)
2468 			ath_warn(common, "disabling 5GHz band\n");
2469 		else
2470 			pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2471 	}
2472 
2473 	if (eeval & AR5416_OPFLAGS_11G) {
2474 		if (ah->disable_2ghz)
2475 			ath_warn(common, "disabling 2GHz band\n");
2476 		else
2477 			pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2478 	}
2479 
2480 	if ((pCap->hw_caps & (ATH9K_HW_CAP_2GHZ | ATH9K_HW_CAP_5GHZ)) == 0) {
2481 		ath_err(common, "both bands are disabled\n");
2482 		return -EINVAL;
2483 	}
2484 
2485 	if (AR_SREV_9485(ah) ||
2486 	    AR_SREV_9285(ah) ||
2487 	    AR_SREV_9330(ah) ||
2488 	    AR_SREV_9565(ah))
2489 		pCap->chip_chainmask = 1;
2490 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2491 		pCap->chip_chainmask = 7;
2492 	else if (!AR_SREV_9300_20_OR_LATER(ah) ||
2493 		 AR_SREV_9340(ah) ||
2494 		 AR_SREV_9462(ah) ||
2495 		 AR_SREV_9531(ah))
2496 		pCap->chip_chainmask = 3;
2497 	else
2498 		pCap->chip_chainmask = 7;
2499 
2500 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2501 	/*
2502 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2503 	 * the EEPROM.
2504 	 */
2505 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2506 	    !(eeval & AR5416_OPFLAGS_11A) &&
2507 	    !(AR_SREV_9271(ah)))
2508 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2509 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2510 	else if (AR_SREV_9100(ah))
2511 		pCap->rx_chainmask = 0x7;
2512 	else
2513 		/* Use rx_chainmask from EEPROM. */
2514 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2515 
2516 	pCap->tx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->tx_chainmask);
2517 	pCap->rx_chainmask = fixup_chainmask(pCap->chip_chainmask, pCap->rx_chainmask);
2518 	ah->txchainmask = pCap->tx_chainmask;
2519 	ah->rxchainmask = pCap->rx_chainmask;
2520 
2521 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2522 
2523 	/* enable key search for every frame in an aggregate */
2524 	if (AR_SREV_9300_20_OR_LATER(ah))
2525 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2526 
2527 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2528 
2529 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2530 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2531 	else
2532 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2533 
2534 	ath9k_gpio_cap_init(ah);
2535 
2536 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2537 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2538 	else
2539 		pCap->rts_aggr_limit = (8 * 1024);
2540 
2541 #ifdef CONFIG_ATH9K_RFKILL
2542 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2543 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2544 		ah->rfkill_gpio =
2545 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2546 		ah->rfkill_polarity =
2547 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2548 
2549 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2550 	}
2551 #endif
2552 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2553 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2554 	else
2555 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2556 
2557 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2558 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2559 	else
2560 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2561 
2562 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2563 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2564 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) &&
2565 		    !AR_SREV_9561(ah) && !AR_SREV_9565(ah))
2566 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2567 
2568 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2569 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2570 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2571 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2572 		pCap->txs_len = sizeof(struct ar9003_txs);
2573 	} else {
2574 		pCap->tx_desc_len = sizeof(struct ath_desc);
2575 		if (AR_SREV_9280_20(ah))
2576 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2577 	}
2578 
2579 	if (AR_SREV_9300_20_OR_LATER(ah))
2580 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2581 
2582 	if (AR_SREV_9561(ah))
2583 		ah->ent_mode = 0x3BDA000;
2584 	else if (AR_SREV_9300_20_OR_LATER(ah))
2585 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2586 
2587 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2588 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2589 
2590 	if (AR_SREV_9285(ah)) {
2591 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2592 			ant_div_ctl1 =
2593 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2594 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2595 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2596 				ath_info(common, "Enable LNA combining\n");
2597 			}
2598 		}
2599 	}
2600 
2601 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2602 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2603 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2604 	}
2605 
2606 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2607 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2608 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2609 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2610 			ath_info(common, "Enable LNA combining\n");
2611 		}
2612 	}
2613 
2614 	if (ath9k_hw_dfs_tested(ah))
2615 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2616 
2617 	tx_chainmask = pCap->tx_chainmask;
2618 	rx_chainmask = pCap->rx_chainmask;
2619 	while (tx_chainmask || rx_chainmask) {
2620 		if (tx_chainmask & BIT(0))
2621 			pCap->max_txchains++;
2622 		if (rx_chainmask & BIT(0))
2623 			pCap->max_rxchains++;
2624 
2625 		tx_chainmask >>= 1;
2626 		rx_chainmask >>= 1;
2627 	}
2628 
2629 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2630 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2631 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2632 
2633 		if (AR_SREV_9462_20_OR_LATER(ah))
2634 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2635 	}
2636 
2637 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2638 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2639 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2640 
2641 #ifdef CONFIG_ATH9K_WOW
2642 	if (AR_SREV_9462_20_OR_LATER(ah) || AR_SREV_9565_11_OR_LATER(ah))
2643 		ah->wow.max_patterns = MAX_NUM_PATTERN;
2644 	else
2645 		ah->wow.max_patterns = MAX_NUM_PATTERN_LEGACY;
2646 #endif
2647 
2648 	return 0;
2649 }
2650 
2651 /****************************/
2652 /* GPIO / RFKILL / Antennae */
2653 /****************************/
2654 
2655 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah, u32 gpio, u32 type)
2656 {
2657 	int addr;
2658 	u32 gpio_shift, tmp;
2659 
2660 	if (gpio > 11)
2661 		addr = AR_GPIO_OUTPUT_MUX3;
2662 	else if (gpio > 5)
2663 		addr = AR_GPIO_OUTPUT_MUX2;
2664 	else
2665 		addr = AR_GPIO_OUTPUT_MUX1;
2666 
2667 	gpio_shift = (gpio % 6) * 5;
2668 
2669 	if (AR_SREV_9280_20_OR_LATER(ah) ||
2670 	    (addr != AR_GPIO_OUTPUT_MUX1)) {
2671 		REG_RMW(ah, addr, (type << gpio_shift),
2672 			(0x1f << gpio_shift));
2673 	} else {
2674 		tmp = REG_READ(ah, addr);
2675 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2676 		tmp &= ~(0x1f << gpio_shift);
2677 		tmp |= (type << gpio_shift);
2678 		REG_WRITE(ah, addr, tmp);
2679 	}
2680 }
2681 
2682 /* BSP should set the corresponding MUX register correctly.
2683  */
2684 static void ath9k_hw_gpio_cfg_soc(struct ath_hw *ah, u32 gpio, bool out,
2685 				  const char *label)
2686 {
2687 	if (ah->caps.gpio_requested & BIT(gpio))
2688 		return;
2689 
2690 	/* may be requested by BSP, free anyway */
2691 	gpio_free(gpio);
2692 
2693 	if (gpio_request_one(gpio, out ? GPIOF_OUT_INIT_LOW : GPIOF_IN, label))
2694 		return;
2695 
2696 	ah->caps.gpio_requested |= BIT(gpio);
2697 }
2698 
2699 static void ath9k_hw_gpio_cfg_wmac(struct ath_hw *ah, u32 gpio, bool out,
2700 				   u32 ah_signal_type)
2701 {
2702 	u32 gpio_set, gpio_shift = gpio;
2703 
2704 	if (AR_DEVID_7010(ah)) {
2705 		gpio_set = out ?
2706 			AR7010_GPIO_OE_AS_OUTPUT : AR7010_GPIO_OE_AS_INPUT;
2707 		REG_RMW(ah, AR7010_GPIO_OE, gpio_set << gpio_shift,
2708 			AR7010_GPIO_OE_MASK << gpio_shift);
2709 	} else if (AR_SREV_SOC(ah)) {
2710 		gpio_set = out ? 1 : 0;
2711 		REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2712 			gpio_set << gpio_shift);
2713 	} else {
2714 		gpio_shift = gpio << 1;
2715 		gpio_set = out ?
2716 			AR_GPIO_OE_OUT_DRV_ALL : AR_GPIO_OE_OUT_DRV_NO;
2717 		REG_RMW(ah, AR_GPIO_OE_OUT, gpio_set << gpio_shift,
2718 			AR_GPIO_OE_OUT_DRV << gpio_shift);
2719 
2720 		if (out)
2721 			ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2722 	}
2723 }
2724 
2725 static void ath9k_hw_gpio_request(struct ath_hw *ah, u32 gpio, bool out,
2726 				  const char *label, u32 ah_signal_type)
2727 {
2728 	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2729 
2730 	if (BIT(gpio) & ah->caps.gpio_mask)
2731 		ath9k_hw_gpio_cfg_wmac(ah, gpio, out, ah_signal_type);
2732 	else if (AR_SREV_SOC(ah))
2733 		ath9k_hw_gpio_cfg_soc(ah, gpio, out, label);
2734 	else
2735 		WARN_ON(1);
2736 }
2737 
2738 void ath9k_hw_gpio_request_in(struct ath_hw *ah, u32 gpio, const char *label)
2739 {
2740 	ath9k_hw_gpio_request(ah, gpio, false, label, 0);
2741 }
2742 EXPORT_SYMBOL(ath9k_hw_gpio_request_in);
2743 
2744 void ath9k_hw_gpio_request_out(struct ath_hw *ah, u32 gpio, const char *label,
2745 			       u32 ah_signal_type)
2746 {
2747 	ath9k_hw_gpio_request(ah, gpio, true, label, ah_signal_type);
2748 }
2749 EXPORT_SYMBOL(ath9k_hw_gpio_request_out);
2750 
2751 void ath9k_hw_gpio_free(struct ath_hw *ah, u32 gpio)
2752 {
2753 	if (!AR_SREV_SOC(ah))
2754 		return;
2755 
2756 	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2757 
2758 	if (ah->caps.gpio_requested & BIT(gpio)) {
2759 		gpio_free(gpio);
2760 		ah->caps.gpio_requested &= ~BIT(gpio);
2761 	}
2762 }
2763 EXPORT_SYMBOL(ath9k_hw_gpio_free);
2764 
2765 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2766 {
2767 	u32 val = 0xffffffff;
2768 
2769 #define MS_REG_READ(x, y) \
2770 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & BIT(y))
2771 
2772 	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2773 
2774 	if (BIT(gpio) & ah->caps.gpio_mask) {
2775 		if (AR_SREV_9271(ah))
2776 			val = MS_REG_READ(AR9271, gpio);
2777 		else if (AR_SREV_9287(ah))
2778 			val = MS_REG_READ(AR9287, gpio);
2779 		else if (AR_SREV_9285(ah))
2780 			val = MS_REG_READ(AR9285, gpio);
2781 		else if (AR_SREV_9280(ah))
2782 			val = MS_REG_READ(AR928X, gpio);
2783 		else if (AR_DEVID_7010(ah))
2784 			val = REG_READ(ah, AR7010_GPIO_IN) & BIT(gpio);
2785 		else if (AR_SREV_9300_20_OR_LATER(ah))
2786 			val = REG_READ(ah, AR_GPIO_IN) & BIT(gpio);
2787 		else
2788 			val = MS_REG_READ(AR, gpio);
2789 	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2790 		val = gpio_get_value(gpio) & BIT(gpio);
2791 	} else {
2792 		WARN_ON(1);
2793 	}
2794 
2795 	return val;
2796 }
2797 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2798 
2799 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2800 {
2801 	WARN_ON(gpio >= ah->caps.num_gpio_pins);
2802 
2803 	if (AR_DEVID_7010(ah) || AR_SREV_9271(ah))
2804 		val = !val;
2805 	else
2806 		val = !!val;
2807 
2808 	if (BIT(gpio) & ah->caps.gpio_mask) {
2809 		u32 out_addr = AR_DEVID_7010(ah) ?
2810 			AR7010_GPIO_OUT : AR_GPIO_IN_OUT;
2811 
2812 		REG_RMW(ah, out_addr, val << gpio, BIT(gpio));
2813 	} else if (BIT(gpio) & ah->caps.gpio_requested) {
2814 		gpio_set_value(gpio, val);
2815 	} else {
2816 		WARN_ON(1);
2817 	}
2818 }
2819 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2820 
2821 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2822 {
2823 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2824 }
2825 EXPORT_SYMBOL(ath9k_hw_setantenna);
2826 
2827 /*********************/
2828 /* General Operation */
2829 /*********************/
2830 
2831 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2832 {
2833 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2834 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2835 
2836 	if (phybits & AR_PHY_ERR_RADAR)
2837 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2838 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2839 		bits |= ATH9K_RX_FILTER_PHYERR;
2840 
2841 	return bits;
2842 }
2843 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2844 
2845 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2846 {
2847 	u32 phybits;
2848 
2849 	ENABLE_REGWRITE_BUFFER(ah);
2850 
2851 	REG_WRITE(ah, AR_RX_FILTER, bits);
2852 
2853 	phybits = 0;
2854 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2855 		phybits |= AR_PHY_ERR_RADAR;
2856 	if (bits & ATH9K_RX_FILTER_PHYERR)
2857 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2858 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2859 
2860 	if (phybits)
2861 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2862 	else
2863 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2864 
2865 	REGWRITE_BUFFER_FLUSH(ah);
2866 }
2867 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2868 
2869 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2870 {
2871 	if (ath9k_hw_mci_is_enabled(ah))
2872 		ar9003_mci_bt_gain_ctrl(ah);
2873 
2874 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2875 		return false;
2876 
2877 	ath9k_hw_init_pll(ah, NULL);
2878 	ah->htc_reset_init = true;
2879 	return true;
2880 }
2881 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2882 
2883 bool ath9k_hw_disable(struct ath_hw *ah)
2884 {
2885 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2886 		return false;
2887 
2888 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2889 		return false;
2890 
2891 	ath9k_hw_init_pll(ah, NULL);
2892 	return true;
2893 }
2894 EXPORT_SYMBOL(ath9k_hw_disable);
2895 
2896 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2897 {
2898 	enum eeprom_param gain_param;
2899 
2900 	if (IS_CHAN_2GHZ(chan))
2901 		gain_param = EEP_ANTENNA_GAIN_2G;
2902 	else
2903 		gain_param = EEP_ANTENNA_GAIN_5G;
2904 
2905 	return ah->eep_ops->get_eeprom(ah, gain_param);
2906 }
2907 
2908 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2909 			    bool test)
2910 {
2911 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2912 	struct ieee80211_channel *channel;
2913 	int chan_pwr, new_pwr;
2914 
2915 	if (!chan)
2916 		return;
2917 
2918 	channel = chan->chan;
2919 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2920 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2921 
2922 	ah->eep_ops->set_txpower(ah, chan,
2923 				 ath9k_regd_get_ctl(reg, chan),
2924 				 get_antenna_gain(ah, chan), new_pwr, test);
2925 }
2926 
2927 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2928 {
2929 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2930 	struct ath9k_channel *chan = ah->curchan;
2931 	struct ieee80211_channel *channel = chan->chan;
2932 
2933 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2934 	if (test)
2935 		channel->max_power = MAX_RATE_POWER / 2;
2936 
2937 	ath9k_hw_apply_txpower(ah, chan, test);
2938 
2939 	if (test)
2940 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2941 }
2942 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2943 
2944 void ath9k_hw_setopmode(struct ath_hw *ah)
2945 {
2946 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2947 }
2948 EXPORT_SYMBOL(ath9k_hw_setopmode);
2949 
2950 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2951 {
2952 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2953 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2954 }
2955 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2956 
2957 void ath9k_hw_write_associd(struct ath_hw *ah)
2958 {
2959 	struct ath_common *common = ath9k_hw_common(ah);
2960 
2961 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2962 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2963 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2964 }
2965 EXPORT_SYMBOL(ath9k_hw_write_associd);
2966 
2967 #define ATH9K_MAX_TSF_READ 10
2968 
2969 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2970 {
2971 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2972 	int i;
2973 
2974 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2975 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2976 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2977 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2978 		if (tsf_upper2 == tsf_upper1)
2979 			break;
2980 		tsf_upper1 = tsf_upper2;
2981 	}
2982 
2983 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2984 
2985 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2986 }
2987 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2988 
2989 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2990 {
2991 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2992 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2993 }
2994 EXPORT_SYMBOL(ath9k_hw_settsf64);
2995 
2996 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2997 {
2998 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2999 			   AH_TSF_WRITE_TIMEOUT))
3000 		ath_dbg(ath9k_hw_common(ah), RESET,
3001 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
3002 
3003 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
3004 }
3005 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
3006 
3007 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
3008 {
3009 	if (set)
3010 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
3011 	else
3012 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
3013 }
3014 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
3015 
3016 void ath9k_hw_set11nmac2040(struct ath_hw *ah, struct ath9k_channel *chan)
3017 {
3018 	u32 macmode;
3019 
3020 	if (IS_CHAN_HT40(chan) && !ah->config.cwm_ignore_extcca)
3021 		macmode = AR_2040_JOINED_RX_CLEAR;
3022 	else
3023 		macmode = 0;
3024 
3025 	REG_WRITE(ah, AR_2040_MODE, macmode);
3026 }
3027 
3028 /* HW Generic timers configuration */
3029 
3030 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
3031 {
3032 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3033 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3034 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3035 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3036 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3037 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3038 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3039 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
3040 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
3041 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
3042 				AR_NDP2_TIMER_MODE, 0x0002},
3043 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
3044 				AR_NDP2_TIMER_MODE, 0x0004},
3045 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
3046 				AR_NDP2_TIMER_MODE, 0x0008},
3047 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
3048 				AR_NDP2_TIMER_MODE, 0x0010},
3049 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
3050 				AR_NDP2_TIMER_MODE, 0x0020},
3051 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
3052 				AR_NDP2_TIMER_MODE, 0x0040},
3053 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
3054 				AR_NDP2_TIMER_MODE, 0x0080}
3055 };
3056 
3057 /* HW generic timer primitives */
3058 
3059 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3060 {
3061 	return REG_READ(ah, AR_TSF_L32);
3062 }
3063 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3064 
3065 void ath9k_hw_gen_timer_start_tsf2(struct ath_hw *ah)
3066 {
3067 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3068 
3069 	if (timer_table->tsf2_enabled) {
3070 		REG_SET_BIT(ah, AR_DIRECT_CONNECT, AR_DC_AP_STA_EN);
3071 		REG_SET_BIT(ah, AR_RESET_TSF, AR_RESET_TSF2_ONCE);
3072 	}
3073 }
3074 
3075 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3076 					  void (*trigger)(void *),
3077 					  void (*overflow)(void *),
3078 					  void *arg,
3079 					  u8 timer_index)
3080 {
3081 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3082 	struct ath_gen_timer *timer;
3083 
3084 	if ((timer_index < AR_FIRST_NDP_TIMER) ||
3085 	    (timer_index >= ATH_MAX_GEN_TIMER))
3086 		return NULL;
3087 
3088 	if ((timer_index > AR_FIRST_NDP_TIMER) &&
3089 	    !AR_SREV_9300_20_OR_LATER(ah))
3090 		return NULL;
3091 
3092 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3093 	if (timer == NULL)
3094 		return NULL;
3095 
3096 	/* allocate a hardware generic timer slot */
3097 	timer_table->timers[timer_index] = timer;
3098 	timer->index = timer_index;
3099 	timer->trigger = trigger;
3100 	timer->overflow = overflow;
3101 	timer->arg = arg;
3102 
3103 	if ((timer_index > AR_FIRST_NDP_TIMER) && !timer_table->tsf2_enabled) {
3104 		timer_table->tsf2_enabled = true;
3105 		ath9k_hw_gen_timer_start_tsf2(ah);
3106 	}
3107 
3108 	return timer;
3109 }
3110 EXPORT_SYMBOL(ath_gen_timer_alloc);
3111 
3112 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3113 			      struct ath_gen_timer *timer,
3114 			      u32 timer_next,
3115 			      u32 timer_period)
3116 {
3117 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3118 	u32 mask = 0;
3119 
3120 	timer_table->timer_mask |= BIT(timer->index);
3121 
3122 	/*
3123 	 * Program generic timer registers
3124 	 */
3125 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3126 		 timer_next);
3127 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3128 		  timer_period);
3129 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3130 		    gen_tmr_configuration[timer->index].mode_mask);
3131 
3132 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3133 		/*
3134 		 * Starting from AR9462, each generic timer can select which tsf
3135 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3136 		 * 8 - 15  use tsf2.
3137 		 */
3138 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3139 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3140 				       (1 << timer->index));
3141 		else
3142 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3143 				       (1 << timer->index));
3144 	}
3145 
3146 	if (timer->trigger)
3147 		mask |= SM(AR_GENTMR_BIT(timer->index),
3148 			   AR_IMR_S5_GENTIMER_TRIG);
3149 	if (timer->overflow)
3150 		mask |= SM(AR_GENTMR_BIT(timer->index),
3151 			   AR_IMR_S5_GENTIMER_THRESH);
3152 
3153 	REG_SET_BIT(ah, AR_IMR_S5, mask);
3154 
3155 	if ((ah->imask & ATH9K_INT_GENTIMER) == 0) {
3156 		ah->imask |= ATH9K_INT_GENTIMER;
3157 		ath9k_hw_set_interrupts(ah);
3158 	}
3159 }
3160 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3161 
3162 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3163 {
3164 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3165 
3166 	/* Clear generic timer enable bits. */
3167 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3168 			gen_tmr_configuration[timer->index].mode_mask);
3169 
3170 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3171 		/*
3172 		 * Need to switch back to TSF if it was using TSF2.
3173 		 */
3174 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3175 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3176 				    (1 << timer->index));
3177 		}
3178 	}
3179 
3180 	/* Disable both trigger and thresh interrupt masks */
3181 	REG_CLR_BIT(ah, AR_IMR_S5,
3182 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3183 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3184 
3185 	timer_table->timer_mask &= ~BIT(timer->index);
3186 
3187 	if (timer_table->timer_mask == 0) {
3188 		ah->imask &= ~ATH9K_INT_GENTIMER;
3189 		ath9k_hw_set_interrupts(ah);
3190 	}
3191 }
3192 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3193 
3194 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3195 {
3196 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3197 
3198 	/* free the hardware generic timer slot */
3199 	timer_table->timers[timer->index] = NULL;
3200 	kfree(timer);
3201 }
3202 EXPORT_SYMBOL(ath_gen_timer_free);
3203 
3204 /*
3205  * Generic Timer Interrupts handling
3206  */
3207 void ath_gen_timer_isr(struct ath_hw *ah)
3208 {
3209 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3210 	struct ath_gen_timer *timer;
3211 	unsigned long trigger_mask, thresh_mask;
3212 	unsigned int index;
3213 
3214 	/* get hardware generic timer interrupt status */
3215 	trigger_mask = ah->intr_gen_timer_trigger;
3216 	thresh_mask = ah->intr_gen_timer_thresh;
3217 	trigger_mask &= timer_table->timer_mask;
3218 	thresh_mask &= timer_table->timer_mask;
3219 
3220 	for_each_set_bit(index, &thresh_mask, ARRAY_SIZE(timer_table->timers)) {
3221 		timer = timer_table->timers[index];
3222 		if (!timer)
3223 		    continue;
3224 		if (!timer->overflow)
3225 		    continue;
3226 
3227 		trigger_mask &= ~BIT(index);
3228 		timer->overflow(timer->arg);
3229 	}
3230 
3231 	for_each_set_bit(index, &trigger_mask, ARRAY_SIZE(timer_table->timers)) {
3232 		timer = timer_table->timers[index];
3233 		if (!timer)
3234 		    continue;
3235 		if (!timer->trigger)
3236 		    continue;
3237 		timer->trigger(timer->arg);
3238 	}
3239 }
3240 EXPORT_SYMBOL(ath_gen_timer_isr);
3241 
3242 /********/
3243 /* HTC  */
3244 /********/
3245 
3246 static struct {
3247 	u32 version;
3248 	const char * name;
3249 } ath_mac_bb_names[] = {
3250 	/* Devices with external radios */
3251 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3252 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3253 	{ AR_SREV_VERSION_9100,		"9100" },
3254 	{ AR_SREV_VERSION_9160,		"9160" },
3255 	/* Single-chip solutions */
3256 	{ AR_SREV_VERSION_9280,		"9280" },
3257 	{ AR_SREV_VERSION_9285,		"9285" },
3258 	{ AR_SREV_VERSION_9287,         "9287" },
3259 	{ AR_SREV_VERSION_9271,         "9271" },
3260 	{ AR_SREV_VERSION_9300,         "9300" },
3261 	{ AR_SREV_VERSION_9330,         "9330" },
3262 	{ AR_SREV_VERSION_9340,		"9340" },
3263 	{ AR_SREV_VERSION_9485,         "9485" },
3264 	{ AR_SREV_VERSION_9462,         "9462" },
3265 	{ AR_SREV_VERSION_9550,         "9550" },
3266 	{ AR_SREV_VERSION_9565,         "9565" },
3267 	{ AR_SREV_VERSION_9531,         "9531" },
3268 	{ AR_SREV_VERSION_9561,         "9561" },
3269 };
3270 
3271 /* For devices with external radios */
3272 static struct {
3273 	u16 version;
3274 	const char * name;
3275 } ath_rf_names[] = {
3276 	{ 0,				"5133" },
3277 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3278 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3279 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3280 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3281 };
3282 
3283 /*
3284  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3285  */
3286 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3287 {
3288 	int i;
3289 
3290 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3291 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3292 			return ath_mac_bb_names[i].name;
3293 		}
3294 	}
3295 
3296 	return "????";
3297 }
3298 
3299 /*
3300  * Return the RF name. "????" is returned if the RF is unknown.
3301  * Used for devices with external radios.
3302  */
3303 static const char *ath9k_hw_rf_name(u16 rf_version)
3304 {
3305 	int i;
3306 
3307 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3308 		if (ath_rf_names[i].version == rf_version) {
3309 			return ath_rf_names[i].name;
3310 		}
3311 	}
3312 
3313 	return "????";
3314 }
3315 
3316 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3317 {
3318 	int used;
3319 
3320 	/* chipsets >= AR9280 are single-chip */
3321 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3322 		used = scnprintf(hw_name, len,
3323 				 "Atheros AR%s Rev:%x",
3324 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3325 				 ah->hw_version.macRev);
3326 	}
3327 	else {
3328 		used = scnprintf(hw_name, len,
3329 				 "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3330 				 ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3331 				 ah->hw_version.macRev,
3332 				 ath9k_hw_rf_name((ah->hw_version.analog5GhzRev
3333 						  & AR_RADIO_SREV_MAJOR)),
3334 				 ah->hw_version.phyRev);
3335 	}
3336 
3337 	hw_name[used] = '\0';
3338 }
3339 EXPORT_SYMBOL(ath9k_hw_name);
3340