xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 22fd411a)
1 /*
2  * Copyright (c) 2008-2010 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <asm/unaligned.h>
20 
21 #include "hw.h"
22 #include "hw-ops.h"
23 #include "rc.h"
24 #include "ar9003_mac.h"
25 
26 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
27 
28 MODULE_AUTHOR("Atheros Communications");
29 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
30 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
31 MODULE_LICENSE("Dual BSD/GPL");
32 
33 static int __init ath9k_init(void)
34 {
35 	return 0;
36 }
37 module_init(ath9k_init);
38 
39 static void __exit ath9k_exit(void)
40 {
41 	return;
42 }
43 module_exit(ath9k_exit);
44 
45 /* Private hardware callbacks */
46 
47 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
48 {
49 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
50 }
51 
52 static void ath9k_hw_init_mode_regs(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_mode_regs(ah);
55 }
56 
57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 					struct ath9k_channel *chan)
59 {
60 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62 
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 		return;
67 
68 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70 
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 	/* You will not have this callback if using the old ANI */
74 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 		return;
76 
77 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79 
80 /********************/
81 /* Helper Functions */
82 /********************/
83 
84 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
85 {
86 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
87 	struct ath_common *common = ath9k_hw_common(ah);
88 	unsigned int clockrate;
89 
90 	if (!ah->curchan) /* should really check for CCK instead */
91 		clockrate = ATH9K_CLOCK_RATE_CCK;
92 	else if (conf->channel->band == IEEE80211_BAND_2GHZ)
93 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
94 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
95 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
96 	else
97 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
98 
99 	if (conf_is_ht40(conf))
100 		clockrate *= 2;
101 
102 	common->clockrate = clockrate;
103 }
104 
105 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
106 {
107 	struct ath_common *common = ath9k_hw_common(ah);
108 
109 	return usecs * common->clockrate;
110 }
111 
112 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
113 {
114 	int i;
115 
116 	BUG_ON(timeout < AH_TIME_QUANTUM);
117 
118 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
119 		if ((REG_READ(ah, reg) & mask) == val)
120 			return true;
121 
122 		udelay(AH_TIME_QUANTUM);
123 	}
124 
125 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_ANY,
126 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
127 		timeout, reg, REG_READ(ah, reg), mask, val);
128 
129 	return false;
130 }
131 EXPORT_SYMBOL(ath9k_hw_wait);
132 
133 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
134 {
135 	u32 retval;
136 	int i;
137 
138 	for (i = 0, retval = 0; i < n; i++) {
139 		retval = (retval << 1) | (val & 1);
140 		val >>= 1;
141 	}
142 	return retval;
143 }
144 
145 bool ath9k_get_channel_edges(struct ath_hw *ah,
146 			     u16 flags, u16 *low,
147 			     u16 *high)
148 {
149 	struct ath9k_hw_capabilities *pCap = &ah->caps;
150 
151 	if (flags & CHANNEL_5GHZ) {
152 		*low = pCap->low_5ghz_chan;
153 		*high = pCap->high_5ghz_chan;
154 		return true;
155 	}
156 	if ((flags & CHANNEL_2GHZ)) {
157 		*low = pCap->low_2ghz_chan;
158 		*high = pCap->high_2ghz_chan;
159 		return true;
160 	}
161 	return false;
162 }
163 
164 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
165 			   u8 phy, int kbps,
166 			   u32 frameLen, u16 rateix,
167 			   bool shortPreamble)
168 {
169 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
170 
171 	if (kbps == 0)
172 		return 0;
173 
174 	switch (phy) {
175 	case WLAN_RC_PHY_CCK:
176 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
177 		if (shortPreamble)
178 			phyTime >>= 1;
179 		numBits = frameLen << 3;
180 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
181 		break;
182 	case WLAN_RC_PHY_OFDM:
183 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
184 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
185 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
186 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
187 			txTime = OFDM_SIFS_TIME_QUARTER
188 				+ OFDM_PREAMBLE_TIME_QUARTER
189 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
190 		} else if (ah->curchan &&
191 			   IS_CHAN_HALF_RATE(ah->curchan)) {
192 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
193 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
194 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
195 			txTime = OFDM_SIFS_TIME_HALF +
196 				OFDM_PREAMBLE_TIME_HALF
197 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
198 		} else {
199 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
200 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
201 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
202 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
203 				+ (numSymbols * OFDM_SYMBOL_TIME);
204 		}
205 		break;
206 	default:
207 		ath_err(ath9k_hw_common(ah),
208 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
209 		txTime = 0;
210 		break;
211 	}
212 
213 	return txTime;
214 }
215 EXPORT_SYMBOL(ath9k_hw_computetxtime);
216 
217 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
218 				  struct ath9k_channel *chan,
219 				  struct chan_centers *centers)
220 {
221 	int8_t extoff;
222 
223 	if (!IS_CHAN_HT40(chan)) {
224 		centers->ctl_center = centers->ext_center =
225 			centers->synth_center = chan->channel;
226 		return;
227 	}
228 
229 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
230 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
231 		centers->synth_center =
232 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
233 		extoff = 1;
234 	} else {
235 		centers->synth_center =
236 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
237 		extoff = -1;
238 	}
239 
240 	centers->ctl_center =
241 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
242 	/* 25 MHz spacing is supported by hw but not on upper layers */
243 	centers->ext_center =
244 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
245 }
246 
247 /******************/
248 /* Chip Revisions */
249 /******************/
250 
251 static void ath9k_hw_read_revisions(struct ath_hw *ah)
252 {
253 	u32 val;
254 
255 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
256 
257 	if (val == 0xFF) {
258 		val = REG_READ(ah, AR_SREV);
259 		ah->hw_version.macVersion =
260 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
261 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
262 		ah->is_pciexpress = (val & AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
263 	} else {
264 		if (!AR_SREV_9100(ah))
265 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
266 
267 		ah->hw_version.macRev = val & AR_SREV_REVISION;
268 
269 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
270 			ah->is_pciexpress = true;
271 	}
272 }
273 
274 /************************************/
275 /* HW Attach, Detach, Init Routines */
276 /************************************/
277 
278 static void ath9k_hw_disablepcie(struct ath_hw *ah)
279 {
280 	if (!AR_SREV_5416(ah))
281 		return;
282 
283 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
284 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
285 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
286 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
287 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
288 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
289 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
290 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
291 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
292 
293 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
294 }
295 
296 /* This should work for all families including legacy */
297 static bool ath9k_hw_chip_test(struct ath_hw *ah)
298 {
299 	struct ath_common *common = ath9k_hw_common(ah);
300 	u32 regAddr[2] = { AR_STA_ID0 };
301 	u32 regHold[2];
302 	static const u32 patternData[4] = {
303 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
304 	};
305 	int i, j, loop_max;
306 
307 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
308 		loop_max = 2;
309 		regAddr[1] = AR_PHY_BASE + (8 << 2);
310 	} else
311 		loop_max = 1;
312 
313 	for (i = 0; i < loop_max; i++) {
314 		u32 addr = regAddr[i];
315 		u32 wrData, rdData;
316 
317 		regHold[i] = REG_READ(ah, addr);
318 		for (j = 0; j < 0x100; j++) {
319 			wrData = (j << 16) | j;
320 			REG_WRITE(ah, addr, wrData);
321 			rdData = REG_READ(ah, addr);
322 			if (rdData != wrData) {
323 				ath_err(common,
324 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
325 					addr, wrData, rdData);
326 				return false;
327 			}
328 		}
329 		for (j = 0; j < 4; j++) {
330 			wrData = patternData[j];
331 			REG_WRITE(ah, addr, wrData);
332 			rdData = REG_READ(ah, addr);
333 			if (wrData != rdData) {
334 				ath_err(common,
335 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
336 					addr, wrData, rdData);
337 				return false;
338 			}
339 		}
340 		REG_WRITE(ah, regAddr[i], regHold[i]);
341 	}
342 	udelay(100);
343 
344 	return true;
345 }
346 
347 static void ath9k_hw_init_config(struct ath_hw *ah)
348 {
349 	int i;
350 
351 	ah->config.dma_beacon_response_time = 2;
352 	ah->config.sw_beacon_response_time = 10;
353 	ah->config.additional_swba_backoff = 0;
354 	ah->config.ack_6mb = 0x0;
355 	ah->config.cwm_ignore_extcca = 0;
356 	ah->config.pcie_powersave_enable = 0;
357 	ah->config.pcie_clock_req = 0;
358 	ah->config.pcie_waen = 0;
359 	ah->config.analog_shiftreg = 1;
360 	ah->config.enable_ani = true;
361 
362 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
363 		ah->config.spurchans[i][0] = AR_NO_SPUR;
364 		ah->config.spurchans[i][1] = AR_NO_SPUR;
365 	}
366 
367 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
368 		ah->config.ht_enable = 1;
369 	else
370 		ah->config.ht_enable = 0;
371 
372 	ah->config.rx_intr_mitigation = true;
373 	ah->config.pcieSerDesWrite = true;
374 
375 	/*
376 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
377 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
378 	 * This means we use it for all AR5416 devices, and the few
379 	 * minor PCI AR9280 devices out there.
380 	 *
381 	 * Serialization is required because these devices do not handle
382 	 * well the case of two concurrent reads/writes due to the latency
383 	 * involved. During one read/write another read/write can be issued
384 	 * on another CPU while the previous read/write may still be working
385 	 * on our hardware, if we hit this case the hardware poops in a loop.
386 	 * We prevent this by serializing reads and writes.
387 	 *
388 	 * This issue is not present on PCI-Express devices or pre-AR5416
389 	 * devices (legacy, 802.11abg).
390 	 */
391 	if (num_possible_cpus() > 1)
392 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
393 }
394 
395 static void ath9k_hw_init_defaults(struct ath_hw *ah)
396 {
397 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
398 
399 	regulatory->country_code = CTRY_DEFAULT;
400 	regulatory->power_limit = MAX_RATE_POWER;
401 	regulatory->tp_scale = ATH9K_TP_SCALE_MAX;
402 
403 	ah->hw_version.magic = AR5416_MAGIC;
404 	ah->hw_version.subvendorid = 0;
405 
406 	ah->atim_window = 0;
407 	ah->sta_id1_defaults =
408 		AR_STA_ID1_CRPT_MIC_ENABLE |
409 		AR_STA_ID1_MCAST_KSRCH;
410 	ah->enable_32kHz_clock = DONT_USE_32KHZ;
411 	ah->slottime = 20;
412 	ah->globaltxtimeout = (u32) -1;
413 	ah->power_mode = ATH9K_PM_UNDEFINED;
414 }
415 
416 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
417 {
418 	struct ath_common *common = ath9k_hw_common(ah);
419 	u32 sum;
420 	int i;
421 	u16 eeval;
422 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
423 
424 	sum = 0;
425 	for (i = 0; i < 3; i++) {
426 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
427 		sum += eeval;
428 		common->macaddr[2 * i] = eeval >> 8;
429 		common->macaddr[2 * i + 1] = eeval & 0xff;
430 	}
431 	if (sum == 0 || sum == 0xffff * 3)
432 		return -EADDRNOTAVAIL;
433 
434 	return 0;
435 }
436 
437 static int ath9k_hw_post_init(struct ath_hw *ah)
438 {
439 	struct ath_common *common = ath9k_hw_common(ah);
440 	int ecode;
441 
442 	if (common->bus_ops->ath_bus_type != ATH_USB) {
443 		if (!ath9k_hw_chip_test(ah))
444 			return -ENODEV;
445 	}
446 
447 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
448 		ecode = ar9002_hw_rf_claim(ah);
449 		if (ecode != 0)
450 			return ecode;
451 	}
452 
453 	ecode = ath9k_hw_eeprom_init(ah);
454 	if (ecode != 0)
455 		return ecode;
456 
457 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_CONFIG,
458 		"Eeprom VER: %d, REV: %d\n",
459 		ah->eep_ops->get_eeprom_ver(ah),
460 		ah->eep_ops->get_eeprom_rev(ah));
461 
462 	ecode = ath9k_hw_rf_alloc_ext_banks(ah);
463 	if (ecode) {
464 		ath_err(ath9k_hw_common(ah),
465 			"Failed allocating banks for external radio\n");
466 		ath9k_hw_rf_free_ext_banks(ah);
467 		return ecode;
468 	}
469 
470 	if (!AR_SREV_9100(ah)) {
471 		ath9k_hw_ani_setup(ah);
472 		ath9k_hw_ani_init(ah);
473 	}
474 
475 	return 0;
476 }
477 
478 static void ath9k_hw_attach_ops(struct ath_hw *ah)
479 {
480 	if (AR_SREV_9300_20_OR_LATER(ah))
481 		ar9003_hw_attach_ops(ah);
482 	else
483 		ar9002_hw_attach_ops(ah);
484 }
485 
486 /* Called for all hardware families */
487 static int __ath9k_hw_init(struct ath_hw *ah)
488 {
489 	struct ath_common *common = ath9k_hw_common(ah);
490 	int r = 0;
491 
492 	if (ah->hw_version.devid == AR5416_AR9100_DEVID)
493 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
494 
495 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
496 		ath_err(common, "Couldn't reset chip\n");
497 		return -EIO;
498 	}
499 
500 	ath9k_hw_init_defaults(ah);
501 	ath9k_hw_init_config(ah);
502 
503 	ath9k_hw_attach_ops(ah);
504 
505 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
506 		ath_err(common, "Couldn't wakeup chip\n");
507 		return -EIO;
508 	}
509 
510 	if (ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
511 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
512 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah)) &&
513 		     !ah->is_pciexpress)) {
514 			ah->config.serialize_regmode =
515 				SER_REG_MODE_ON;
516 		} else {
517 			ah->config.serialize_regmode =
518 				SER_REG_MODE_OFF;
519 		}
520 	}
521 
522 	ath_dbg(common, ATH_DBG_RESET, "serialize_regmode is %d\n",
523 		ah->config.serialize_regmode);
524 
525 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
526 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
527 	else
528 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
529 
530 	switch (ah->hw_version.macVersion) {
531 	case AR_SREV_VERSION_5416_PCI:
532 	case AR_SREV_VERSION_5416_PCIE:
533 	case AR_SREV_VERSION_9160:
534 	case AR_SREV_VERSION_9100:
535 	case AR_SREV_VERSION_9280:
536 	case AR_SREV_VERSION_9285:
537 	case AR_SREV_VERSION_9287:
538 	case AR_SREV_VERSION_9271:
539 	case AR_SREV_VERSION_9300:
540 	case AR_SREV_VERSION_9485:
541 		break;
542 	default:
543 		ath_err(common,
544 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
545 			ah->hw_version.macVersion, ah->hw_version.macRev);
546 		return -EOPNOTSUPP;
547 	}
548 
549 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah))
550 		ah->is_pciexpress = false;
551 
552 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
553 	ath9k_hw_init_cal_settings(ah);
554 
555 	ah->ani_function = ATH9K_ANI_ALL;
556 	if (AR_SREV_9280_20_OR_LATER(ah) && !AR_SREV_9300_20_OR_LATER(ah))
557 		ah->ani_function &= ~ATH9K_ANI_NOISE_IMMUNITY_LEVEL;
558 	if (!AR_SREV_9300_20_OR_LATER(ah))
559 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
560 
561 	ath9k_hw_init_mode_regs(ah);
562 
563 	/*
564 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
565 	 * We need to do this to avoid RMW of this register. We cannot
566 	 * read the reg when chip is asleep.
567 	 */
568 	ah->WARegVal = REG_READ(ah, AR_WA);
569 	ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
570 			 AR_WA_ASPM_TIMER_BASED_DISABLE);
571 
572 	if (ah->is_pciexpress)
573 		ath9k_hw_configpcipowersave(ah, 0, 0);
574 	else
575 		ath9k_hw_disablepcie(ah);
576 
577 	if (!AR_SREV_9300_20_OR_LATER(ah))
578 		ar9002_hw_cck_chan14_spread(ah);
579 
580 	r = ath9k_hw_post_init(ah);
581 	if (r)
582 		return r;
583 
584 	ath9k_hw_init_mode_gain_regs(ah);
585 	r = ath9k_hw_fill_cap_info(ah);
586 	if (r)
587 		return r;
588 
589 	r = ath9k_hw_init_macaddr(ah);
590 	if (r) {
591 		ath_err(common, "Failed to initialize MAC address\n");
592 		return r;
593 	}
594 
595 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
596 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
597 	else
598 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
599 
600 	ah->bb_watchdog_timeout_ms = 25;
601 
602 	common->state = ATH_HW_INITIALIZED;
603 
604 	return 0;
605 }
606 
607 int ath9k_hw_init(struct ath_hw *ah)
608 {
609 	int ret;
610 	struct ath_common *common = ath9k_hw_common(ah);
611 
612 	/* These are all the AR5008/AR9001/AR9002 hardware family of chipsets */
613 	switch (ah->hw_version.devid) {
614 	case AR5416_DEVID_PCI:
615 	case AR5416_DEVID_PCIE:
616 	case AR5416_AR9100_DEVID:
617 	case AR9160_DEVID_PCI:
618 	case AR9280_DEVID_PCI:
619 	case AR9280_DEVID_PCIE:
620 	case AR9285_DEVID_PCIE:
621 	case AR9287_DEVID_PCI:
622 	case AR9287_DEVID_PCIE:
623 	case AR2427_DEVID_PCIE:
624 	case AR9300_DEVID_PCIE:
625 	case AR9300_DEVID_AR9485_PCIE:
626 		break;
627 	default:
628 		if (common->bus_ops->ath_bus_type == ATH_USB)
629 			break;
630 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
631 			ah->hw_version.devid);
632 		return -EOPNOTSUPP;
633 	}
634 
635 	ret = __ath9k_hw_init(ah);
636 	if (ret) {
637 		ath_err(common,
638 			"Unable to initialize hardware; initialization status: %d\n",
639 			ret);
640 		return ret;
641 	}
642 
643 	return 0;
644 }
645 EXPORT_SYMBOL(ath9k_hw_init);
646 
647 static void ath9k_hw_init_qos(struct ath_hw *ah)
648 {
649 	ENABLE_REGWRITE_BUFFER(ah);
650 
651 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
652 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
653 
654 	REG_WRITE(ah, AR_QOS_NO_ACK,
655 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
656 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
657 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
658 
659 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
660 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
661 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
662 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
663 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
664 
665 	REGWRITE_BUFFER_FLUSH(ah);
666 }
667 
668 static void ath9k_hw_init_pll(struct ath_hw *ah,
669 			      struct ath9k_channel *chan)
670 {
671 	u32 pll;
672 
673 	if (AR_SREV_9485(ah))
674 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, 0x886666);
675 
676 	pll = ath9k_hw_compute_pll_control(ah, chan);
677 
678 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
679 
680 	/* Switch the core clock for ar9271 to 117Mhz */
681 	if (AR_SREV_9271(ah)) {
682 		udelay(500);
683 		REG_WRITE(ah, 0x50040, 0x304);
684 	}
685 
686 	udelay(RTC_PLL_SETTLE_DELAY);
687 
688 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
689 }
690 
691 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
692 					  enum nl80211_iftype opmode)
693 {
694 	u32 imr_reg = AR_IMR_TXERR |
695 		AR_IMR_TXURN |
696 		AR_IMR_RXERR |
697 		AR_IMR_RXORN |
698 		AR_IMR_BCNMISC;
699 
700 	if (AR_SREV_9300_20_OR_LATER(ah)) {
701 		imr_reg |= AR_IMR_RXOK_HP;
702 		if (ah->config.rx_intr_mitigation)
703 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
704 		else
705 			imr_reg |= AR_IMR_RXOK_LP;
706 
707 	} else {
708 		if (ah->config.rx_intr_mitigation)
709 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
710 		else
711 			imr_reg |= AR_IMR_RXOK;
712 	}
713 
714 	if (ah->config.tx_intr_mitigation)
715 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
716 	else
717 		imr_reg |= AR_IMR_TXOK;
718 
719 	if (opmode == NL80211_IFTYPE_AP)
720 		imr_reg |= AR_IMR_MIB;
721 
722 	ENABLE_REGWRITE_BUFFER(ah);
723 
724 	REG_WRITE(ah, AR_IMR, imr_reg);
725 	ah->imrs2_reg |= AR_IMR_S2_GTT;
726 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
727 
728 	if (!AR_SREV_9100(ah)) {
729 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
730 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, AR_INTR_SYNC_DEFAULT);
731 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
732 	}
733 
734 	REGWRITE_BUFFER_FLUSH(ah);
735 
736 	if (AR_SREV_9300_20_OR_LATER(ah)) {
737 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
738 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
739 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
740 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
741 	}
742 }
743 
744 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
745 {
746 	u32 val = ath9k_hw_mac_to_clks(ah, us);
747 	val = min(val, (u32) 0xFFFF);
748 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
749 }
750 
751 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
752 {
753 	u32 val = ath9k_hw_mac_to_clks(ah, us);
754 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
755 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
756 }
757 
758 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
759 {
760 	u32 val = ath9k_hw_mac_to_clks(ah, us);
761 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
762 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
763 }
764 
765 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
766 {
767 	if (tu > 0xFFFF) {
768 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_XMIT,
769 			"bad global tx timeout %u\n", tu);
770 		ah->globaltxtimeout = (u32) -1;
771 		return false;
772 	} else {
773 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
774 		ah->globaltxtimeout = tu;
775 		return true;
776 	}
777 }
778 
779 void ath9k_hw_init_global_settings(struct ath_hw *ah)
780 {
781 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
782 	int acktimeout;
783 	int slottime;
784 	int sifstime;
785 
786 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET, "ah->misc_mode 0x%x\n",
787 		ah->misc_mode);
788 
789 	if (ah->misc_mode != 0)
790 		REG_WRITE(ah, AR_PCU_MISC,
791 			  REG_READ(ah, AR_PCU_MISC) | ah->misc_mode);
792 
793 	if (conf->channel && conf->channel->band == IEEE80211_BAND_5GHZ)
794 		sifstime = 16;
795 	else
796 		sifstime = 10;
797 
798 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
799 	slottime = ah->slottime + 3 * ah->coverage_class;
800 	acktimeout = slottime + sifstime;
801 
802 	/*
803 	 * Workaround for early ACK timeouts, add an offset to match the
804 	 * initval's 64us ack timeout value.
805 	 * This was initially only meant to work around an issue with delayed
806 	 * BA frames in some implementations, but it has been found to fix ACK
807 	 * timeout issues in other cases as well.
808 	 */
809 	if (conf->channel && conf->channel->band == IEEE80211_BAND_2GHZ)
810 		acktimeout += 64 - sifstime - ah->slottime;
811 
812 	ath9k_hw_setslottime(ah, ah->slottime);
813 	ath9k_hw_set_ack_timeout(ah, acktimeout);
814 	ath9k_hw_set_cts_timeout(ah, acktimeout);
815 	if (ah->globaltxtimeout != (u32) -1)
816 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
817 }
818 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
819 
820 void ath9k_hw_deinit(struct ath_hw *ah)
821 {
822 	struct ath_common *common = ath9k_hw_common(ah);
823 
824 	if (common->state < ATH_HW_INITIALIZED)
825 		goto free_hw;
826 
827 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
828 
829 free_hw:
830 	ath9k_hw_rf_free_ext_banks(ah);
831 }
832 EXPORT_SYMBOL(ath9k_hw_deinit);
833 
834 /*******/
835 /* INI */
836 /*******/
837 
838 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
839 {
840 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
841 
842 	if (IS_CHAN_B(chan))
843 		ctl |= CTL_11B;
844 	else if (IS_CHAN_G(chan))
845 		ctl |= CTL_11G;
846 	else
847 		ctl |= CTL_11A;
848 
849 	return ctl;
850 }
851 
852 /****************************************/
853 /* Reset and Channel Switching Routines */
854 /****************************************/
855 
856 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
857 {
858 	struct ath_common *common = ath9k_hw_common(ah);
859 	u32 regval;
860 
861 	ENABLE_REGWRITE_BUFFER(ah);
862 
863 	/*
864 	 * set AHB_MODE not to do cacheline prefetches
865 	*/
866 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
867 		regval = REG_READ(ah, AR_AHB_MODE);
868 		REG_WRITE(ah, AR_AHB_MODE, regval | AR_AHB_PREFETCH_RD_EN);
869 	}
870 
871 	/*
872 	 * let mac dma reads be in 128 byte chunks
873 	 */
874 	regval = REG_READ(ah, AR_TXCFG) & ~AR_TXCFG_DMASZ_MASK;
875 	REG_WRITE(ah, AR_TXCFG, regval | AR_TXCFG_DMASZ_128B);
876 
877 	REGWRITE_BUFFER_FLUSH(ah);
878 
879 	/*
880 	 * Restore TX Trigger Level to its pre-reset value.
881 	 * The initial value depends on whether aggregation is enabled, and is
882 	 * adjusted whenever underruns are detected.
883 	 */
884 	if (!AR_SREV_9300_20_OR_LATER(ah))
885 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
886 
887 	ENABLE_REGWRITE_BUFFER(ah);
888 
889 	/*
890 	 * let mac dma writes be in 128 byte chunks
891 	 */
892 	regval = REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_DMASZ_MASK;
893 	REG_WRITE(ah, AR_RXCFG, regval | AR_RXCFG_DMASZ_128B);
894 
895 	/*
896 	 * Setup receive FIFO threshold to hold off TX activities
897 	 */
898 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
899 
900 	if (AR_SREV_9300_20_OR_LATER(ah)) {
901 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
902 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
903 
904 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
905 			ah->caps.rx_status_len);
906 	}
907 
908 	/*
909 	 * reduce the number of usable entries in PCU TXBUF to avoid
910 	 * wrap around issues.
911 	 */
912 	if (AR_SREV_9285(ah)) {
913 		/* For AR9285 the number of Fifos are reduced to half.
914 		 * So set the usable tx buf size also to half to
915 		 * avoid data/delimiter underruns
916 		 */
917 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
918 			  AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE);
919 	} else if (!AR_SREV_9271(ah)) {
920 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL,
921 			  AR_PCU_TXBUF_CTRL_USABLE_SIZE);
922 	}
923 
924 	REGWRITE_BUFFER_FLUSH(ah);
925 
926 	if (AR_SREV_9300_20_OR_LATER(ah))
927 		ath9k_hw_reset_txstatus_ring(ah);
928 }
929 
930 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
931 {
932 	u32 val;
933 
934 	val = REG_READ(ah, AR_STA_ID1);
935 	val &= ~(AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC);
936 	switch (opmode) {
937 	case NL80211_IFTYPE_AP:
938 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_STA_AP
939 			  | AR_STA_ID1_KSRCH_MODE);
940 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
941 		break;
942 	case NL80211_IFTYPE_ADHOC:
943 	case NL80211_IFTYPE_MESH_POINT:
944 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_ADHOC
945 			  | AR_STA_ID1_KSRCH_MODE);
946 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
947 		break;
948 	case NL80211_IFTYPE_STATION:
949 		REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
950 		break;
951 	default:
952 		if (ah->is_monitoring)
953 			REG_WRITE(ah, AR_STA_ID1, val | AR_STA_ID1_KSRCH_MODE);
954 		break;
955 	}
956 }
957 
958 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
959 				   u32 *coef_mantissa, u32 *coef_exponent)
960 {
961 	u32 coef_exp, coef_man;
962 
963 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
964 		if ((coef_scaled >> coef_exp) & 0x1)
965 			break;
966 
967 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
968 
969 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
970 
971 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
972 	*coef_exponent = coef_exp - 16;
973 }
974 
975 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
976 {
977 	u32 rst_flags;
978 	u32 tmpReg;
979 
980 	if (AR_SREV_9100(ah)) {
981 		u32 val = REG_READ(ah, AR_RTC_DERIVED_CLK);
982 		val &= ~AR_RTC_DERIVED_CLK_PERIOD;
983 		val |= SM(1, AR_RTC_DERIVED_CLK_PERIOD);
984 		REG_WRITE(ah, AR_RTC_DERIVED_CLK, val);
985 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
986 	}
987 
988 	ENABLE_REGWRITE_BUFFER(ah);
989 
990 	if (AR_SREV_9300_20_OR_LATER(ah)) {
991 		REG_WRITE(ah, AR_WA, ah->WARegVal);
992 		udelay(10);
993 	}
994 
995 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
996 		  AR_RTC_FORCE_WAKE_ON_INT);
997 
998 	if (AR_SREV_9100(ah)) {
999 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1000 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1001 	} else {
1002 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1003 		if (tmpReg &
1004 		    (AR_INTR_SYNC_LOCAL_TIMEOUT |
1005 		     AR_INTR_SYNC_RADM_CPL_TIMEOUT)) {
1006 			u32 val;
1007 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1008 
1009 			val = AR_RC_HOSTIF;
1010 			if (!AR_SREV_9300_20_OR_LATER(ah))
1011 				val |= AR_RC_AHB;
1012 			REG_WRITE(ah, AR_RC, val);
1013 
1014 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1015 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1016 
1017 		rst_flags = AR_RTC_RC_MAC_WARM;
1018 		if (type == ATH9K_RESET_COLD)
1019 			rst_flags |= AR_RTC_RC_MAC_COLD;
1020 	}
1021 
1022 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1023 
1024 	REGWRITE_BUFFER_FLUSH(ah);
1025 
1026 	udelay(50);
1027 
1028 	REG_WRITE(ah, AR_RTC_RC, 0);
1029 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1030 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1031 			"RTC stuck in MAC reset\n");
1032 		return false;
1033 	}
1034 
1035 	if (!AR_SREV_9100(ah))
1036 		REG_WRITE(ah, AR_RC, 0);
1037 
1038 	if (AR_SREV_9100(ah))
1039 		udelay(50);
1040 
1041 	return true;
1042 }
1043 
1044 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1045 {
1046 	ENABLE_REGWRITE_BUFFER(ah);
1047 
1048 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1049 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1050 		udelay(10);
1051 	}
1052 
1053 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1054 		  AR_RTC_FORCE_WAKE_ON_INT);
1055 
1056 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1057 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1058 
1059 	REG_WRITE(ah, AR_RTC_RESET, 0);
1060 	udelay(2);
1061 
1062 	REGWRITE_BUFFER_FLUSH(ah);
1063 
1064 	if (!AR_SREV_9300_20_OR_LATER(ah))
1065 		udelay(2);
1066 
1067 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1068 		REG_WRITE(ah, AR_RC, 0);
1069 
1070 	REG_WRITE(ah, AR_RTC_RESET, 1);
1071 
1072 	if (!ath9k_hw_wait(ah,
1073 			   AR_RTC_STATUS,
1074 			   AR_RTC_STATUS_M,
1075 			   AR_RTC_STATUS_ON,
1076 			   AH_WAIT_TIMEOUT)) {
1077 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
1078 			"RTC not waking up\n");
1079 		return false;
1080 	}
1081 
1082 	ath9k_hw_read_revisions(ah);
1083 
1084 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1085 }
1086 
1087 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1088 {
1089 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1090 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1091 		udelay(10);
1092 	}
1093 
1094 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1095 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1096 
1097 	switch (type) {
1098 	case ATH9K_RESET_POWER_ON:
1099 		return ath9k_hw_set_reset_power_on(ah);
1100 	case ATH9K_RESET_WARM:
1101 	case ATH9K_RESET_COLD:
1102 		return ath9k_hw_set_reset(ah, type);
1103 	default:
1104 		return false;
1105 	}
1106 }
1107 
1108 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1109 				struct ath9k_channel *chan)
1110 {
1111 	if (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)) {
1112 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON))
1113 			return false;
1114 	} else if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
1115 		return false;
1116 
1117 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1118 		return false;
1119 
1120 	ah->chip_fullsleep = false;
1121 	ath9k_hw_init_pll(ah, chan);
1122 	ath9k_hw_set_rfmode(ah, chan);
1123 
1124 	return true;
1125 }
1126 
1127 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1128 				    struct ath9k_channel *chan)
1129 {
1130 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1131 	struct ath_common *common = ath9k_hw_common(ah);
1132 	struct ieee80211_channel *channel = chan->chan;
1133 	u32 qnum;
1134 	int r;
1135 
1136 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1137 		if (ath9k_hw_numtxpending(ah, qnum)) {
1138 			ath_dbg(common, ATH_DBG_QUEUE,
1139 				"Transmit frames pending on queue %d\n", qnum);
1140 			return false;
1141 		}
1142 	}
1143 
1144 	if (!ath9k_hw_rfbus_req(ah)) {
1145 		ath_err(common, "Could not kill baseband RX\n");
1146 		return false;
1147 	}
1148 
1149 	ath9k_hw_set_channel_regs(ah, chan);
1150 
1151 	r = ath9k_hw_rf_set_freq(ah, chan);
1152 	if (r) {
1153 		ath_err(common, "Failed to set channel\n");
1154 		return false;
1155 	}
1156 	ath9k_hw_set_clockrate(ah);
1157 
1158 	ah->eep_ops->set_txpower(ah, chan,
1159 			     ath9k_regd_get_ctl(regulatory, chan),
1160 			     channel->max_antenna_gain * 2,
1161 			     channel->max_power * 2,
1162 			     min((u32) MAX_RATE_POWER,
1163 			     (u32) regulatory->power_limit), false);
1164 
1165 	ath9k_hw_rfbus_done(ah);
1166 
1167 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1168 		ath9k_hw_set_delta_slope(ah, chan);
1169 
1170 	ath9k_hw_spur_mitigate_freq(ah, chan);
1171 
1172 	return true;
1173 }
1174 
1175 bool ath9k_hw_check_alive(struct ath_hw *ah)
1176 {
1177 	int count = 50;
1178 	u32 reg;
1179 
1180 	if (AR_SREV_9285_12_OR_LATER(ah))
1181 		return true;
1182 
1183 	do {
1184 		reg = REG_READ(ah, AR_OBS_BUS_1);
1185 
1186 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1187 			continue;
1188 
1189 		switch (reg & 0x7E000B00) {
1190 		case 0x1E000000:
1191 		case 0x52000B00:
1192 		case 0x18000B00:
1193 			continue;
1194 		default:
1195 			return true;
1196 		}
1197 	} while (count-- > 0);
1198 
1199 	return false;
1200 }
1201 EXPORT_SYMBOL(ath9k_hw_check_alive);
1202 
1203 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1204 		   struct ath9k_hw_cal_data *caldata, bool bChannelChange)
1205 {
1206 	struct ath_common *common = ath9k_hw_common(ah);
1207 	u32 saveLedState;
1208 	struct ath9k_channel *curchan = ah->curchan;
1209 	u32 saveDefAntenna;
1210 	u32 macStaId1;
1211 	u64 tsf = 0;
1212 	int i, r;
1213 
1214 	ah->txchainmask = common->tx_chainmask;
1215 	ah->rxchainmask = common->rx_chainmask;
1216 
1217 	if ((common->bus_ops->ath_bus_type != ATH_USB) && !ah->chip_fullsleep) {
1218 		ath9k_hw_abortpcurecv(ah);
1219 		if (!ath9k_hw_stopdmarecv(ah)) {
1220 			ath_dbg(common, ATH_DBG_XMIT,
1221 				"Failed to stop receive dma\n");
1222 			bChannelChange = false;
1223 		}
1224 	}
1225 
1226 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1227 		return -EIO;
1228 
1229 	if (curchan && !ah->chip_fullsleep)
1230 		ath9k_hw_getnf(ah, curchan);
1231 
1232 	ah->caldata = caldata;
1233 	if (caldata &&
1234 	    (chan->channel != caldata->channel ||
1235 	     (chan->channelFlags & ~CHANNEL_CW_INT) !=
1236 	     (caldata->channelFlags & ~CHANNEL_CW_INT))) {
1237 		/* Operating channel changed, reset channel calibration data */
1238 		memset(caldata, 0, sizeof(*caldata));
1239 		ath9k_init_nfcal_hist_buffer(ah, chan);
1240 	}
1241 
1242 	if (bChannelChange &&
1243 	    (ah->chip_fullsleep != true) &&
1244 	    (ah->curchan != NULL) &&
1245 	    (chan->channel != ah->curchan->channel) &&
1246 	    ((chan->channelFlags & CHANNEL_ALL) ==
1247 	     (ah->curchan->channelFlags & CHANNEL_ALL)) &&
1248 	    (!AR_SREV_9280(ah) || AR_DEVID_7010(ah))) {
1249 
1250 		if (ath9k_hw_channel_change(ah, chan)) {
1251 			ath9k_hw_loadnf(ah, ah->curchan);
1252 			ath9k_hw_start_nfcal(ah, true);
1253 			if (AR_SREV_9271(ah))
1254 				ar9002_hw_load_ani_reg(ah, chan);
1255 			return 0;
1256 		}
1257 	}
1258 
1259 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1260 	if (saveDefAntenna == 0)
1261 		saveDefAntenna = 1;
1262 
1263 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1264 
1265 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1266 	if (AR_SREV_9100(ah) ||
1267 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1268 		tsf = ath9k_hw_gettsf64(ah);
1269 
1270 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1271 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1272 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1273 
1274 	ath9k_hw_mark_phy_inactive(ah);
1275 
1276 	ah->paprd_table_write_done = false;
1277 
1278 	/* Only required on the first reset */
1279 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1280 		REG_WRITE(ah,
1281 			  AR9271_RESET_POWER_DOWN_CONTROL,
1282 			  AR9271_RADIO_RF_RST);
1283 		udelay(50);
1284 	}
1285 
1286 	if (!ath9k_hw_chip_reset(ah, chan)) {
1287 		ath_err(common, "Chip reset failed\n");
1288 		return -EINVAL;
1289 	}
1290 
1291 	/* Only required on the first reset */
1292 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1293 		ah->htc_reset_init = false;
1294 		REG_WRITE(ah,
1295 			  AR9271_RESET_POWER_DOWN_CONTROL,
1296 			  AR9271_GATE_MAC_CTL);
1297 		udelay(50);
1298 	}
1299 
1300 	/* Restore TSF */
1301 	if (tsf)
1302 		ath9k_hw_settsf64(ah, tsf);
1303 
1304 	if (AR_SREV_9280_20_OR_LATER(ah))
1305 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1306 
1307 	if (!AR_SREV_9300_20_OR_LATER(ah))
1308 		ar9002_hw_enable_async_fifo(ah);
1309 
1310 	r = ath9k_hw_process_ini(ah, chan);
1311 	if (r)
1312 		return r;
1313 
1314 	/*
1315 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1316 	 * right after the chip reset. When that happens, write a new
1317 	 * value after the initvals have been applied, with an offset
1318 	 * based on measured time difference
1319 	 */
1320 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1321 		tsf += 1500;
1322 		ath9k_hw_settsf64(ah, tsf);
1323 	}
1324 
1325 	/* Setup MFP options for CCMP */
1326 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1327 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1328 		 * frames when constructing CCMP AAD. */
1329 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1330 			      0xc7ff);
1331 		ah->sw_mgmt_crypto = false;
1332 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1333 		/* Disable hardware crypto for management frames */
1334 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1335 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1336 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1337 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1338 		ah->sw_mgmt_crypto = true;
1339 	} else
1340 		ah->sw_mgmt_crypto = true;
1341 
1342 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1343 		ath9k_hw_set_delta_slope(ah, chan);
1344 
1345 	ath9k_hw_spur_mitigate_freq(ah, chan);
1346 	ah->eep_ops->set_board_values(ah, chan);
1347 
1348 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1349 
1350 	ENABLE_REGWRITE_BUFFER(ah);
1351 
1352 	REG_WRITE(ah, AR_STA_ID0, get_unaligned_le32(common->macaddr));
1353 	REG_WRITE(ah, AR_STA_ID1, get_unaligned_le16(common->macaddr + 4)
1354 		  | macStaId1
1355 		  | AR_STA_ID1_RTS_USE_DEF
1356 		  | (ah->config.
1357 		     ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1358 		  | ah->sta_id1_defaults);
1359 	ath_hw_setbssidmask(common);
1360 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1361 	ath9k_hw_write_associd(ah);
1362 	REG_WRITE(ah, AR_ISR, ~0);
1363 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1364 
1365 	REGWRITE_BUFFER_FLUSH(ah);
1366 
1367 	r = ath9k_hw_rf_set_freq(ah, chan);
1368 	if (r)
1369 		return r;
1370 
1371 	ath9k_hw_set_clockrate(ah);
1372 
1373 	ENABLE_REGWRITE_BUFFER(ah);
1374 
1375 	for (i = 0; i < AR_NUM_DCU; i++)
1376 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1377 
1378 	REGWRITE_BUFFER_FLUSH(ah);
1379 
1380 	ah->intr_txqs = 0;
1381 	for (i = 0; i < ah->caps.total_queues; i++)
1382 		ath9k_hw_resettxqueue(ah, i);
1383 
1384 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1385 	ath9k_hw_ani_cache_ini_regs(ah);
1386 	ath9k_hw_init_qos(ah);
1387 
1388 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1389 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1390 
1391 	ath9k_hw_init_global_settings(ah);
1392 
1393 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
1394 		ar9002_hw_update_async_fifo(ah);
1395 		ar9002_hw_enable_wep_aggregation(ah);
1396 	}
1397 
1398 	REG_WRITE(ah, AR_STA_ID1,
1399 		  REG_READ(ah, AR_STA_ID1) | AR_STA_ID1_PRESERVE_SEQNUM);
1400 
1401 	ath9k_hw_set_dma(ah);
1402 
1403 	REG_WRITE(ah, AR_OBS, 8);
1404 
1405 	if (ah->config.rx_intr_mitigation) {
1406 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
1407 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
1408 	}
1409 
1410 	if (ah->config.tx_intr_mitigation) {
1411 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
1412 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
1413 	}
1414 
1415 	ath9k_hw_init_bb(ah, chan);
1416 
1417 	if (!ath9k_hw_init_cal(ah, chan))
1418 		return -EIO;
1419 
1420 	ENABLE_REGWRITE_BUFFER(ah);
1421 
1422 	ath9k_hw_restore_chainmask(ah);
1423 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
1424 
1425 	REGWRITE_BUFFER_FLUSH(ah);
1426 
1427 	/*
1428 	 * For big endian systems turn on swapping for descriptors
1429 	 */
1430 	if (AR_SREV_9100(ah)) {
1431 		u32 mask;
1432 		mask = REG_READ(ah, AR_CFG);
1433 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1434 			ath_dbg(common, ATH_DBG_RESET,
1435 				"CFG Byte Swap Set 0x%x\n", mask);
1436 		} else {
1437 			mask =
1438 				INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1439 			REG_WRITE(ah, AR_CFG, mask);
1440 			ath_dbg(common, ATH_DBG_RESET,
1441 				"Setting CFG 0x%x\n", REG_READ(ah, AR_CFG));
1442 		}
1443 	} else {
1444 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1445 			/* Configure AR9271 target WLAN */
1446 			if (AR_SREV_9271(ah))
1447 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1448 			else
1449 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1450 		}
1451 #ifdef __BIG_ENDIAN
1452                 else
1453 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1454 #endif
1455 	}
1456 
1457 	if (ah->btcoex_hw.enabled)
1458 		ath9k_hw_btcoex_enable(ah);
1459 
1460 	if (AR_SREV_9300_20_OR_LATER(ah))
1461 		ar9003_hw_bb_watchdog_config(ah);
1462 
1463 	return 0;
1464 }
1465 EXPORT_SYMBOL(ath9k_hw_reset);
1466 
1467 /******************************/
1468 /* Power Management (Chipset) */
1469 /******************************/
1470 
1471 /*
1472  * Notify Power Mgt is disabled in self-generated frames.
1473  * If requested, force chip to sleep.
1474  */
1475 static void ath9k_set_power_sleep(struct ath_hw *ah, int setChip)
1476 {
1477 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1478 	if (setChip) {
1479 		/*
1480 		 * Clear the RTC force wake bit to allow the
1481 		 * mac to go to sleep.
1482 		 */
1483 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1484 			    AR_RTC_FORCE_WAKE_EN);
1485 		if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1486 			REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
1487 
1488 		/* Shutdown chip. Active low */
1489 		if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah))
1490 			REG_CLR_BIT(ah, (AR_RTC_RESET),
1491 				    AR_RTC_RESET_EN);
1492 	}
1493 
1494 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
1495 	if (AR_SREV_9300_20_OR_LATER(ah))
1496 		REG_WRITE(ah, AR_WA,
1497 			  ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1498 }
1499 
1500 /*
1501  * Notify Power Management is enabled in self-generating
1502  * frames. If request, set power mode of chip to
1503  * auto/normal.  Duration in units of 128us (1/8 TU).
1504  */
1505 static void ath9k_set_power_network_sleep(struct ath_hw *ah, int setChip)
1506 {
1507 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1508 	if (setChip) {
1509 		struct ath9k_hw_capabilities *pCap = &ah->caps;
1510 
1511 		if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
1512 			/* Set WakeOnInterrupt bit; clear ForceWake bit */
1513 			REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1514 				  AR_RTC_FORCE_WAKE_ON_INT);
1515 		} else {
1516 			/*
1517 			 * Clear the RTC force wake bit to allow the
1518 			 * mac to go to sleep.
1519 			 */
1520 			REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE,
1521 				    AR_RTC_FORCE_WAKE_EN);
1522 		}
1523 	}
1524 
1525 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
1526 	if (AR_SREV_9300_20_OR_LATER(ah))
1527 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
1528 }
1529 
1530 static bool ath9k_hw_set_power_awake(struct ath_hw *ah, int setChip)
1531 {
1532 	u32 val;
1533 	int i;
1534 
1535 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
1536 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1537 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1538 		udelay(10);
1539 	}
1540 
1541 	if (setChip) {
1542 		if ((REG_READ(ah, AR_RTC_STATUS) &
1543 		     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
1544 			if (ath9k_hw_set_reset_reg(ah,
1545 					   ATH9K_RESET_POWER_ON) != true) {
1546 				return false;
1547 			}
1548 			if (!AR_SREV_9300_20_OR_LATER(ah))
1549 				ath9k_hw_init_pll(ah, NULL);
1550 		}
1551 		if (AR_SREV_9100(ah))
1552 			REG_SET_BIT(ah, AR_RTC_RESET,
1553 				    AR_RTC_RESET_EN);
1554 
1555 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1556 			    AR_RTC_FORCE_WAKE_EN);
1557 		udelay(50);
1558 
1559 		for (i = POWER_UP_TIME / 50; i > 0; i--) {
1560 			val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
1561 			if (val == AR_RTC_STATUS_ON)
1562 				break;
1563 			udelay(50);
1564 			REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
1565 				    AR_RTC_FORCE_WAKE_EN);
1566 		}
1567 		if (i == 0) {
1568 			ath_err(ath9k_hw_common(ah),
1569 				"Failed to wakeup in %uus\n",
1570 				POWER_UP_TIME / 20);
1571 			return false;
1572 		}
1573 	}
1574 
1575 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
1576 
1577 	return true;
1578 }
1579 
1580 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
1581 {
1582 	struct ath_common *common = ath9k_hw_common(ah);
1583 	int status = true, setChip = true;
1584 	static const char *modes[] = {
1585 		"AWAKE",
1586 		"FULL-SLEEP",
1587 		"NETWORK SLEEP",
1588 		"UNDEFINED"
1589 	};
1590 
1591 	if (ah->power_mode == mode)
1592 		return status;
1593 
1594 	ath_dbg(common, ATH_DBG_RESET, "%s -> %s\n",
1595 		modes[ah->power_mode], modes[mode]);
1596 
1597 	switch (mode) {
1598 	case ATH9K_PM_AWAKE:
1599 		status = ath9k_hw_set_power_awake(ah, setChip);
1600 		break;
1601 	case ATH9K_PM_FULL_SLEEP:
1602 		ath9k_set_power_sleep(ah, setChip);
1603 		ah->chip_fullsleep = true;
1604 		break;
1605 	case ATH9K_PM_NETWORK_SLEEP:
1606 		ath9k_set_power_network_sleep(ah, setChip);
1607 		break;
1608 	default:
1609 		ath_err(common, "Unknown power mode %u\n", mode);
1610 		return false;
1611 	}
1612 	ah->power_mode = mode;
1613 
1614 	/*
1615 	 * XXX: If this warning never comes up after a while then
1616 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
1617 	 * ath9k_hw_setpower() return type void.
1618 	 */
1619 
1620 	if (!(ah->ah_flags & AH_UNPLUGGED))
1621 		ATH_DBG_WARN_ON_ONCE(!status);
1622 
1623 	return status;
1624 }
1625 EXPORT_SYMBOL(ath9k_hw_setpower);
1626 
1627 /*******************/
1628 /* Beacon Handling */
1629 /*******************/
1630 
1631 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
1632 {
1633 	int flags = 0;
1634 
1635 	ENABLE_REGWRITE_BUFFER(ah);
1636 
1637 	switch (ah->opmode) {
1638 	case NL80211_IFTYPE_ADHOC:
1639 	case NL80211_IFTYPE_MESH_POINT:
1640 		REG_SET_BIT(ah, AR_TXCFG,
1641 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
1642 		REG_WRITE(ah, AR_NEXT_NDP_TIMER,
1643 			  TU_TO_USEC(next_beacon +
1644 				     (ah->atim_window ? ah->
1645 				      atim_window : 1)));
1646 		flags |= AR_NDP_TIMER_EN;
1647 	case NL80211_IFTYPE_AP:
1648 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(next_beacon));
1649 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT,
1650 			  TU_TO_USEC(next_beacon -
1651 				     ah->config.
1652 				     dma_beacon_response_time));
1653 		REG_WRITE(ah, AR_NEXT_SWBA,
1654 			  TU_TO_USEC(next_beacon -
1655 				     ah->config.
1656 				     sw_beacon_response_time));
1657 		flags |=
1658 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
1659 		break;
1660 	default:
1661 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_BEACON,
1662 			"%s: unsupported opmode: %d\n",
1663 			__func__, ah->opmode);
1664 		return;
1665 		break;
1666 	}
1667 
1668 	REG_WRITE(ah, AR_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1669 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, TU_TO_USEC(beacon_period));
1670 	REG_WRITE(ah, AR_SWBA_PERIOD, TU_TO_USEC(beacon_period));
1671 	REG_WRITE(ah, AR_NDP_PERIOD, TU_TO_USEC(beacon_period));
1672 
1673 	REGWRITE_BUFFER_FLUSH(ah);
1674 
1675 	beacon_period &= ~ATH9K_BEACON_ENA;
1676 	if (beacon_period & ATH9K_BEACON_RESET_TSF) {
1677 		ath9k_hw_reset_tsf(ah);
1678 	}
1679 
1680 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
1681 }
1682 EXPORT_SYMBOL(ath9k_hw_beaconinit);
1683 
1684 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
1685 				    const struct ath9k_beacon_state *bs)
1686 {
1687 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
1688 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1689 	struct ath_common *common = ath9k_hw_common(ah);
1690 
1691 	ENABLE_REGWRITE_BUFFER(ah);
1692 
1693 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
1694 
1695 	REG_WRITE(ah, AR_BEACON_PERIOD,
1696 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1697 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
1698 		  TU_TO_USEC(bs->bs_intval & ATH9K_BEACON_PERIOD));
1699 
1700 	REGWRITE_BUFFER_FLUSH(ah);
1701 
1702 	REG_RMW_FIELD(ah, AR_RSSI_THR,
1703 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
1704 
1705 	beaconintval = bs->bs_intval & ATH9K_BEACON_PERIOD;
1706 
1707 	if (bs->bs_sleepduration > beaconintval)
1708 		beaconintval = bs->bs_sleepduration;
1709 
1710 	dtimperiod = bs->bs_dtimperiod;
1711 	if (bs->bs_sleepduration > dtimperiod)
1712 		dtimperiod = bs->bs_sleepduration;
1713 
1714 	if (beaconintval == dtimperiod)
1715 		nextTbtt = bs->bs_nextdtim;
1716 	else
1717 		nextTbtt = bs->bs_nexttbtt;
1718 
1719 	ath_dbg(common, ATH_DBG_BEACON, "next DTIM %d\n", bs->bs_nextdtim);
1720 	ath_dbg(common, ATH_DBG_BEACON, "next beacon %d\n", nextTbtt);
1721 	ath_dbg(common, ATH_DBG_BEACON, "beacon period %d\n", beaconintval);
1722 	ath_dbg(common, ATH_DBG_BEACON, "DTIM period %d\n", dtimperiod);
1723 
1724 	ENABLE_REGWRITE_BUFFER(ah);
1725 
1726 	REG_WRITE(ah, AR_NEXT_DTIM,
1727 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
1728 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
1729 
1730 	REG_WRITE(ah, AR_SLEEP1,
1731 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
1732 		  | AR_SLEEP1_ASSUME_DTIM);
1733 
1734 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
1735 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
1736 	else
1737 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
1738 
1739 	REG_WRITE(ah, AR_SLEEP2,
1740 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
1741 
1742 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
1743 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
1744 
1745 	REGWRITE_BUFFER_FLUSH(ah);
1746 
1747 	REG_SET_BIT(ah, AR_TIMER_MODE,
1748 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
1749 		    AR_DTIM_TIMER_EN);
1750 
1751 	/* TSF Out of Range Threshold */
1752 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
1753 }
1754 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
1755 
1756 /*******************/
1757 /* HW Capabilities */
1758 /*******************/
1759 
1760 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
1761 {
1762 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1763 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1764 	struct ath_common *common = ath9k_hw_common(ah);
1765 	struct ath_btcoex_hw *btcoex_hw = &ah->btcoex_hw;
1766 
1767 	u16 capField = 0, eeval;
1768 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
1769 
1770 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
1771 	regulatory->current_rd = eeval;
1772 
1773 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_1);
1774 	if (AR_SREV_9285_12_OR_LATER(ah))
1775 		eeval |= AR9285_RDEXT_DEFAULT;
1776 	regulatory->current_rd_ext = eeval;
1777 
1778 	capField = ah->eep_ops->get_eeprom(ah, EEP_OP_CAP);
1779 
1780 	if (ah->opmode != NL80211_IFTYPE_AP &&
1781 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
1782 		if (regulatory->current_rd == 0x64 ||
1783 		    regulatory->current_rd == 0x65)
1784 			regulatory->current_rd += 5;
1785 		else if (regulatory->current_rd == 0x41)
1786 			regulatory->current_rd = 0x43;
1787 		ath_dbg(common, ATH_DBG_REGULATORY,
1788 			"regdomain mapped to 0x%x\n", regulatory->current_rd);
1789 	}
1790 
1791 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
1792 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
1793 		ath_err(common,
1794 			"no band has been marked as supported in EEPROM\n");
1795 		return -EINVAL;
1796 	}
1797 
1798 	if (eeval & AR5416_OPFLAGS_11A)
1799 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
1800 
1801 	if (eeval & AR5416_OPFLAGS_11G)
1802 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
1803 
1804 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
1805 	/*
1806 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
1807 	 * the EEPROM.
1808 	 */
1809 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
1810 	    !(eeval & AR5416_OPFLAGS_11A) &&
1811 	    !(AR_SREV_9271(ah)))
1812 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
1813 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
1814 	else
1815 		/* Use rx_chainmask from EEPROM. */
1816 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
1817 
1818 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
1819 
1820 	/* enable key search for every frame in an aggregate */
1821 	if (AR_SREV_9300_20_OR_LATER(ah))
1822 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
1823 
1824 	pCap->low_2ghz_chan = 2312;
1825 	pCap->high_2ghz_chan = 2732;
1826 
1827 	pCap->low_5ghz_chan = 4920;
1828 	pCap->high_5ghz_chan = 6100;
1829 
1830 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
1831 
1832 	if (ah->config.ht_enable)
1833 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
1834 	else
1835 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
1836 
1837 	if (capField & AR_EEPROM_EEPCAP_MAXQCU)
1838 		pCap->total_queues =
1839 			MS(capField, AR_EEPROM_EEPCAP_MAXQCU);
1840 	else
1841 		pCap->total_queues = ATH9K_NUM_TX_QUEUES;
1842 
1843 	if (capField & AR_EEPROM_EEPCAP_KC_ENTRIES)
1844 		pCap->keycache_size =
1845 			1 << MS(capField, AR_EEPROM_EEPCAP_KC_ENTRIES);
1846 	else
1847 		pCap->keycache_size = AR_KEYTABLE_SIZE;
1848 
1849 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
1850 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD >> 1;
1851 	else
1852 		pCap->tx_triglevel_max = MAX_TX_FIFO_THRESHOLD;
1853 
1854 	if (AR_SREV_9271(ah))
1855 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
1856 	else if (AR_DEVID_7010(ah))
1857 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
1858 	else if (AR_SREV_9285_12_OR_LATER(ah))
1859 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
1860 	else if (AR_SREV_9280_20_OR_LATER(ah))
1861 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
1862 	else
1863 		pCap->num_gpio_pins = AR_NUM_GPIO;
1864 
1865 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah)) {
1866 		pCap->hw_caps |= ATH9K_HW_CAP_CST;
1867 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
1868 	} else {
1869 		pCap->rts_aggr_limit = (8 * 1024);
1870 	}
1871 
1872 	pCap->hw_caps |= ATH9K_HW_CAP_ENHANCEDPM;
1873 
1874 #if defined(CONFIG_RFKILL) || defined(CONFIG_RFKILL_MODULE)
1875 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
1876 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
1877 		ah->rfkill_gpio =
1878 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
1879 		ah->rfkill_polarity =
1880 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
1881 
1882 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
1883 	}
1884 #endif
1885 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
1886 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
1887 	else
1888 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
1889 
1890 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
1891 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
1892 	else
1893 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
1894 
1895 	if (regulatory->current_rd_ext & (1 << REG_EXT_JAPAN_MIDBAND)) {
1896 		pCap->reg_cap =
1897 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1898 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN |
1899 			AR_EEPROM_EEREGCAP_EN_KK_U2 |
1900 			AR_EEPROM_EEREGCAP_EN_KK_MIDBAND;
1901 	} else {
1902 		pCap->reg_cap =
1903 			AR_EEPROM_EEREGCAP_EN_KK_NEW_11A |
1904 			AR_EEPROM_EEREGCAP_EN_KK_U1_EVEN;
1905 	}
1906 
1907 	/* Advertise midband for AR5416 with FCC midband set in eeprom */
1908 	if (regulatory->current_rd_ext & (1 << REG_EXT_FCC_MIDBAND) &&
1909 	    AR_SREV_5416(ah))
1910 		pCap->reg_cap |= AR_EEPROM_EEREGCAP_EN_FCC_MIDBAND;
1911 
1912 	if (AR_SREV_9280_20_OR_LATER(ah) && common->btcoex_enabled) {
1913 		btcoex_hw->btactive_gpio = ATH_BTACTIVE_GPIO;
1914 		btcoex_hw->wlanactive_gpio = ATH_WLANACTIVE_GPIO;
1915 
1916 		if (AR_SREV_9285(ah)) {
1917 			btcoex_hw->scheme = ATH_BTCOEX_CFG_3WIRE;
1918 			btcoex_hw->btpriority_gpio = ATH_BTPRIORITY_GPIO;
1919 		} else {
1920 			btcoex_hw->scheme = ATH_BTCOEX_CFG_2WIRE;
1921 		}
1922 	} else {
1923 		btcoex_hw->scheme = ATH_BTCOEX_CFG_NONE;
1924 	}
1925 
1926 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1927 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
1928 		if (!AR_SREV_9485(ah))
1929 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
1930 
1931 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
1932 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
1933 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
1934 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
1935 		pCap->txs_len = sizeof(struct ar9003_txs);
1936 		if (ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
1937 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
1938 	} else {
1939 		pCap->tx_desc_len = sizeof(struct ath_desc);
1940 		if (AR_SREV_9280_20(ah) &&
1941 		    ((ah->eep_ops->get_eeprom(ah, EEP_MINOR_REV) <=
1942 		      AR5416_EEP_MINOR_VER_16) ||
1943 		     ah->eep_ops->get_eeprom(ah, EEP_FSTCLK_5G)))
1944 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
1945 	}
1946 
1947 	if (AR_SREV_9300_20_OR_LATER(ah))
1948 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
1949 
1950 	if (AR_SREV_9300_20_OR_LATER(ah))
1951 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
1952 
1953 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
1954 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
1955 
1956 	if (AR_SREV_9285(ah))
1957 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
1958 			ant_div_ctl1 =
1959 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
1960 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1))
1961 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
1962 		}
1963 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1964 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
1965 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
1966 	}
1967 
1968 
1969 
1970 	if (AR_SREV_9485_10(ah)) {
1971 		pCap->pcie_lcr_extsync_en = true;
1972 		pCap->pcie_lcr_offset = 0x80;
1973 	}
1974 
1975 	tx_chainmask = pCap->tx_chainmask;
1976 	rx_chainmask = pCap->rx_chainmask;
1977 	while (tx_chainmask || rx_chainmask) {
1978 		if (tx_chainmask & BIT(0))
1979 			pCap->max_txchains++;
1980 		if (rx_chainmask & BIT(0))
1981 			pCap->max_rxchains++;
1982 
1983 		tx_chainmask >>= 1;
1984 		rx_chainmask >>= 1;
1985 	}
1986 
1987 	return 0;
1988 }
1989 
1990 /****************************/
1991 /* GPIO / RFKILL / Antennae */
1992 /****************************/
1993 
1994 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
1995 					 u32 gpio, u32 type)
1996 {
1997 	int addr;
1998 	u32 gpio_shift, tmp;
1999 
2000 	if (gpio > 11)
2001 		addr = AR_GPIO_OUTPUT_MUX3;
2002 	else if (gpio > 5)
2003 		addr = AR_GPIO_OUTPUT_MUX2;
2004 	else
2005 		addr = AR_GPIO_OUTPUT_MUX1;
2006 
2007 	gpio_shift = (gpio % 6) * 5;
2008 
2009 	if (AR_SREV_9280_20_OR_LATER(ah)
2010 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2011 		REG_RMW(ah, addr, (type << gpio_shift),
2012 			(0x1f << gpio_shift));
2013 	} else {
2014 		tmp = REG_READ(ah, addr);
2015 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2016 		tmp &= ~(0x1f << gpio_shift);
2017 		tmp |= (type << gpio_shift);
2018 		REG_WRITE(ah, addr, tmp);
2019 	}
2020 }
2021 
2022 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2023 {
2024 	u32 gpio_shift;
2025 
2026 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2027 
2028 	if (AR_DEVID_7010(ah)) {
2029 		gpio_shift = gpio;
2030 		REG_RMW(ah, AR7010_GPIO_OE,
2031 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2032 			(AR7010_GPIO_OE_MASK << gpio_shift));
2033 		return;
2034 	}
2035 
2036 	gpio_shift = gpio << 1;
2037 	REG_RMW(ah,
2038 		AR_GPIO_OE_OUT,
2039 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2040 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2041 }
2042 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2043 
2044 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2045 {
2046 #define MS_REG_READ(x, y) \
2047 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2048 
2049 	if (gpio >= ah->caps.num_gpio_pins)
2050 		return 0xffffffff;
2051 
2052 	if (AR_DEVID_7010(ah)) {
2053 		u32 val;
2054 		val = REG_READ(ah, AR7010_GPIO_IN);
2055 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2056 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2057 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2058 			AR_GPIO_BIT(gpio)) != 0;
2059 	else if (AR_SREV_9271(ah))
2060 		return MS_REG_READ(AR9271, gpio) != 0;
2061 	else if (AR_SREV_9287_11_OR_LATER(ah))
2062 		return MS_REG_READ(AR9287, gpio) != 0;
2063 	else if (AR_SREV_9285_12_OR_LATER(ah))
2064 		return MS_REG_READ(AR9285, gpio) != 0;
2065 	else if (AR_SREV_9280_20_OR_LATER(ah))
2066 		return MS_REG_READ(AR928X, gpio) != 0;
2067 	else
2068 		return MS_REG_READ(AR, gpio) != 0;
2069 }
2070 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2071 
2072 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2073 			 u32 ah_signal_type)
2074 {
2075 	u32 gpio_shift;
2076 
2077 	if (AR_DEVID_7010(ah)) {
2078 		gpio_shift = gpio;
2079 		REG_RMW(ah, AR7010_GPIO_OE,
2080 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2081 			(AR7010_GPIO_OE_MASK << gpio_shift));
2082 		return;
2083 	}
2084 
2085 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2086 	gpio_shift = 2 * gpio;
2087 	REG_RMW(ah,
2088 		AR_GPIO_OE_OUT,
2089 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2090 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2091 }
2092 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2093 
2094 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2095 {
2096 	if (AR_DEVID_7010(ah)) {
2097 		val = val ? 0 : 1;
2098 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2099 			AR_GPIO_BIT(gpio));
2100 		return;
2101 	}
2102 
2103 	if (AR_SREV_9271(ah))
2104 		val = ~val;
2105 
2106 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2107 		AR_GPIO_BIT(gpio));
2108 }
2109 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2110 
2111 u32 ath9k_hw_getdefantenna(struct ath_hw *ah)
2112 {
2113 	return REG_READ(ah, AR_DEF_ANTENNA) & 0x7;
2114 }
2115 EXPORT_SYMBOL(ath9k_hw_getdefantenna);
2116 
2117 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2118 {
2119 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2120 }
2121 EXPORT_SYMBOL(ath9k_hw_setantenna);
2122 
2123 /*********************/
2124 /* General Operation */
2125 /*********************/
2126 
2127 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2128 {
2129 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2130 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2131 
2132 	if (phybits & AR_PHY_ERR_RADAR)
2133 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2134 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2135 		bits |= ATH9K_RX_FILTER_PHYERR;
2136 
2137 	return bits;
2138 }
2139 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2140 
2141 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2142 {
2143 	u32 phybits;
2144 
2145 	ENABLE_REGWRITE_BUFFER(ah);
2146 
2147 	REG_WRITE(ah, AR_RX_FILTER, bits);
2148 
2149 	phybits = 0;
2150 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2151 		phybits |= AR_PHY_ERR_RADAR;
2152 	if (bits & ATH9K_RX_FILTER_PHYERR)
2153 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2154 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2155 
2156 	if (phybits)
2157 		REG_WRITE(ah, AR_RXCFG,
2158 			  REG_READ(ah, AR_RXCFG) | AR_RXCFG_ZLFDMA);
2159 	else
2160 		REG_WRITE(ah, AR_RXCFG,
2161 			  REG_READ(ah, AR_RXCFG) & ~AR_RXCFG_ZLFDMA);
2162 
2163 	REGWRITE_BUFFER_FLUSH(ah);
2164 }
2165 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2166 
2167 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2168 {
2169 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2170 		return false;
2171 
2172 	ath9k_hw_init_pll(ah, NULL);
2173 	return true;
2174 }
2175 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2176 
2177 bool ath9k_hw_disable(struct ath_hw *ah)
2178 {
2179 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2180 		return false;
2181 
2182 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2183 		return false;
2184 
2185 	ath9k_hw_init_pll(ah, NULL);
2186 	return true;
2187 }
2188 EXPORT_SYMBOL(ath9k_hw_disable);
2189 
2190 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2191 {
2192 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2193 	struct ath9k_channel *chan = ah->curchan;
2194 	struct ieee80211_channel *channel = chan->chan;
2195 
2196 	regulatory->power_limit = min(limit, (u32) MAX_RATE_POWER);
2197 
2198 	ah->eep_ops->set_txpower(ah, chan,
2199 				 ath9k_regd_get_ctl(regulatory, chan),
2200 				 channel->max_antenna_gain * 2,
2201 				 channel->max_power * 2,
2202 				 min((u32) MAX_RATE_POWER,
2203 				 (u32) regulatory->power_limit), test);
2204 }
2205 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2206 
2207 void ath9k_hw_setopmode(struct ath_hw *ah)
2208 {
2209 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2210 }
2211 EXPORT_SYMBOL(ath9k_hw_setopmode);
2212 
2213 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2214 {
2215 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2216 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2217 }
2218 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2219 
2220 void ath9k_hw_write_associd(struct ath_hw *ah)
2221 {
2222 	struct ath_common *common = ath9k_hw_common(ah);
2223 
2224 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2225 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2226 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2227 }
2228 EXPORT_SYMBOL(ath9k_hw_write_associd);
2229 
2230 #define ATH9K_MAX_TSF_READ 10
2231 
2232 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2233 {
2234 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2235 	int i;
2236 
2237 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2238 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2239 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2240 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2241 		if (tsf_upper2 == tsf_upper1)
2242 			break;
2243 		tsf_upper1 = tsf_upper2;
2244 	}
2245 
2246 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2247 
2248 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2249 }
2250 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2251 
2252 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2253 {
2254 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2255 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2256 }
2257 EXPORT_SYMBOL(ath9k_hw_settsf64);
2258 
2259 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2260 {
2261 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2262 			   AH_TSF_WRITE_TIMEOUT))
2263 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_RESET,
2264 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2265 
2266 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2267 }
2268 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2269 
2270 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, u32 setting)
2271 {
2272 	if (setting)
2273 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2274 	else
2275 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2276 }
2277 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2278 
2279 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2280 {
2281 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2282 	u32 macmode;
2283 
2284 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2285 		macmode = AR_2040_JOINED_RX_CLEAR;
2286 	else
2287 		macmode = 0;
2288 
2289 	REG_WRITE(ah, AR_2040_MODE, macmode);
2290 }
2291 
2292 /* HW Generic timers configuration */
2293 
2294 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2295 {
2296 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2297 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2298 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2299 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2300 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2301 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2302 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2303 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2304 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2305 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2306 				AR_NDP2_TIMER_MODE, 0x0002},
2307 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2308 				AR_NDP2_TIMER_MODE, 0x0004},
2309 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2310 				AR_NDP2_TIMER_MODE, 0x0008},
2311 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2312 				AR_NDP2_TIMER_MODE, 0x0010},
2313 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2314 				AR_NDP2_TIMER_MODE, 0x0020},
2315 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2316 				AR_NDP2_TIMER_MODE, 0x0040},
2317 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2318 				AR_NDP2_TIMER_MODE, 0x0080}
2319 };
2320 
2321 /* HW generic timer primitives */
2322 
2323 /* compute and clear index of rightmost 1 */
2324 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2325 {
2326 	u32 b;
2327 
2328 	b = *mask;
2329 	b &= (0-b);
2330 	*mask &= ~b;
2331 	b *= debruijn32;
2332 	b >>= 27;
2333 
2334 	return timer_table->gen_timer_index[b];
2335 }
2336 
2337 static u32 ath9k_hw_gettsf32(struct ath_hw *ah)
2338 {
2339 	return REG_READ(ah, AR_TSF_L32);
2340 }
2341 
2342 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
2343 					  void (*trigger)(void *),
2344 					  void (*overflow)(void *),
2345 					  void *arg,
2346 					  u8 timer_index)
2347 {
2348 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2349 	struct ath_gen_timer *timer;
2350 
2351 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
2352 
2353 	if (timer == NULL) {
2354 		ath_err(ath9k_hw_common(ah),
2355 			"Failed to allocate memory for hw timer[%d]\n",
2356 			timer_index);
2357 		return NULL;
2358 	}
2359 
2360 	/* allocate a hardware generic timer slot */
2361 	timer_table->timers[timer_index] = timer;
2362 	timer->index = timer_index;
2363 	timer->trigger = trigger;
2364 	timer->overflow = overflow;
2365 	timer->arg = arg;
2366 
2367 	return timer;
2368 }
2369 EXPORT_SYMBOL(ath_gen_timer_alloc);
2370 
2371 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
2372 			      struct ath_gen_timer *timer,
2373 			      u32 timer_next,
2374 			      u32 timer_period)
2375 {
2376 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2377 	u32 tsf;
2378 
2379 	BUG_ON(!timer_period);
2380 
2381 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
2382 
2383 	tsf = ath9k_hw_gettsf32(ah);
2384 
2385 	ath_dbg(ath9k_hw_common(ah), ATH_DBG_HWTIMER,
2386 		"current tsf %x period %x timer_next %x\n",
2387 		tsf, timer_period, timer_next);
2388 
2389 	/*
2390 	 * Pull timer_next forward if the current TSF already passed it
2391 	 * because of software latency
2392 	 */
2393 	if (timer_next < tsf)
2394 		timer_next = tsf + timer_period;
2395 
2396 	/*
2397 	 * Program generic timer registers
2398 	 */
2399 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
2400 		 timer_next);
2401 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
2402 		  timer_period);
2403 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2404 		    gen_tmr_configuration[timer->index].mode_mask);
2405 
2406 	/* Enable both trigger and thresh interrupt masks */
2407 	REG_SET_BIT(ah, AR_IMR_S5,
2408 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2409 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2410 }
2411 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
2412 
2413 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
2414 {
2415 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2416 
2417 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
2418 		(timer->index >= ATH_MAX_GEN_TIMER)) {
2419 		return;
2420 	}
2421 
2422 	/* Clear generic timer enable bits. */
2423 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
2424 			gen_tmr_configuration[timer->index].mode_mask);
2425 
2426 	/* Disable both trigger and thresh interrupt masks */
2427 	REG_CLR_BIT(ah, AR_IMR_S5,
2428 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
2429 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
2430 
2431 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
2432 }
2433 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
2434 
2435 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
2436 {
2437 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2438 
2439 	/* free the hardware generic timer slot */
2440 	timer_table->timers[timer->index] = NULL;
2441 	kfree(timer);
2442 }
2443 EXPORT_SYMBOL(ath_gen_timer_free);
2444 
2445 /*
2446  * Generic Timer Interrupts handling
2447  */
2448 void ath_gen_timer_isr(struct ath_hw *ah)
2449 {
2450 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
2451 	struct ath_gen_timer *timer;
2452 	struct ath_common *common = ath9k_hw_common(ah);
2453 	u32 trigger_mask, thresh_mask, index;
2454 
2455 	/* get hardware generic timer interrupt status */
2456 	trigger_mask = ah->intr_gen_timer_trigger;
2457 	thresh_mask = ah->intr_gen_timer_thresh;
2458 	trigger_mask &= timer_table->timer_mask.val;
2459 	thresh_mask &= timer_table->timer_mask.val;
2460 
2461 	trigger_mask &= ~thresh_mask;
2462 
2463 	while (thresh_mask) {
2464 		index = rightmost_index(timer_table, &thresh_mask);
2465 		timer = timer_table->timers[index];
2466 		BUG_ON(!timer);
2467 		ath_dbg(common, ATH_DBG_HWTIMER,
2468 			"TSF overflow for Gen timer %d\n", index);
2469 		timer->overflow(timer->arg);
2470 	}
2471 
2472 	while (trigger_mask) {
2473 		index = rightmost_index(timer_table, &trigger_mask);
2474 		timer = timer_table->timers[index];
2475 		BUG_ON(!timer);
2476 		ath_dbg(common, ATH_DBG_HWTIMER,
2477 			"Gen timer[%d] trigger\n", index);
2478 		timer->trigger(timer->arg);
2479 	}
2480 }
2481 EXPORT_SYMBOL(ath_gen_timer_isr);
2482 
2483 /********/
2484 /* HTC  */
2485 /********/
2486 
2487 void ath9k_hw_htc_resetinit(struct ath_hw *ah)
2488 {
2489 	ah->htc_reset_init = true;
2490 }
2491 EXPORT_SYMBOL(ath9k_hw_htc_resetinit);
2492 
2493 static struct {
2494 	u32 version;
2495 	const char * name;
2496 } ath_mac_bb_names[] = {
2497 	/* Devices with external radios */
2498 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
2499 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
2500 	{ AR_SREV_VERSION_9100,		"9100" },
2501 	{ AR_SREV_VERSION_9160,		"9160" },
2502 	/* Single-chip solutions */
2503 	{ AR_SREV_VERSION_9280,		"9280" },
2504 	{ AR_SREV_VERSION_9285,		"9285" },
2505 	{ AR_SREV_VERSION_9287,         "9287" },
2506 	{ AR_SREV_VERSION_9271,         "9271" },
2507 	{ AR_SREV_VERSION_9300,         "9300" },
2508 };
2509 
2510 /* For devices with external radios */
2511 static struct {
2512 	u16 version;
2513 	const char * name;
2514 } ath_rf_names[] = {
2515 	{ 0,				"5133" },
2516 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
2517 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
2518 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
2519 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
2520 };
2521 
2522 /*
2523  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
2524  */
2525 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
2526 {
2527 	int i;
2528 
2529 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
2530 		if (ath_mac_bb_names[i].version == mac_bb_version) {
2531 			return ath_mac_bb_names[i].name;
2532 		}
2533 	}
2534 
2535 	return "????";
2536 }
2537 
2538 /*
2539  * Return the RF name. "????" is returned if the RF is unknown.
2540  * Used for devices with external radios.
2541  */
2542 static const char *ath9k_hw_rf_name(u16 rf_version)
2543 {
2544 	int i;
2545 
2546 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
2547 		if (ath_rf_names[i].version == rf_version) {
2548 			return ath_rf_names[i].name;
2549 		}
2550 	}
2551 
2552 	return "????";
2553 }
2554 
2555 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
2556 {
2557 	int used;
2558 
2559 	/* chipsets >= AR9280 are single-chip */
2560 	if (AR_SREV_9280_20_OR_LATER(ah)) {
2561 		used = snprintf(hw_name, len,
2562 			       "Atheros AR%s Rev:%x",
2563 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2564 			       ah->hw_version.macRev);
2565 	}
2566 	else {
2567 		used = snprintf(hw_name, len,
2568 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
2569 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
2570 			       ah->hw_version.macRev,
2571 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
2572 						AR_RADIO_SREV_MAJOR)),
2573 			       ah->hw_version.phyRev);
2574 	}
2575 
2576 	hw_name[used] = '\0';
2577 }
2578 EXPORT_SYMBOL(ath9k_hw_name);
2579