xref: /openbmc/linux/drivers/net/wireless/ath/ath9k/eeprom_def.c (revision baa7eb025ab14f3cba2e35c0a8648f9c9f01d24f)
1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 #include "ar9002_phy.h"
19 
20 static void ath9k_get_txgain_index(struct ath_hw *ah,
21 		struct ath9k_channel *chan,
22 		struct calDataPerFreqOpLoop *rawDatasetOpLoop,
23 		u8 *calChans,  u16 availPiers, u8 *pwr, u8 *pcdacIdx)
24 {
25 	u8 pcdac, i = 0;
26 	u16 idxL = 0, idxR = 0, numPiers;
27 	bool match;
28 	struct chan_centers centers;
29 
30 	ath9k_hw_get_channel_centers(ah, chan, &centers);
31 
32 	for (numPiers = 0; numPiers < availPiers; numPiers++)
33 		if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
34 			break;
35 
36 	match = ath9k_hw_get_lower_upper_index(
37 			(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
38 			calChans, numPiers, &idxL, &idxR);
39 	if (match) {
40 		pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
41 		*pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
42 	} else {
43 		pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
44 		*pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
45 				rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
46 	}
47 
48 	while (pcdac > ah->originalGain[i] &&
49 			i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
50 		i++;
51 
52 	*pcdacIdx = i;
53 }
54 
55 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
56 				u32 initTxGain,
57 				int txPower,
58 				u8 *pPDADCValues)
59 {
60 	u32 i;
61 	u32 offset;
62 
63 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
64 			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
65 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
66 			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
67 
68 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
69 			AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
70 
71 	offset = txPower;
72 	for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
73 		if (i < offset)
74 			pPDADCValues[i] = 0x0;
75 		else
76 			pPDADCValues[i] = 0xFF;
77 }
78 
79 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
80 {
81 	return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
82 }
83 
84 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
85 {
86 	return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
87 }
88 
89 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
90 {
91 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
92 	struct ath_common *common = ath9k_hw_common(ah);
93 	u16 *eep_data = (u16 *)&ah->eeprom.def;
94 	int addr, ar5416_eep_start_loc = 0x100;
95 
96 	for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
97 		if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
98 					 eep_data)) {
99 			ath_err(ath9k_hw_common(ah),
100 				"Unable to read eeprom region\n");
101 			return false;
102 		}
103 		eep_data++;
104 	}
105 	return true;
106 #undef SIZE_EEPROM_DEF
107 }
108 
109 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
110 {
111 	struct ar5416_eeprom_def *eep =
112 		(struct ar5416_eeprom_def *) &ah->eeprom.def;
113 	struct ath_common *common = ath9k_hw_common(ah);
114 	u16 *eepdata, temp, magic, magic2;
115 	u32 sum = 0, el;
116 	bool need_swap = false;
117 	int i, addr, size;
118 
119 	if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
120 		ath_err(common, "Reading Magic # failed\n");
121 		return false;
122 	}
123 
124 	if (!ath9k_hw_use_flash(ah)) {
125 		ath_dbg(common, ATH_DBG_EEPROM,
126 			"Read Magic = 0x%04X\n", magic);
127 
128 		if (magic != AR5416_EEPROM_MAGIC) {
129 			magic2 = swab16(magic);
130 
131 			if (magic2 == AR5416_EEPROM_MAGIC) {
132 				size = sizeof(struct ar5416_eeprom_def);
133 				need_swap = true;
134 				eepdata = (u16 *) (&ah->eeprom);
135 
136 				for (addr = 0; addr < size / sizeof(u16); addr++) {
137 					temp = swab16(*eepdata);
138 					*eepdata = temp;
139 					eepdata++;
140 				}
141 			} else {
142 				ath_err(common,
143 					"Invalid EEPROM Magic. Endianness mismatch.\n");
144 				return -EINVAL;
145 			}
146 		}
147 	}
148 
149 	ath_dbg(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
150 		need_swap ? "True" : "False");
151 
152 	if (need_swap)
153 		el = swab16(ah->eeprom.def.baseEepHeader.length);
154 	else
155 		el = ah->eeprom.def.baseEepHeader.length;
156 
157 	if (el > sizeof(struct ar5416_eeprom_def))
158 		el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
159 	else
160 		el = el / sizeof(u16);
161 
162 	eepdata = (u16 *)(&ah->eeprom);
163 
164 	for (i = 0; i < el; i++)
165 		sum ^= *eepdata++;
166 
167 	if (need_swap) {
168 		u32 integer, j;
169 		u16 word;
170 
171 		ath_dbg(common, ATH_DBG_EEPROM,
172 			"EEPROM Endianness is not native.. Changing.\n");
173 
174 		word = swab16(eep->baseEepHeader.length);
175 		eep->baseEepHeader.length = word;
176 
177 		word = swab16(eep->baseEepHeader.checksum);
178 		eep->baseEepHeader.checksum = word;
179 
180 		word = swab16(eep->baseEepHeader.version);
181 		eep->baseEepHeader.version = word;
182 
183 		word = swab16(eep->baseEepHeader.regDmn[0]);
184 		eep->baseEepHeader.regDmn[0] = word;
185 
186 		word = swab16(eep->baseEepHeader.regDmn[1]);
187 		eep->baseEepHeader.regDmn[1] = word;
188 
189 		word = swab16(eep->baseEepHeader.rfSilent);
190 		eep->baseEepHeader.rfSilent = word;
191 
192 		word = swab16(eep->baseEepHeader.blueToothOptions);
193 		eep->baseEepHeader.blueToothOptions = word;
194 
195 		word = swab16(eep->baseEepHeader.deviceCap);
196 		eep->baseEepHeader.deviceCap = word;
197 
198 		for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
199 			struct modal_eep_header *pModal =
200 				&eep->modalHeader[j];
201 			integer = swab32(pModal->antCtrlCommon);
202 			pModal->antCtrlCommon = integer;
203 
204 			for (i = 0; i < AR5416_MAX_CHAINS; i++) {
205 				integer = swab32(pModal->antCtrlChain[i]);
206 				pModal->antCtrlChain[i] = integer;
207 			}
208 
209 			for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
210 				word = swab16(pModal->spurChans[i].spurChan);
211 				pModal->spurChans[i].spurChan = word;
212 			}
213 		}
214 	}
215 
216 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
217 	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
218 		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
219 			sum, ah->eep_ops->get_eeprom_ver(ah));
220 		return -EINVAL;
221 	}
222 
223 	/* Enable fixup for AR_AN_TOP2 if necessary */
224 	if (AR_SREV_9280_20_OR_LATER(ah) &&
225 	    (eep->baseEepHeader.version & 0xff) > 0x0a &&
226 	    eep->baseEepHeader.pwdclkind == 0)
227 		ah->need_an_top2_fixup = 1;
228 
229 	return 0;
230 }
231 
232 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
233 				   enum eeprom_param param)
234 {
235 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
236 	struct modal_eep_header *pModal = eep->modalHeader;
237 	struct base_eep_header *pBase = &eep->baseEepHeader;
238 
239 	switch (param) {
240 	case EEP_NFTHRESH_5:
241 		return pModal[0].noiseFloorThreshCh[0];
242 	case EEP_NFTHRESH_2:
243 		return pModal[1].noiseFloorThreshCh[0];
244 	case EEP_MAC_LSW:
245 		return pBase->macAddr[0] << 8 | pBase->macAddr[1];
246 	case EEP_MAC_MID:
247 		return pBase->macAddr[2] << 8 | pBase->macAddr[3];
248 	case EEP_MAC_MSW:
249 		return pBase->macAddr[4] << 8 | pBase->macAddr[5];
250 	case EEP_REG_0:
251 		return pBase->regDmn[0];
252 	case EEP_REG_1:
253 		return pBase->regDmn[1];
254 	case EEP_OP_CAP:
255 		return pBase->deviceCap;
256 	case EEP_OP_MODE:
257 		return pBase->opCapFlags;
258 	case EEP_RF_SILENT:
259 		return pBase->rfSilent;
260 	case EEP_OB_5:
261 		return pModal[0].ob;
262 	case EEP_DB_5:
263 		return pModal[0].db;
264 	case EEP_OB_2:
265 		return pModal[1].ob;
266 	case EEP_DB_2:
267 		return pModal[1].db;
268 	case EEP_MINOR_REV:
269 		return AR5416_VER_MASK;
270 	case EEP_TX_MASK:
271 		return pBase->txMask;
272 	case EEP_RX_MASK:
273 		return pBase->rxMask;
274 	case EEP_FSTCLK_5G:
275 		return pBase->fastClk5g;
276 	case EEP_RXGAIN_TYPE:
277 		return pBase->rxGainType;
278 	case EEP_TXGAIN_TYPE:
279 		return pBase->txGainType;
280 	case EEP_OL_PWRCTRL:
281 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
282 			return pBase->openLoopPwrCntl ? true : false;
283 		else
284 			return false;
285 	case EEP_RC_CHAIN_MASK:
286 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
287 			return pBase->rcChainMask;
288 		else
289 			return 0;
290 	case EEP_DAC_HPWR_5G:
291 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
292 			return pBase->dacHiPwrMode_5G;
293 		else
294 			return 0;
295 	case EEP_FRAC_N_5G:
296 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
297 			return pBase->frac_n_5g;
298 		else
299 			return 0;
300 	case EEP_PWR_TABLE_OFFSET:
301 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
302 			return pBase->pwr_table_offset;
303 		else
304 			return AR5416_PWR_TABLE_OFFSET_DB;
305 	default:
306 		return 0;
307 	}
308 }
309 
310 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
311 				  struct modal_eep_header *pModal,
312 				  struct ar5416_eeprom_def *eep,
313 				  u8 txRxAttenLocal, int regChainOffset, int i)
314 {
315 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
316 		txRxAttenLocal = pModal->txRxAttenCh[i];
317 
318 		if (AR_SREV_9280_20_OR_LATER(ah)) {
319 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
320 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
321 			      pModal->bswMargin[i]);
322 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
323 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
324 			      pModal->bswAtten[i]);
325 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
326 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
327 			      pModal->xatten2Margin[i]);
328 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
329 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
330 			      pModal->xatten2Db[i]);
331 		} else {
332 			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
333 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
334 			   ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
335 			  | SM(pModal-> bswMargin[i],
336 			       AR_PHY_GAIN_2GHZ_BSW_MARGIN));
337 			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
338 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
339 			   ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
340 			  | SM(pModal->bswAtten[i],
341 			       AR_PHY_GAIN_2GHZ_BSW_ATTEN));
342 		}
343 	}
344 
345 	if (AR_SREV_9280_20_OR_LATER(ah)) {
346 		REG_RMW_FIELD(ah,
347 		      AR_PHY_RXGAIN + regChainOffset,
348 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
349 		REG_RMW_FIELD(ah,
350 		      AR_PHY_RXGAIN + regChainOffset,
351 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
352 	} else {
353 		REG_WRITE(ah,
354 			  AR_PHY_RXGAIN + regChainOffset,
355 			  (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
356 			   ~AR_PHY_RXGAIN_TXRX_ATTEN)
357 			  | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
358 		REG_WRITE(ah,
359 			  AR_PHY_GAIN_2GHZ + regChainOffset,
360 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
361 			   ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
362 			  SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
363 	}
364 }
365 
366 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
367 					  struct ath9k_channel *chan)
368 {
369 	struct modal_eep_header *pModal;
370 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
371 	int i, regChainOffset;
372 	u8 txRxAttenLocal;
373 
374 	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
375 	txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
376 
377 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
378 
379 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
380 		if (AR_SREV_9280(ah)) {
381 			if (i >= 2)
382 				break;
383 		}
384 
385 		if (AR_SREV_5416_20_OR_LATER(ah) &&
386 		    (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
387 			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
388 		else
389 			regChainOffset = i * 0x1000;
390 
391 		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
392 			  pModal->antCtrlChain[i]);
393 
394 		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
395 			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
396 			   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
397 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
398 			  SM(pModal->iqCalICh[i],
399 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
400 			  SM(pModal->iqCalQCh[i],
401 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
402 
403 		if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
404 			ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
405 					      regChainOffset, i);
406 	}
407 
408 	if (AR_SREV_9280_20_OR_LATER(ah)) {
409 		if (IS_CHAN_2GHZ(chan)) {
410 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
411 						  AR_AN_RF2G1_CH0_OB,
412 						  AR_AN_RF2G1_CH0_OB_S,
413 						  pModal->ob);
414 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
415 						  AR_AN_RF2G1_CH0_DB,
416 						  AR_AN_RF2G1_CH0_DB_S,
417 						  pModal->db);
418 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
419 						  AR_AN_RF2G1_CH1_OB,
420 						  AR_AN_RF2G1_CH1_OB_S,
421 						  pModal->ob_ch1);
422 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
423 						  AR_AN_RF2G1_CH1_DB,
424 						  AR_AN_RF2G1_CH1_DB_S,
425 						  pModal->db_ch1);
426 		} else {
427 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
428 						  AR_AN_RF5G1_CH0_OB5,
429 						  AR_AN_RF5G1_CH0_OB5_S,
430 						  pModal->ob);
431 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
432 						  AR_AN_RF5G1_CH0_DB5,
433 						  AR_AN_RF5G1_CH0_DB5_S,
434 						  pModal->db);
435 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
436 						  AR_AN_RF5G1_CH1_OB5,
437 						  AR_AN_RF5G1_CH1_OB5_S,
438 						  pModal->ob_ch1);
439 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
440 						  AR_AN_RF5G1_CH1_DB5,
441 						  AR_AN_RF5G1_CH1_DB5_S,
442 						  pModal->db_ch1);
443 		}
444 		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
445 					  AR_AN_TOP2_XPABIAS_LVL,
446 					  AR_AN_TOP2_XPABIAS_LVL_S,
447 					  pModal->xpaBiasLvl);
448 		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
449 					  AR_AN_TOP2_LOCALBIAS,
450 					  AR_AN_TOP2_LOCALBIAS_S,
451 					  !!(pModal->lna_ctl &
452 					     LNA_CTL_LOCAL_BIAS));
453 		REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
454 			      !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
455 	}
456 
457 	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
458 		      pModal->switchSettling);
459 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
460 		      pModal->adcDesiredSize);
461 
462 	if (!AR_SREV_9280_20_OR_LATER(ah))
463 		REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
464 			      AR_PHY_DESIRED_SZ_PGA,
465 			      pModal->pgaDesiredSize);
466 
467 	REG_WRITE(ah, AR_PHY_RF_CTL4,
468 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
469 		  | SM(pModal->txEndToXpaOff,
470 		       AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
471 		  | SM(pModal->txFrameToXpaOn,
472 		       AR_PHY_RF_CTL4_FRAME_XPAA_ON)
473 		  | SM(pModal->txFrameToXpaOn,
474 		       AR_PHY_RF_CTL4_FRAME_XPAB_ON));
475 
476 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
477 		      pModal->txEndToRxOn);
478 
479 	if (AR_SREV_9280_20_OR_LATER(ah)) {
480 		REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
481 			      pModal->thresh62);
482 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
483 			      AR_PHY_EXT_CCA0_THRESH62,
484 			      pModal->thresh62);
485 	} else {
486 		REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
487 			      pModal->thresh62);
488 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
489 			      AR_PHY_EXT_CCA_THRESH62,
490 			      pModal->thresh62);
491 	}
492 
493 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
494 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
495 			      AR_PHY_TX_END_DATA_START,
496 			      pModal->txFrameToDataStart);
497 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
498 			      pModal->txFrameToPaOn);
499 	}
500 
501 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
502 		if (IS_CHAN_HT40(chan))
503 			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
504 				      AR_PHY_SETTLING_SWITCH,
505 				      pModal->swSettleHt40);
506 	}
507 
508 	if (AR_SREV_9280_20_OR_LATER(ah) &&
509 	    AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
510 		REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
511 			      AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
512 			      pModal->miscBits);
513 
514 
515 	if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
516 		if (IS_CHAN_2GHZ(chan))
517 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
518 					eep->baseEepHeader.dacLpMode);
519 		else if (eep->baseEepHeader.dacHiPwrMode_5G)
520 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
521 		else
522 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
523 				      eep->baseEepHeader.dacLpMode);
524 
525 		udelay(100);
526 
527 		REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
528 			      pModal->miscBits >> 2);
529 
530 		REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
531 			      AR_PHY_TX_DESIRED_SCALE_CCK,
532 			      eep->baseEepHeader.desiredScaleCCK);
533 	}
534 }
535 
536 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
537 				   struct ath9k_channel *chan)
538 {
539 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
540 	struct modal_eep_header *pModal;
541 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
542 	u8 biaslevel;
543 
544 	if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
545 		return;
546 
547 	if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
548 		return;
549 
550 	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
551 
552 	if (pModal->xpaBiasLvl != 0xff) {
553 		biaslevel = pModal->xpaBiasLvl;
554 	} else {
555 		u16 resetFreqBin, freqBin, freqCount = 0;
556 		struct chan_centers centers;
557 
558 		ath9k_hw_get_channel_centers(ah, chan, &centers);
559 
560 		resetFreqBin = FREQ2FBIN(centers.synth_center,
561 					 IS_CHAN_2GHZ(chan));
562 		freqBin = XPA_LVL_FREQ(0) & 0xff;
563 		biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
564 
565 		freqCount++;
566 
567 		while (freqCount < 3) {
568 			if (XPA_LVL_FREQ(freqCount) == 0x0)
569 				break;
570 
571 			freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
572 			if (resetFreqBin >= freqBin)
573 				biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
574 			else
575 				break;
576 			freqCount++;
577 		}
578 	}
579 
580 	if (IS_CHAN_2GHZ(chan)) {
581 		INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
582 					7, 1) & (~0x18)) | biaslevel << 3;
583 	} else {
584 		INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
585 					6, 1) & (~0xc0)) | biaslevel << 6;
586 	}
587 #undef XPA_LVL_FREQ
588 }
589 
590 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
591 				u16 *gb,
592 				u16 numXpdGain,
593 				u16 pdGainOverlap_t2,
594 				int8_t pwr_table_offset,
595 				int16_t *diff)
596 
597 {
598 	u16 k;
599 
600 	/* Prior to writing the boundaries or the pdadc vs. power table
601 	 * into the chip registers the default starting point on the pdadc
602 	 * vs. power table needs to be checked and the curve boundaries
603 	 * adjusted accordingly
604 	 */
605 	if (AR_SREV_9280_20_OR_LATER(ah)) {
606 		u16 gb_limit;
607 
608 		if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
609 			/* get the difference in dB */
610 			*diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
611 			/* get the number of half dB steps */
612 			*diff *= 2;
613 			/* change the original gain boundary settings
614 			 * by the number of half dB steps
615 			 */
616 			for (k = 0; k < numXpdGain; k++)
617 				gb[k] = (u16)(gb[k] - *diff);
618 		}
619 		/* Because of a hardware limitation, ensure the gain boundary
620 		 * is not larger than (63 - overlap)
621 		 */
622 		gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
623 
624 		for (k = 0; k < numXpdGain; k++)
625 			gb[k] = (u16)min(gb_limit, gb[k]);
626 	}
627 
628 	return *diff;
629 }
630 
631 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
632 				      int8_t pwr_table_offset,
633 				      int16_t diff,
634 				      u8 *pdadcValues)
635 {
636 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
637 	u16 k;
638 
639 	/* If this is a board that has a pwrTableOffset that differs from
640 	 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
641 	 * pdadc vs pwr table needs to be adjusted prior to writing to the
642 	 * chip.
643 	 */
644 	if (AR_SREV_9280_20_OR_LATER(ah)) {
645 		if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
646 			/* shift the table to start at the new offset */
647 			for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
648 				pdadcValues[k] = pdadcValues[k + diff];
649 			}
650 
651 			/* fill the back of the table */
652 			for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
653 				pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
654 			}
655 		}
656 	}
657 #undef NUM_PDADC
658 }
659 
660 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
661 				  struct ath9k_channel *chan,
662 				  int16_t *pTxPowerIndexOffset)
663 {
664 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
665 #define SM_PDGAIN_B(x, y) \
666 		SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
667 	struct ath_common *common = ath9k_hw_common(ah);
668 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
669 	struct cal_data_per_freq *pRawDataset;
670 	u8 *pCalBChans = NULL;
671 	u16 pdGainOverlap_t2;
672 	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
673 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
674 	u16 numPiers, i, j;
675 	int16_t diff = 0;
676 	u16 numXpdGain, xpdMask;
677 	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
678 	u32 reg32, regOffset, regChainOffset;
679 	int16_t modalIdx;
680 	int8_t pwr_table_offset;
681 
682 	modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
683 	xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
684 
685 	pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
686 
687 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
688 	    AR5416_EEP_MINOR_VER_2) {
689 		pdGainOverlap_t2 =
690 			pEepData->modalHeader[modalIdx].pdGainOverlap;
691 	} else {
692 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
693 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
694 	}
695 
696 	if (IS_CHAN_2GHZ(chan)) {
697 		pCalBChans = pEepData->calFreqPier2G;
698 		numPiers = AR5416_NUM_2G_CAL_PIERS;
699 	} else {
700 		pCalBChans = pEepData->calFreqPier5G;
701 		numPiers = AR5416_NUM_5G_CAL_PIERS;
702 	}
703 
704 	if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
705 		pRawDataset = pEepData->calPierData2G[0];
706 		ah->initPDADC = ((struct calDataPerFreqOpLoop *)
707 				 pRawDataset)->vpdPdg[0][0];
708 	}
709 
710 	numXpdGain = 0;
711 
712 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
713 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
714 			if (numXpdGain >= AR5416_NUM_PD_GAINS)
715 				break;
716 			xpdGainValues[numXpdGain] =
717 				(u16)(AR5416_PD_GAINS_IN_MASK - i);
718 			numXpdGain++;
719 		}
720 	}
721 
722 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
723 		      (numXpdGain - 1) & 0x3);
724 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
725 		      xpdGainValues[0]);
726 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
727 		      xpdGainValues[1]);
728 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
729 		      xpdGainValues[2]);
730 
731 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
732 		if (AR_SREV_5416_20_OR_LATER(ah) &&
733 		    (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
734 		    (i != 0)) {
735 			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
736 		} else
737 			regChainOffset = i * 0x1000;
738 
739 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
740 			if (IS_CHAN_2GHZ(chan))
741 				pRawDataset = pEepData->calPierData2G[i];
742 			else
743 				pRawDataset = pEepData->calPierData5G[i];
744 
745 
746 			if (OLC_FOR_AR9280_20_LATER) {
747 				u8 pcdacIdx;
748 				u8 txPower;
749 
750 				ath9k_get_txgain_index(ah, chan,
751 				(struct calDataPerFreqOpLoop *)pRawDataset,
752 				pCalBChans, numPiers, &txPower, &pcdacIdx);
753 				ath9k_olc_get_pdadcs(ah, pcdacIdx,
754 						     txPower/2, pdadcValues);
755 			} else {
756 				ath9k_hw_get_gain_boundaries_pdadcs(ah,
757 							chan, pRawDataset,
758 							pCalBChans, numPiers,
759 							pdGainOverlap_t2,
760 							gainBoundaries,
761 							pdadcValues,
762 							numXpdGain);
763 			}
764 
765 			diff = ath9k_change_gain_boundary_setting(ah,
766 							   gainBoundaries,
767 							   numXpdGain,
768 							   pdGainOverlap_t2,
769 							   pwr_table_offset,
770 							   &diff);
771 
772 			if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
773 				if (OLC_FOR_AR9280_20_LATER) {
774 					REG_WRITE(ah,
775 						AR_PHY_TPCRG5 + regChainOffset,
776 						SM(0x6,
777 						AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
778 						SM_PD_GAIN(1) | SM_PD_GAIN(2) |
779 						SM_PD_GAIN(3) | SM_PD_GAIN(4));
780 				} else {
781 					REG_WRITE(ah,
782 						AR_PHY_TPCRG5 + regChainOffset,
783 						SM(pdGainOverlap_t2,
784 						AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
785 						SM_PDGAIN_B(0, 1) |
786 						SM_PDGAIN_B(1, 2) |
787 						SM_PDGAIN_B(2, 3) |
788 						SM_PDGAIN_B(3, 4));
789 				}
790 			}
791 
792 
793 			ath9k_adjust_pdadc_values(ah, pwr_table_offset,
794 						  diff, pdadcValues);
795 
796 			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
797 			for (j = 0; j < 32; j++) {
798 				reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
799 					((pdadcValues[4 * j + 1] & 0xFF) << 8) |
800 					((pdadcValues[4 * j + 2] & 0xFF) << 16)|
801 					((pdadcValues[4 * j + 3] & 0xFF) << 24);
802 				REG_WRITE(ah, regOffset, reg32);
803 
804 				ath_dbg(common, ATH_DBG_EEPROM,
805 					"PDADC (%d,%4x): %4.4x %8.8x\n",
806 					i, regChainOffset, regOffset,
807 					reg32);
808 				ath_dbg(common, ATH_DBG_EEPROM,
809 					"PDADC: Chain %d | PDADC %3d "
810 					"Value %3d | PDADC %3d Value %3d | "
811 					"PDADC %3d Value %3d | PDADC %3d "
812 					"Value %3d |\n",
813 					i, 4 * j, pdadcValues[4 * j],
814 					4 * j + 1, pdadcValues[4 * j + 1],
815 					4 * j + 2, pdadcValues[4 * j + 2],
816 					4 * j + 3, pdadcValues[4 * j + 3]);
817 
818 				regOffset += 4;
819 			}
820 		}
821 	}
822 
823 	*pTxPowerIndexOffset = 0;
824 #undef SM_PD_GAIN
825 #undef SM_PDGAIN_B
826 }
827 
828 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
829 						  struct ath9k_channel *chan,
830 						  int16_t *ratesArray,
831 						  u16 cfgCtl,
832 						  u16 AntennaReduction,
833 						  u16 twiceMaxRegulatoryPower,
834 						  u16 powerLimit)
835 {
836 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
837 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   9 /* 10*log10(3)*2 */
838 
839 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
840 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
841 	u16 twiceMaxEdgePower = MAX_RATE_POWER;
842 	static const u16 tpScaleReductionTable[5] =
843 		{ 0, 3, 6, 9, MAX_RATE_POWER };
844 
845 	int i;
846 	int16_t twiceLargestAntenna;
847 	struct cal_ctl_data *rep;
848 	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
849 		0, { 0, 0, 0, 0}
850 	};
851 	struct cal_target_power_leg targetPowerOfdmExt = {
852 		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
853 		0, { 0, 0, 0, 0 }
854 	};
855 	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
856 		0, {0, 0, 0, 0}
857 	};
858 	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
859 	static const u16 ctlModesFor11a[] = {
860 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
861 	};
862 	static const u16 ctlModesFor11g[] = {
863 		CTL_11B, CTL_11G, CTL_2GHT20,
864 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
865 	};
866 	u16 numCtlModes;
867 	const u16 *pCtlMode;
868 	u16 ctlMode, freq;
869 	struct chan_centers centers;
870 	int tx_chainmask;
871 	u16 twiceMinEdgePower;
872 
873 	tx_chainmask = ah->txchainmask;
874 
875 	ath9k_hw_get_channel_centers(ah, chan, &centers);
876 
877 	twiceLargestAntenna = max(
878 		pEepData->modalHeader
879 			[IS_CHAN_2GHZ(chan)].antennaGainCh[0],
880 		pEepData->modalHeader
881 			[IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
882 
883 	twiceLargestAntenna = max((u8)twiceLargestAntenna,
884 				  pEepData->modalHeader
885 				  [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
886 
887 	twiceLargestAntenna = (int16_t)min(AntennaReduction -
888 					   twiceLargestAntenna, 0);
889 
890 	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
891 
892 	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
893 		maxRegAllowedPower -=
894 			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
895 	}
896 
897 	scaledPower = min(powerLimit, maxRegAllowedPower);
898 
899 	switch (ar5416_get_ntxchains(tx_chainmask)) {
900 	case 1:
901 		break;
902 	case 2:
903 		if (scaledPower > REDUCE_SCALED_POWER_BY_TWO_CHAIN)
904 			scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
905 		else
906 			scaledPower = 0;
907 		break;
908 	case 3:
909 		if (scaledPower > REDUCE_SCALED_POWER_BY_THREE_CHAIN)
910 			scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
911 		else
912 			scaledPower = 0;
913 		break;
914 	}
915 
916 	if (IS_CHAN_2GHZ(chan)) {
917 		numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
918 			SUB_NUM_CTL_MODES_AT_2G_40;
919 		pCtlMode = ctlModesFor11g;
920 
921 		ath9k_hw_get_legacy_target_powers(ah, chan,
922 			pEepData->calTargetPowerCck,
923 			AR5416_NUM_2G_CCK_TARGET_POWERS,
924 			&targetPowerCck, 4, false);
925 		ath9k_hw_get_legacy_target_powers(ah, chan,
926 			pEepData->calTargetPower2G,
927 			AR5416_NUM_2G_20_TARGET_POWERS,
928 			&targetPowerOfdm, 4, false);
929 		ath9k_hw_get_target_powers(ah, chan,
930 			pEepData->calTargetPower2GHT20,
931 			AR5416_NUM_2G_20_TARGET_POWERS,
932 			&targetPowerHt20, 8, false);
933 
934 		if (IS_CHAN_HT40(chan)) {
935 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
936 			ath9k_hw_get_target_powers(ah, chan,
937 				pEepData->calTargetPower2GHT40,
938 				AR5416_NUM_2G_40_TARGET_POWERS,
939 				&targetPowerHt40, 8, true);
940 			ath9k_hw_get_legacy_target_powers(ah, chan,
941 				pEepData->calTargetPowerCck,
942 				AR5416_NUM_2G_CCK_TARGET_POWERS,
943 				&targetPowerCckExt, 4, true);
944 			ath9k_hw_get_legacy_target_powers(ah, chan,
945 				pEepData->calTargetPower2G,
946 				AR5416_NUM_2G_20_TARGET_POWERS,
947 				&targetPowerOfdmExt, 4, true);
948 		}
949 	} else {
950 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
951 			SUB_NUM_CTL_MODES_AT_5G_40;
952 		pCtlMode = ctlModesFor11a;
953 
954 		ath9k_hw_get_legacy_target_powers(ah, chan,
955 			pEepData->calTargetPower5G,
956 			AR5416_NUM_5G_20_TARGET_POWERS,
957 			&targetPowerOfdm, 4, false);
958 		ath9k_hw_get_target_powers(ah, chan,
959 			pEepData->calTargetPower5GHT20,
960 			AR5416_NUM_5G_20_TARGET_POWERS,
961 			&targetPowerHt20, 8, false);
962 
963 		if (IS_CHAN_HT40(chan)) {
964 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
965 			ath9k_hw_get_target_powers(ah, chan,
966 				pEepData->calTargetPower5GHT40,
967 				AR5416_NUM_5G_40_TARGET_POWERS,
968 				&targetPowerHt40, 8, true);
969 			ath9k_hw_get_legacy_target_powers(ah, chan,
970 				pEepData->calTargetPower5G,
971 				AR5416_NUM_5G_20_TARGET_POWERS,
972 				&targetPowerOfdmExt, 4, true);
973 		}
974 	}
975 
976 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
977 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
978 			(pCtlMode[ctlMode] == CTL_2GHT40);
979 		if (isHt40CtlMode)
980 			freq = centers.synth_center;
981 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
982 			freq = centers.ext_center;
983 		else
984 			freq = centers.ctl_center;
985 
986 		if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
987 		    ah->eep_ops->get_eeprom_rev(ah) <= 2)
988 			twiceMaxEdgePower = MAX_RATE_POWER;
989 
990 		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
991 			if ((((cfgCtl & ~CTL_MODE_M) |
992 			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
993 			     pEepData->ctlIndex[i]) ||
994 			    (((cfgCtl & ~CTL_MODE_M) |
995 			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
996 			     ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
997 				rep = &(pEepData->ctlData[i]);
998 
999 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1000 				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1001 				IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1002 
1003 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1004 					twiceMaxEdgePower = min(twiceMaxEdgePower,
1005 								twiceMinEdgePower);
1006 				} else {
1007 					twiceMaxEdgePower = twiceMinEdgePower;
1008 					break;
1009 				}
1010 			}
1011 		}
1012 
1013 		minCtlPower = min(twiceMaxEdgePower, scaledPower);
1014 
1015 		switch (pCtlMode[ctlMode]) {
1016 		case CTL_11B:
1017 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1018 				targetPowerCck.tPow2x[i] =
1019 					min((u16)targetPowerCck.tPow2x[i],
1020 					    minCtlPower);
1021 			}
1022 			break;
1023 		case CTL_11A:
1024 		case CTL_11G:
1025 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1026 				targetPowerOfdm.tPow2x[i] =
1027 					min((u16)targetPowerOfdm.tPow2x[i],
1028 					    minCtlPower);
1029 			}
1030 			break;
1031 		case CTL_5GHT20:
1032 		case CTL_2GHT20:
1033 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1034 				targetPowerHt20.tPow2x[i] =
1035 					min((u16)targetPowerHt20.tPow2x[i],
1036 					    minCtlPower);
1037 			}
1038 			break;
1039 		case CTL_11B_EXT:
1040 			targetPowerCckExt.tPow2x[0] = min((u16)
1041 					targetPowerCckExt.tPow2x[0],
1042 					minCtlPower);
1043 			break;
1044 		case CTL_11A_EXT:
1045 		case CTL_11G_EXT:
1046 			targetPowerOfdmExt.tPow2x[0] = min((u16)
1047 					targetPowerOfdmExt.tPow2x[0],
1048 					minCtlPower);
1049 			break;
1050 		case CTL_5GHT40:
1051 		case CTL_2GHT40:
1052 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1053 				targetPowerHt40.tPow2x[i] =
1054 					min((u16)targetPowerHt40.tPow2x[i],
1055 					    minCtlPower);
1056 			}
1057 			break;
1058 		default:
1059 			break;
1060 		}
1061 	}
1062 
1063 	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1064 		ratesArray[rate18mb] = ratesArray[rate24mb] =
1065 		targetPowerOfdm.tPow2x[0];
1066 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1067 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1068 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1069 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1070 
1071 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1072 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1073 
1074 	if (IS_CHAN_2GHZ(chan)) {
1075 		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1076 		ratesArray[rate2s] = ratesArray[rate2l] =
1077 			targetPowerCck.tPow2x[1];
1078 		ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1079 			targetPowerCck.tPow2x[2];
1080 		ratesArray[rate11s] = ratesArray[rate11l] =
1081 			targetPowerCck.tPow2x[3];
1082 	}
1083 	if (IS_CHAN_HT40(chan)) {
1084 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1085 			ratesArray[rateHt40_0 + i] =
1086 				targetPowerHt40.tPow2x[i];
1087 		}
1088 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1089 		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1090 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1091 		if (IS_CHAN_2GHZ(chan)) {
1092 			ratesArray[rateExtCck] =
1093 				targetPowerCckExt.tPow2x[0];
1094 		}
1095 	}
1096 }
1097 
1098 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1099 				    struct ath9k_channel *chan,
1100 				    u16 cfgCtl,
1101 				    u8 twiceAntennaReduction,
1102 				    u8 twiceMaxRegulatoryPower,
1103 				    u8 powerLimit, bool test)
1104 {
1105 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1106 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1107 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1108 	struct modal_eep_header *pModal =
1109 		&(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1110 	int16_t ratesArray[Ar5416RateSize];
1111 	int16_t txPowerIndexOffset = 0;
1112 	u8 ht40PowerIncForPdadc = 2;
1113 	int i, cck_ofdm_delta = 0;
1114 
1115 	memset(ratesArray, 0, sizeof(ratesArray));
1116 
1117 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1118 	    AR5416_EEP_MINOR_VER_2) {
1119 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1120 	}
1121 
1122 	ath9k_hw_set_def_power_per_rate_table(ah, chan,
1123 					       &ratesArray[0], cfgCtl,
1124 					       twiceAntennaReduction,
1125 					       twiceMaxRegulatoryPower,
1126 					       powerLimit);
1127 
1128 	ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
1129 
1130 	regulatory->max_power_level = 0;
1131 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1132 		ratesArray[i] =	(int16_t)(txPowerIndexOffset + ratesArray[i]);
1133 		if (ratesArray[i] > MAX_RATE_POWER)
1134 			ratesArray[i] = MAX_RATE_POWER;
1135 		if (ratesArray[i] > regulatory->max_power_level)
1136 			regulatory->max_power_level = ratesArray[i];
1137 	}
1138 
1139 	if (!test) {
1140 		i = rate6mb;
1141 
1142 		if (IS_CHAN_HT40(chan))
1143 			i = rateHt40_0;
1144 		else if (IS_CHAN_HT20(chan))
1145 			i = rateHt20_0;
1146 
1147 		regulatory->max_power_level = ratesArray[i];
1148 	}
1149 
1150 	switch(ar5416_get_ntxchains(ah->txchainmask)) {
1151 	case 1:
1152 		break;
1153 	case 2:
1154 		regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
1155 		break;
1156 	case 3:
1157 		regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
1158 		break;
1159 	default:
1160 		ath_dbg(ath9k_hw_common(ah), ATH_DBG_EEPROM,
1161 			"Invalid chainmask configuration\n");
1162 		break;
1163 	}
1164 
1165 	if (test)
1166 		return;
1167 
1168 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1169 		for (i = 0; i < Ar5416RateSize; i++) {
1170 			int8_t pwr_table_offset;
1171 
1172 			pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1173 							EEP_PWR_TABLE_OFFSET);
1174 			ratesArray[i] -= pwr_table_offset * 2;
1175 		}
1176 	}
1177 
1178 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1179 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
1180 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1181 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1182 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1183 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1184 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
1185 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1186 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1187 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1188 
1189 	if (IS_CHAN_2GHZ(chan)) {
1190 		if (OLC_FOR_AR9280_20_LATER) {
1191 			cck_ofdm_delta = 2;
1192 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1193 				ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1194 				| ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1195 				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1196 				| ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1197 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1198 				ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1199 				| ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1200 				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1201 				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1202 		} else {
1203 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1204 				ATH9K_POW_SM(ratesArray[rate2s], 24)
1205 				| ATH9K_POW_SM(ratesArray[rate2l], 16)
1206 				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1207 				| ATH9K_POW_SM(ratesArray[rate1l], 0));
1208 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1209 				ATH9K_POW_SM(ratesArray[rate11s], 24)
1210 				| ATH9K_POW_SM(ratesArray[rate11l], 16)
1211 				| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1212 				| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1213 		}
1214 	}
1215 
1216 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1217 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1218 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1219 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1220 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1221 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1222 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1223 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1224 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1225 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1226 
1227 	if (IS_CHAN_HT40(chan)) {
1228 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1229 			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
1230 				       ht40PowerIncForPdadc, 24)
1231 			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1232 					 ht40PowerIncForPdadc, 16)
1233 			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1234 					 ht40PowerIncForPdadc, 8)
1235 			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1236 					 ht40PowerIncForPdadc, 0));
1237 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1238 			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
1239 				       ht40PowerIncForPdadc, 24)
1240 			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1241 					 ht40PowerIncForPdadc, 16)
1242 			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1243 					 ht40PowerIncForPdadc, 8)
1244 			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1245 					 ht40PowerIncForPdadc, 0));
1246 		if (OLC_FOR_AR9280_20_LATER) {
1247 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1248 				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1249 				| ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1250 				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1251 				| ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1252 		} else {
1253 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1254 				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1255 				| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1256 				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1257 				| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1258 		}
1259 	}
1260 
1261 	REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1262 		  ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1263 		  | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1264 }
1265 
1266 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1267 {
1268 #define EEP_DEF_SPURCHAN \
1269 	(ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1270 	struct ath_common *common = ath9k_hw_common(ah);
1271 
1272 	u16 spur_val = AR_NO_SPUR;
1273 
1274 	ath_dbg(common, ATH_DBG_ANI,
1275 		"Getting spur idx:%d is2Ghz:%d val:%x\n",
1276 		i, is2GHz, ah->config.spurchans[i][is2GHz]);
1277 
1278 	switch (ah->config.spurmode) {
1279 	case SPUR_DISABLE:
1280 		break;
1281 	case SPUR_ENABLE_IOCTL:
1282 		spur_val = ah->config.spurchans[i][is2GHz];
1283 		ath_dbg(common, ATH_DBG_ANI,
1284 			"Getting spur val from new loc. %d\n", spur_val);
1285 		break;
1286 	case SPUR_ENABLE_EEPROM:
1287 		spur_val = EEP_DEF_SPURCHAN;
1288 		break;
1289 	}
1290 
1291 	return spur_val;
1292 
1293 #undef EEP_DEF_SPURCHAN
1294 }
1295 
1296 const struct eeprom_ops eep_def_ops = {
1297 	.check_eeprom		= ath9k_hw_def_check_eeprom,
1298 	.get_eeprom		= ath9k_hw_def_get_eeprom,
1299 	.fill_eeprom		= ath9k_hw_def_fill_eeprom,
1300 	.get_eeprom_ver		= ath9k_hw_def_get_eeprom_ver,
1301 	.get_eeprom_rev		= ath9k_hw_def_get_eeprom_rev,
1302 	.set_board_values	= ath9k_hw_def_set_board_values,
1303 	.set_addac		= ath9k_hw_def_set_addac,
1304 	.set_txpower		= ath9k_hw_def_set_txpower,
1305 	.get_spur_channel	= ath9k_hw_def_get_spur_channel
1306 };
1307