xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/hw.c (revision 089a49b6)
1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <linux/io.h>
18 #include <linux/slab.h>
19 #include <linux/module.h>
20 #include <asm/unaligned.h>
21 
22 #include "hw.h"
23 #include "hw-ops.h"
24 #include "rc.h"
25 #include "ar9003_mac.h"
26 #include "ar9003_mci.h"
27 #include "ar9003_phy.h"
28 #include "debug.h"
29 #include "ath9k.h"
30 
31 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type);
32 
33 MODULE_AUTHOR("Atheros Communications");
34 MODULE_DESCRIPTION("Support for Atheros 802.11n wireless LAN cards.");
35 MODULE_SUPPORTED_DEVICE("Atheros 802.11n WLAN cards");
36 MODULE_LICENSE("Dual BSD/GPL");
37 
38 static int __init ath9k_init(void)
39 {
40 	return 0;
41 }
42 module_init(ath9k_init);
43 
44 static void __exit ath9k_exit(void)
45 {
46 	return;
47 }
48 module_exit(ath9k_exit);
49 
50 /* Private hardware callbacks */
51 
52 static void ath9k_hw_init_cal_settings(struct ath_hw *ah)
53 {
54 	ath9k_hw_private_ops(ah)->init_cal_settings(ah);
55 }
56 
57 static u32 ath9k_hw_compute_pll_control(struct ath_hw *ah,
58 					struct ath9k_channel *chan)
59 {
60 	return ath9k_hw_private_ops(ah)->compute_pll_control(ah, chan);
61 }
62 
63 static void ath9k_hw_init_mode_gain_regs(struct ath_hw *ah)
64 {
65 	if (!ath9k_hw_private_ops(ah)->init_mode_gain_regs)
66 		return;
67 
68 	ath9k_hw_private_ops(ah)->init_mode_gain_regs(ah);
69 }
70 
71 static void ath9k_hw_ani_cache_ini_regs(struct ath_hw *ah)
72 {
73 	/* You will not have this callback if using the old ANI */
74 	if (!ath9k_hw_private_ops(ah)->ani_cache_ini_regs)
75 		return;
76 
77 	ath9k_hw_private_ops(ah)->ani_cache_ini_regs(ah);
78 }
79 
80 /********************/
81 /* Helper Functions */
82 /********************/
83 
84 #ifdef CONFIG_ATH9K_DEBUGFS
85 
86 void ath9k_debug_sync_cause(struct ath_common *common, u32 sync_cause)
87 {
88 	struct ath_softc *sc = common->priv;
89 	if (sync_cause)
90 		sc->debug.stats.istats.sync_cause_all++;
91 	if (sync_cause & AR_INTR_SYNC_RTC_IRQ)
92 		sc->debug.stats.istats.sync_rtc_irq++;
93 	if (sync_cause & AR_INTR_SYNC_MAC_IRQ)
94 		sc->debug.stats.istats.sync_mac_irq++;
95 	if (sync_cause & AR_INTR_SYNC_EEPROM_ILLEGAL_ACCESS)
96 		sc->debug.stats.istats.eeprom_illegal_access++;
97 	if (sync_cause & AR_INTR_SYNC_APB_TIMEOUT)
98 		sc->debug.stats.istats.apb_timeout++;
99 	if (sync_cause & AR_INTR_SYNC_PCI_MODE_CONFLICT)
100 		sc->debug.stats.istats.pci_mode_conflict++;
101 	if (sync_cause & AR_INTR_SYNC_HOST1_FATAL)
102 		sc->debug.stats.istats.host1_fatal++;
103 	if (sync_cause & AR_INTR_SYNC_HOST1_PERR)
104 		sc->debug.stats.istats.host1_perr++;
105 	if (sync_cause & AR_INTR_SYNC_TRCV_FIFO_PERR)
106 		sc->debug.stats.istats.trcv_fifo_perr++;
107 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_EP)
108 		sc->debug.stats.istats.radm_cpl_ep++;
109 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_DLLP_ABORT)
110 		sc->debug.stats.istats.radm_cpl_dllp_abort++;
111 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TLP_ABORT)
112 		sc->debug.stats.istats.radm_cpl_tlp_abort++;
113 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_ECRC_ERR)
114 		sc->debug.stats.istats.radm_cpl_ecrc_err++;
115 	if (sync_cause & AR_INTR_SYNC_RADM_CPL_TIMEOUT)
116 		sc->debug.stats.istats.radm_cpl_timeout++;
117 	if (sync_cause & AR_INTR_SYNC_LOCAL_TIMEOUT)
118 		sc->debug.stats.istats.local_timeout++;
119 	if (sync_cause & AR_INTR_SYNC_PM_ACCESS)
120 		sc->debug.stats.istats.pm_access++;
121 	if (sync_cause & AR_INTR_SYNC_MAC_AWAKE)
122 		sc->debug.stats.istats.mac_awake++;
123 	if (sync_cause & AR_INTR_SYNC_MAC_ASLEEP)
124 		sc->debug.stats.istats.mac_asleep++;
125 	if (sync_cause & AR_INTR_SYNC_MAC_SLEEP_ACCESS)
126 		sc->debug.stats.istats.mac_sleep_access++;
127 }
128 #endif
129 
130 
131 static void ath9k_hw_set_clockrate(struct ath_hw *ah)
132 {
133 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
134 	struct ath_common *common = ath9k_hw_common(ah);
135 	unsigned int clockrate;
136 
137 	/* AR9287 v1.3+ uses async FIFO and runs the MAC at 117 MHz */
138 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah))
139 		clockrate = 117;
140 	else if (!ah->curchan) /* should really check for CCK instead */
141 		clockrate = ATH9K_CLOCK_RATE_CCK;
142 	else if (conf->chandef.chan->band == IEEE80211_BAND_2GHZ)
143 		clockrate = ATH9K_CLOCK_RATE_2GHZ_OFDM;
144 	else if (ah->caps.hw_caps & ATH9K_HW_CAP_FASTCLOCK)
145 		clockrate = ATH9K_CLOCK_FAST_RATE_5GHZ_OFDM;
146 	else
147 		clockrate = ATH9K_CLOCK_RATE_5GHZ_OFDM;
148 
149 	if (conf_is_ht40(conf))
150 		clockrate *= 2;
151 
152 	if (ah->curchan) {
153 		if (IS_CHAN_HALF_RATE(ah->curchan))
154 			clockrate /= 2;
155 		if (IS_CHAN_QUARTER_RATE(ah->curchan))
156 			clockrate /= 4;
157 	}
158 
159 	common->clockrate = clockrate;
160 }
161 
162 static u32 ath9k_hw_mac_to_clks(struct ath_hw *ah, u32 usecs)
163 {
164 	struct ath_common *common = ath9k_hw_common(ah);
165 
166 	return usecs * common->clockrate;
167 }
168 
169 bool ath9k_hw_wait(struct ath_hw *ah, u32 reg, u32 mask, u32 val, u32 timeout)
170 {
171 	int i;
172 
173 	BUG_ON(timeout < AH_TIME_QUANTUM);
174 
175 	for (i = 0; i < (timeout / AH_TIME_QUANTUM); i++) {
176 		if ((REG_READ(ah, reg) & mask) == val)
177 			return true;
178 
179 		udelay(AH_TIME_QUANTUM);
180 	}
181 
182 	ath_dbg(ath9k_hw_common(ah), ANY,
183 		"timeout (%d us) on reg 0x%x: 0x%08x & 0x%08x != 0x%08x\n",
184 		timeout, reg, REG_READ(ah, reg), mask, val);
185 
186 	return false;
187 }
188 EXPORT_SYMBOL(ath9k_hw_wait);
189 
190 void ath9k_hw_synth_delay(struct ath_hw *ah, struct ath9k_channel *chan,
191 			  int hw_delay)
192 {
193 	if (IS_CHAN_B(chan))
194 		hw_delay = (4 * hw_delay) / 22;
195 	else
196 		hw_delay /= 10;
197 
198 	if (IS_CHAN_HALF_RATE(chan))
199 		hw_delay *= 2;
200 	else if (IS_CHAN_QUARTER_RATE(chan))
201 		hw_delay *= 4;
202 
203 	udelay(hw_delay + BASE_ACTIVATE_DELAY);
204 }
205 
206 void ath9k_hw_write_array(struct ath_hw *ah, const struct ar5416IniArray *array,
207 			  int column, unsigned int *writecnt)
208 {
209 	int r;
210 
211 	ENABLE_REGWRITE_BUFFER(ah);
212 	for (r = 0; r < array->ia_rows; r++) {
213 		REG_WRITE(ah, INI_RA(array, r, 0),
214 			  INI_RA(array, r, column));
215 		DO_DELAY(*writecnt);
216 	}
217 	REGWRITE_BUFFER_FLUSH(ah);
218 }
219 
220 u32 ath9k_hw_reverse_bits(u32 val, u32 n)
221 {
222 	u32 retval;
223 	int i;
224 
225 	for (i = 0, retval = 0; i < n; i++) {
226 		retval = (retval << 1) | (val & 1);
227 		val >>= 1;
228 	}
229 	return retval;
230 }
231 
232 u16 ath9k_hw_computetxtime(struct ath_hw *ah,
233 			   u8 phy, int kbps,
234 			   u32 frameLen, u16 rateix,
235 			   bool shortPreamble)
236 {
237 	u32 bitsPerSymbol, numBits, numSymbols, phyTime, txTime;
238 
239 	if (kbps == 0)
240 		return 0;
241 
242 	switch (phy) {
243 	case WLAN_RC_PHY_CCK:
244 		phyTime = CCK_PREAMBLE_BITS + CCK_PLCP_BITS;
245 		if (shortPreamble)
246 			phyTime >>= 1;
247 		numBits = frameLen << 3;
248 		txTime = CCK_SIFS_TIME + phyTime + ((numBits * 1000) / kbps);
249 		break;
250 	case WLAN_RC_PHY_OFDM:
251 		if (ah->curchan && IS_CHAN_QUARTER_RATE(ah->curchan)) {
252 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_QUARTER) / 1000;
253 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
254 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
255 			txTime = OFDM_SIFS_TIME_QUARTER
256 				+ OFDM_PREAMBLE_TIME_QUARTER
257 				+ (numSymbols * OFDM_SYMBOL_TIME_QUARTER);
258 		} else if (ah->curchan &&
259 			   IS_CHAN_HALF_RATE(ah->curchan)) {
260 			bitsPerSymbol =	(kbps * OFDM_SYMBOL_TIME_HALF) / 1000;
261 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
262 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
263 			txTime = OFDM_SIFS_TIME_HALF +
264 				OFDM_PREAMBLE_TIME_HALF
265 				+ (numSymbols * OFDM_SYMBOL_TIME_HALF);
266 		} else {
267 			bitsPerSymbol = (kbps * OFDM_SYMBOL_TIME) / 1000;
268 			numBits = OFDM_PLCP_BITS + (frameLen << 3);
269 			numSymbols = DIV_ROUND_UP(numBits, bitsPerSymbol);
270 			txTime = OFDM_SIFS_TIME + OFDM_PREAMBLE_TIME
271 				+ (numSymbols * OFDM_SYMBOL_TIME);
272 		}
273 		break;
274 	default:
275 		ath_err(ath9k_hw_common(ah),
276 			"Unknown phy %u (rate ix %u)\n", phy, rateix);
277 		txTime = 0;
278 		break;
279 	}
280 
281 	return txTime;
282 }
283 EXPORT_SYMBOL(ath9k_hw_computetxtime);
284 
285 void ath9k_hw_get_channel_centers(struct ath_hw *ah,
286 				  struct ath9k_channel *chan,
287 				  struct chan_centers *centers)
288 {
289 	int8_t extoff;
290 
291 	if (!IS_CHAN_HT40(chan)) {
292 		centers->ctl_center = centers->ext_center =
293 			centers->synth_center = chan->channel;
294 		return;
295 	}
296 
297 	if ((chan->chanmode == CHANNEL_A_HT40PLUS) ||
298 	    (chan->chanmode == CHANNEL_G_HT40PLUS)) {
299 		centers->synth_center =
300 			chan->channel + HT40_CHANNEL_CENTER_SHIFT;
301 		extoff = 1;
302 	} else {
303 		centers->synth_center =
304 			chan->channel - HT40_CHANNEL_CENTER_SHIFT;
305 		extoff = -1;
306 	}
307 
308 	centers->ctl_center =
309 		centers->synth_center - (extoff * HT40_CHANNEL_CENTER_SHIFT);
310 	/* 25 MHz spacing is supported by hw but not on upper layers */
311 	centers->ext_center =
312 		centers->synth_center + (extoff * HT40_CHANNEL_CENTER_SHIFT);
313 }
314 
315 /******************/
316 /* Chip Revisions */
317 /******************/
318 
319 static void ath9k_hw_read_revisions(struct ath_hw *ah)
320 {
321 	u32 val;
322 
323 	switch (ah->hw_version.devid) {
324 	case AR5416_AR9100_DEVID:
325 		ah->hw_version.macVersion = AR_SREV_VERSION_9100;
326 		break;
327 	case AR9300_DEVID_AR9330:
328 		ah->hw_version.macVersion = AR_SREV_VERSION_9330;
329 		if (ah->get_mac_revision) {
330 			ah->hw_version.macRev = ah->get_mac_revision();
331 		} else {
332 			val = REG_READ(ah, AR_SREV);
333 			ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
334 		}
335 		return;
336 	case AR9300_DEVID_AR9340:
337 		ah->hw_version.macVersion = AR_SREV_VERSION_9340;
338 		val = REG_READ(ah, AR_SREV);
339 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
340 		return;
341 	case AR9300_DEVID_QCA955X:
342 		ah->hw_version.macVersion = AR_SREV_VERSION_9550;
343 		return;
344 	}
345 
346 	val = REG_READ(ah, AR_SREV) & AR_SREV_ID;
347 
348 	if (val == 0xFF) {
349 		val = REG_READ(ah, AR_SREV);
350 		ah->hw_version.macVersion =
351 			(val & AR_SREV_VERSION2) >> AR_SREV_TYPE2_S;
352 		ah->hw_version.macRev = MS(val, AR_SREV_REVISION2);
353 
354 		if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
355 			ah->is_pciexpress = true;
356 		else
357 			ah->is_pciexpress = (val &
358 					     AR_SREV_TYPE2_HOST_MODE) ? 0 : 1;
359 	} else {
360 		if (!AR_SREV_9100(ah))
361 			ah->hw_version.macVersion = MS(val, AR_SREV_VERSION);
362 
363 		ah->hw_version.macRev = val & AR_SREV_REVISION;
364 
365 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCIE)
366 			ah->is_pciexpress = true;
367 	}
368 }
369 
370 /************************************/
371 /* HW Attach, Detach, Init Routines */
372 /************************************/
373 
374 static void ath9k_hw_disablepcie(struct ath_hw *ah)
375 {
376 	if (!AR_SREV_5416(ah))
377 		return;
378 
379 	REG_WRITE(ah, AR_PCIE_SERDES, 0x9248fc00);
380 	REG_WRITE(ah, AR_PCIE_SERDES, 0x24924924);
381 	REG_WRITE(ah, AR_PCIE_SERDES, 0x28000029);
382 	REG_WRITE(ah, AR_PCIE_SERDES, 0x57160824);
383 	REG_WRITE(ah, AR_PCIE_SERDES, 0x25980579);
384 	REG_WRITE(ah, AR_PCIE_SERDES, 0x00000000);
385 	REG_WRITE(ah, AR_PCIE_SERDES, 0x1aaabe40);
386 	REG_WRITE(ah, AR_PCIE_SERDES, 0xbe105554);
387 	REG_WRITE(ah, AR_PCIE_SERDES, 0x000e1007);
388 
389 	REG_WRITE(ah, AR_PCIE_SERDES2, 0x00000000);
390 }
391 
392 /* This should work for all families including legacy */
393 static bool ath9k_hw_chip_test(struct ath_hw *ah)
394 {
395 	struct ath_common *common = ath9k_hw_common(ah);
396 	u32 regAddr[2] = { AR_STA_ID0 };
397 	u32 regHold[2];
398 	static const u32 patternData[4] = {
399 		0x55555555, 0xaaaaaaaa, 0x66666666, 0x99999999
400 	};
401 	int i, j, loop_max;
402 
403 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
404 		loop_max = 2;
405 		regAddr[1] = AR_PHY_BASE + (8 << 2);
406 	} else
407 		loop_max = 1;
408 
409 	for (i = 0; i < loop_max; i++) {
410 		u32 addr = regAddr[i];
411 		u32 wrData, rdData;
412 
413 		regHold[i] = REG_READ(ah, addr);
414 		for (j = 0; j < 0x100; j++) {
415 			wrData = (j << 16) | j;
416 			REG_WRITE(ah, addr, wrData);
417 			rdData = REG_READ(ah, addr);
418 			if (rdData != wrData) {
419 				ath_err(common,
420 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
421 					addr, wrData, rdData);
422 				return false;
423 			}
424 		}
425 		for (j = 0; j < 4; j++) {
426 			wrData = patternData[j];
427 			REG_WRITE(ah, addr, wrData);
428 			rdData = REG_READ(ah, addr);
429 			if (wrData != rdData) {
430 				ath_err(common,
431 					"address test failed addr: 0x%08x - wr:0x%08x != rd:0x%08x\n",
432 					addr, wrData, rdData);
433 				return false;
434 			}
435 		}
436 		REG_WRITE(ah, regAddr[i], regHold[i]);
437 	}
438 	udelay(100);
439 
440 	return true;
441 }
442 
443 static void ath9k_hw_init_config(struct ath_hw *ah)
444 {
445 	int i;
446 
447 	ah->config.dma_beacon_response_time = 1;
448 	ah->config.sw_beacon_response_time = 6;
449 	ah->config.additional_swba_backoff = 0;
450 	ah->config.ack_6mb = 0x0;
451 	ah->config.cwm_ignore_extcca = 0;
452 	ah->config.pcie_clock_req = 0;
453 	ah->config.analog_shiftreg = 1;
454 
455 	for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
456 		ah->config.spurchans[i][0] = AR_NO_SPUR;
457 		ah->config.spurchans[i][1] = AR_NO_SPUR;
458 	}
459 
460 	ah->config.rx_intr_mitigation = true;
461 	ah->config.pcieSerDesWrite = true;
462 
463 	/*
464 	 * We need this for PCI devices only (Cardbus, PCI, miniPCI)
465 	 * _and_ if on non-uniprocessor systems (Multiprocessor/HT).
466 	 * This means we use it for all AR5416 devices, and the few
467 	 * minor PCI AR9280 devices out there.
468 	 *
469 	 * Serialization is required because these devices do not handle
470 	 * well the case of two concurrent reads/writes due to the latency
471 	 * involved. During one read/write another read/write can be issued
472 	 * on another CPU while the previous read/write may still be working
473 	 * on our hardware, if we hit this case the hardware poops in a loop.
474 	 * We prevent this by serializing reads and writes.
475 	 *
476 	 * This issue is not present on PCI-Express devices or pre-AR5416
477 	 * devices (legacy, 802.11abg).
478 	 */
479 	if (num_possible_cpus() > 1)
480 		ah->config.serialize_regmode = SER_REG_MODE_AUTO;
481 }
482 
483 static void ath9k_hw_init_defaults(struct ath_hw *ah)
484 {
485 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
486 
487 	regulatory->country_code = CTRY_DEFAULT;
488 	regulatory->power_limit = MAX_RATE_POWER;
489 
490 	ah->hw_version.magic = AR5416_MAGIC;
491 	ah->hw_version.subvendorid = 0;
492 
493 	ah->atim_window = 0;
494 	ah->sta_id1_defaults =
495 		AR_STA_ID1_CRPT_MIC_ENABLE |
496 		AR_STA_ID1_MCAST_KSRCH;
497 	if (AR_SREV_9100(ah))
498 		ah->sta_id1_defaults |= AR_STA_ID1_AR9100_BA_FIX;
499 	ah->slottime = ATH9K_SLOT_TIME_9;
500 	ah->globaltxtimeout = (u32) -1;
501 	ah->power_mode = ATH9K_PM_UNDEFINED;
502 	ah->htc_reset_init = true;
503 }
504 
505 static int ath9k_hw_init_macaddr(struct ath_hw *ah)
506 {
507 	struct ath_common *common = ath9k_hw_common(ah);
508 	u32 sum;
509 	int i;
510 	u16 eeval;
511 	static const u32 EEP_MAC[] = { EEP_MAC_LSW, EEP_MAC_MID, EEP_MAC_MSW };
512 
513 	sum = 0;
514 	for (i = 0; i < 3; i++) {
515 		eeval = ah->eep_ops->get_eeprom(ah, EEP_MAC[i]);
516 		sum += eeval;
517 		common->macaddr[2 * i] = eeval >> 8;
518 		common->macaddr[2 * i + 1] = eeval & 0xff;
519 	}
520 	if (sum == 0 || sum == 0xffff * 3)
521 		return -EADDRNOTAVAIL;
522 
523 	return 0;
524 }
525 
526 static int ath9k_hw_post_init(struct ath_hw *ah)
527 {
528 	struct ath_common *common = ath9k_hw_common(ah);
529 	int ecode;
530 
531 	if (common->bus_ops->ath_bus_type != ATH_USB) {
532 		if (!ath9k_hw_chip_test(ah))
533 			return -ENODEV;
534 	}
535 
536 	if (!AR_SREV_9300_20_OR_LATER(ah)) {
537 		ecode = ar9002_hw_rf_claim(ah);
538 		if (ecode != 0)
539 			return ecode;
540 	}
541 
542 	ecode = ath9k_hw_eeprom_init(ah);
543 	if (ecode != 0)
544 		return ecode;
545 
546 	ath_dbg(ath9k_hw_common(ah), CONFIG, "Eeprom VER: %d, REV: %d\n",
547 		ah->eep_ops->get_eeprom_ver(ah),
548 		ah->eep_ops->get_eeprom_rev(ah));
549 
550 	ath9k_hw_ani_init(ah);
551 
552 	return 0;
553 }
554 
555 static int ath9k_hw_attach_ops(struct ath_hw *ah)
556 {
557 	if (!AR_SREV_9300_20_OR_LATER(ah))
558 		return ar9002_hw_attach_ops(ah);
559 
560 	ar9003_hw_attach_ops(ah);
561 	return 0;
562 }
563 
564 /* Called for all hardware families */
565 static int __ath9k_hw_init(struct ath_hw *ah)
566 {
567 	struct ath_common *common = ath9k_hw_common(ah);
568 	int r = 0;
569 
570 	ath9k_hw_read_revisions(ah);
571 
572 	/*
573 	 * Read back AR_WA into a permanent copy and set bits 14 and 17.
574 	 * We need to do this to avoid RMW of this register. We cannot
575 	 * read the reg when chip is asleep.
576 	 */
577 	if (AR_SREV_9300_20_OR_LATER(ah)) {
578 		ah->WARegVal = REG_READ(ah, AR_WA);
579 		ah->WARegVal |= (AR_WA_D3_L1_DISABLE |
580 				 AR_WA_ASPM_TIMER_BASED_DISABLE);
581 	}
582 
583 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
584 		ath_err(common, "Couldn't reset chip\n");
585 		return -EIO;
586 	}
587 
588 	if (AR_SREV_9565(ah)) {
589 		ah->WARegVal |= AR_WA_BIT22;
590 		REG_WRITE(ah, AR_WA, ah->WARegVal);
591 	}
592 
593 	ath9k_hw_init_defaults(ah);
594 	ath9k_hw_init_config(ah);
595 
596 	r = ath9k_hw_attach_ops(ah);
597 	if (r)
598 		return r;
599 
600 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE)) {
601 		ath_err(common, "Couldn't wakeup chip\n");
602 		return -EIO;
603 	}
604 
605 	if (NR_CPUS > 1 && ah->config.serialize_regmode == SER_REG_MODE_AUTO) {
606 		if (ah->hw_version.macVersion == AR_SREV_VERSION_5416_PCI ||
607 		    ((AR_SREV_9160(ah) || AR_SREV_9280(ah) || AR_SREV_9287(ah)) &&
608 		     !ah->is_pciexpress)) {
609 			ah->config.serialize_regmode =
610 				SER_REG_MODE_ON;
611 		} else {
612 			ah->config.serialize_regmode =
613 				SER_REG_MODE_OFF;
614 		}
615 	}
616 
617 	ath_dbg(common, RESET, "serialize_regmode is %d\n",
618 		ah->config.serialize_regmode);
619 
620 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
621 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD >> 1;
622 	else
623 		ah->config.max_txtrig_level = MAX_TX_FIFO_THRESHOLD;
624 
625 	switch (ah->hw_version.macVersion) {
626 	case AR_SREV_VERSION_5416_PCI:
627 	case AR_SREV_VERSION_5416_PCIE:
628 	case AR_SREV_VERSION_9160:
629 	case AR_SREV_VERSION_9100:
630 	case AR_SREV_VERSION_9280:
631 	case AR_SREV_VERSION_9285:
632 	case AR_SREV_VERSION_9287:
633 	case AR_SREV_VERSION_9271:
634 	case AR_SREV_VERSION_9300:
635 	case AR_SREV_VERSION_9330:
636 	case AR_SREV_VERSION_9485:
637 	case AR_SREV_VERSION_9340:
638 	case AR_SREV_VERSION_9462:
639 	case AR_SREV_VERSION_9550:
640 	case AR_SREV_VERSION_9565:
641 		break;
642 	default:
643 		ath_err(common,
644 			"Mac Chip Rev 0x%02x.%x is not supported by this driver\n",
645 			ah->hw_version.macVersion, ah->hw_version.macRev);
646 		return -EOPNOTSUPP;
647 	}
648 
649 	if (AR_SREV_9271(ah) || AR_SREV_9100(ah) || AR_SREV_9340(ah) ||
650 	    AR_SREV_9330(ah) || AR_SREV_9550(ah))
651 		ah->is_pciexpress = false;
652 
653 	ah->hw_version.phyRev = REG_READ(ah, AR_PHY_CHIP_ID);
654 	ath9k_hw_init_cal_settings(ah);
655 
656 	ah->ani_function = ATH9K_ANI_ALL;
657 	if (!AR_SREV_9300_20_OR_LATER(ah))
658 		ah->ani_function &= ~ATH9K_ANI_MRC_CCK;
659 
660 	if (!ah->is_pciexpress)
661 		ath9k_hw_disablepcie(ah);
662 
663 	r = ath9k_hw_post_init(ah);
664 	if (r)
665 		return r;
666 
667 	ath9k_hw_init_mode_gain_regs(ah);
668 	r = ath9k_hw_fill_cap_info(ah);
669 	if (r)
670 		return r;
671 
672 	r = ath9k_hw_init_macaddr(ah);
673 	if (r) {
674 		ath_err(common, "Failed to initialize MAC address\n");
675 		return r;
676 	}
677 
678 	if (AR_SREV_9285(ah) || AR_SREV_9271(ah))
679 		ah->tx_trig_level = (AR_FTRIG_256B >> AR_FTRIG_S);
680 	else
681 		ah->tx_trig_level = (AR_FTRIG_512B >> AR_FTRIG_S);
682 
683 	if (AR_SREV_9330(ah))
684 		ah->bb_watchdog_timeout_ms = 85;
685 	else
686 		ah->bb_watchdog_timeout_ms = 25;
687 
688 	common->state = ATH_HW_INITIALIZED;
689 
690 	return 0;
691 }
692 
693 int ath9k_hw_init(struct ath_hw *ah)
694 {
695 	int ret;
696 	struct ath_common *common = ath9k_hw_common(ah);
697 
698 	/* These are all the AR5008/AR9001/AR9002/AR9003 hardware family of chipsets */
699 	switch (ah->hw_version.devid) {
700 	case AR5416_DEVID_PCI:
701 	case AR5416_DEVID_PCIE:
702 	case AR5416_AR9100_DEVID:
703 	case AR9160_DEVID_PCI:
704 	case AR9280_DEVID_PCI:
705 	case AR9280_DEVID_PCIE:
706 	case AR9285_DEVID_PCIE:
707 	case AR9287_DEVID_PCI:
708 	case AR9287_DEVID_PCIE:
709 	case AR2427_DEVID_PCIE:
710 	case AR9300_DEVID_PCIE:
711 	case AR9300_DEVID_AR9485_PCIE:
712 	case AR9300_DEVID_AR9330:
713 	case AR9300_DEVID_AR9340:
714 	case AR9300_DEVID_QCA955X:
715 	case AR9300_DEVID_AR9580:
716 	case AR9300_DEVID_AR9462:
717 	case AR9485_DEVID_AR1111:
718 	case AR9300_DEVID_AR9565:
719 		break;
720 	default:
721 		if (common->bus_ops->ath_bus_type == ATH_USB)
722 			break;
723 		ath_err(common, "Hardware device ID 0x%04x not supported\n",
724 			ah->hw_version.devid);
725 		return -EOPNOTSUPP;
726 	}
727 
728 	ret = __ath9k_hw_init(ah);
729 	if (ret) {
730 		ath_err(common,
731 			"Unable to initialize hardware; initialization status: %d\n",
732 			ret);
733 		return ret;
734 	}
735 
736 	return 0;
737 }
738 EXPORT_SYMBOL(ath9k_hw_init);
739 
740 static void ath9k_hw_init_qos(struct ath_hw *ah)
741 {
742 	ENABLE_REGWRITE_BUFFER(ah);
743 
744 	REG_WRITE(ah, AR_MIC_QOS_CONTROL, 0x100aa);
745 	REG_WRITE(ah, AR_MIC_QOS_SELECT, 0x3210);
746 
747 	REG_WRITE(ah, AR_QOS_NO_ACK,
748 		  SM(2, AR_QOS_NO_ACK_TWO_BIT) |
749 		  SM(5, AR_QOS_NO_ACK_BIT_OFF) |
750 		  SM(0, AR_QOS_NO_ACK_BYTE_OFF));
751 
752 	REG_WRITE(ah, AR_TXOP_X, AR_TXOP_X_VAL);
753 	REG_WRITE(ah, AR_TXOP_0_3, 0xFFFFFFFF);
754 	REG_WRITE(ah, AR_TXOP_4_7, 0xFFFFFFFF);
755 	REG_WRITE(ah, AR_TXOP_8_11, 0xFFFFFFFF);
756 	REG_WRITE(ah, AR_TXOP_12_15, 0xFFFFFFFF);
757 
758 	REGWRITE_BUFFER_FLUSH(ah);
759 }
760 
761 u32 ar9003_get_pll_sqsum_dvc(struct ath_hw *ah)
762 {
763 	struct ath_common *common = ath9k_hw_common(ah);
764 	int i = 0;
765 
766 	REG_CLR_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
767 	udelay(100);
768 	REG_SET_BIT(ah, PLL3, PLL3_DO_MEAS_MASK);
769 
770 	while ((REG_READ(ah, PLL4) & PLL4_MEAS_DONE) == 0) {
771 
772 		udelay(100);
773 
774 		if (WARN_ON_ONCE(i >= 100)) {
775 			ath_err(common, "PLL4 meaurement not done\n");
776 			break;
777 		}
778 
779 		i++;
780 	}
781 
782 	return (REG_READ(ah, PLL3) & SQSUM_DVC_MASK) >> 3;
783 }
784 EXPORT_SYMBOL(ar9003_get_pll_sqsum_dvc);
785 
786 static void ath9k_hw_init_pll(struct ath_hw *ah,
787 			      struct ath9k_channel *chan)
788 {
789 	u32 pll;
790 
791 	if (AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
792 		/* program BB PLL ki and kd value, ki=0x4, kd=0x40 */
793 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
794 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x1);
795 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
796 			      AR_CH0_DPLL2_KD, 0x40);
797 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
798 			      AR_CH0_DPLL2_KI, 0x4);
799 
800 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
801 			      AR_CH0_BB_DPLL1_REFDIV, 0x5);
802 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
803 			      AR_CH0_BB_DPLL1_NINI, 0x58);
804 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL1,
805 			      AR_CH0_BB_DPLL1_NFRAC, 0x0);
806 
807 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
808 			      AR_CH0_BB_DPLL2_OUTDIV, 0x1);
809 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
810 			      AR_CH0_BB_DPLL2_LOCAL_PLL, 0x1);
811 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
812 			      AR_CH0_BB_DPLL2_EN_NEGTRIG, 0x1);
813 
814 		/* program BB PLL phase_shift to 0x6 */
815 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
816 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x6);
817 
818 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2,
819 			      AR_CH0_BB_DPLL2_PLL_PWD, 0x0);
820 		udelay(1000);
821 	} else if (AR_SREV_9330(ah)) {
822 		u32 ddr_dpll2, pll_control2, kd;
823 
824 		if (ah->is_clk_25mhz) {
825 			ddr_dpll2 = 0x18e82f01;
826 			pll_control2 = 0xe04a3d;
827 			kd = 0x1d;
828 		} else {
829 			ddr_dpll2 = 0x19e82f01;
830 			pll_control2 = 0x886666;
831 			kd = 0x3d;
832 		}
833 
834 		/* program DDR PLL ki and kd value */
835 		REG_WRITE(ah, AR_CH0_DDR_DPLL2, ddr_dpll2);
836 
837 		/* program DDR PLL phase_shift */
838 		REG_RMW_FIELD(ah, AR_CH0_DDR_DPLL3,
839 			      AR_CH0_DPLL3_PHASE_SHIFT, 0x1);
840 
841 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
842 		udelay(1000);
843 
844 		/* program refdiv, nint, frac to RTC register */
845 		REG_WRITE(ah, AR_RTC_PLL_CONTROL2, pll_control2);
846 
847 		/* program BB PLL kd and ki value */
848 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KD, kd);
849 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL2, AR_CH0_DPLL2_KI, 0x06);
850 
851 		/* program BB PLL phase_shift */
852 		REG_RMW_FIELD(ah, AR_CH0_BB_DPLL3,
853 			      AR_CH0_BB_DPLL3_PHASE_SHIFT, 0x1);
854 	} else if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
855 		u32 regval, pll2_divint, pll2_divfrac, refdiv;
856 
857 		REG_WRITE(ah, AR_RTC_PLL_CONTROL, 0x1142c);
858 		udelay(1000);
859 
860 		REG_SET_BIT(ah, AR_PHY_PLL_MODE, 0x1 << 16);
861 		udelay(100);
862 
863 		if (ah->is_clk_25mhz) {
864 			pll2_divint = 0x54;
865 			pll2_divfrac = 0x1eb85;
866 			refdiv = 3;
867 		} else {
868 			if (AR_SREV_9340(ah)) {
869 				pll2_divint = 88;
870 				pll2_divfrac = 0;
871 				refdiv = 5;
872 			} else {
873 				pll2_divint = 0x11;
874 				pll2_divfrac = 0x26666;
875 				refdiv = 1;
876 			}
877 		}
878 
879 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
880 		regval |= (0x1 << 16);
881 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
882 		udelay(100);
883 
884 		REG_WRITE(ah, AR_PHY_PLL_CONTROL, (refdiv << 27) |
885 			  (pll2_divint << 18) | pll2_divfrac);
886 		udelay(100);
887 
888 		regval = REG_READ(ah, AR_PHY_PLL_MODE);
889 		if (AR_SREV_9340(ah))
890 			regval = (regval & 0x80071fff) | (0x1 << 30) |
891 				 (0x1 << 13) | (0x4 << 26) | (0x18 << 19);
892 		else
893 			regval = (regval & 0x80071fff) | (0x3 << 30) |
894 				 (0x1 << 13) | (0x4 << 26) | (0x60 << 19);
895 		REG_WRITE(ah, AR_PHY_PLL_MODE, regval);
896 		REG_WRITE(ah, AR_PHY_PLL_MODE,
897 			  REG_READ(ah, AR_PHY_PLL_MODE) & 0xfffeffff);
898 		udelay(1000);
899 	}
900 
901 	pll = ath9k_hw_compute_pll_control(ah, chan);
902 	if (AR_SREV_9565(ah))
903 		pll |= 0x40000;
904 	REG_WRITE(ah, AR_RTC_PLL_CONTROL, pll);
905 
906 	if (AR_SREV_9485(ah) || AR_SREV_9340(ah) || AR_SREV_9330(ah) ||
907 	    AR_SREV_9550(ah))
908 		udelay(1000);
909 
910 	/* Switch the core clock for ar9271 to 117Mhz */
911 	if (AR_SREV_9271(ah)) {
912 		udelay(500);
913 		REG_WRITE(ah, 0x50040, 0x304);
914 	}
915 
916 	udelay(RTC_PLL_SETTLE_DELAY);
917 
918 	REG_WRITE(ah, AR_RTC_SLEEP_CLK, AR_RTC_FORCE_DERIVED_CLK);
919 
920 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah)) {
921 		if (ah->is_clk_25mhz) {
922 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x17c << 1);
923 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f3d7);
924 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e7ae);
925 		} else {
926 			REG_WRITE(ah, AR_RTC_DERIVED_CLK, 0x261 << 1);
927 			REG_WRITE(ah, AR_SLP32_MODE, 0x0010f400);
928 			REG_WRITE(ah,  AR_SLP32_INC, 0x0001e800);
929 		}
930 		udelay(100);
931 	}
932 }
933 
934 static void ath9k_hw_init_interrupt_masks(struct ath_hw *ah,
935 					  enum nl80211_iftype opmode)
936 {
937 	u32 sync_default = AR_INTR_SYNC_DEFAULT;
938 	u32 imr_reg = AR_IMR_TXERR |
939 		AR_IMR_TXURN |
940 		AR_IMR_RXERR |
941 		AR_IMR_RXORN |
942 		AR_IMR_BCNMISC;
943 
944 	if (AR_SREV_9340(ah) || AR_SREV_9550(ah))
945 		sync_default &= ~AR_INTR_SYNC_HOST1_FATAL;
946 
947 	if (AR_SREV_9300_20_OR_LATER(ah)) {
948 		imr_reg |= AR_IMR_RXOK_HP;
949 		if (ah->config.rx_intr_mitigation)
950 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
951 		else
952 			imr_reg |= AR_IMR_RXOK_LP;
953 
954 	} else {
955 		if (ah->config.rx_intr_mitigation)
956 			imr_reg |= AR_IMR_RXINTM | AR_IMR_RXMINTR;
957 		else
958 			imr_reg |= AR_IMR_RXOK;
959 	}
960 
961 	if (ah->config.tx_intr_mitigation)
962 		imr_reg |= AR_IMR_TXINTM | AR_IMR_TXMINTR;
963 	else
964 		imr_reg |= AR_IMR_TXOK;
965 
966 	ENABLE_REGWRITE_BUFFER(ah);
967 
968 	REG_WRITE(ah, AR_IMR, imr_reg);
969 	ah->imrs2_reg |= AR_IMR_S2_GTT;
970 	REG_WRITE(ah, AR_IMR_S2, ah->imrs2_reg);
971 
972 	if (!AR_SREV_9100(ah)) {
973 		REG_WRITE(ah, AR_INTR_SYNC_CAUSE, 0xFFFFFFFF);
974 		REG_WRITE(ah, AR_INTR_SYNC_ENABLE, sync_default);
975 		REG_WRITE(ah, AR_INTR_SYNC_MASK, 0);
976 	}
977 
978 	REGWRITE_BUFFER_FLUSH(ah);
979 
980 	if (AR_SREV_9300_20_OR_LATER(ah)) {
981 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_ENABLE, 0);
982 		REG_WRITE(ah, AR_INTR_PRIO_ASYNC_MASK, 0);
983 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_ENABLE, 0);
984 		REG_WRITE(ah, AR_INTR_PRIO_SYNC_MASK, 0);
985 	}
986 }
987 
988 static void ath9k_hw_set_sifs_time(struct ath_hw *ah, u32 us)
989 {
990 	u32 val = ath9k_hw_mac_to_clks(ah, us - 2);
991 	val = min(val, (u32) 0xFFFF);
992 	REG_WRITE(ah, AR_D_GBL_IFS_SIFS, val);
993 }
994 
995 static void ath9k_hw_setslottime(struct ath_hw *ah, u32 us)
996 {
997 	u32 val = ath9k_hw_mac_to_clks(ah, us);
998 	val = min(val, (u32) 0xFFFF);
999 	REG_WRITE(ah, AR_D_GBL_IFS_SLOT, val);
1000 }
1001 
1002 static void ath9k_hw_set_ack_timeout(struct ath_hw *ah, u32 us)
1003 {
1004 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1005 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_ACK));
1006 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_ACK, val);
1007 }
1008 
1009 static void ath9k_hw_set_cts_timeout(struct ath_hw *ah, u32 us)
1010 {
1011 	u32 val = ath9k_hw_mac_to_clks(ah, us);
1012 	val = min(val, (u32) MS(0xFFFFFFFF, AR_TIME_OUT_CTS));
1013 	REG_RMW_FIELD(ah, AR_TIME_OUT, AR_TIME_OUT_CTS, val);
1014 }
1015 
1016 static bool ath9k_hw_set_global_txtimeout(struct ath_hw *ah, u32 tu)
1017 {
1018 	if (tu > 0xFFFF) {
1019 		ath_dbg(ath9k_hw_common(ah), XMIT, "bad global tx timeout %u\n",
1020 			tu);
1021 		ah->globaltxtimeout = (u32) -1;
1022 		return false;
1023 	} else {
1024 		REG_RMW_FIELD(ah, AR_GTXTO, AR_GTXTO_TIMEOUT_LIMIT, tu);
1025 		ah->globaltxtimeout = tu;
1026 		return true;
1027 	}
1028 }
1029 
1030 void ath9k_hw_init_global_settings(struct ath_hw *ah)
1031 {
1032 	struct ath_common *common = ath9k_hw_common(ah);
1033 	struct ieee80211_conf *conf = &common->hw->conf;
1034 	const struct ath9k_channel *chan = ah->curchan;
1035 	int acktimeout, ctstimeout, ack_offset = 0;
1036 	int slottime;
1037 	int sifstime;
1038 	int rx_lat = 0, tx_lat = 0, eifs = 0;
1039 	u32 reg;
1040 
1041 	ath_dbg(ath9k_hw_common(ah), RESET, "ah->misc_mode 0x%x\n",
1042 		ah->misc_mode);
1043 
1044 	if (!chan)
1045 		return;
1046 
1047 	if (ah->misc_mode != 0)
1048 		REG_SET_BIT(ah, AR_PCU_MISC, ah->misc_mode);
1049 
1050 	if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1051 		rx_lat = 41;
1052 	else
1053 		rx_lat = 37;
1054 	tx_lat = 54;
1055 
1056 	if (IS_CHAN_5GHZ(chan))
1057 		sifstime = 16;
1058 	else
1059 		sifstime = 10;
1060 
1061 	if (IS_CHAN_HALF_RATE(chan)) {
1062 		eifs = 175;
1063 		rx_lat *= 2;
1064 		tx_lat *= 2;
1065 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1066 		    tx_lat += 11;
1067 
1068 		sifstime = 32;
1069 		ack_offset = 16;
1070 		slottime = 13;
1071 	} else if (IS_CHAN_QUARTER_RATE(chan)) {
1072 		eifs = 340;
1073 		rx_lat = (rx_lat * 4) - 1;
1074 		tx_lat *= 4;
1075 		if (IS_CHAN_A_FAST_CLOCK(ah, chan))
1076 		    tx_lat += 22;
1077 
1078 		sifstime = 64;
1079 		ack_offset = 32;
1080 		slottime = 21;
1081 	} else {
1082 		if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1083 			eifs = AR_D_GBL_IFS_EIFS_ASYNC_FIFO;
1084 			reg = AR_USEC_ASYNC_FIFO;
1085 		} else {
1086 			eifs = REG_READ(ah, AR_D_GBL_IFS_EIFS)/
1087 				common->clockrate;
1088 			reg = REG_READ(ah, AR_USEC);
1089 		}
1090 		rx_lat = MS(reg, AR_USEC_RX_LAT);
1091 		tx_lat = MS(reg, AR_USEC_TX_LAT);
1092 
1093 		slottime = ah->slottime;
1094 	}
1095 
1096 	/* As defined by IEEE 802.11-2007 17.3.8.6 */
1097 	slottime += 3 * ah->coverage_class;
1098 	acktimeout = slottime + sifstime + ack_offset;
1099 	ctstimeout = acktimeout;
1100 
1101 	/*
1102 	 * Workaround for early ACK timeouts, add an offset to match the
1103 	 * initval's 64us ack timeout value. Use 48us for the CTS timeout.
1104 	 * This was initially only meant to work around an issue with delayed
1105 	 * BA frames in some implementations, but it has been found to fix ACK
1106 	 * timeout issues in other cases as well.
1107 	 */
1108 	if (conf->chandef.chan &&
1109 	    conf->chandef.chan->band == IEEE80211_BAND_2GHZ &&
1110 	    !IS_CHAN_HALF_RATE(chan) && !IS_CHAN_QUARTER_RATE(chan)) {
1111 		acktimeout += 64 - sifstime - ah->slottime;
1112 		ctstimeout += 48 - sifstime - ah->slottime;
1113 	}
1114 
1115 	ath9k_hw_set_sifs_time(ah, sifstime);
1116 	ath9k_hw_setslottime(ah, slottime);
1117 	ath9k_hw_set_ack_timeout(ah, acktimeout);
1118 	ath9k_hw_set_cts_timeout(ah, ctstimeout);
1119 	if (ah->globaltxtimeout != (u32) -1)
1120 		ath9k_hw_set_global_txtimeout(ah, ah->globaltxtimeout);
1121 
1122 	REG_WRITE(ah, AR_D_GBL_IFS_EIFS, ath9k_hw_mac_to_clks(ah, eifs));
1123 	REG_RMW(ah, AR_USEC,
1124 		(common->clockrate - 1) |
1125 		SM(rx_lat, AR_USEC_RX_LAT) |
1126 		SM(tx_lat, AR_USEC_TX_LAT),
1127 		AR_USEC_TX_LAT | AR_USEC_RX_LAT | AR_USEC_USEC);
1128 
1129 }
1130 EXPORT_SYMBOL(ath9k_hw_init_global_settings);
1131 
1132 void ath9k_hw_deinit(struct ath_hw *ah)
1133 {
1134 	struct ath_common *common = ath9k_hw_common(ah);
1135 
1136 	if (common->state < ATH_HW_INITIALIZED)
1137 		return;
1138 
1139 	ath9k_hw_setpower(ah, ATH9K_PM_FULL_SLEEP);
1140 }
1141 EXPORT_SYMBOL(ath9k_hw_deinit);
1142 
1143 /*******/
1144 /* INI */
1145 /*******/
1146 
1147 u32 ath9k_regd_get_ctl(struct ath_regulatory *reg, struct ath9k_channel *chan)
1148 {
1149 	u32 ctl = ath_regd_get_band_ctl(reg, chan->chan->band);
1150 
1151 	if (IS_CHAN_B(chan))
1152 		ctl |= CTL_11B;
1153 	else if (IS_CHAN_G(chan))
1154 		ctl |= CTL_11G;
1155 	else
1156 		ctl |= CTL_11A;
1157 
1158 	return ctl;
1159 }
1160 
1161 /****************************************/
1162 /* Reset and Channel Switching Routines */
1163 /****************************************/
1164 
1165 static inline void ath9k_hw_set_dma(struct ath_hw *ah)
1166 {
1167 	struct ath_common *common = ath9k_hw_common(ah);
1168 	int txbuf_size;
1169 
1170 	ENABLE_REGWRITE_BUFFER(ah);
1171 
1172 	/*
1173 	 * set AHB_MODE not to do cacheline prefetches
1174 	*/
1175 	if (!AR_SREV_9300_20_OR_LATER(ah))
1176 		REG_SET_BIT(ah, AR_AHB_MODE, AR_AHB_PREFETCH_RD_EN);
1177 
1178 	/*
1179 	 * let mac dma reads be in 128 byte chunks
1180 	 */
1181 	REG_RMW(ah, AR_TXCFG, AR_TXCFG_DMASZ_128B, AR_TXCFG_DMASZ_MASK);
1182 
1183 	REGWRITE_BUFFER_FLUSH(ah);
1184 
1185 	/*
1186 	 * Restore TX Trigger Level to its pre-reset value.
1187 	 * The initial value depends on whether aggregation is enabled, and is
1188 	 * adjusted whenever underruns are detected.
1189 	 */
1190 	if (!AR_SREV_9300_20_OR_LATER(ah))
1191 		REG_RMW_FIELD(ah, AR_TXCFG, AR_FTRIG, ah->tx_trig_level);
1192 
1193 	ENABLE_REGWRITE_BUFFER(ah);
1194 
1195 	/*
1196 	 * let mac dma writes be in 128 byte chunks
1197 	 */
1198 	REG_RMW(ah, AR_RXCFG, AR_RXCFG_DMASZ_128B, AR_RXCFG_DMASZ_MASK);
1199 
1200 	/*
1201 	 * Setup receive FIFO threshold to hold off TX activities
1202 	 */
1203 	REG_WRITE(ah, AR_RXFIFO_CFG, 0x200);
1204 
1205 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1206 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_HP, 0x1);
1207 		REG_RMW_FIELD(ah, AR_RXBP_THRESH, AR_RXBP_THRESH_LP, 0x1);
1208 
1209 		ath9k_hw_set_rx_bufsize(ah, common->rx_bufsize -
1210 			ah->caps.rx_status_len);
1211 	}
1212 
1213 	/*
1214 	 * reduce the number of usable entries in PCU TXBUF to avoid
1215 	 * wrap around issues.
1216 	 */
1217 	if (AR_SREV_9285(ah)) {
1218 		/* For AR9285 the number of Fifos are reduced to half.
1219 		 * So set the usable tx buf size also to half to
1220 		 * avoid data/delimiter underruns
1221 		 */
1222 		txbuf_size = AR_9285_PCU_TXBUF_CTRL_USABLE_SIZE;
1223 	} else if (AR_SREV_9340_13_OR_LATER(ah)) {
1224 		/* Uses fewer entries for AR934x v1.3+ to prevent rx overruns */
1225 		txbuf_size = AR_9340_PCU_TXBUF_CTRL_USABLE_SIZE;
1226 	} else {
1227 		txbuf_size = AR_PCU_TXBUF_CTRL_USABLE_SIZE;
1228 	}
1229 
1230 	if (!AR_SREV_9271(ah))
1231 		REG_WRITE(ah, AR_PCU_TXBUF_CTRL, txbuf_size);
1232 
1233 	REGWRITE_BUFFER_FLUSH(ah);
1234 
1235 	if (AR_SREV_9300_20_OR_LATER(ah))
1236 		ath9k_hw_reset_txstatus_ring(ah);
1237 }
1238 
1239 static void ath9k_hw_set_operating_mode(struct ath_hw *ah, int opmode)
1240 {
1241 	u32 mask = AR_STA_ID1_STA_AP | AR_STA_ID1_ADHOC;
1242 	u32 set = AR_STA_ID1_KSRCH_MODE;
1243 
1244 	switch (opmode) {
1245 	case NL80211_IFTYPE_ADHOC:
1246 		set |= AR_STA_ID1_ADHOC;
1247 		REG_SET_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1248 		break;
1249 	case NL80211_IFTYPE_MESH_POINT:
1250 	case NL80211_IFTYPE_AP:
1251 		set |= AR_STA_ID1_STA_AP;
1252 		/* fall through */
1253 	case NL80211_IFTYPE_STATION:
1254 		REG_CLR_BIT(ah, AR_CFG, AR_CFG_AP_ADHOC_INDICATION);
1255 		break;
1256 	default:
1257 		if (!ah->is_monitoring)
1258 			set = 0;
1259 		break;
1260 	}
1261 	REG_RMW(ah, AR_STA_ID1, set, mask);
1262 }
1263 
1264 void ath9k_hw_get_delta_slope_vals(struct ath_hw *ah, u32 coef_scaled,
1265 				   u32 *coef_mantissa, u32 *coef_exponent)
1266 {
1267 	u32 coef_exp, coef_man;
1268 
1269 	for (coef_exp = 31; coef_exp > 0; coef_exp--)
1270 		if ((coef_scaled >> coef_exp) & 0x1)
1271 			break;
1272 
1273 	coef_exp = 14 - (coef_exp - COEF_SCALE_S);
1274 
1275 	coef_man = coef_scaled + (1 << (COEF_SCALE_S - coef_exp - 1));
1276 
1277 	*coef_mantissa = coef_man >> (COEF_SCALE_S - coef_exp);
1278 	*coef_exponent = coef_exp - 16;
1279 }
1280 
1281 static bool ath9k_hw_set_reset(struct ath_hw *ah, int type)
1282 {
1283 	u32 rst_flags;
1284 	u32 tmpReg;
1285 
1286 	if (AR_SREV_9100(ah)) {
1287 		REG_RMW_FIELD(ah, AR_RTC_DERIVED_CLK,
1288 			      AR_RTC_DERIVED_CLK_PERIOD, 1);
1289 		(void)REG_READ(ah, AR_RTC_DERIVED_CLK);
1290 	}
1291 
1292 	ENABLE_REGWRITE_BUFFER(ah);
1293 
1294 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1295 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1296 		udelay(10);
1297 	}
1298 
1299 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1300 		  AR_RTC_FORCE_WAKE_ON_INT);
1301 
1302 	if (AR_SREV_9100(ah)) {
1303 		rst_flags = AR_RTC_RC_MAC_WARM | AR_RTC_RC_MAC_COLD |
1304 			AR_RTC_RC_COLD_RESET | AR_RTC_RC_WARM_RESET;
1305 	} else {
1306 		tmpReg = REG_READ(ah, AR_INTR_SYNC_CAUSE);
1307 		if (AR_SREV_9340(ah))
1308 			tmpReg &= AR9340_INTR_SYNC_LOCAL_TIMEOUT;
1309 		else
1310 			tmpReg &= AR_INTR_SYNC_LOCAL_TIMEOUT |
1311 				  AR_INTR_SYNC_RADM_CPL_TIMEOUT;
1312 
1313 		if (tmpReg) {
1314 			u32 val;
1315 			REG_WRITE(ah, AR_INTR_SYNC_ENABLE, 0);
1316 
1317 			val = AR_RC_HOSTIF;
1318 			if (!AR_SREV_9300_20_OR_LATER(ah))
1319 				val |= AR_RC_AHB;
1320 			REG_WRITE(ah, AR_RC, val);
1321 
1322 		} else if (!AR_SREV_9300_20_OR_LATER(ah))
1323 			REG_WRITE(ah, AR_RC, AR_RC_AHB);
1324 
1325 		rst_flags = AR_RTC_RC_MAC_WARM;
1326 		if (type == ATH9K_RESET_COLD)
1327 			rst_flags |= AR_RTC_RC_MAC_COLD;
1328 	}
1329 
1330 	if (AR_SREV_9330(ah)) {
1331 		int npend = 0;
1332 		int i;
1333 
1334 		/* AR9330 WAR:
1335 		 * call external reset function to reset WMAC if:
1336 		 * - doing a cold reset
1337 		 * - we have pending frames in the TX queues
1338 		 */
1339 
1340 		for (i = 0; i < AR_NUM_QCU; i++) {
1341 			npend = ath9k_hw_numtxpending(ah, i);
1342 			if (npend)
1343 				break;
1344 		}
1345 
1346 		if (ah->external_reset &&
1347 		    (npend || type == ATH9K_RESET_COLD)) {
1348 			int reset_err = 0;
1349 
1350 			ath_dbg(ath9k_hw_common(ah), RESET,
1351 				"reset MAC via external reset\n");
1352 
1353 			reset_err = ah->external_reset();
1354 			if (reset_err) {
1355 				ath_err(ath9k_hw_common(ah),
1356 					"External reset failed, err=%d\n",
1357 					reset_err);
1358 				return false;
1359 			}
1360 
1361 			REG_WRITE(ah, AR_RTC_RESET, 1);
1362 		}
1363 	}
1364 
1365 	if (ath9k_hw_mci_is_enabled(ah))
1366 		ar9003_mci_check_gpm_offset(ah);
1367 
1368 	REG_WRITE(ah, AR_RTC_RC, rst_flags);
1369 
1370 	REGWRITE_BUFFER_FLUSH(ah);
1371 
1372 	udelay(50);
1373 
1374 	REG_WRITE(ah, AR_RTC_RC, 0);
1375 	if (!ath9k_hw_wait(ah, AR_RTC_RC, AR_RTC_RC_M, 0, AH_WAIT_TIMEOUT)) {
1376 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC stuck in MAC reset\n");
1377 		return false;
1378 	}
1379 
1380 	if (!AR_SREV_9100(ah))
1381 		REG_WRITE(ah, AR_RC, 0);
1382 
1383 	if (AR_SREV_9100(ah))
1384 		udelay(50);
1385 
1386 	return true;
1387 }
1388 
1389 static bool ath9k_hw_set_reset_power_on(struct ath_hw *ah)
1390 {
1391 	ENABLE_REGWRITE_BUFFER(ah);
1392 
1393 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1394 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1395 		udelay(10);
1396 	}
1397 
1398 	REG_WRITE(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN |
1399 		  AR_RTC_FORCE_WAKE_ON_INT);
1400 
1401 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1402 		REG_WRITE(ah, AR_RC, AR_RC_AHB);
1403 
1404 	REG_WRITE(ah, AR_RTC_RESET, 0);
1405 
1406 	REGWRITE_BUFFER_FLUSH(ah);
1407 
1408 	if (!AR_SREV_9300_20_OR_LATER(ah))
1409 		udelay(2);
1410 
1411 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
1412 		REG_WRITE(ah, AR_RC, 0);
1413 
1414 	REG_WRITE(ah, AR_RTC_RESET, 1);
1415 
1416 	if (!ath9k_hw_wait(ah,
1417 			   AR_RTC_STATUS,
1418 			   AR_RTC_STATUS_M,
1419 			   AR_RTC_STATUS_ON,
1420 			   AH_WAIT_TIMEOUT)) {
1421 		ath_dbg(ath9k_hw_common(ah), RESET, "RTC not waking up\n");
1422 		return false;
1423 	}
1424 
1425 	return ath9k_hw_set_reset(ah, ATH9K_RESET_WARM);
1426 }
1427 
1428 static bool ath9k_hw_set_reset_reg(struct ath_hw *ah, u32 type)
1429 {
1430 	bool ret = false;
1431 
1432 	if (AR_SREV_9300_20_OR_LATER(ah)) {
1433 		REG_WRITE(ah, AR_WA, ah->WARegVal);
1434 		udelay(10);
1435 	}
1436 
1437 	REG_WRITE(ah, AR_RTC_FORCE_WAKE,
1438 		  AR_RTC_FORCE_WAKE_EN | AR_RTC_FORCE_WAKE_ON_INT);
1439 
1440 	if (!ah->reset_power_on)
1441 		type = ATH9K_RESET_POWER_ON;
1442 
1443 	switch (type) {
1444 	case ATH9K_RESET_POWER_ON:
1445 		ret = ath9k_hw_set_reset_power_on(ah);
1446 		if (ret)
1447 			ah->reset_power_on = true;
1448 		break;
1449 	case ATH9K_RESET_WARM:
1450 	case ATH9K_RESET_COLD:
1451 		ret = ath9k_hw_set_reset(ah, type);
1452 		break;
1453 	default:
1454 		break;
1455 	}
1456 
1457 	return ret;
1458 }
1459 
1460 static bool ath9k_hw_chip_reset(struct ath_hw *ah,
1461 				struct ath9k_channel *chan)
1462 {
1463 	int reset_type = ATH9K_RESET_WARM;
1464 
1465 	if (AR_SREV_9280(ah)) {
1466 		if (ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL))
1467 			reset_type = ATH9K_RESET_POWER_ON;
1468 		else
1469 			reset_type = ATH9K_RESET_COLD;
1470 	} else if (ah->chip_fullsleep || REG_READ(ah, AR_Q_TXE) ||
1471 		   (REG_READ(ah, AR_CR) & AR_CR_RXE))
1472 		reset_type = ATH9K_RESET_COLD;
1473 
1474 	if (!ath9k_hw_set_reset_reg(ah, reset_type))
1475 		return false;
1476 
1477 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1478 		return false;
1479 
1480 	ah->chip_fullsleep = false;
1481 
1482 	if (AR_SREV_9330(ah))
1483 		ar9003_hw_internal_regulator_apply(ah);
1484 	ath9k_hw_init_pll(ah, chan);
1485 	ath9k_hw_set_rfmode(ah, chan);
1486 
1487 	return true;
1488 }
1489 
1490 static bool ath9k_hw_channel_change(struct ath_hw *ah,
1491 				    struct ath9k_channel *chan)
1492 {
1493 	struct ath_common *common = ath9k_hw_common(ah);
1494 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1495 	bool band_switch = false, mode_diff = false;
1496 	u8 ini_reloaded = 0;
1497 	u32 qnum;
1498 	int r;
1499 
1500 	if (pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH) {
1501 		u32 cur = ah->curchan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ);
1502 		u32 new = chan->channelFlags & (CHANNEL_2GHZ | CHANNEL_5GHZ);
1503 		band_switch = (cur != new);
1504 		mode_diff = (chan->chanmode != ah->curchan->chanmode);
1505 	}
1506 
1507 	for (qnum = 0; qnum < AR_NUM_QCU; qnum++) {
1508 		if (ath9k_hw_numtxpending(ah, qnum)) {
1509 			ath_dbg(common, QUEUE,
1510 				"Transmit frames pending on queue %d\n", qnum);
1511 			return false;
1512 		}
1513 	}
1514 
1515 	if (!ath9k_hw_rfbus_req(ah)) {
1516 		ath_err(common, "Could not kill baseband RX\n");
1517 		return false;
1518 	}
1519 
1520 	if (band_switch || mode_diff) {
1521 		ath9k_hw_mark_phy_inactive(ah);
1522 		udelay(5);
1523 
1524 		if (band_switch)
1525 			ath9k_hw_init_pll(ah, chan);
1526 
1527 		if (ath9k_hw_fast_chan_change(ah, chan, &ini_reloaded)) {
1528 			ath_err(common, "Failed to do fast channel change\n");
1529 			return false;
1530 		}
1531 	}
1532 
1533 	ath9k_hw_set_channel_regs(ah, chan);
1534 
1535 	r = ath9k_hw_rf_set_freq(ah, chan);
1536 	if (r) {
1537 		ath_err(common, "Failed to set channel\n");
1538 		return false;
1539 	}
1540 	ath9k_hw_set_clockrate(ah);
1541 	ath9k_hw_apply_txpower(ah, chan, false);
1542 
1543 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1544 		ath9k_hw_set_delta_slope(ah, chan);
1545 
1546 	ath9k_hw_spur_mitigate_freq(ah, chan);
1547 
1548 	if (band_switch || ini_reloaded)
1549 		ah->eep_ops->set_board_values(ah, chan);
1550 
1551 	ath9k_hw_init_bb(ah, chan);
1552 	ath9k_hw_rfbus_done(ah);
1553 
1554 	if (band_switch || ini_reloaded) {
1555 		ah->ah_flags |= AH_FASTCC;
1556 		ath9k_hw_init_cal(ah, chan);
1557 		ah->ah_flags &= ~AH_FASTCC;
1558 	}
1559 
1560 	return true;
1561 }
1562 
1563 static void ath9k_hw_apply_gpio_override(struct ath_hw *ah)
1564 {
1565 	u32 gpio_mask = ah->gpio_mask;
1566 	int i;
1567 
1568 	for (i = 0; gpio_mask; i++, gpio_mask >>= 1) {
1569 		if (!(gpio_mask & 1))
1570 			continue;
1571 
1572 		ath9k_hw_cfg_output(ah, i, AR_GPIO_OUTPUT_MUX_AS_OUTPUT);
1573 		ath9k_hw_set_gpio(ah, i, !!(ah->gpio_val & BIT(i)));
1574 	}
1575 }
1576 
1577 static bool ath9k_hw_check_dcs(u32 dma_dbg, u32 num_dcu_states,
1578 			       int *hang_state, int *hang_pos)
1579 {
1580 	static u32 dcu_chain_state[] = {5, 6, 9}; /* DCU chain stuck states */
1581 	u32 chain_state, dcs_pos, i;
1582 
1583 	for (dcs_pos = 0; dcs_pos < num_dcu_states; dcs_pos++) {
1584 		chain_state = (dma_dbg >> (5 * dcs_pos)) & 0x1f;
1585 		for (i = 0; i < 3; i++) {
1586 			if (chain_state == dcu_chain_state[i]) {
1587 				*hang_state = chain_state;
1588 				*hang_pos = dcs_pos;
1589 				return true;
1590 			}
1591 		}
1592 	}
1593 	return false;
1594 }
1595 
1596 #define DCU_COMPLETE_STATE        1
1597 #define DCU_COMPLETE_STATE_MASK 0x3
1598 #define NUM_STATUS_READS         50
1599 static bool ath9k_hw_detect_mac_hang(struct ath_hw *ah)
1600 {
1601 	u32 chain_state, comp_state, dcs_reg = AR_DMADBG_4;
1602 	u32 i, hang_pos, hang_state, num_state = 6;
1603 
1604 	comp_state = REG_READ(ah, AR_DMADBG_6);
1605 
1606 	if ((comp_state & DCU_COMPLETE_STATE_MASK) != DCU_COMPLETE_STATE) {
1607 		ath_dbg(ath9k_hw_common(ah), RESET,
1608 			"MAC Hang signature not found at DCU complete\n");
1609 		return false;
1610 	}
1611 
1612 	chain_state = REG_READ(ah, dcs_reg);
1613 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1614 		goto hang_check_iter;
1615 
1616 	dcs_reg = AR_DMADBG_5;
1617 	num_state = 4;
1618 	chain_state = REG_READ(ah, dcs_reg);
1619 	if (ath9k_hw_check_dcs(chain_state, num_state, &hang_state, &hang_pos))
1620 		goto hang_check_iter;
1621 
1622 	ath_dbg(ath9k_hw_common(ah), RESET,
1623 		"MAC Hang signature 1 not found\n");
1624 	return false;
1625 
1626 hang_check_iter:
1627 	ath_dbg(ath9k_hw_common(ah), RESET,
1628 		"DCU registers: chain %08x complete %08x Hang: state %d pos %d\n",
1629 		chain_state, comp_state, hang_state, hang_pos);
1630 
1631 	for (i = 0; i < NUM_STATUS_READS; i++) {
1632 		chain_state = REG_READ(ah, dcs_reg);
1633 		chain_state = (chain_state >> (5 * hang_pos)) & 0x1f;
1634 		comp_state = REG_READ(ah, AR_DMADBG_6);
1635 
1636 		if (((comp_state & DCU_COMPLETE_STATE_MASK) !=
1637 					DCU_COMPLETE_STATE) ||
1638 		    (chain_state != hang_state))
1639 			return false;
1640 	}
1641 
1642 	ath_dbg(ath9k_hw_common(ah), RESET, "MAC Hang signature 1 found\n");
1643 
1644 	return true;
1645 }
1646 
1647 bool ath9k_hw_check_alive(struct ath_hw *ah)
1648 {
1649 	int count = 50;
1650 	u32 reg;
1651 
1652 	if (AR_SREV_9300(ah))
1653 		return !ath9k_hw_detect_mac_hang(ah);
1654 
1655 	if (AR_SREV_9285_12_OR_LATER(ah))
1656 		return true;
1657 
1658 	do {
1659 		reg = REG_READ(ah, AR_OBS_BUS_1);
1660 
1661 		if ((reg & 0x7E7FFFEF) == 0x00702400)
1662 			continue;
1663 
1664 		switch (reg & 0x7E000B00) {
1665 		case 0x1E000000:
1666 		case 0x52000B00:
1667 		case 0x18000B00:
1668 			continue;
1669 		default:
1670 			return true;
1671 		}
1672 	} while (count-- > 0);
1673 
1674 	return false;
1675 }
1676 EXPORT_SYMBOL(ath9k_hw_check_alive);
1677 
1678 static void ath9k_hw_init_mfp(struct ath_hw *ah)
1679 {
1680 	/* Setup MFP options for CCMP */
1681 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1682 		/* Mask Retry(b11), PwrMgt(b12), MoreData(b13) to 0 in mgmt
1683 		 * frames when constructing CCMP AAD. */
1684 		REG_RMW_FIELD(ah, AR_AES_MUTE_MASK1, AR_AES_MUTE_MASK1_FC_MGMT,
1685 			      0xc7ff);
1686 		ah->sw_mgmt_crypto = false;
1687 	} else if (AR_SREV_9160_10_OR_LATER(ah)) {
1688 		/* Disable hardware crypto for management frames */
1689 		REG_CLR_BIT(ah, AR_PCU_MISC_MODE2,
1690 			    AR_PCU_MISC_MODE2_MGMT_CRYPTO_ENABLE);
1691 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1692 			    AR_PCU_MISC_MODE2_NO_CRYPTO_FOR_NON_DATA_PKT);
1693 		ah->sw_mgmt_crypto = true;
1694 	} else {
1695 		ah->sw_mgmt_crypto = true;
1696 	}
1697 }
1698 
1699 static void ath9k_hw_reset_opmode(struct ath_hw *ah,
1700 				  u32 macStaId1, u32 saveDefAntenna)
1701 {
1702 	struct ath_common *common = ath9k_hw_common(ah);
1703 
1704 	ENABLE_REGWRITE_BUFFER(ah);
1705 
1706 	REG_RMW(ah, AR_STA_ID1, macStaId1
1707 		  | AR_STA_ID1_RTS_USE_DEF
1708 		  | (ah->config.ack_6mb ? AR_STA_ID1_ACKCTS_6MB : 0)
1709 		  | ah->sta_id1_defaults,
1710 		  ~AR_STA_ID1_SADH_MASK);
1711 	ath_hw_setbssidmask(common);
1712 	REG_WRITE(ah, AR_DEF_ANTENNA, saveDefAntenna);
1713 	ath9k_hw_write_associd(ah);
1714 	REG_WRITE(ah, AR_ISR, ~0);
1715 	REG_WRITE(ah, AR_RSSI_THR, INIT_RSSI_THR);
1716 
1717 	REGWRITE_BUFFER_FLUSH(ah);
1718 
1719 	ath9k_hw_set_operating_mode(ah, ah->opmode);
1720 }
1721 
1722 static void ath9k_hw_init_queues(struct ath_hw *ah)
1723 {
1724 	int i;
1725 
1726 	ENABLE_REGWRITE_BUFFER(ah);
1727 
1728 	for (i = 0; i < AR_NUM_DCU; i++)
1729 		REG_WRITE(ah, AR_DQCUMASK(i), 1 << i);
1730 
1731 	REGWRITE_BUFFER_FLUSH(ah);
1732 
1733 	ah->intr_txqs = 0;
1734 	for (i = 0; i < ATH9K_NUM_TX_QUEUES; i++)
1735 		ath9k_hw_resettxqueue(ah, i);
1736 }
1737 
1738 /*
1739  * For big endian systems turn on swapping for descriptors
1740  */
1741 static void ath9k_hw_init_desc(struct ath_hw *ah)
1742 {
1743 	struct ath_common *common = ath9k_hw_common(ah);
1744 
1745 	if (AR_SREV_9100(ah)) {
1746 		u32 mask;
1747 		mask = REG_READ(ah, AR_CFG);
1748 		if (mask & (AR_CFG_SWRB | AR_CFG_SWTB | AR_CFG_SWRG)) {
1749 			ath_dbg(common, RESET, "CFG Byte Swap Set 0x%x\n",
1750 				mask);
1751 		} else {
1752 			mask = INIT_CONFIG_STATUS | AR_CFG_SWRB | AR_CFG_SWTB;
1753 			REG_WRITE(ah, AR_CFG, mask);
1754 			ath_dbg(common, RESET, "Setting CFG 0x%x\n",
1755 				REG_READ(ah, AR_CFG));
1756 		}
1757 	} else {
1758 		if (common->bus_ops->ath_bus_type == ATH_USB) {
1759 			/* Configure AR9271 target WLAN */
1760 			if (AR_SREV_9271(ah))
1761 				REG_WRITE(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB);
1762 			else
1763 				REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1764 		}
1765 #ifdef __BIG_ENDIAN
1766 		else if (AR_SREV_9330(ah) || AR_SREV_9340(ah) ||
1767 			 AR_SREV_9550(ah))
1768 			REG_RMW(ah, AR_CFG, AR_CFG_SWRB | AR_CFG_SWTB, 0);
1769 		else
1770 			REG_WRITE(ah, AR_CFG, AR_CFG_SWTD | AR_CFG_SWRD);
1771 #endif
1772 	}
1773 }
1774 
1775 /*
1776  * Fast channel change:
1777  * (Change synthesizer based on channel freq without resetting chip)
1778  */
1779 static int ath9k_hw_do_fastcc(struct ath_hw *ah, struct ath9k_channel *chan)
1780 {
1781 	struct ath_common *common = ath9k_hw_common(ah);
1782 	struct ath9k_hw_capabilities *pCap = &ah->caps;
1783 	int ret;
1784 
1785 	if (AR_SREV_9280(ah) && common->bus_ops->ath_bus_type == ATH_PCI)
1786 		goto fail;
1787 
1788 	if (ah->chip_fullsleep)
1789 		goto fail;
1790 
1791 	if (!ah->curchan)
1792 		goto fail;
1793 
1794 	if (chan->channel == ah->curchan->channel)
1795 		goto fail;
1796 
1797 	if ((ah->curchan->channelFlags | chan->channelFlags) &
1798 	    (CHANNEL_HALF | CHANNEL_QUARTER))
1799 		goto fail;
1800 
1801 	/*
1802 	 * If cross-band fcc is not supoprted, bail out if
1803 	 * either channelFlags or chanmode differ.
1804 	 *
1805 	 * chanmode will be different if the HT operating mode
1806 	 * changes because of CSA.
1807 	 */
1808 	if (!(pCap->hw_caps & ATH9K_HW_CAP_FCC_BAND_SWITCH)) {
1809 		if ((chan->channelFlags & CHANNEL_ALL) !=
1810 		    (ah->curchan->channelFlags & CHANNEL_ALL))
1811 			goto fail;
1812 
1813 		if (chan->chanmode != ah->curchan->chanmode)
1814 			goto fail;
1815 	}
1816 
1817 	if (!ath9k_hw_check_alive(ah))
1818 		goto fail;
1819 
1820 	/*
1821 	 * For AR9462, make sure that calibration data for
1822 	 * re-using are present.
1823 	 */
1824 	if (AR_SREV_9462(ah) && (ah->caldata &&
1825 				 (!ah->caldata->done_txiqcal_once ||
1826 				  !ah->caldata->done_txclcal_once ||
1827 				  !ah->caldata->rtt_done)))
1828 		goto fail;
1829 
1830 	ath_dbg(common, RESET, "FastChannelChange for %d -> %d\n",
1831 		ah->curchan->channel, chan->channel);
1832 
1833 	ret = ath9k_hw_channel_change(ah, chan);
1834 	if (!ret)
1835 		goto fail;
1836 
1837 	if (ath9k_hw_mci_is_enabled(ah))
1838 		ar9003_mci_2g5g_switch(ah, false);
1839 
1840 	ath9k_hw_loadnf(ah, ah->curchan);
1841 	ath9k_hw_start_nfcal(ah, true);
1842 
1843 	if (AR_SREV_9271(ah))
1844 		ar9002_hw_load_ani_reg(ah, chan);
1845 
1846 	return 0;
1847 fail:
1848 	return -EINVAL;
1849 }
1850 
1851 int ath9k_hw_reset(struct ath_hw *ah, struct ath9k_channel *chan,
1852 		   struct ath9k_hw_cal_data *caldata, bool fastcc)
1853 {
1854 	struct ath_common *common = ath9k_hw_common(ah);
1855 	u32 saveLedState;
1856 	u32 saveDefAntenna;
1857 	u32 macStaId1;
1858 	u64 tsf = 0;
1859 	int r;
1860 	bool start_mci_reset = false;
1861 	bool save_fullsleep = ah->chip_fullsleep;
1862 
1863 	if (ath9k_hw_mci_is_enabled(ah)) {
1864 		start_mci_reset = ar9003_mci_start_reset(ah, chan);
1865 		if (start_mci_reset)
1866 			return 0;
1867 	}
1868 
1869 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
1870 		return -EIO;
1871 
1872 	if (ah->curchan && !ah->chip_fullsleep)
1873 		ath9k_hw_getnf(ah, ah->curchan);
1874 
1875 	ah->caldata = caldata;
1876 	if (caldata && (chan->channel != caldata->channel ||
1877 			chan->channelFlags != caldata->channelFlags ||
1878 			chan->chanmode != caldata->chanmode)) {
1879 		/* Operating channel changed, reset channel calibration data */
1880 		memset(caldata, 0, sizeof(*caldata));
1881 		ath9k_init_nfcal_hist_buffer(ah, chan);
1882 	} else if (caldata) {
1883 		caldata->paprd_packet_sent = false;
1884 	}
1885 	ah->noise = ath9k_hw_getchan_noise(ah, chan);
1886 
1887 	if (fastcc) {
1888 		r = ath9k_hw_do_fastcc(ah, chan);
1889 		if (!r)
1890 			return r;
1891 	}
1892 
1893 	if (ath9k_hw_mci_is_enabled(ah))
1894 		ar9003_mci_stop_bt(ah, save_fullsleep);
1895 
1896 	saveDefAntenna = REG_READ(ah, AR_DEF_ANTENNA);
1897 	if (saveDefAntenna == 0)
1898 		saveDefAntenna = 1;
1899 
1900 	macStaId1 = REG_READ(ah, AR_STA_ID1) & AR_STA_ID1_BASE_RATE_11B;
1901 
1902 	/* For chips on which RTC reset is done, save TSF before it gets cleared */
1903 	if (AR_SREV_9100(ah) ||
1904 	    (AR_SREV_9280(ah) && ah->eep_ops->get_eeprom(ah, EEP_OL_PWRCTRL)))
1905 		tsf = ath9k_hw_gettsf64(ah);
1906 
1907 	saveLedState = REG_READ(ah, AR_CFG_LED) &
1908 		(AR_CFG_LED_ASSOC_CTL | AR_CFG_LED_MODE_SEL |
1909 		 AR_CFG_LED_BLINK_THRESH_SEL | AR_CFG_LED_BLINK_SLOW);
1910 
1911 	ath9k_hw_mark_phy_inactive(ah);
1912 
1913 	ah->paprd_table_write_done = false;
1914 
1915 	/* Only required on the first reset */
1916 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1917 		REG_WRITE(ah,
1918 			  AR9271_RESET_POWER_DOWN_CONTROL,
1919 			  AR9271_RADIO_RF_RST);
1920 		udelay(50);
1921 	}
1922 
1923 	if (!ath9k_hw_chip_reset(ah, chan)) {
1924 		ath_err(common, "Chip reset failed\n");
1925 		return -EINVAL;
1926 	}
1927 
1928 	/* Only required on the first reset */
1929 	if (AR_SREV_9271(ah) && ah->htc_reset_init) {
1930 		ah->htc_reset_init = false;
1931 		REG_WRITE(ah,
1932 			  AR9271_RESET_POWER_DOWN_CONTROL,
1933 			  AR9271_GATE_MAC_CTL);
1934 		udelay(50);
1935 	}
1936 
1937 	/* Restore TSF */
1938 	if (tsf)
1939 		ath9k_hw_settsf64(ah, tsf);
1940 
1941 	if (AR_SREV_9280_20_OR_LATER(ah))
1942 		REG_SET_BIT(ah, AR_GPIO_INPUT_EN_VAL, AR_GPIO_JTAG_DISABLE);
1943 
1944 	if (!AR_SREV_9300_20_OR_LATER(ah))
1945 		ar9002_hw_enable_async_fifo(ah);
1946 
1947 	r = ath9k_hw_process_ini(ah, chan);
1948 	if (r)
1949 		return r;
1950 
1951 	if (ath9k_hw_mci_is_enabled(ah))
1952 		ar9003_mci_reset(ah, false, IS_CHAN_2GHZ(chan), save_fullsleep);
1953 
1954 	/*
1955 	 * Some AR91xx SoC devices frequently fail to accept TSF writes
1956 	 * right after the chip reset. When that happens, write a new
1957 	 * value after the initvals have been applied, with an offset
1958 	 * based on measured time difference
1959 	 */
1960 	if (AR_SREV_9100(ah) && (ath9k_hw_gettsf64(ah) < tsf)) {
1961 		tsf += 1500;
1962 		ath9k_hw_settsf64(ah, tsf);
1963 	}
1964 
1965 	ath9k_hw_init_mfp(ah);
1966 
1967 	if (IS_CHAN_OFDM(chan) || IS_CHAN_HT(chan))
1968 		ath9k_hw_set_delta_slope(ah, chan);
1969 
1970 	ath9k_hw_spur_mitigate_freq(ah, chan);
1971 	ah->eep_ops->set_board_values(ah, chan);
1972 
1973 	ath9k_hw_reset_opmode(ah, macStaId1, saveDefAntenna);
1974 
1975 	r = ath9k_hw_rf_set_freq(ah, chan);
1976 	if (r)
1977 		return r;
1978 
1979 	ath9k_hw_set_clockrate(ah);
1980 
1981 	ath9k_hw_init_queues(ah);
1982 	ath9k_hw_init_interrupt_masks(ah, ah->opmode);
1983 	ath9k_hw_ani_cache_ini_regs(ah);
1984 	ath9k_hw_init_qos(ah);
1985 
1986 	if (ah->caps.hw_caps & ATH9K_HW_CAP_RFSILENT)
1987 		ath9k_hw_cfg_gpio_input(ah, ah->rfkill_gpio);
1988 
1989 	ath9k_hw_init_global_settings(ah);
1990 
1991 	if (AR_SREV_9287(ah) && AR_SREV_9287_13_OR_LATER(ah)) {
1992 		REG_SET_BIT(ah, AR_MAC_PCU_LOGIC_ANALYZER,
1993 			    AR_MAC_PCU_LOGIC_ANALYZER_DISBUG20768);
1994 		REG_RMW_FIELD(ah, AR_AHB_MODE, AR_AHB_CUSTOM_BURST_EN,
1995 			      AR_AHB_CUSTOM_BURST_ASYNC_FIFO_VAL);
1996 		REG_SET_BIT(ah, AR_PCU_MISC_MODE2,
1997 			    AR_PCU_MISC_MODE2_ENABLE_AGGWEP);
1998 	}
1999 
2000 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PRESERVE_SEQNUM);
2001 
2002 	ath9k_hw_set_dma(ah);
2003 
2004 	if (!ath9k_hw_mci_is_enabled(ah))
2005 		REG_WRITE(ah, AR_OBS, 8);
2006 
2007 	if (ah->config.rx_intr_mitigation) {
2008 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_LAST, 500);
2009 		REG_RMW_FIELD(ah, AR_RIMT, AR_RIMT_FIRST, 2000);
2010 	}
2011 
2012 	if (ah->config.tx_intr_mitigation) {
2013 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_LAST, 300);
2014 		REG_RMW_FIELD(ah, AR_TIMT, AR_TIMT_FIRST, 750);
2015 	}
2016 
2017 	ath9k_hw_init_bb(ah, chan);
2018 
2019 	if (caldata) {
2020 		caldata->done_txiqcal_once = false;
2021 		caldata->done_txclcal_once = false;
2022 	}
2023 	if (!ath9k_hw_init_cal(ah, chan))
2024 		return -EIO;
2025 
2026 	if (ath9k_hw_mci_is_enabled(ah) && ar9003_mci_end_reset(ah, chan, caldata))
2027 		return -EIO;
2028 
2029 	ENABLE_REGWRITE_BUFFER(ah);
2030 
2031 	ath9k_hw_restore_chainmask(ah);
2032 	REG_WRITE(ah, AR_CFG_LED, saveLedState | AR_CFG_SCLK_32KHZ);
2033 
2034 	REGWRITE_BUFFER_FLUSH(ah);
2035 
2036 	ath9k_hw_init_desc(ah);
2037 
2038 	if (ath9k_hw_btcoex_is_enabled(ah))
2039 		ath9k_hw_btcoex_enable(ah);
2040 
2041 	if (ath9k_hw_mci_is_enabled(ah))
2042 		ar9003_mci_check_bt(ah);
2043 
2044 	ath9k_hw_loadnf(ah, chan);
2045 	ath9k_hw_start_nfcal(ah, true);
2046 
2047 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2048 		ar9003_hw_bb_watchdog_config(ah);
2049 		ar9003_hw_disable_phy_restart(ah);
2050 	}
2051 
2052 	ath9k_hw_apply_gpio_override(ah);
2053 
2054 	if (AR_SREV_9565(ah) && common->bt_ant_diversity)
2055 		REG_SET_BIT(ah, AR_BTCOEX_WL_LNADIV, AR_BTCOEX_WL_LNADIV_FORCE_ON);
2056 
2057 	return 0;
2058 }
2059 EXPORT_SYMBOL(ath9k_hw_reset);
2060 
2061 /******************************/
2062 /* Power Management (Chipset) */
2063 /******************************/
2064 
2065 /*
2066  * Notify Power Mgt is disabled in self-generated frames.
2067  * If requested, force chip to sleep.
2068  */
2069 static void ath9k_set_power_sleep(struct ath_hw *ah)
2070 {
2071 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2072 
2073 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2074 		REG_CLR_BIT(ah, AR_TIMER_MODE, 0xff);
2075 		REG_CLR_BIT(ah, AR_NDP2_TIMER_MODE, 0xff);
2076 		REG_CLR_BIT(ah, AR_SLP32_INC, 0xfffff);
2077 		/* xxx Required for WLAN only case ? */
2078 		REG_WRITE(ah, AR_MCI_INTERRUPT_RX_MSG_EN, 0);
2079 		udelay(100);
2080 	}
2081 
2082 	/*
2083 	 * Clear the RTC force wake bit to allow the
2084 	 * mac to go to sleep.
2085 	 */
2086 	REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2087 
2088 	if (ath9k_hw_mci_is_enabled(ah))
2089 		udelay(100);
2090 
2091 	if (!AR_SREV_9100(ah) && !AR_SREV_9300_20_OR_LATER(ah))
2092 		REG_WRITE(ah, AR_RC, AR_RC_AHB | AR_RC_HOSTIF);
2093 
2094 	/* Shutdown chip. Active low */
2095 	if (!AR_SREV_5416(ah) && !AR_SREV_9271(ah)) {
2096 		REG_CLR_BIT(ah, AR_RTC_RESET, AR_RTC_RESET_EN);
2097 		udelay(2);
2098 	}
2099 
2100 	/* Clear Bit 14 of AR_WA after putting chip into Full Sleep mode. */
2101 	if (AR_SREV_9300_20_OR_LATER(ah))
2102 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2103 }
2104 
2105 /*
2106  * Notify Power Management is enabled in self-generating
2107  * frames. If request, set power mode of chip to
2108  * auto/normal.  Duration in units of 128us (1/8 TU).
2109  */
2110 static void ath9k_set_power_network_sleep(struct ath_hw *ah)
2111 {
2112 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2113 
2114 	REG_SET_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2115 
2116 	if (!(pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)) {
2117 		/* Set WakeOnInterrupt bit; clear ForceWake bit */
2118 		REG_WRITE(ah, AR_RTC_FORCE_WAKE,
2119 			  AR_RTC_FORCE_WAKE_ON_INT);
2120 	} else {
2121 
2122 		/* When chip goes into network sleep, it could be waken
2123 		 * up by MCI_INT interrupt caused by BT's HW messages
2124 		 * (LNA_xxx, CONT_xxx) which chould be in a very fast
2125 		 * rate (~100us). This will cause chip to leave and
2126 		 * re-enter network sleep mode frequently, which in
2127 		 * consequence will have WLAN MCI HW to generate lots of
2128 		 * SYS_WAKING and SYS_SLEEPING messages which will make
2129 		 * BT CPU to busy to process.
2130 		 */
2131 		if (ath9k_hw_mci_is_enabled(ah))
2132 			REG_CLR_BIT(ah, AR_MCI_INTERRUPT_RX_MSG_EN,
2133 				    AR_MCI_INTERRUPT_RX_HW_MSG_MASK);
2134 		/*
2135 		 * Clear the RTC force wake bit to allow the
2136 		 * mac to go to sleep.
2137 		 */
2138 		REG_CLR_BIT(ah, AR_RTC_FORCE_WAKE, AR_RTC_FORCE_WAKE_EN);
2139 
2140 		if (ath9k_hw_mci_is_enabled(ah))
2141 			udelay(30);
2142 	}
2143 
2144 	/* Clear Bit 14 of AR_WA after putting chip into Net Sleep mode. */
2145 	if (AR_SREV_9300_20_OR_LATER(ah))
2146 		REG_WRITE(ah, AR_WA, ah->WARegVal & ~AR_WA_D3_L1_DISABLE);
2147 }
2148 
2149 static bool ath9k_hw_set_power_awake(struct ath_hw *ah)
2150 {
2151 	u32 val;
2152 	int i;
2153 
2154 	/* Set Bits 14 and 17 of AR_WA before powering on the chip. */
2155 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2156 		REG_WRITE(ah, AR_WA, ah->WARegVal);
2157 		udelay(10);
2158 	}
2159 
2160 	if ((REG_READ(ah, AR_RTC_STATUS) &
2161 	     AR_RTC_STATUS_M) == AR_RTC_STATUS_SHUTDOWN) {
2162 		if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_POWER_ON)) {
2163 			return false;
2164 		}
2165 		if (!AR_SREV_9300_20_OR_LATER(ah))
2166 			ath9k_hw_init_pll(ah, NULL);
2167 	}
2168 	if (AR_SREV_9100(ah))
2169 		REG_SET_BIT(ah, AR_RTC_RESET,
2170 			    AR_RTC_RESET_EN);
2171 
2172 	REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2173 		    AR_RTC_FORCE_WAKE_EN);
2174 	udelay(50);
2175 
2176 	for (i = POWER_UP_TIME / 50; i > 0; i--) {
2177 		val = REG_READ(ah, AR_RTC_STATUS) & AR_RTC_STATUS_M;
2178 		if (val == AR_RTC_STATUS_ON)
2179 			break;
2180 		udelay(50);
2181 		REG_SET_BIT(ah, AR_RTC_FORCE_WAKE,
2182 			    AR_RTC_FORCE_WAKE_EN);
2183 	}
2184 	if (i == 0) {
2185 		ath_err(ath9k_hw_common(ah),
2186 			"Failed to wakeup in %uus\n",
2187 			POWER_UP_TIME / 20);
2188 		return false;
2189 	}
2190 
2191 	if (ath9k_hw_mci_is_enabled(ah))
2192 		ar9003_mci_set_power_awake(ah);
2193 
2194 	REG_CLR_BIT(ah, AR_STA_ID1, AR_STA_ID1_PWR_SAV);
2195 
2196 	return true;
2197 }
2198 
2199 bool ath9k_hw_setpower(struct ath_hw *ah, enum ath9k_power_mode mode)
2200 {
2201 	struct ath_common *common = ath9k_hw_common(ah);
2202 	int status = true;
2203 	static const char *modes[] = {
2204 		"AWAKE",
2205 		"FULL-SLEEP",
2206 		"NETWORK SLEEP",
2207 		"UNDEFINED"
2208 	};
2209 
2210 	if (ah->power_mode == mode)
2211 		return status;
2212 
2213 	ath_dbg(common, RESET, "%s -> %s\n",
2214 		modes[ah->power_mode], modes[mode]);
2215 
2216 	switch (mode) {
2217 	case ATH9K_PM_AWAKE:
2218 		status = ath9k_hw_set_power_awake(ah);
2219 		break;
2220 	case ATH9K_PM_FULL_SLEEP:
2221 		if (ath9k_hw_mci_is_enabled(ah))
2222 			ar9003_mci_set_full_sleep(ah);
2223 
2224 		ath9k_set_power_sleep(ah);
2225 		ah->chip_fullsleep = true;
2226 		break;
2227 	case ATH9K_PM_NETWORK_SLEEP:
2228 		ath9k_set_power_network_sleep(ah);
2229 		break;
2230 	default:
2231 		ath_err(common, "Unknown power mode %u\n", mode);
2232 		return false;
2233 	}
2234 	ah->power_mode = mode;
2235 
2236 	/*
2237 	 * XXX: If this warning never comes up after a while then
2238 	 * simply keep the ATH_DBG_WARN_ON_ONCE() but make
2239 	 * ath9k_hw_setpower() return type void.
2240 	 */
2241 
2242 	if (!(ah->ah_flags & AH_UNPLUGGED))
2243 		ATH_DBG_WARN_ON_ONCE(!status);
2244 
2245 	return status;
2246 }
2247 EXPORT_SYMBOL(ath9k_hw_setpower);
2248 
2249 /*******************/
2250 /* Beacon Handling */
2251 /*******************/
2252 
2253 void ath9k_hw_beaconinit(struct ath_hw *ah, u32 next_beacon, u32 beacon_period)
2254 {
2255 	int flags = 0;
2256 
2257 	ENABLE_REGWRITE_BUFFER(ah);
2258 
2259 	switch (ah->opmode) {
2260 	case NL80211_IFTYPE_ADHOC:
2261 		REG_SET_BIT(ah, AR_TXCFG,
2262 			    AR_TXCFG_ADHOC_BEACON_ATIM_TX_POLICY);
2263 		REG_WRITE(ah, AR_NEXT_NDP_TIMER, next_beacon +
2264 			  TU_TO_USEC(ah->atim_window ? ah->atim_window : 1));
2265 		flags |= AR_NDP_TIMER_EN;
2266 	case NL80211_IFTYPE_MESH_POINT:
2267 	case NL80211_IFTYPE_AP:
2268 		REG_WRITE(ah, AR_NEXT_TBTT_TIMER, next_beacon);
2269 		REG_WRITE(ah, AR_NEXT_DMA_BEACON_ALERT, next_beacon -
2270 			  TU_TO_USEC(ah->config.dma_beacon_response_time));
2271 		REG_WRITE(ah, AR_NEXT_SWBA, next_beacon -
2272 			  TU_TO_USEC(ah->config.sw_beacon_response_time));
2273 		flags |=
2274 			AR_TBTT_TIMER_EN | AR_DBA_TIMER_EN | AR_SWBA_TIMER_EN;
2275 		break;
2276 	default:
2277 		ath_dbg(ath9k_hw_common(ah), BEACON,
2278 			"%s: unsupported opmode: %d\n", __func__, ah->opmode);
2279 		return;
2280 		break;
2281 	}
2282 
2283 	REG_WRITE(ah, AR_BEACON_PERIOD, beacon_period);
2284 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD, beacon_period);
2285 	REG_WRITE(ah, AR_SWBA_PERIOD, beacon_period);
2286 	REG_WRITE(ah, AR_NDP_PERIOD, beacon_period);
2287 
2288 	REGWRITE_BUFFER_FLUSH(ah);
2289 
2290 	REG_SET_BIT(ah, AR_TIMER_MODE, flags);
2291 }
2292 EXPORT_SYMBOL(ath9k_hw_beaconinit);
2293 
2294 void ath9k_hw_set_sta_beacon_timers(struct ath_hw *ah,
2295 				    const struct ath9k_beacon_state *bs)
2296 {
2297 	u32 nextTbtt, beaconintval, dtimperiod, beacontimeout;
2298 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2299 	struct ath_common *common = ath9k_hw_common(ah);
2300 
2301 	ENABLE_REGWRITE_BUFFER(ah);
2302 
2303 	REG_WRITE(ah, AR_NEXT_TBTT_TIMER, TU_TO_USEC(bs->bs_nexttbtt));
2304 
2305 	REG_WRITE(ah, AR_BEACON_PERIOD,
2306 		  TU_TO_USEC(bs->bs_intval));
2307 	REG_WRITE(ah, AR_DMA_BEACON_PERIOD,
2308 		  TU_TO_USEC(bs->bs_intval));
2309 
2310 	REGWRITE_BUFFER_FLUSH(ah);
2311 
2312 	REG_RMW_FIELD(ah, AR_RSSI_THR,
2313 		      AR_RSSI_THR_BM_THR, bs->bs_bmissthreshold);
2314 
2315 	beaconintval = bs->bs_intval;
2316 
2317 	if (bs->bs_sleepduration > beaconintval)
2318 		beaconintval = bs->bs_sleepduration;
2319 
2320 	dtimperiod = bs->bs_dtimperiod;
2321 	if (bs->bs_sleepduration > dtimperiod)
2322 		dtimperiod = bs->bs_sleepduration;
2323 
2324 	if (beaconintval == dtimperiod)
2325 		nextTbtt = bs->bs_nextdtim;
2326 	else
2327 		nextTbtt = bs->bs_nexttbtt;
2328 
2329 	ath_dbg(common, BEACON, "next DTIM %d\n", bs->bs_nextdtim);
2330 	ath_dbg(common, BEACON, "next beacon %d\n", nextTbtt);
2331 	ath_dbg(common, BEACON, "beacon period %d\n", beaconintval);
2332 	ath_dbg(common, BEACON, "DTIM period %d\n", dtimperiod);
2333 
2334 	ENABLE_REGWRITE_BUFFER(ah);
2335 
2336 	REG_WRITE(ah, AR_NEXT_DTIM,
2337 		  TU_TO_USEC(bs->bs_nextdtim - SLEEP_SLOP));
2338 	REG_WRITE(ah, AR_NEXT_TIM, TU_TO_USEC(nextTbtt - SLEEP_SLOP));
2339 
2340 	REG_WRITE(ah, AR_SLEEP1,
2341 		  SM((CAB_TIMEOUT_VAL << 3), AR_SLEEP1_CAB_TIMEOUT)
2342 		  | AR_SLEEP1_ASSUME_DTIM);
2343 
2344 	if (pCap->hw_caps & ATH9K_HW_CAP_AUTOSLEEP)
2345 		beacontimeout = (BEACON_TIMEOUT_VAL << 3);
2346 	else
2347 		beacontimeout = MIN_BEACON_TIMEOUT_VAL;
2348 
2349 	REG_WRITE(ah, AR_SLEEP2,
2350 		  SM(beacontimeout, AR_SLEEP2_BEACON_TIMEOUT));
2351 
2352 	REG_WRITE(ah, AR_TIM_PERIOD, TU_TO_USEC(beaconintval));
2353 	REG_WRITE(ah, AR_DTIM_PERIOD, TU_TO_USEC(dtimperiod));
2354 
2355 	REGWRITE_BUFFER_FLUSH(ah);
2356 
2357 	REG_SET_BIT(ah, AR_TIMER_MODE,
2358 		    AR_TBTT_TIMER_EN | AR_TIM_TIMER_EN |
2359 		    AR_DTIM_TIMER_EN);
2360 
2361 	/* TSF Out of Range Threshold */
2362 	REG_WRITE(ah, AR_TSFOOR_THRESHOLD, bs->bs_tsfoor_threshold);
2363 }
2364 EXPORT_SYMBOL(ath9k_hw_set_sta_beacon_timers);
2365 
2366 /*******************/
2367 /* HW Capabilities */
2368 /*******************/
2369 
2370 static u8 fixup_chainmask(u8 chip_chainmask, u8 eeprom_chainmask)
2371 {
2372 	eeprom_chainmask &= chip_chainmask;
2373 	if (eeprom_chainmask)
2374 		return eeprom_chainmask;
2375 	else
2376 		return chip_chainmask;
2377 }
2378 
2379 /**
2380  * ath9k_hw_dfs_tested - checks if DFS has been tested with used chipset
2381  * @ah: the atheros hardware data structure
2382  *
2383  * We enable DFS support upstream on chipsets which have passed a series
2384  * of tests. The testing requirements are going to be documented. Desired
2385  * test requirements are documented at:
2386  *
2387  * http://wireless.kernel.org/en/users/Drivers/ath9k/dfs
2388  *
2389  * Once a new chipset gets properly tested an individual commit can be used
2390  * to document the testing for DFS for that chipset.
2391  */
2392 static bool ath9k_hw_dfs_tested(struct ath_hw *ah)
2393 {
2394 
2395 	switch (ah->hw_version.macVersion) {
2396 	/* for temporary testing DFS with 9280 */
2397 	case AR_SREV_VERSION_9280:
2398 	/* AR9580 will likely be our first target to get testing on */
2399 	case AR_SREV_VERSION_9580:
2400 		return true;
2401 	default:
2402 		return false;
2403 	}
2404 }
2405 
2406 int ath9k_hw_fill_cap_info(struct ath_hw *ah)
2407 {
2408 	struct ath9k_hw_capabilities *pCap = &ah->caps;
2409 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
2410 	struct ath_common *common = ath9k_hw_common(ah);
2411 	unsigned int chip_chainmask;
2412 
2413 	u16 eeval;
2414 	u8 ant_div_ctl1, tx_chainmask, rx_chainmask;
2415 
2416 	eeval = ah->eep_ops->get_eeprom(ah, EEP_REG_0);
2417 	regulatory->current_rd = eeval;
2418 
2419 	if (ah->opmode != NL80211_IFTYPE_AP &&
2420 	    ah->hw_version.subvendorid == AR_SUBVENDOR_ID_NEW_A) {
2421 		if (regulatory->current_rd == 0x64 ||
2422 		    regulatory->current_rd == 0x65)
2423 			regulatory->current_rd += 5;
2424 		else if (regulatory->current_rd == 0x41)
2425 			regulatory->current_rd = 0x43;
2426 		ath_dbg(common, REGULATORY, "regdomain mapped to 0x%x\n",
2427 			regulatory->current_rd);
2428 	}
2429 
2430 	eeval = ah->eep_ops->get_eeprom(ah, EEP_OP_MODE);
2431 	if ((eeval & (AR5416_OPFLAGS_11G | AR5416_OPFLAGS_11A)) == 0) {
2432 		ath_err(common,
2433 			"no band has been marked as supported in EEPROM\n");
2434 		return -EINVAL;
2435 	}
2436 
2437 	if (eeval & AR5416_OPFLAGS_11A)
2438 		pCap->hw_caps |= ATH9K_HW_CAP_5GHZ;
2439 
2440 	if (eeval & AR5416_OPFLAGS_11G)
2441 		pCap->hw_caps |= ATH9K_HW_CAP_2GHZ;
2442 
2443 	if (AR_SREV_9485(ah) ||
2444 	    AR_SREV_9285(ah) ||
2445 	    AR_SREV_9330(ah) ||
2446 	    AR_SREV_9565(ah))
2447 		chip_chainmask = 1;
2448 	else if (AR_SREV_9462(ah))
2449 		chip_chainmask = 3;
2450 	else if (!AR_SREV_9280_20_OR_LATER(ah))
2451 		chip_chainmask = 7;
2452 	else if (!AR_SREV_9300_20_OR_LATER(ah) || AR_SREV_9340(ah))
2453 		chip_chainmask = 3;
2454 	else
2455 		chip_chainmask = 7;
2456 
2457 	pCap->tx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_TX_MASK);
2458 	/*
2459 	 * For AR9271 we will temporarilly uses the rx chainmax as read from
2460 	 * the EEPROM.
2461 	 */
2462 	if ((ah->hw_version.devid == AR5416_DEVID_PCI) &&
2463 	    !(eeval & AR5416_OPFLAGS_11A) &&
2464 	    !(AR_SREV_9271(ah)))
2465 		/* CB71: GPIO 0 is pulled down to indicate 3 rx chains */
2466 		pCap->rx_chainmask = ath9k_hw_gpio_get(ah, 0) ? 0x5 : 0x7;
2467 	else if (AR_SREV_9100(ah))
2468 		pCap->rx_chainmask = 0x7;
2469 	else
2470 		/* Use rx_chainmask from EEPROM. */
2471 		pCap->rx_chainmask = ah->eep_ops->get_eeprom(ah, EEP_RX_MASK);
2472 
2473 	pCap->tx_chainmask = fixup_chainmask(chip_chainmask, pCap->tx_chainmask);
2474 	pCap->rx_chainmask = fixup_chainmask(chip_chainmask, pCap->rx_chainmask);
2475 	ah->txchainmask = pCap->tx_chainmask;
2476 	ah->rxchainmask = pCap->rx_chainmask;
2477 
2478 	ah->misc_mode |= AR_PCU_MIC_NEW_LOC_ENA;
2479 
2480 	/* enable key search for every frame in an aggregate */
2481 	if (AR_SREV_9300_20_OR_LATER(ah))
2482 		ah->misc_mode |= AR_PCU_ALWAYS_PERFORM_KEYSEARCH;
2483 
2484 	common->crypt_caps |= ATH_CRYPT_CAP_CIPHER_AESCCM;
2485 
2486 	if (ah->hw_version.devid != AR2427_DEVID_PCIE)
2487 		pCap->hw_caps |= ATH9K_HW_CAP_HT;
2488 	else
2489 		pCap->hw_caps &= ~ATH9K_HW_CAP_HT;
2490 
2491 	if (AR_SREV_9271(ah))
2492 		pCap->num_gpio_pins = AR9271_NUM_GPIO;
2493 	else if (AR_DEVID_7010(ah))
2494 		pCap->num_gpio_pins = AR7010_NUM_GPIO;
2495 	else if (AR_SREV_9300_20_OR_LATER(ah))
2496 		pCap->num_gpio_pins = AR9300_NUM_GPIO;
2497 	else if (AR_SREV_9287_11_OR_LATER(ah))
2498 		pCap->num_gpio_pins = AR9287_NUM_GPIO;
2499 	else if (AR_SREV_9285_12_OR_LATER(ah))
2500 		pCap->num_gpio_pins = AR9285_NUM_GPIO;
2501 	else if (AR_SREV_9280_20_OR_LATER(ah))
2502 		pCap->num_gpio_pins = AR928X_NUM_GPIO;
2503 	else
2504 		pCap->num_gpio_pins = AR_NUM_GPIO;
2505 
2506 	if (AR_SREV_9160_10_OR_LATER(ah) || AR_SREV_9100(ah))
2507 		pCap->rts_aggr_limit = ATH_AMPDU_LIMIT_MAX;
2508 	else
2509 		pCap->rts_aggr_limit = (8 * 1024);
2510 
2511 #ifdef CONFIG_ATH9K_RFKILL
2512 	ah->rfsilent = ah->eep_ops->get_eeprom(ah, EEP_RF_SILENT);
2513 	if (ah->rfsilent & EEP_RFSILENT_ENABLED) {
2514 		ah->rfkill_gpio =
2515 			MS(ah->rfsilent, EEP_RFSILENT_GPIO_SEL);
2516 		ah->rfkill_polarity =
2517 			MS(ah->rfsilent, EEP_RFSILENT_POLARITY);
2518 
2519 		pCap->hw_caps |= ATH9K_HW_CAP_RFSILENT;
2520 	}
2521 #endif
2522 	if (AR_SREV_9271(ah) || AR_SREV_9300_20_OR_LATER(ah))
2523 		pCap->hw_caps |= ATH9K_HW_CAP_AUTOSLEEP;
2524 	else
2525 		pCap->hw_caps &= ~ATH9K_HW_CAP_AUTOSLEEP;
2526 
2527 	if (AR_SREV_9280(ah) || AR_SREV_9285(ah))
2528 		pCap->hw_caps &= ~ATH9K_HW_CAP_4KB_SPLITTRANS;
2529 	else
2530 		pCap->hw_caps |= ATH9K_HW_CAP_4KB_SPLITTRANS;
2531 
2532 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2533 		pCap->hw_caps |= ATH9K_HW_CAP_EDMA | ATH9K_HW_CAP_FASTCLOCK;
2534 		if (!AR_SREV_9330(ah) && !AR_SREV_9485(ah) && !AR_SREV_9565(ah))
2535 			pCap->hw_caps |= ATH9K_HW_CAP_LDPC;
2536 
2537 		pCap->rx_hp_qdepth = ATH9K_HW_RX_HP_QDEPTH;
2538 		pCap->rx_lp_qdepth = ATH9K_HW_RX_LP_QDEPTH;
2539 		pCap->rx_status_len = sizeof(struct ar9003_rxs);
2540 		pCap->tx_desc_len = sizeof(struct ar9003_txc);
2541 		pCap->txs_len = sizeof(struct ar9003_txs);
2542 	} else {
2543 		pCap->tx_desc_len = sizeof(struct ath_desc);
2544 		if (AR_SREV_9280_20(ah))
2545 			pCap->hw_caps |= ATH9K_HW_CAP_FASTCLOCK;
2546 	}
2547 
2548 	if (AR_SREV_9300_20_OR_LATER(ah))
2549 		pCap->hw_caps |= ATH9K_HW_CAP_RAC_SUPPORTED;
2550 
2551 	if (AR_SREV_9300_20_OR_LATER(ah))
2552 		ah->ent_mode = REG_READ(ah, AR_ENT_OTP);
2553 
2554 	if (AR_SREV_9287_11_OR_LATER(ah) || AR_SREV_9271(ah))
2555 		pCap->hw_caps |= ATH9K_HW_CAP_SGI_20;
2556 
2557 	if (AR_SREV_9285(ah)) {
2558 		if (ah->eep_ops->get_eeprom(ah, EEP_MODAL_VER) >= 3) {
2559 			ant_div_ctl1 =
2560 				ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2561 			if ((ant_div_ctl1 & 0x1) && ((ant_div_ctl1 >> 3) & 0x1)) {
2562 				pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2563 				ath_info(common, "Enable LNA combining\n");
2564 			}
2565 		}
2566 	}
2567 
2568 	if (AR_SREV_9300_20_OR_LATER(ah)) {
2569 		if (ah->eep_ops->get_eeprom(ah, EEP_CHAIN_MASK_REDUCE))
2570 			pCap->hw_caps |= ATH9K_HW_CAP_APM;
2571 	}
2572 
2573 	if (AR_SREV_9330(ah) || AR_SREV_9485(ah) || AR_SREV_9565(ah)) {
2574 		ant_div_ctl1 = ah->eep_ops->get_eeprom(ah, EEP_ANT_DIV_CTL1);
2575 		if ((ant_div_ctl1 >> 0x6) == 0x3) {
2576 			pCap->hw_caps |= ATH9K_HW_CAP_ANT_DIV_COMB;
2577 			ath_info(common, "Enable LNA combining\n");
2578 		}
2579 	}
2580 
2581 	if (ath9k_hw_dfs_tested(ah))
2582 		pCap->hw_caps |= ATH9K_HW_CAP_DFS;
2583 
2584 	tx_chainmask = pCap->tx_chainmask;
2585 	rx_chainmask = pCap->rx_chainmask;
2586 	while (tx_chainmask || rx_chainmask) {
2587 		if (tx_chainmask & BIT(0))
2588 			pCap->max_txchains++;
2589 		if (rx_chainmask & BIT(0))
2590 			pCap->max_rxchains++;
2591 
2592 		tx_chainmask >>= 1;
2593 		rx_chainmask >>= 1;
2594 	}
2595 
2596 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
2597 		if (!(ah->ent_mode & AR_ENT_OTP_49GHZ_DISABLE))
2598 			pCap->hw_caps |= ATH9K_HW_CAP_MCI;
2599 
2600 		if (AR_SREV_9462_20_OR_LATER(ah))
2601 			pCap->hw_caps |= ATH9K_HW_CAP_RTT;
2602 	}
2603 
2604 	if (AR_SREV_9462(ah))
2605 		pCap->hw_caps |= ATH9K_HW_WOW_DEVICE_CAPABLE;
2606 
2607 	if (AR_SREV_9300_20_OR_LATER(ah) &&
2608 	    ah->eep_ops->get_eeprom(ah, EEP_PAPRD))
2609 			pCap->hw_caps |= ATH9K_HW_CAP_PAPRD;
2610 
2611 	/*
2612 	 * Fast channel change across bands is available
2613 	 * only for AR9462 and AR9565.
2614 	 */
2615 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2616 		pCap->hw_caps |= ATH9K_HW_CAP_FCC_BAND_SWITCH;
2617 
2618 	return 0;
2619 }
2620 
2621 /****************************/
2622 /* GPIO / RFKILL / Antennae */
2623 /****************************/
2624 
2625 static void ath9k_hw_gpio_cfg_output_mux(struct ath_hw *ah,
2626 					 u32 gpio, u32 type)
2627 {
2628 	int addr;
2629 	u32 gpio_shift, tmp;
2630 
2631 	if (gpio > 11)
2632 		addr = AR_GPIO_OUTPUT_MUX3;
2633 	else if (gpio > 5)
2634 		addr = AR_GPIO_OUTPUT_MUX2;
2635 	else
2636 		addr = AR_GPIO_OUTPUT_MUX1;
2637 
2638 	gpio_shift = (gpio % 6) * 5;
2639 
2640 	if (AR_SREV_9280_20_OR_LATER(ah)
2641 	    || (addr != AR_GPIO_OUTPUT_MUX1)) {
2642 		REG_RMW(ah, addr, (type << gpio_shift),
2643 			(0x1f << gpio_shift));
2644 	} else {
2645 		tmp = REG_READ(ah, addr);
2646 		tmp = ((tmp & 0x1F0) << 1) | (tmp & ~0x1F0);
2647 		tmp &= ~(0x1f << gpio_shift);
2648 		tmp |= (type << gpio_shift);
2649 		REG_WRITE(ah, addr, tmp);
2650 	}
2651 }
2652 
2653 void ath9k_hw_cfg_gpio_input(struct ath_hw *ah, u32 gpio)
2654 {
2655 	u32 gpio_shift;
2656 
2657 	BUG_ON(gpio >= ah->caps.num_gpio_pins);
2658 
2659 	if (AR_DEVID_7010(ah)) {
2660 		gpio_shift = gpio;
2661 		REG_RMW(ah, AR7010_GPIO_OE,
2662 			(AR7010_GPIO_OE_AS_INPUT << gpio_shift),
2663 			(AR7010_GPIO_OE_MASK << gpio_shift));
2664 		return;
2665 	}
2666 
2667 	gpio_shift = gpio << 1;
2668 	REG_RMW(ah,
2669 		AR_GPIO_OE_OUT,
2670 		(AR_GPIO_OE_OUT_DRV_NO << gpio_shift),
2671 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2672 }
2673 EXPORT_SYMBOL(ath9k_hw_cfg_gpio_input);
2674 
2675 u32 ath9k_hw_gpio_get(struct ath_hw *ah, u32 gpio)
2676 {
2677 #define MS_REG_READ(x, y) \
2678 	(MS(REG_READ(ah, AR_GPIO_IN_OUT), x##_GPIO_IN_VAL) & (AR_GPIO_BIT(y)))
2679 
2680 	if (gpio >= ah->caps.num_gpio_pins)
2681 		return 0xffffffff;
2682 
2683 	if (AR_DEVID_7010(ah)) {
2684 		u32 val;
2685 		val = REG_READ(ah, AR7010_GPIO_IN);
2686 		return (MS(val, AR7010_GPIO_IN_VAL) & AR_GPIO_BIT(gpio)) == 0;
2687 	} else if (AR_SREV_9300_20_OR_LATER(ah))
2688 		return (MS(REG_READ(ah, AR_GPIO_IN), AR9300_GPIO_IN_VAL) &
2689 			AR_GPIO_BIT(gpio)) != 0;
2690 	else if (AR_SREV_9271(ah))
2691 		return MS_REG_READ(AR9271, gpio) != 0;
2692 	else if (AR_SREV_9287_11_OR_LATER(ah))
2693 		return MS_REG_READ(AR9287, gpio) != 0;
2694 	else if (AR_SREV_9285_12_OR_LATER(ah))
2695 		return MS_REG_READ(AR9285, gpio) != 0;
2696 	else if (AR_SREV_9280_20_OR_LATER(ah))
2697 		return MS_REG_READ(AR928X, gpio) != 0;
2698 	else
2699 		return MS_REG_READ(AR, gpio) != 0;
2700 }
2701 EXPORT_SYMBOL(ath9k_hw_gpio_get);
2702 
2703 void ath9k_hw_cfg_output(struct ath_hw *ah, u32 gpio,
2704 			 u32 ah_signal_type)
2705 {
2706 	u32 gpio_shift;
2707 
2708 	if (AR_DEVID_7010(ah)) {
2709 		gpio_shift = gpio;
2710 		REG_RMW(ah, AR7010_GPIO_OE,
2711 			(AR7010_GPIO_OE_AS_OUTPUT << gpio_shift),
2712 			(AR7010_GPIO_OE_MASK << gpio_shift));
2713 		return;
2714 	}
2715 
2716 	ath9k_hw_gpio_cfg_output_mux(ah, gpio, ah_signal_type);
2717 	gpio_shift = 2 * gpio;
2718 	REG_RMW(ah,
2719 		AR_GPIO_OE_OUT,
2720 		(AR_GPIO_OE_OUT_DRV_ALL << gpio_shift),
2721 		(AR_GPIO_OE_OUT_DRV << gpio_shift));
2722 }
2723 EXPORT_SYMBOL(ath9k_hw_cfg_output);
2724 
2725 void ath9k_hw_set_gpio(struct ath_hw *ah, u32 gpio, u32 val)
2726 {
2727 	if (AR_DEVID_7010(ah)) {
2728 		val = val ? 0 : 1;
2729 		REG_RMW(ah, AR7010_GPIO_OUT, ((val&1) << gpio),
2730 			AR_GPIO_BIT(gpio));
2731 		return;
2732 	}
2733 
2734 	if (AR_SREV_9271(ah))
2735 		val = ~val;
2736 
2737 	REG_RMW(ah, AR_GPIO_IN_OUT, ((val & 1) << gpio),
2738 		AR_GPIO_BIT(gpio));
2739 }
2740 EXPORT_SYMBOL(ath9k_hw_set_gpio);
2741 
2742 void ath9k_hw_setantenna(struct ath_hw *ah, u32 antenna)
2743 {
2744 	REG_WRITE(ah, AR_DEF_ANTENNA, (antenna & 0x7));
2745 }
2746 EXPORT_SYMBOL(ath9k_hw_setantenna);
2747 
2748 /*********************/
2749 /* General Operation */
2750 /*********************/
2751 
2752 u32 ath9k_hw_getrxfilter(struct ath_hw *ah)
2753 {
2754 	u32 bits = REG_READ(ah, AR_RX_FILTER);
2755 	u32 phybits = REG_READ(ah, AR_PHY_ERR);
2756 
2757 	if (phybits & AR_PHY_ERR_RADAR)
2758 		bits |= ATH9K_RX_FILTER_PHYRADAR;
2759 	if (phybits & (AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING))
2760 		bits |= ATH9K_RX_FILTER_PHYERR;
2761 
2762 	return bits;
2763 }
2764 EXPORT_SYMBOL(ath9k_hw_getrxfilter);
2765 
2766 void ath9k_hw_setrxfilter(struct ath_hw *ah, u32 bits)
2767 {
2768 	u32 phybits;
2769 
2770 	ENABLE_REGWRITE_BUFFER(ah);
2771 
2772 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah))
2773 		bits |= ATH9K_RX_FILTER_CONTROL_WRAPPER;
2774 
2775 	REG_WRITE(ah, AR_RX_FILTER, bits);
2776 
2777 	phybits = 0;
2778 	if (bits & ATH9K_RX_FILTER_PHYRADAR)
2779 		phybits |= AR_PHY_ERR_RADAR;
2780 	if (bits & ATH9K_RX_FILTER_PHYERR)
2781 		phybits |= AR_PHY_ERR_OFDM_TIMING | AR_PHY_ERR_CCK_TIMING;
2782 	REG_WRITE(ah, AR_PHY_ERR, phybits);
2783 
2784 	if (phybits)
2785 		REG_SET_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2786 	else
2787 		REG_CLR_BIT(ah, AR_RXCFG, AR_RXCFG_ZLFDMA);
2788 
2789 	REGWRITE_BUFFER_FLUSH(ah);
2790 }
2791 EXPORT_SYMBOL(ath9k_hw_setrxfilter);
2792 
2793 bool ath9k_hw_phy_disable(struct ath_hw *ah)
2794 {
2795 	if (ath9k_hw_mci_is_enabled(ah))
2796 		ar9003_mci_bt_gain_ctrl(ah);
2797 
2798 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_WARM))
2799 		return false;
2800 
2801 	ath9k_hw_init_pll(ah, NULL);
2802 	ah->htc_reset_init = true;
2803 	return true;
2804 }
2805 EXPORT_SYMBOL(ath9k_hw_phy_disable);
2806 
2807 bool ath9k_hw_disable(struct ath_hw *ah)
2808 {
2809 	if (!ath9k_hw_setpower(ah, ATH9K_PM_AWAKE))
2810 		return false;
2811 
2812 	if (!ath9k_hw_set_reset_reg(ah, ATH9K_RESET_COLD))
2813 		return false;
2814 
2815 	ath9k_hw_init_pll(ah, NULL);
2816 	return true;
2817 }
2818 EXPORT_SYMBOL(ath9k_hw_disable);
2819 
2820 static int get_antenna_gain(struct ath_hw *ah, struct ath9k_channel *chan)
2821 {
2822 	enum eeprom_param gain_param;
2823 
2824 	if (IS_CHAN_2GHZ(chan))
2825 		gain_param = EEP_ANTENNA_GAIN_2G;
2826 	else
2827 		gain_param = EEP_ANTENNA_GAIN_5G;
2828 
2829 	return ah->eep_ops->get_eeprom(ah, gain_param);
2830 }
2831 
2832 void ath9k_hw_apply_txpower(struct ath_hw *ah, struct ath9k_channel *chan,
2833 			    bool test)
2834 {
2835 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2836 	struct ieee80211_channel *channel;
2837 	int chan_pwr, new_pwr, max_gain;
2838 	int ant_gain, ant_reduction = 0;
2839 
2840 	if (!chan)
2841 		return;
2842 
2843 	channel = chan->chan;
2844 	chan_pwr = min_t(int, channel->max_power * 2, MAX_RATE_POWER);
2845 	new_pwr = min_t(int, chan_pwr, reg->power_limit);
2846 	max_gain = chan_pwr - new_pwr + channel->max_antenna_gain * 2;
2847 
2848 	ant_gain = get_antenna_gain(ah, chan);
2849 	if (ant_gain > max_gain)
2850 		ant_reduction = ant_gain - max_gain;
2851 
2852 	ah->eep_ops->set_txpower(ah, chan,
2853 				 ath9k_regd_get_ctl(reg, chan),
2854 				 ant_reduction, new_pwr, test);
2855 }
2856 
2857 void ath9k_hw_set_txpowerlimit(struct ath_hw *ah, u32 limit, bool test)
2858 {
2859 	struct ath_regulatory *reg = ath9k_hw_regulatory(ah);
2860 	struct ath9k_channel *chan = ah->curchan;
2861 	struct ieee80211_channel *channel = chan->chan;
2862 
2863 	reg->power_limit = min_t(u32, limit, MAX_RATE_POWER);
2864 	if (test)
2865 		channel->max_power = MAX_RATE_POWER / 2;
2866 
2867 	ath9k_hw_apply_txpower(ah, chan, test);
2868 
2869 	if (test)
2870 		channel->max_power = DIV_ROUND_UP(reg->max_power_level, 2);
2871 }
2872 EXPORT_SYMBOL(ath9k_hw_set_txpowerlimit);
2873 
2874 void ath9k_hw_setopmode(struct ath_hw *ah)
2875 {
2876 	ath9k_hw_set_operating_mode(ah, ah->opmode);
2877 }
2878 EXPORT_SYMBOL(ath9k_hw_setopmode);
2879 
2880 void ath9k_hw_setmcastfilter(struct ath_hw *ah, u32 filter0, u32 filter1)
2881 {
2882 	REG_WRITE(ah, AR_MCAST_FIL0, filter0);
2883 	REG_WRITE(ah, AR_MCAST_FIL1, filter1);
2884 }
2885 EXPORT_SYMBOL(ath9k_hw_setmcastfilter);
2886 
2887 void ath9k_hw_write_associd(struct ath_hw *ah)
2888 {
2889 	struct ath_common *common = ath9k_hw_common(ah);
2890 
2891 	REG_WRITE(ah, AR_BSS_ID0, get_unaligned_le32(common->curbssid));
2892 	REG_WRITE(ah, AR_BSS_ID1, get_unaligned_le16(common->curbssid + 4) |
2893 		  ((common->curaid & 0x3fff) << AR_BSS_ID1_AID_S));
2894 }
2895 EXPORT_SYMBOL(ath9k_hw_write_associd);
2896 
2897 #define ATH9K_MAX_TSF_READ 10
2898 
2899 u64 ath9k_hw_gettsf64(struct ath_hw *ah)
2900 {
2901 	u32 tsf_lower, tsf_upper1, tsf_upper2;
2902 	int i;
2903 
2904 	tsf_upper1 = REG_READ(ah, AR_TSF_U32);
2905 	for (i = 0; i < ATH9K_MAX_TSF_READ; i++) {
2906 		tsf_lower = REG_READ(ah, AR_TSF_L32);
2907 		tsf_upper2 = REG_READ(ah, AR_TSF_U32);
2908 		if (tsf_upper2 == tsf_upper1)
2909 			break;
2910 		tsf_upper1 = tsf_upper2;
2911 	}
2912 
2913 	WARN_ON( i == ATH9K_MAX_TSF_READ );
2914 
2915 	return (((u64)tsf_upper1 << 32) | tsf_lower);
2916 }
2917 EXPORT_SYMBOL(ath9k_hw_gettsf64);
2918 
2919 void ath9k_hw_settsf64(struct ath_hw *ah, u64 tsf64)
2920 {
2921 	REG_WRITE(ah, AR_TSF_L32, tsf64 & 0xffffffff);
2922 	REG_WRITE(ah, AR_TSF_U32, (tsf64 >> 32) & 0xffffffff);
2923 }
2924 EXPORT_SYMBOL(ath9k_hw_settsf64);
2925 
2926 void ath9k_hw_reset_tsf(struct ath_hw *ah)
2927 {
2928 	if (!ath9k_hw_wait(ah, AR_SLP32_MODE, AR_SLP32_TSF_WRITE_STATUS, 0,
2929 			   AH_TSF_WRITE_TIMEOUT))
2930 		ath_dbg(ath9k_hw_common(ah), RESET,
2931 			"AR_SLP32_TSF_WRITE_STATUS limit exceeded\n");
2932 
2933 	REG_WRITE(ah, AR_RESET_TSF, AR_RESET_TSF_ONCE);
2934 }
2935 EXPORT_SYMBOL(ath9k_hw_reset_tsf);
2936 
2937 void ath9k_hw_set_tsfadjust(struct ath_hw *ah, bool set)
2938 {
2939 	if (set)
2940 		ah->misc_mode |= AR_PCU_TX_ADD_TSF;
2941 	else
2942 		ah->misc_mode &= ~AR_PCU_TX_ADD_TSF;
2943 }
2944 EXPORT_SYMBOL(ath9k_hw_set_tsfadjust);
2945 
2946 void ath9k_hw_set11nmac2040(struct ath_hw *ah)
2947 {
2948 	struct ieee80211_conf *conf = &ath9k_hw_common(ah)->hw->conf;
2949 	u32 macmode;
2950 
2951 	if (conf_is_ht40(conf) && !ah->config.cwm_ignore_extcca)
2952 		macmode = AR_2040_JOINED_RX_CLEAR;
2953 	else
2954 		macmode = 0;
2955 
2956 	REG_WRITE(ah, AR_2040_MODE, macmode);
2957 }
2958 
2959 /* HW Generic timers configuration */
2960 
2961 static const struct ath_gen_timer_configuration gen_tmr_configuration[] =
2962 {
2963 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2964 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2965 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2966 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2967 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2968 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2969 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2970 	{AR_NEXT_NDP_TIMER, AR_NDP_PERIOD, AR_TIMER_MODE, 0x0080},
2971 	{AR_NEXT_NDP2_TIMER, AR_NDP2_PERIOD, AR_NDP2_TIMER_MODE, 0x0001},
2972 	{AR_NEXT_NDP2_TIMER + 1*4, AR_NDP2_PERIOD + 1*4,
2973 				AR_NDP2_TIMER_MODE, 0x0002},
2974 	{AR_NEXT_NDP2_TIMER + 2*4, AR_NDP2_PERIOD + 2*4,
2975 				AR_NDP2_TIMER_MODE, 0x0004},
2976 	{AR_NEXT_NDP2_TIMER + 3*4, AR_NDP2_PERIOD + 3*4,
2977 				AR_NDP2_TIMER_MODE, 0x0008},
2978 	{AR_NEXT_NDP2_TIMER + 4*4, AR_NDP2_PERIOD + 4*4,
2979 				AR_NDP2_TIMER_MODE, 0x0010},
2980 	{AR_NEXT_NDP2_TIMER + 5*4, AR_NDP2_PERIOD + 5*4,
2981 				AR_NDP2_TIMER_MODE, 0x0020},
2982 	{AR_NEXT_NDP2_TIMER + 6*4, AR_NDP2_PERIOD + 6*4,
2983 				AR_NDP2_TIMER_MODE, 0x0040},
2984 	{AR_NEXT_NDP2_TIMER + 7*4, AR_NDP2_PERIOD + 7*4,
2985 				AR_NDP2_TIMER_MODE, 0x0080}
2986 };
2987 
2988 /* HW generic timer primitives */
2989 
2990 /* compute and clear index of rightmost 1 */
2991 static u32 rightmost_index(struct ath_gen_timer_table *timer_table, u32 *mask)
2992 {
2993 	u32 b;
2994 
2995 	b = *mask;
2996 	b &= (0-b);
2997 	*mask &= ~b;
2998 	b *= debruijn32;
2999 	b >>= 27;
3000 
3001 	return timer_table->gen_timer_index[b];
3002 }
3003 
3004 u32 ath9k_hw_gettsf32(struct ath_hw *ah)
3005 {
3006 	return REG_READ(ah, AR_TSF_L32);
3007 }
3008 EXPORT_SYMBOL(ath9k_hw_gettsf32);
3009 
3010 struct ath_gen_timer *ath_gen_timer_alloc(struct ath_hw *ah,
3011 					  void (*trigger)(void *),
3012 					  void (*overflow)(void *),
3013 					  void *arg,
3014 					  u8 timer_index)
3015 {
3016 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3017 	struct ath_gen_timer *timer;
3018 
3019 	timer = kzalloc(sizeof(struct ath_gen_timer), GFP_KERNEL);
3020 	if (timer == NULL)
3021 		return NULL;
3022 
3023 	/* allocate a hardware generic timer slot */
3024 	timer_table->timers[timer_index] = timer;
3025 	timer->index = timer_index;
3026 	timer->trigger = trigger;
3027 	timer->overflow = overflow;
3028 	timer->arg = arg;
3029 
3030 	return timer;
3031 }
3032 EXPORT_SYMBOL(ath_gen_timer_alloc);
3033 
3034 void ath9k_hw_gen_timer_start(struct ath_hw *ah,
3035 			      struct ath_gen_timer *timer,
3036 			      u32 trig_timeout,
3037 			      u32 timer_period)
3038 {
3039 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3040 	u32 tsf, timer_next;
3041 
3042 	BUG_ON(!timer_period);
3043 
3044 	set_bit(timer->index, &timer_table->timer_mask.timer_bits);
3045 
3046 	tsf = ath9k_hw_gettsf32(ah);
3047 
3048 	timer_next = tsf + trig_timeout;
3049 
3050 	ath_dbg(ath9k_hw_common(ah), BTCOEX,
3051 		"current tsf %x period %x timer_next %x\n",
3052 		tsf, timer_period, timer_next);
3053 
3054 	/*
3055 	 * Program generic timer registers
3056 	 */
3057 	REG_WRITE(ah, gen_tmr_configuration[timer->index].next_addr,
3058 		 timer_next);
3059 	REG_WRITE(ah, gen_tmr_configuration[timer->index].period_addr,
3060 		  timer_period);
3061 	REG_SET_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3062 		    gen_tmr_configuration[timer->index].mode_mask);
3063 
3064 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3065 		/*
3066 		 * Starting from AR9462, each generic timer can select which tsf
3067 		 * to use. But we still follow the old rule, 0 - 7 use tsf and
3068 		 * 8 - 15  use tsf2.
3069 		 */
3070 		if ((timer->index < AR_GEN_TIMER_BANK_1_LEN))
3071 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3072 				       (1 << timer->index));
3073 		else
3074 			REG_SET_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3075 				       (1 << timer->index));
3076 	}
3077 
3078 	/* Enable both trigger and thresh interrupt masks */
3079 	REG_SET_BIT(ah, AR_IMR_S5,
3080 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3081 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3082 }
3083 EXPORT_SYMBOL(ath9k_hw_gen_timer_start);
3084 
3085 void ath9k_hw_gen_timer_stop(struct ath_hw *ah, struct ath_gen_timer *timer)
3086 {
3087 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3088 
3089 	if ((timer->index < AR_FIRST_NDP_TIMER) ||
3090 		(timer->index >= ATH_MAX_GEN_TIMER)) {
3091 		return;
3092 	}
3093 
3094 	/* Clear generic timer enable bits. */
3095 	REG_CLR_BIT(ah, gen_tmr_configuration[timer->index].mode_addr,
3096 			gen_tmr_configuration[timer->index].mode_mask);
3097 
3098 	if (AR_SREV_9462(ah) || AR_SREV_9565(ah)) {
3099 		/*
3100 		 * Need to switch back to TSF if it was using TSF2.
3101 		 */
3102 		if ((timer->index >= AR_GEN_TIMER_BANK_1_LEN)) {
3103 			REG_CLR_BIT(ah, AR_MAC_PCU_GEN_TIMER_TSF_SEL,
3104 				    (1 << timer->index));
3105 		}
3106 	}
3107 
3108 	/* Disable both trigger and thresh interrupt masks */
3109 	REG_CLR_BIT(ah, AR_IMR_S5,
3110 		(SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_THRESH) |
3111 		SM(AR_GENTMR_BIT(timer->index), AR_IMR_S5_GENTIMER_TRIG)));
3112 
3113 	clear_bit(timer->index, &timer_table->timer_mask.timer_bits);
3114 }
3115 EXPORT_SYMBOL(ath9k_hw_gen_timer_stop);
3116 
3117 void ath_gen_timer_free(struct ath_hw *ah, struct ath_gen_timer *timer)
3118 {
3119 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3120 
3121 	/* free the hardware generic timer slot */
3122 	timer_table->timers[timer->index] = NULL;
3123 	kfree(timer);
3124 }
3125 EXPORT_SYMBOL(ath_gen_timer_free);
3126 
3127 /*
3128  * Generic Timer Interrupts handling
3129  */
3130 void ath_gen_timer_isr(struct ath_hw *ah)
3131 {
3132 	struct ath_gen_timer_table *timer_table = &ah->hw_gen_timers;
3133 	struct ath_gen_timer *timer;
3134 	struct ath_common *common = ath9k_hw_common(ah);
3135 	u32 trigger_mask, thresh_mask, index;
3136 
3137 	/* get hardware generic timer interrupt status */
3138 	trigger_mask = ah->intr_gen_timer_trigger;
3139 	thresh_mask = ah->intr_gen_timer_thresh;
3140 	trigger_mask &= timer_table->timer_mask.val;
3141 	thresh_mask &= timer_table->timer_mask.val;
3142 
3143 	trigger_mask &= ~thresh_mask;
3144 
3145 	while (thresh_mask) {
3146 		index = rightmost_index(timer_table, &thresh_mask);
3147 		timer = timer_table->timers[index];
3148 		BUG_ON(!timer);
3149 		ath_dbg(common, BTCOEX, "TSF overflow for Gen timer %d\n",
3150 			index);
3151 		timer->overflow(timer->arg);
3152 	}
3153 
3154 	while (trigger_mask) {
3155 		index = rightmost_index(timer_table, &trigger_mask);
3156 		timer = timer_table->timers[index];
3157 		BUG_ON(!timer);
3158 		ath_dbg(common, BTCOEX,
3159 			"Gen timer[%d] trigger\n", index);
3160 		timer->trigger(timer->arg);
3161 	}
3162 }
3163 EXPORT_SYMBOL(ath_gen_timer_isr);
3164 
3165 /********/
3166 /* HTC  */
3167 /********/
3168 
3169 static struct {
3170 	u32 version;
3171 	const char * name;
3172 } ath_mac_bb_names[] = {
3173 	/* Devices with external radios */
3174 	{ AR_SREV_VERSION_5416_PCI,	"5416" },
3175 	{ AR_SREV_VERSION_5416_PCIE,	"5418" },
3176 	{ AR_SREV_VERSION_9100,		"9100" },
3177 	{ AR_SREV_VERSION_9160,		"9160" },
3178 	/* Single-chip solutions */
3179 	{ AR_SREV_VERSION_9280,		"9280" },
3180 	{ AR_SREV_VERSION_9285,		"9285" },
3181 	{ AR_SREV_VERSION_9287,         "9287" },
3182 	{ AR_SREV_VERSION_9271,         "9271" },
3183 	{ AR_SREV_VERSION_9300,         "9300" },
3184 	{ AR_SREV_VERSION_9330,         "9330" },
3185 	{ AR_SREV_VERSION_9340,		"9340" },
3186 	{ AR_SREV_VERSION_9485,         "9485" },
3187 	{ AR_SREV_VERSION_9462,         "9462" },
3188 	{ AR_SREV_VERSION_9550,         "9550" },
3189 	{ AR_SREV_VERSION_9565,         "9565" },
3190 };
3191 
3192 /* For devices with external radios */
3193 static struct {
3194 	u16 version;
3195 	const char * name;
3196 } ath_rf_names[] = {
3197 	{ 0,				"5133" },
3198 	{ AR_RAD5133_SREV_MAJOR,	"5133" },
3199 	{ AR_RAD5122_SREV_MAJOR,	"5122" },
3200 	{ AR_RAD2133_SREV_MAJOR,	"2133" },
3201 	{ AR_RAD2122_SREV_MAJOR,	"2122" }
3202 };
3203 
3204 /*
3205  * Return the MAC/BB name. "????" is returned if the MAC/BB is unknown.
3206  */
3207 static const char *ath9k_hw_mac_bb_name(u32 mac_bb_version)
3208 {
3209 	int i;
3210 
3211 	for (i=0; i<ARRAY_SIZE(ath_mac_bb_names); i++) {
3212 		if (ath_mac_bb_names[i].version == mac_bb_version) {
3213 			return ath_mac_bb_names[i].name;
3214 		}
3215 	}
3216 
3217 	return "????";
3218 }
3219 
3220 /*
3221  * Return the RF name. "????" is returned if the RF is unknown.
3222  * Used for devices with external radios.
3223  */
3224 static const char *ath9k_hw_rf_name(u16 rf_version)
3225 {
3226 	int i;
3227 
3228 	for (i=0; i<ARRAY_SIZE(ath_rf_names); i++) {
3229 		if (ath_rf_names[i].version == rf_version) {
3230 			return ath_rf_names[i].name;
3231 		}
3232 	}
3233 
3234 	return "????";
3235 }
3236 
3237 void ath9k_hw_name(struct ath_hw *ah, char *hw_name, size_t len)
3238 {
3239 	int used;
3240 
3241 	/* chipsets >= AR9280 are single-chip */
3242 	if (AR_SREV_9280_20_OR_LATER(ah)) {
3243 		used = snprintf(hw_name, len,
3244 			       "Atheros AR%s Rev:%x",
3245 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3246 			       ah->hw_version.macRev);
3247 	}
3248 	else {
3249 		used = snprintf(hw_name, len,
3250 			       "Atheros AR%s MAC/BB Rev:%x AR%s RF Rev:%x",
3251 			       ath9k_hw_mac_bb_name(ah->hw_version.macVersion),
3252 			       ah->hw_version.macRev,
3253 			       ath9k_hw_rf_name((ah->hw_version.analog5GhzRev &
3254 						AR_RADIO_SREV_MAJOR)),
3255 			       ah->hw_version.phyRev);
3256 	}
3257 
3258 	hw_name[used] = '\0';
3259 }
3260 EXPORT_SYMBOL(ath9k_hw_name);
3261