1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "ath9k.h"
18 
19 static void ath9k_get_txgain_index(struct ath_hw *ah,
20 		struct ath9k_channel *chan,
21 		struct calDataPerFreqOpLoop *rawDatasetOpLoop,
22 		u8 *calChans,  u16 availPiers, u8 *pwr, u8 *pcdacIdx)
23 {
24 	u8 pcdac, i = 0;
25 	u16 idxL = 0, idxR = 0, numPiers;
26 	bool match;
27 	struct chan_centers centers;
28 
29 	ath9k_hw_get_channel_centers(ah, chan, &centers);
30 
31 	for (numPiers = 0; numPiers < availPiers; numPiers++)
32 		if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
33 			break;
34 
35 	match = ath9k_hw_get_lower_upper_index(
36 			(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
37 			calChans, numPiers, &idxL, &idxR);
38 	if (match) {
39 		pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
40 		*pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
41 	} else {
42 		pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
43 		*pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
44 				rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
45 	}
46 
47 	while (pcdac > ah->originalGain[i] &&
48 			i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
49 		i++;
50 
51 	*pcdacIdx = i;
52 	return;
53 }
54 
55 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
56 				u32 initTxGain,
57 				int txPower,
58 				u8 *pPDADCValues)
59 {
60 	u32 i;
61 	u32 offset;
62 
63 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
64 			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
65 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
66 			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
67 
68 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
69 			AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
70 
71 	offset = txPower;
72 	for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
73 		if (i < offset)
74 			pPDADCValues[i] = 0x0;
75 		else
76 			pPDADCValues[i] = 0xFF;
77 }
78 
79 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
80 {
81 	return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
82 }
83 
84 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
85 {
86 	return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
87 }
88 
89 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
90 {
91 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
92 	u16 *eep_data = (u16 *)&ah->eeprom.def;
93 	int addr, ar5416_eep_start_loc = 0x100;
94 
95 	for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
96 		if (!ath9k_hw_nvram_read(ah, addr + ar5416_eep_start_loc,
97 					 eep_data)) {
98 			DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
99 				"Unable to read eeprom region\n");
100 			return false;
101 		}
102 		eep_data++;
103 	}
104 	return true;
105 #undef SIZE_EEPROM_DEF
106 }
107 
108 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
109 {
110 	struct ar5416_eeprom_def *eep =
111 		(struct ar5416_eeprom_def *) &ah->eeprom.def;
112 	u16 *eepdata, temp, magic, magic2;
113 	u32 sum = 0, el;
114 	bool need_swap = false;
115 	int i, addr, size;
116 
117 	if (!ath9k_hw_nvram_read(ah, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
118 		DPRINTF(ah->ah_sc, ATH_DBG_FATAL, "Reading Magic # failed\n");
119 		return false;
120 	}
121 
122 	if (!ath9k_hw_use_flash(ah)) {
123 		DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
124 			"Read Magic = 0x%04X\n", magic);
125 
126 		if (magic != AR5416_EEPROM_MAGIC) {
127 			magic2 = swab16(magic);
128 
129 			if (magic2 == AR5416_EEPROM_MAGIC) {
130 				size = sizeof(struct ar5416_eeprom_def);
131 				need_swap = true;
132 				eepdata = (u16 *) (&ah->eeprom);
133 
134 				for (addr = 0; addr < size / sizeof(u16); addr++) {
135 					temp = swab16(*eepdata);
136 					*eepdata = temp;
137 					eepdata++;
138 				}
139 			} else {
140 				DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
141 					"Invalid EEPROM Magic. "
142 					"Endianness mismatch.\n");
143 				return -EINVAL;
144 			}
145 		}
146 	}
147 
148 	DPRINTF(ah->ah_sc, ATH_DBG_EEPROM, "need_swap = %s.\n",
149 		need_swap ? "True" : "False");
150 
151 	if (need_swap)
152 		el = swab16(ah->eeprom.def.baseEepHeader.length);
153 	else
154 		el = ah->eeprom.def.baseEepHeader.length;
155 
156 	if (el > sizeof(struct ar5416_eeprom_def))
157 		el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
158 	else
159 		el = el / sizeof(u16);
160 
161 	eepdata = (u16 *)(&ah->eeprom);
162 
163 	for (i = 0; i < el; i++)
164 		sum ^= *eepdata++;
165 
166 	if (need_swap) {
167 		u32 integer, j;
168 		u16 word;
169 
170 		DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
171 			"EEPROM Endianness is not native.. Changing.\n");
172 
173 		word = swab16(eep->baseEepHeader.length);
174 		eep->baseEepHeader.length = word;
175 
176 		word = swab16(eep->baseEepHeader.checksum);
177 		eep->baseEepHeader.checksum = word;
178 
179 		word = swab16(eep->baseEepHeader.version);
180 		eep->baseEepHeader.version = word;
181 
182 		word = swab16(eep->baseEepHeader.regDmn[0]);
183 		eep->baseEepHeader.regDmn[0] = word;
184 
185 		word = swab16(eep->baseEepHeader.regDmn[1]);
186 		eep->baseEepHeader.regDmn[1] = word;
187 
188 		word = swab16(eep->baseEepHeader.rfSilent);
189 		eep->baseEepHeader.rfSilent = word;
190 
191 		word = swab16(eep->baseEepHeader.blueToothOptions);
192 		eep->baseEepHeader.blueToothOptions = word;
193 
194 		word = swab16(eep->baseEepHeader.deviceCap);
195 		eep->baseEepHeader.deviceCap = word;
196 
197 		for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
198 			struct modal_eep_header *pModal =
199 				&eep->modalHeader[j];
200 			integer = swab32(pModal->antCtrlCommon);
201 			pModal->antCtrlCommon = integer;
202 
203 			for (i = 0; i < AR5416_MAX_CHAINS; i++) {
204 				integer = swab32(pModal->antCtrlChain[i]);
205 				pModal->antCtrlChain[i] = integer;
206 			}
207 
208 			for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
209 				word = swab16(pModal->spurChans[i].spurChan);
210 				pModal->spurChans[i].spurChan = word;
211 			}
212 		}
213 	}
214 
215 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
216 	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
217 		DPRINTF(ah->ah_sc, ATH_DBG_FATAL,
218 			"Bad EEPROM checksum 0x%x or revision 0x%04x\n",
219 			sum, ah->eep_ops->get_eeprom_ver(ah));
220 		return -EINVAL;
221 	}
222 
223 	return 0;
224 }
225 
226 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
227 				   enum eeprom_param param)
228 {
229 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
230 	struct modal_eep_header *pModal = eep->modalHeader;
231 	struct base_eep_header *pBase = &eep->baseEepHeader;
232 
233 	switch (param) {
234 	case EEP_NFTHRESH_5:
235 		return pModal[0].noiseFloorThreshCh[0];
236 	case EEP_NFTHRESH_2:
237 		return pModal[1].noiseFloorThreshCh[0];
238 	case AR_EEPROM_MAC(0):
239 		return pBase->macAddr[0] << 8 | pBase->macAddr[1];
240 	case AR_EEPROM_MAC(1):
241 		return pBase->macAddr[2] << 8 | pBase->macAddr[3];
242 	case AR_EEPROM_MAC(2):
243 		return pBase->macAddr[4] << 8 | pBase->macAddr[5];
244 	case EEP_REG_0:
245 		return pBase->regDmn[0];
246 	case EEP_REG_1:
247 		return pBase->regDmn[1];
248 	case EEP_OP_CAP:
249 		return pBase->deviceCap;
250 	case EEP_OP_MODE:
251 		return pBase->opCapFlags;
252 	case EEP_RF_SILENT:
253 		return pBase->rfSilent;
254 	case EEP_OB_5:
255 		return pModal[0].ob;
256 	case EEP_DB_5:
257 		return pModal[0].db;
258 	case EEP_OB_2:
259 		return pModal[1].ob;
260 	case EEP_DB_2:
261 		return pModal[1].db;
262 	case EEP_MINOR_REV:
263 		return AR5416_VER_MASK;
264 	case EEP_TX_MASK:
265 		return pBase->txMask;
266 	case EEP_RX_MASK:
267 		return pBase->rxMask;
268 	case EEP_RXGAIN_TYPE:
269 		return pBase->rxGainType;
270 	case EEP_TXGAIN_TYPE:
271 		return pBase->txGainType;
272 	case EEP_OL_PWRCTRL:
273 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
274 			return pBase->openLoopPwrCntl ? true : false;
275 		else
276 			return false;
277 	case EEP_RC_CHAIN_MASK:
278 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
279 			return pBase->rcChainMask;
280 		else
281 			return 0;
282 	case EEP_DAC_HPWR_5G:
283 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
284 			return pBase->dacHiPwrMode_5G;
285 		else
286 			return 0;
287 	case EEP_FRAC_N_5G:
288 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
289 			return pBase->frac_n_5g;
290 		else
291 			return 0;
292 	default:
293 		return 0;
294 	}
295 }
296 
297 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
298 				  struct modal_eep_header *pModal,
299 				  struct ar5416_eeprom_def *eep,
300 				  u8 txRxAttenLocal, int regChainOffset, int i)
301 {
302 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
303 		txRxAttenLocal = pModal->txRxAttenCh[i];
304 
305 		if (AR_SREV_9280_10_OR_LATER(ah)) {
306 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
307 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
308 			      pModal->bswMargin[i]);
309 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
310 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
311 			      pModal->bswAtten[i]);
312 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
313 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
314 			      pModal->xatten2Margin[i]);
315 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
316 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
317 			      pModal->xatten2Db[i]);
318 		} else {
319 			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
320 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
321 			   ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
322 			  | SM(pModal-> bswMargin[i],
323 			       AR_PHY_GAIN_2GHZ_BSW_MARGIN));
324 			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
325 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
326 			   ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
327 			  | SM(pModal->bswAtten[i],
328 			       AR_PHY_GAIN_2GHZ_BSW_ATTEN));
329 		}
330 	}
331 
332 	if (AR_SREV_9280_10_OR_LATER(ah)) {
333 		REG_RMW_FIELD(ah,
334 		      AR_PHY_RXGAIN + regChainOffset,
335 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
336 		REG_RMW_FIELD(ah,
337 		      AR_PHY_RXGAIN + regChainOffset,
338 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
339 	} else {
340 		REG_WRITE(ah,
341 			  AR_PHY_RXGAIN + regChainOffset,
342 			  (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
343 			   ~AR_PHY_RXGAIN_TXRX_ATTEN)
344 			  | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
345 		REG_WRITE(ah,
346 			  AR_PHY_GAIN_2GHZ + regChainOffset,
347 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
348 			   ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
349 			  SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
350 	}
351 }
352 
353 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
354 					  struct ath9k_channel *chan)
355 {
356 	struct modal_eep_header *pModal;
357 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
358 	int i, regChainOffset;
359 	u8 txRxAttenLocal;
360 
361 	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
362 	txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
363 
364 	REG_WRITE(ah, AR_PHY_SWITCH_COM,
365 		  ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
366 
367 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
368 		if (AR_SREV_9280(ah)) {
369 			if (i >= 2)
370 				break;
371 		}
372 
373 		if (AR_SREV_5416_20_OR_LATER(ah) &&
374 		    (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
375 			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
376 		else
377 			regChainOffset = i * 0x1000;
378 
379 		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
380 			  pModal->antCtrlChain[i]);
381 
382 		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
383 			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
384 			   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
385 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
386 			  SM(pModal->iqCalICh[i],
387 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
388 			  SM(pModal->iqCalQCh[i],
389 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
390 
391 		if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
392 			ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
393 					      regChainOffset, i);
394 	}
395 
396 	if (AR_SREV_9280_10_OR_LATER(ah)) {
397 		if (IS_CHAN_2GHZ(chan)) {
398 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
399 						  AR_AN_RF2G1_CH0_OB,
400 						  AR_AN_RF2G1_CH0_OB_S,
401 						  pModal->ob);
402 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
403 						  AR_AN_RF2G1_CH0_DB,
404 						  AR_AN_RF2G1_CH0_DB_S,
405 						  pModal->db);
406 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
407 						  AR_AN_RF2G1_CH1_OB,
408 						  AR_AN_RF2G1_CH1_OB_S,
409 						  pModal->ob_ch1);
410 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
411 						  AR_AN_RF2G1_CH1_DB,
412 						  AR_AN_RF2G1_CH1_DB_S,
413 						  pModal->db_ch1);
414 		} else {
415 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
416 						  AR_AN_RF5G1_CH0_OB5,
417 						  AR_AN_RF5G1_CH0_OB5_S,
418 						  pModal->ob);
419 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
420 						  AR_AN_RF5G1_CH0_DB5,
421 						  AR_AN_RF5G1_CH0_DB5_S,
422 						  pModal->db);
423 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
424 						  AR_AN_RF5G1_CH1_OB5,
425 						  AR_AN_RF5G1_CH1_OB5_S,
426 						  pModal->ob_ch1);
427 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
428 						  AR_AN_RF5G1_CH1_DB5,
429 						  AR_AN_RF5G1_CH1_DB5_S,
430 						  pModal->db_ch1);
431 		}
432 		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
433 					  AR_AN_TOP2_XPABIAS_LVL,
434 					  AR_AN_TOP2_XPABIAS_LVL_S,
435 					  pModal->xpaBiasLvl);
436 		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
437 					  AR_AN_TOP2_LOCALBIAS,
438 					  AR_AN_TOP2_LOCALBIAS_S,
439 					  pModal->local_bias);
440 		REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
441 			      pModal->force_xpaon);
442 	}
443 
444 	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
445 		      pModal->switchSettling);
446 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
447 		      pModal->adcDesiredSize);
448 
449 	if (!AR_SREV_9280_10_OR_LATER(ah))
450 		REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
451 			      AR_PHY_DESIRED_SZ_PGA,
452 			      pModal->pgaDesiredSize);
453 
454 	REG_WRITE(ah, AR_PHY_RF_CTL4,
455 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
456 		  | SM(pModal->txEndToXpaOff,
457 		       AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
458 		  | SM(pModal->txFrameToXpaOn,
459 		       AR_PHY_RF_CTL4_FRAME_XPAA_ON)
460 		  | SM(pModal->txFrameToXpaOn,
461 		       AR_PHY_RF_CTL4_FRAME_XPAB_ON));
462 
463 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
464 		      pModal->txEndToRxOn);
465 
466 	if (AR_SREV_9280_10_OR_LATER(ah)) {
467 		REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
468 			      pModal->thresh62);
469 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
470 			      AR_PHY_EXT_CCA0_THRESH62,
471 			      pModal->thresh62);
472 	} else {
473 		REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
474 			      pModal->thresh62);
475 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
476 			      AR_PHY_EXT_CCA_THRESH62,
477 			      pModal->thresh62);
478 	}
479 
480 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
481 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
482 			      AR_PHY_TX_END_DATA_START,
483 			      pModal->txFrameToDataStart);
484 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
485 			      pModal->txFrameToPaOn);
486 	}
487 
488 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
489 		if (IS_CHAN_HT40(chan))
490 			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
491 				      AR_PHY_SETTLING_SWITCH,
492 				      pModal->swSettleHt40);
493 	}
494 
495 	if (AR_SREV_9280_20_OR_LATER(ah) &&
496 	    AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
497 		REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
498 			      AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
499 			      pModal->miscBits);
500 
501 
502 	if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
503 		if (IS_CHAN_2GHZ(chan))
504 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
505 					eep->baseEepHeader.dacLpMode);
506 		else if (eep->baseEepHeader.dacHiPwrMode_5G)
507 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
508 		else
509 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
510 				      eep->baseEepHeader.dacLpMode);
511 
512 		REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
513 			      pModal->miscBits >> 2);
514 
515 		REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
516 			      AR_PHY_TX_DESIRED_SCALE_CCK,
517 			      eep->baseEepHeader.desiredScaleCCK);
518 	}
519 }
520 
521 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
522 				   struct ath9k_channel *chan)
523 {
524 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
525 	struct modal_eep_header *pModal;
526 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
527 	u8 biaslevel;
528 
529 	if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
530 		return;
531 
532 	if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
533 		return;
534 
535 	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
536 
537 	if (pModal->xpaBiasLvl != 0xff) {
538 		biaslevel = pModal->xpaBiasLvl;
539 	} else {
540 		u16 resetFreqBin, freqBin, freqCount = 0;
541 		struct chan_centers centers;
542 
543 		ath9k_hw_get_channel_centers(ah, chan, &centers);
544 
545 		resetFreqBin = FREQ2FBIN(centers.synth_center,
546 					 IS_CHAN_2GHZ(chan));
547 		freqBin = XPA_LVL_FREQ(0) & 0xff;
548 		biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
549 
550 		freqCount++;
551 
552 		while (freqCount < 3) {
553 			if (XPA_LVL_FREQ(freqCount) == 0x0)
554 				break;
555 
556 			freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
557 			if (resetFreqBin >= freqBin)
558 				biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
559 			else
560 				break;
561 			freqCount++;
562 		}
563 	}
564 
565 	if (IS_CHAN_2GHZ(chan)) {
566 		INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
567 					7, 1) & (~0x18)) | biaslevel << 3;
568 	} else {
569 		INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
570 					6, 1) & (~0xc0)) | biaslevel << 6;
571 	}
572 #undef XPA_LVL_FREQ
573 }
574 
575 static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hw *ah,
576 				struct ath9k_channel *chan,
577 				struct cal_data_per_freq *pRawDataSet,
578 				u8 *bChans, u16 availPiers,
579 				u16 tPdGainOverlap, int16_t *pMinCalPower,
580 				u16 *pPdGainBoundaries, u8 *pPDADCValues,
581 				u16 numXpdGains)
582 {
583 	int i, j, k;
584 	int16_t ss;
585 	u16 idxL = 0, idxR = 0, numPiers;
586 	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
587 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
588 	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
589 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
590 	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
591 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
592 
593 	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
594 	u8 minPwrT4[AR5416_NUM_PD_GAINS];
595 	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
596 	int16_t vpdStep;
597 	int16_t tmpVal;
598 	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
599 	bool match;
600 	int16_t minDelta = 0;
601 	struct chan_centers centers;
602 
603 	ath9k_hw_get_channel_centers(ah, chan, &centers);
604 
605 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
606 		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
607 			break;
608 	}
609 
610 	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
611 							     IS_CHAN_2GHZ(chan)),
612 					       bChans, numPiers, &idxL, &idxR);
613 
614 	if (match) {
615 		for (i = 0; i < numXpdGains; i++) {
616 			minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
617 			maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
618 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
619 					pRawDataSet[idxL].pwrPdg[i],
620 					pRawDataSet[idxL].vpdPdg[i],
621 					AR5416_PD_GAIN_ICEPTS,
622 					vpdTableI[i]);
623 		}
624 	} else {
625 		for (i = 0; i < numXpdGains; i++) {
626 			pVpdL = pRawDataSet[idxL].vpdPdg[i];
627 			pPwrL = pRawDataSet[idxL].pwrPdg[i];
628 			pVpdR = pRawDataSet[idxR].vpdPdg[i];
629 			pPwrR = pRawDataSet[idxR].pwrPdg[i];
630 
631 			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
632 
633 			maxPwrT4[i] =
634 				min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
635 				    pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
636 
637 
638 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
639 						pPwrL, pVpdL,
640 						AR5416_PD_GAIN_ICEPTS,
641 						vpdTableL[i]);
642 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
643 						pPwrR, pVpdR,
644 						AR5416_PD_GAIN_ICEPTS,
645 						vpdTableR[i]);
646 
647 			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
648 				vpdTableI[i][j] =
649 					(u8)(ath9k_hw_interpolate((u16)
650 					     FREQ2FBIN(centers.
651 						       synth_center,
652 						       IS_CHAN_2GHZ
653 						       (chan)),
654 					     bChans[idxL], bChans[idxR],
655 					     vpdTableL[i][j], vpdTableR[i][j]));
656 			}
657 		}
658 	}
659 
660 	*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
661 
662 	k = 0;
663 
664 	for (i = 0; i < numXpdGains; i++) {
665 		if (i == (numXpdGains - 1))
666 			pPdGainBoundaries[i] =
667 				(u16)(maxPwrT4[i] / 2);
668 		else
669 			pPdGainBoundaries[i] =
670 				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
671 
672 		pPdGainBoundaries[i] =
673 			min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
674 
675 		if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
676 			minDelta = pPdGainBoundaries[0] - 23;
677 			pPdGainBoundaries[0] = 23;
678 		} else {
679 			minDelta = 0;
680 		}
681 
682 		if (i == 0) {
683 			if (AR_SREV_9280_10_OR_LATER(ah))
684 				ss = (int16_t)(0 - (minPwrT4[i] / 2));
685 			else
686 				ss = 0;
687 		} else {
688 			ss = (int16_t)((pPdGainBoundaries[i - 1] -
689 					(minPwrT4[i] / 2)) -
690 				       tPdGainOverlap + 1 + minDelta);
691 		}
692 		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
693 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
694 
695 		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
696 			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
697 			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
698 			ss++;
699 		}
700 
701 		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
702 		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
703 				(minPwrT4[i] / 2));
704 		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
705 			tgtIndex : sizeCurrVpdTable;
706 
707 		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
708 			pPDADCValues[k++] = vpdTableI[i][ss++];
709 		}
710 
711 		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
712 				    vpdTableI[i][sizeCurrVpdTable - 2]);
713 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
714 
715 		if (tgtIndex > maxIndex) {
716 			while ((ss <= tgtIndex) &&
717 			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
718 				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
719 						    (ss - maxIndex + 1) * vpdStep));
720 				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
721 							 255 : tmpVal);
722 				ss++;
723 			}
724 		}
725 	}
726 
727 	while (i < AR5416_PD_GAINS_IN_MASK) {
728 		pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
729 		i++;
730 	}
731 
732 	while (k < AR5416_NUM_PDADC_VALUES) {
733 		pPDADCValues[k] = pPDADCValues[k - 1];
734 		k++;
735 	}
736 
737 	return;
738 }
739 
740 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
741 				  struct ath9k_channel *chan,
742 				  int16_t *pTxPowerIndexOffset)
743 {
744 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
745 #define SM_PDGAIN_B(x, y) \
746 		SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
747 
748 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
749 	struct cal_data_per_freq *pRawDataset;
750 	u8 *pCalBChans = NULL;
751 	u16 pdGainOverlap_t2;
752 	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
753 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
754 	u16 numPiers, i, j;
755 	int16_t tMinCalPower;
756 	u16 numXpdGain, xpdMask;
757 	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
758 	u32 reg32, regOffset, regChainOffset;
759 	int16_t modalIdx;
760 
761 	modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
762 	xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
763 
764 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
765 	    AR5416_EEP_MINOR_VER_2) {
766 		pdGainOverlap_t2 =
767 			pEepData->modalHeader[modalIdx].pdGainOverlap;
768 	} else {
769 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
770 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
771 	}
772 
773 	if (IS_CHAN_2GHZ(chan)) {
774 		pCalBChans = pEepData->calFreqPier2G;
775 		numPiers = AR5416_NUM_2G_CAL_PIERS;
776 	} else {
777 		pCalBChans = pEepData->calFreqPier5G;
778 		numPiers = AR5416_NUM_5G_CAL_PIERS;
779 	}
780 
781 	if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
782 		pRawDataset = pEepData->calPierData2G[0];
783 		ah->initPDADC = ((struct calDataPerFreqOpLoop *)
784 				 pRawDataset)->vpdPdg[0][0];
785 	}
786 
787 	numXpdGain = 0;
788 
789 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
790 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
791 			if (numXpdGain >= AR5416_NUM_PD_GAINS)
792 				break;
793 			xpdGainValues[numXpdGain] =
794 				(u16)(AR5416_PD_GAINS_IN_MASK - i);
795 			numXpdGain++;
796 		}
797 	}
798 
799 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
800 		      (numXpdGain - 1) & 0x3);
801 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
802 		      xpdGainValues[0]);
803 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
804 		      xpdGainValues[1]);
805 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
806 		      xpdGainValues[2]);
807 
808 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
809 		if (AR_SREV_5416_20_OR_LATER(ah) &&
810 		    (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
811 		    (i != 0)) {
812 			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
813 		} else
814 			regChainOffset = i * 0x1000;
815 
816 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
817 			if (IS_CHAN_2GHZ(chan))
818 				pRawDataset = pEepData->calPierData2G[i];
819 			else
820 				pRawDataset = pEepData->calPierData5G[i];
821 
822 
823 			if (OLC_FOR_AR9280_20_LATER) {
824 				u8 pcdacIdx;
825 				u8 txPower;
826 
827 				ath9k_get_txgain_index(ah, chan,
828 				(struct calDataPerFreqOpLoop *)pRawDataset,
829 				pCalBChans, numPiers, &txPower, &pcdacIdx);
830 				ath9k_olc_get_pdadcs(ah, pcdacIdx,
831 						     txPower/2, pdadcValues);
832 			} else {
833 				ath9k_hw_get_def_gain_boundaries_pdadcs(ah,
834 							chan, pRawDataset,
835 							pCalBChans, numPiers,
836 							pdGainOverlap_t2,
837 							&tMinCalPower,
838 							gainBoundaries,
839 							pdadcValues,
840 							numXpdGain);
841 			}
842 
843 			if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
844 				if (OLC_FOR_AR9280_20_LATER) {
845 					REG_WRITE(ah,
846 						AR_PHY_TPCRG5 + regChainOffset,
847 						SM(0x6,
848 						AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
849 						SM_PD_GAIN(1) | SM_PD_GAIN(2) |
850 						SM_PD_GAIN(3) | SM_PD_GAIN(4));
851 				} else {
852 					REG_WRITE(ah,
853 						AR_PHY_TPCRG5 + regChainOffset,
854 						SM(pdGainOverlap_t2,
855 						AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
856 						SM_PDGAIN_B(0, 1) |
857 						SM_PDGAIN_B(1, 2) |
858 						SM_PDGAIN_B(2, 3) |
859 						SM_PDGAIN_B(3, 4));
860 				}
861 			}
862 
863 			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
864 			for (j = 0; j < 32; j++) {
865 				reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
866 					((pdadcValues[4 * j + 1] & 0xFF) << 8) |
867 					((pdadcValues[4 * j + 2] & 0xFF) << 16)|
868 					((pdadcValues[4 * j + 3] & 0xFF) << 24);
869 				REG_WRITE(ah, regOffset, reg32);
870 
871 				DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
872 					"PDADC (%d,%4x): %4.4x %8.8x\n",
873 					i, regChainOffset, regOffset,
874 					reg32);
875 				DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
876 					"PDADC: Chain %d | PDADC %3d "
877 					"Value %3d | PDADC %3d Value %3d | "
878 					"PDADC %3d Value %3d | PDADC %3d "
879 					"Value %3d |\n",
880 					i, 4 * j, pdadcValues[4 * j],
881 					4 * j + 1, pdadcValues[4 * j + 1],
882 					4 * j + 2, pdadcValues[4 * j + 2],
883 					4 * j + 3,
884 					pdadcValues[4 * j + 3]);
885 
886 				regOffset += 4;
887 			}
888 		}
889 	}
890 
891 	*pTxPowerIndexOffset = 0;
892 #undef SM_PD_GAIN
893 #undef SM_PDGAIN_B
894 }
895 
896 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
897 						  struct ath9k_channel *chan,
898 						  int16_t *ratesArray,
899 						  u16 cfgCtl,
900 						  u16 AntennaReduction,
901 						  u16 twiceMaxRegulatoryPower,
902 						  u16 powerLimit)
903 {
904 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
905 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10 /* 10*log10(3)*2 */
906 
907 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
908 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
909 	u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
910 	static const u16 tpScaleReductionTable[5] =
911 		{ 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
912 
913 	int i;
914 	int16_t twiceLargestAntenna;
915 	struct cal_ctl_data *rep;
916 	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
917 		0, { 0, 0, 0, 0}
918 	};
919 	struct cal_target_power_leg targetPowerOfdmExt = {
920 		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
921 		0, { 0, 0, 0, 0 }
922 	};
923 	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
924 		0, {0, 0, 0, 0}
925 	};
926 	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
927 	u16 ctlModesFor11a[] =
928 		{ CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
929 	u16 ctlModesFor11g[] =
930 		{ CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
931 		  CTL_2GHT40
932 		};
933 	u16 numCtlModes, *pCtlMode, ctlMode, freq;
934 	struct chan_centers centers;
935 	int tx_chainmask;
936 	u16 twiceMinEdgePower;
937 
938 	tx_chainmask = ah->txchainmask;
939 
940 	ath9k_hw_get_channel_centers(ah, chan, &centers);
941 
942 	twiceLargestAntenna = max(
943 		pEepData->modalHeader
944 			[IS_CHAN_2GHZ(chan)].antennaGainCh[0],
945 		pEepData->modalHeader
946 			[IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
947 
948 	twiceLargestAntenna = max((u8)twiceLargestAntenna,
949 				  pEepData->modalHeader
950 				  [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
951 
952 	twiceLargestAntenna = (int16_t)min(AntennaReduction -
953 					   twiceLargestAntenna, 0);
954 
955 	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
956 
957 	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
958 		maxRegAllowedPower -=
959 			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
960 	}
961 
962 	scaledPower = min(powerLimit, maxRegAllowedPower);
963 
964 	switch (ar5416_get_ntxchains(tx_chainmask)) {
965 	case 1:
966 		break;
967 	case 2:
968 		scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
969 		break;
970 	case 3:
971 		scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
972 		break;
973 	}
974 
975 	scaledPower = max((u16)0, scaledPower);
976 
977 	if (IS_CHAN_2GHZ(chan)) {
978 		numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
979 			SUB_NUM_CTL_MODES_AT_2G_40;
980 		pCtlMode = ctlModesFor11g;
981 
982 		ath9k_hw_get_legacy_target_powers(ah, chan,
983 			pEepData->calTargetPowerCck,
984 			AR5416_NUM_2G_CCK_TARGET_POWERS,
985 			&targetPowerCck, 4, false);
986 		ath9k_hw_get_legacy_target_powers(ah, chan,
987 			pEepData->calTargetPower2G,
988 			AR5416_NUM_2G_20_TARGET_POWERS,
989 			&targetPowerOfdm, 4, false);
990 		ath9k_hw_get_target_powers(ah, chan,
991 			pEepData->calTargetPower2GHT20,
992 			AR5416_NUM_2G_20_TARGET_POWERS,
993 			&targetPowerHt20, 8, false);
994 
995 		if (IS_CHAN_HT40(chan)) {
996 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
997 			ath9k_hw_get_target_powers(ah, chan,
998 				pEepData->calTargetPower2GHT40,
999 				AR5416_NUM_2G_40_TARGET_POWERS,
1000 				&targetPowerHt40, 8, true);
1001 			ath9k_hw_get_legacy_target_powers(ah, chan,
1002 				pEepData->calTargetPowerCck,
1003 				AR5416_NUM_2G_CCK_TARGET_POWERS,
1004 				&targetPowerCckExt, 4, true);
1005 			ath9k_hw_get_legacy_target_powers(ah, chan,
1006 				pEepData->calTargetPower2G,
1007 				AR5416_NUM_2G_20_TARGET_POWERS,
1008 				&targetPowerOfdmExt, 4, true);
1009 		}
1010 	} else {
1011 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1012 			SUB_NUM_CTL_MODES_AT_5G_40;
1013 		pCtlMode = ctlModesFor11a;
1014 
1015 		ath9k_hw_get_legacy_target_powers(ah, chan,
1016 			pEepData->calTargetPower5G,
1017 			AR5416_NUM_5G_20_TARGET_POWERS,
1018 			&targetPowerOfdm, 4, false);
1019 		ath9k_hw_get_target_powers(ah, chan,
1020 			pEepData->calTargetPower5GHT20,
1021 			AR5416_NUM_5G_20_TARGET_POWERS,
1022 			&targetPowerHt20, 8, false);
1023 
1024 		if (IS_CHAN_HT40(chan)) {
1025 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1026 			ath9k_hw_get_target_powers(ah, chan,
1027 				pEepData->calTargetPower5GHT40,
1028 				AR5416_NUM_5G_40_TARGET_POWERS,
1029 				&targetPowerHt40, 8, true);
1030 			ath9k_hw_get_legacy_target_powers(ah, chan,
1031 				pEepData->calTargetPower5G,
1032 				AR5416_NUM_5G_20_TARGET_POWERS,
1033 				&targetPowerOfdmExt, 4, true);
1034 		}
1035 	}
1036 
1037 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1038 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1039 			(pCtlMode[ctlMode] == CTL_2GHT40);
1040 		if (isHt40CtlMode)
1041 			freq = centers.synth_center;
1042 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1043 			freq = centers.ext_center;
1044 		else
1045 			freq = centers.ctl_center;
1046 
1047 		if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
1048 		    ah->eep_ops->get_eeprom_rev(ah) <= 2)
1049 			twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1050 
1051 		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1052 			if ((((cfgCtl & ~CTL_MODE_M) |
1053 			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1054 			     pEepData->ctlIndex[i]) ||
1055 			    (((cfgCtl & ~CTL_MODE_M) |
1056 			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1057 			     ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1058 				rep = &(pEepData->ctlData[i]);
1059 
1060 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1061 				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1062 				IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1063 
1064 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1065 					twiceMaxEdgePower = min(twiceMaxEdgePower,
1066 								twiceMinEdgePower);
1067 				} else {
1068 					twiceMaxEdgePower = twiceMinEdgePower;
1069 					break;
1070 				}
1071 			}
1072 		}
1073 
1074 		minCtlPower = min(twiceMaxEdgePower, scaledPower);
1075 
1076 		switch (pCtlMode[ctlMode]) {
1077 		case CTL_11B:
1078 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1079 				targetPowerCck.tPow2x[i] =
1080 					min((u16)targetPowerCck.tPow2x[i],
1081 					    minCtlPower);
1082 			}
1083 			break;
1084 		case CTL_11A:
1085 		case CTL_11G:
1086 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1087 				targetPowerOfdm.tPow2x[i] =
1088 					min((u16)targetPowerOfdm.tPow2x[i],
1089 					    minCtlPower);
1090 			}
1091 			break;
1092 		case CTL_5GHT20:
1093 		case CTL_2GHT20:
1094 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1095 				targetPowerHt20.tPow2x[i] =
1096 					min((u16)targetPowerHt20.tPow2x[i],
1097 					    minCtlPower);
1098 			}
1099 			break;
1100 		case CTL_11B_EXT:
1101 			targetPowerCckExt.tPow2x[0] = min((u16)
1102 					targetPowerCckExt.tPow2x[0],
1103 					minCtlPower);
1104 			break;
1105 		case CTL_11A_EXT:
1106 		case CTL_11G_EXT:
1107 			targetPowerOfdmExt.tPow2x[0] = min((u16)
1108 					targetPowerOfdmExt.tPow2x[0],
1109 					minCtlPower);
1110 			break;
1111 		case CTL_5GHT40:
1112 		case CTL_2GHT40:
1113 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1114 				targetPowerHt40.tPow2x[i] =
1115 					min((u16)targetPowerHt40.tPow2x[i],
1116 					    minCtlPower);
1117 			}
1118 			break;
1119 		default:
1120 			break;
1121 		}
1122 	}
1123 
1124 	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1125 		ratesArray[rate18mb] = ratesArray[rate24mb] =
1126 		targetPowerOfdm.tPow2x[0];
1127 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1128 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1129 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1130 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1131 
1132 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1133 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1134 
1135 	if (IS_CHAN_2GHZ(chan)) {
1136 		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1137 		ratesArray[rate2s] = ratesArray[rate2l] =
1138 			targetPowerCck.tPow2x[1];
1139 		ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1140 			targetPowerCck.tPow2x[2];
1141 		ratesArray[rate11s] = ratesArray[rate11l] =
1142 			targetPowerCck.tPow2x[3];
1143 	}
1144 	if (IS_CHAN_HT40(chan)) {
1145 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1146 			ratesArray[rateHt40_0 + i] =
1147 				targetPowerHt40.tPow2x[i];
1148 		}
1149 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1150 		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1151 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1152 		if (IS_CHAN_2GHZ(chan)) {
1153 			ratesArray[rateExtCck] =
1154 				targetPowerCckExt.tPow2x[0];
1155 		}
1156 	}
1157 }
1158 
1159 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1160 				    struct ath9k_channel *chan,
1161 				    u16 cfgCtl,
1162 				    u8 twiceAntennaReduction,
1163 				    u8 twiceMaxRegulatoryPower,
1164 				    u8 powerLimit)
1165 {
1166 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1167 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1168 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1169 	struct modal_eep_header *pModal =
1170 		&(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1171 	int16_t ratesArray[Ar5416RateSize];
1172 	int16_t txPowerIndexOffset = 0;
1173 	u8 ht40PowerIncForPdadc = 2;
1174 	int i, cck_ofdm_delta = 0;
1175 
1176 	memset(ratesArray, 0, sizeof(ratesArray));
1177 
1178 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1179 	    AR5416_EEP_MINOR_VER_2) {
1180 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1181 	}
1182 
1183 	ath9k_hw_set_def_power_per_rate_table(ah, chan,
1184 					       &ratesArray[0], cfgCtl,
1185 					       twiceAntennaReduction,
1186 					       twiceMaxRegulatoryPower,
1187 					       powerLimit);
1188 
1189 	ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
1190 
1191 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1192 		ratesArray[i] =	(int16_t)(txPowerIndexOffset + ratesArray[i]);
1193 		if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1194 			ratesArray[i] = AR5416_MAX_RATE_POWER;
1195 	}
1196 
1197 	if (AR_SREV_9280_10_OR_LATER(ah)) {
1198 		for (i = 0; i < Ar5416RateSize; i++)
1199 			ratesArray[i] -= AR5416_PWR_TABLE_OFFSET * 2;
1200 	}
1201 
1202 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1203 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
1204 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1205 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1206 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1207 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1208 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
1209 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1210 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1211 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1212 
1213 	if (IS_CHAN_2GHZ(chan)) {
1214 		if (OLC_FOR_AR9280_20_LATER) {
1215 			cck_ofdm_delta = 2;
1216 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1217 				ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1218 				| ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1219 				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1220 				| ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1221 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1222 				ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1223 				| ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1224 				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1225 				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1226 		} else {
1227 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1228 				ATH9K_POW_SM(ratesArray[rate2s], 24)
1229 				| ATH9K_POW_SM(ratesArray[rate2l], 16)
1230 				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1231 				| ATH9K_POW_SM(ratesArray[rate1l], 0));
1232 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1233 				ATH9K_POW_SM(ratesArray[rate11s], 24)
1234 				| ATH9K_POW_SM(ratesArray[rate11l], 16)
1235 				| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1236 				| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1237 		}
1238 	}
1239 
1240 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1241 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1242 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1243 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1244 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1245 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1246 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1247 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1248 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1249 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1250 
1251 	if (IS_CHAN_HT40(chan)) {
1252 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1253 			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
1254 				       ht40PowerIncForPdadc, 24)
1255 			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1256 					 ht40PowerIncForPdadc, 16)
1257 			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1258 					 ht40PowerIncForPdadc, 8)
1259 			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1260 					 ht40PowerIncForPdadc, 0));
1261 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1262 			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
1263 				       ht40PowerIncForPdadc, 24)
1264 			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1265 					 ht40PowerIncForPdadc, 16)
1266 			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1267 					 ht40PowerIncForPdadc, 8)
1268 			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1269 					 ht40PowerIncForPdadc, 0));
1270 		if (OLC_FOR_AR9280_20_LATER) {
1271 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1272 				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1273 				| ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1274 				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1275 				| ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1276 		} else {
1277 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1278 				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1279 				| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1280 				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1281 				| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1282 		}
1283 	}
1284 
1285 	REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1286 		  ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1287 		  | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1288 
1289 	i = rate6mb;
1290 
1291 	if (IS_CHAN_HT40(chan))
1292 		i = rateHt40_0;
1293 	else if (IS_CHAN_HT20(chan))
1294 		i = rateHt20_0;
1295 
1296 	if (AR_SREV_9280_10_OR_LATER(ah))
1297 		regulatory->max_power_level =
1298 			ratesArray[i] + AR5416_PWR_TABLE_OFFSET * 2;
1299 	else
1300 		regulatory->max_power_level = ratesArray[i];
1301 
1302 	switch(ar5416_get_ntxchains(ah->txchainmask)) {
1303 	case 1:
1304 		break;
1305 	case 2:
1306 		regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
1307 		break;
1308 	case 3:
1309 		regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
1310 		break;
1311 	default:
1312 		DPRINTF(ah->ah_sc, ATH_DBG_EEPROM,
1313 			"Invalid chainmask configuration\n");
1314 		break;
1315 	}
1316 }
1317 
1318 static u8 ath9k_hw_def_get_num_ant_config(struct ath_hw *ah,
1319 					  enum ieee80211_band freq_band)
1320 {
1321 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1322 	struct modal_eep_header *pModal =
1323 		&(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
1324 	struct base_eep_header *pBase = &eep->baseEepHeader;
1325 	u8 num_ant_config;
1326 
1327 	num_ant_config = 1;
1328 
1329 	if (pBase->version >= 0x0E0D)
1330 		if (pModal->useAnt1)
1331 			num_ant_config += 1;
1332 
1333 	return num_ant_config;
1334 }
1335 
1336 static u16 ath9k_hw_def_get_eeprom_antenna_cfg(struct ath_hw *ah,
1337 					       struct ath9k_channel *chan)
1338 {
1339 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1340 	struct modal_eep_header *pModal =
1341 		&(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1342 
1343 	return pModal->antCtrlCommon & 0xFFFF;
1344 }
1345 
1346 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1347 {
1348 #define EEP_DEF_SPURCHAN \
1349 	(ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1350 
1351 	u16 spur_val = AR_NO_SPUR;
1352 
1353 	DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1354 		"Getting spur idx %d is2Ghz. %d val %x\n",
1355 		i, is2GHz, ah->config.spurchans[i][is2GHz]);
1356 
1357 	switch (ah->config.spurmode) {
1358 	case SPUR_DISABLE:
1359 		break;
1360 	case SPUR_ENABLE_IOCTL:
1361 		spur_val = ah->config.spurchans[i][is2GHz];
1362 		DPRINTF(ah->ah_sc, ATH_DBG_ANI,
1363 			"Getting spur val from new loc. %d\n", spur_val);
1364 		break;
1365 	case SPUR_ENABLE_EEPROM:
1366 		spur_val = EEP_DEF_SPURCHAN;
1367 		break;
1368 	}
1369 
1370 	return spur_val;
1371 
1372 #undef EEP_DEF_SPURCHAN
1373 }
1374 
1375 const struct eeprom_ops eep_def_ops = {
1376 	.check_eeprom		= ath9k_hw_def_check_eeprom,
1377 	.get_eeprom		= ath9k_hw_def_get_eeprom,
1378 	.fill_eeprom		= ath9k_hw_def_fill_eeprom,
1379 	.get_eeprom_ver		= ath9k_hw_def_get_eeprom_ver,
1380 	.get_eeprom_rev		= ath9k_hw_def_get_eeprom_rev,
1381 	.get_num_ant_config	= ath9k_hw_def_get_num_ant_config,
1382 	.get_eeprom_antenna_cfg	= ath9k_hw_def_get_eeprom_antenna_cfg,
1383 	.set_board_values	= ath9k_hw_def_set_board_values,
1384 	.set_addac		= ath9k_hw_def_set_addac,
1385 	.set_txpower		= ath9k_hw_def_set_txpower,
1386 	.get_spur_channel	= ath9k_hw_def_get_spur_channel
1387 };
1388