1 /*
2  * Copyright (c) 2008-2011 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include <asm/unaligned.h>
18 #include "hw.h"
19 #include "ar9002_phy.h"
20 
21 static void ath9k_get_txgain_index(struct ath_hw *ah,
22 		struct ath9k_channel *chan,
23 		struct calDataPerFreqOpLoop *rawDatasetOpLoop,
24 		u8 *calChans,  u16 availPiers, u8 *pwr, u8 *pcdacIdx)
25 {
26 	u8 pcdac, i = 0;
27 	u16 idxL = 0, idxR = 0, numPiers;
28 	bool match;
29 	struct chan_centers centers;
30 
31 	ath9k_hw_get_channel_centers(ah, chan, &centers);
32 
33 	for (numPiers = 0; numPiers < availPiers; numPiers++)
34 		if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
35 			break;
36 
37 	match = ath9k_hw_get_lower_upper_index(
38 			(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
39 			calChans, numPiers, &idxL, &idxR);
40 	if (match) {
41 		pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
42 		*pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
43 	} else {
44 		pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
45 		*pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
46 				rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
47 	}
48 
49 	while (pcdac > ah->originalGain[i] &&
50 			i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
51 		i++;
52 
53 	*pcdacIdx = i;
54 }
55 
56 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
57 				u32 initTxGain,
58 				int txPower,
59 				u8 *pPDADCValues)
60 {
61 	u32 i;
62 	u32 offset;
63 
64 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
65 			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
66 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
67 			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
68 
69 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
70 			AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
71 
72 	offset = txPower;
73 	for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
74 		if (i < offset)
75 			pPDADCValues[i] = 0x0;
76 		else
77 			pPDADCValues[i] = 0xFF;
78 }
79 
80 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
81 {
82 	return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
83 }
84 
85 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
86 {
87 	return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
88 }
89 
90 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
91 
92 static bool __ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
93 {
94 	struct ath_common *common = ath9k_hw_common(ah);
95 	u16 *eep_data = (u16 *)&ah->eeprom.def;
96 	int addr, ar5416_eep_start_loc = 0x100;
97 
98 	for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
99 		if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
100 					 eep_data)) {
101 			ath_err(ath9k_hw_common(ah),
102 				"Unable to read eeprom region\n");
103 			return false;
104 		}
105 		eep_data++;
106 	}
107 	return true;
108 }
109 
110 static bool __ath9k_hw_usb_def_fill_eeprom(struct ath_hw *ah)
111 {
112 	u16 *eep_data = (u16 *)&ah->eeprom.def;
113 
114 	ath9k_hw_usb_gen_fill_eeprom(ah, eep_data,
115 				     0x100, SIZE_EEPROM_DEF);
116 	return true;
117 }
118 
119 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
120 {
121 	struct ath_common *common = ath9k_hw_common(ah);
122 
123 	if (!ath9k_hw_use_flash(ah)) {
124 		ath_dbg(common, EEPROM, "Reading from EEPROM, not flash\n");
125 	}
126 
127 	if (common->bus_ops->ath_bus_type == ATH_USB)
128 		return __ath9k_hw_usb_def_fill_eeprom(ah);
129 	else
130 		return __ath9k_hw_def_fill_eeprom(ah);
131 }
132 
133 #undef SIZE_EEPROM_DEF
134 
135 #if defined(CONFIG_ATH9K_DEBUGFS) || defined(CONFIG_ATH9K_HTC_DEBUGFS)
136 static u32 ath9k_def_dump_modal_eeprom(char *buf, u32 len, u32 size,
137 				       struct modal_eep_header *modal_hdr)
138 {
139 	PR_EEP("Chain0 Ant. Control", modal_hdr->antCtrlChain[0]);
140 	PR_EEP("Chain1 Ant. Control", modal_hdr->antCtrlChain[1]);
141 	PR_EEP("Chain2 Ant. Control", modal_hdr->antCtrlChain[2]);
142 	PR_EEP("Ant. Common Control", modal_hdr->antCtrlCommon);
143 	PR_EEP("Chain0 Ant. Gain", modal_hdr->antennaGainCh[0]);
144 	PR_EEP("Chain1 Ant. Gain", modal_hdr->antennaGainCh[1]);
145 	PR_EEP("Chain2 Ant. Gain", modal_hdr->antennaGainCh[2]);
146 	PR_EEP("Switch Settle", modal_hdr->switchSettling);
147 	PR_EEP("Chain0 TxRxAtten", modal_hdr->txRxAttenCh[0]);
148 	PR_EEP("Chain1 TxRxAtten", modal_hdr->txRxAttenCh[1]);
149 	PR_EEP("Chain2 TxRxAtten", modal_hdr->txRxAttenCh[2]);
150 	PR_EEP("Chain0 RxTxMargin", modal_hdr->rxTxMarginCh[0]);
151 	PR_EEP("Chain1 RxTxMargin", modal_hdr->rxTxMarginCh[1]);
152 	PR_EEP("Chain2 RxTxMargin", modal_hdr->rxTxMarginCh[2]);
153 	PR_EEP("ADC Desired size", modal_hdr->adcDesiredSize);
154 	PR_EEP("PGA Desired size", modal_hdr->pgaDesiredSize);
155 	PR_EEP("Chain0 xlna Gain", modal_hdr->xlnaGainCh[0]);
156 	PR_EEP("Chain1 xlna Gain", modal_hdr->xlnaGainCh[1]);
157 	PR_EEP("Chain2 xlna Gain", modal_hdr->xlnaGainCh[2]);
158 	PR_EEP("txEndToXpaOff", modal_hdr->txEndToXpaOff);
159 	PR_EEP("txEndToRxOn", modal_hdr->txEndToRxOn);
160 	PR_EEP("txFrameToXpaOn", modal_hdr->txFrameToXpaOn);
161 	PR_EEP("CCA Threshold)", modal_hdr->thresh62);
162 	PR_EEP("Chain0 NF Threshold", modal_hdr->noiseFloorThreshCh[0]);
163 	PR_EEP("Chain1 NF Threshold", modal_hdr->noiseFloorThreshCh[1]);
164 	PR_EEP("Chain2 NF Threshold", modal_hdr->noiseFloorThreshCh[2]);
165 	PR_EEP("xpdGain", modal_hdr->xpdGain);
166 	PR_EEP("External PD", modal_hdr->xpd);
167 	PR_EEP("Chain0 I Coefficient", modal_hdr->iqCalICh[0]);
168 	PR_EEP("Chain1 I Coefficient", modal_hdr->iqCalICh[1]);
169 	PR_EEP("Chain2 I Coefficient", modal_hdr->iqCalICh[2]);
170 	PR_EEP("Chain0 Q Coefficient", modal_hdr->iqCalQCh[0]);
171 	PR_EEP("Chain1 Q Coefficient", modal_hdr->iqCalQCh[1]);
172 	PR_EEP("Chain2 Q Coefficient", modal_hdr->iqCalQCh[2]);
173 	PR_EEP("pdGainOverlap", modal_hdr->pdGainOverlap);
174 	PR_EEP("Chain0 OutputBias", modal_hdr->ob);
175 	PR_EEP("Chain0 DriverBias", modal_hdr->db);
176 	PR_EEP("xPA Bias Level", modal_hdr->xpaBiasLvl);
177 	PR_EEP("2chain pwr decrease", modal_hdr->pwrDecreaseFor2Chain);
178 	PR_EEP("3chain pwr decrease", modal_hdr->pwrDecreaseFor3Chain);
179 	PR_EEP("txFrameToDataStart", modal_hdr->txFrameToDataStart);
180 	PR_EEP("txFrameToPaOn", modal_hdr->txFrameToPaOn);
181 	PR_EEP("HT40 Power Inc.", modal_hdr->ht40PowerIncForPdadc);
182 	PR_EEP("Chain0 bswAtten", modal_hdr->bswAtten[0]);
183 	PR_EEP("Chain1 bswAtten", modal_hdr->bswAtten[1]);
184 	PR_EEP("Chain2 bswAtten", modal_hdr->bswAtten[2]);
185 	PR_EEP("Chain0 bswMargin", modal_hdr->bswMargin[0]);
186 	PR_EEP("Chain1 bswMargin", modal_hdr->bswMargin[1]);
187 	PR_EEP("Chain2 bswMargin", modal_hdr->bswMargin[2]);
188 	PR_EEP("HT40 Switch Settle", modal_hdr->swSettleHt40);
189 	PR_EEP("Chain0 xatten2Db", modal_hdr->xatten2Db[0]);
190 	PR_EEP("Chain1 xatten2Db", modal_hdr->xatten2Db[1]);
191 	PR_EEP("Chain2 xatten2Db", modal_hdr->xatten2Db[2]);
192 	PR_EEP("Chain0 xatten2Margin", modal_hdr->xatten2Margin[0]);
193 	PR_EEP("Chain1 xatten2Margin", modal_hdr->xatten2Margin[1]);
194 	PR_EEP("Chain2 xatten2Margin", modal_hdr->xatten2Margin[2]);
195 	PR_EEP("Chain1 OutputBias", modal_hdr->ob_ch1);
196 	PR_EEP("Chain1 DriverBias", modal_hdr->db_ch1);
197 	PR_EEP("LNA Control", modal_hdr->lna_ctl);
198 	PR_EEP("XPA Bias Freq0", modal_hdr->xpaBiasLvlFreq[0]);
199 	PR_EEP("XPA Bias Freq1", modal_hdr->xpaBiasLvlFreq[1]);
200 	PR_EEP("XPA Bias Freq2", modal_hdr->xpaBiasLvlFreq[2]);
201 
202 	return len;
203 }
204 
205 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
206 				    u8 *buf, u32 len, u32 size)
207 {
208 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
209 	struct base_eep_header *pBase = &eep->baseEepHeader;
210 
211 	if (!dump_base_hdr) {
212 		len += snprintf(buf + len, size - len,
213 				"%20s :\n", "2GHz modal Header");
214 		len = ath9k_def_dump_modal_eeprom(buf, len, size,
215 						   &eep->modalHeader[0]);
216 		len += snprintf(buf + len, size - len,
217 				"%20s :\n", "5GHz modal Header");
218 		len = ath9k_def_dump_modal_eeprom(buf, len, size,
219 						   &eep->modalHeader[1]);
220 		goto out;
221 	}
222 
223 	PR_EEP("Major Version", pBase->version >> 12);
224 	PR_EEP("Minor Version", pBase->version & 0xFFF);
225 	PR_EEP("Checksum", pBase->checksum);
226 	PR_EEP("Length", pBase->length);
227 	PR_EEP("RegDomain1", pBase->regDmn[0]);
228 	PR_EEP("RegDomain2", pBase->regDmn[1]);
229 	PR_EEP("TX Mask", pBase->txMask);
230 	PR_EEP("RX Mask", pBase->rxMask);
231 	PR_EEP("Allow 5GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11A));
232 	PR_EEP("Allow 2GHz", !!(pBase->opCapFlags & AR5416_OPFLAGS_11G));
233 	PR_EEP("Disable 2GHz HT20", !!(pBase->opCapFlags &
234 					AR5416_OPFLAGS_N_2G_HT20));
235 	PR_EEP("Disable 2GHz HT40", !!(pBase->opCapFlags &
236 					AR5416_OPFLAGS_N_2G_HT40));
237 	PR_EEP("Disable 5Ghz HT20", !!(pBase->opCapFlags &
238 					AR5416_OPFLAGS_N_5G_HT20));
239 	PR_EEP("Disable 5Ghz HT40", !!(pBase->opCapFlags &
240 					AR5416_OPFLAGS_N_5G_HT40));
241 	PR_EEP("Big Endian", !!(pBase->eepMisc & 0x01));
242 	PR_EEP("Cal Bin Major Ver", (pBase->binBuildNumber >> 24) & 0xFF);
243 	PR_EEP("Cal Bin Minor Ver", (pBase->binBuildNumber >> 16) & 0xFF);
244 	PR_EEP("Cal Bin Build", (pBase->binBuildNumber >> 8) & 0xFF);
245 	PR_EEP("OpenLoop Power Ctrl", pBase->openLoopPwrCntl);
246 
247 	len += snprintf(buf + len, size - len, "%20s : %pM\n", "MacAddress",
248 			pBase->macAddr);
249 
250 out:
251 	if (len > size)
252 		len = size;
253 
254 	return len;
255 }
256 #else
257 static u32 ath9k_hw_def_dump_eeprom(struct ath_hw *ah, bool dump_base_hdr,
258 				    u8 *buf, u32 len, u32 size)
259 {
260 	return 0;
261 }
262 #endif
263 
264 
265 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
266 {
267 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
268 	struct ath_common *common = ath9k_hw_common(ah);
269 	u16 *eepdata, temp, magic, magic2;
270 	u32 sum = 0, el;
271 	bool need_swap = false;
272 	int i, addr, size;
273 
274 	if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
275 		ath_err(common, "Reading Magic # failed\n");
276 		return false;
277 	}
278 
279 	if (!ath9k_hw_use_flash(ah)) {
280 		ath_dbg(common, EEPROM, "Read Magic = 0x%04X\n", magic);
281 
282 		if (magic != AR5416_EEPROM_MAGIC) {
283 			magic2 = swab16(magic);
284 
285 			if (magic2 == AR5416_EEPROM_MAGIC) {
286 				size = sizeof(struct ar5416_eeprom_def);
287 				need_swap = true;
288 				eepdata = (u16 *) (&ah->eeprom);
289 
290 				for (addr = 0; addr < size / sizeof(u16); addr++) {
291 					temp = swab16(*eepdata);
292 					*eepdata = temp;
293 					eepdata++;
294 				}
295 			} else {
296 				ath_err(common,
297 					"Invalid EEPROM Magic. Endianness mismatch.\n");
298 				return -EINVAL;
299 			}
300 		}
301 	}
302 
303 	ath_dbg(common, EEPROM, "need_swap = %s\n",
304 		need_swap ? "True" : "False");
305 
306 	if (need_swap)
307 		el = swab16(ah->eeprom.def.baseEepHeader.length);
308 	else
309 		el = ah->eeprom.def.baseEepHeader.length;
310 
311 	if (el > sizeof(struct ar5416_eeprom_def))
312 		el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
313 	else
314 		el = el / sizeof(u16);
315 
316 	eepdata = (u16 *)(&ah->eeprom);
317 
318 	for (i = 0; i < el; i++)
319 		sum ^= *eepdata++;
320 
321 	if (need_swap) {
322 		u32 integer, j;
323 		u16 word;
324 
325 		ath_dbg(common, EEPROM,
326 			"EEPROM Endianness is not native.. Changing.\n");
327 
328 		word = swab16(eep->baseEepHeader.length);
329 		eep->baseEepHeader.length = word;
330 
331 		word = swab16(eep->baseEepHeader.checksum);
332 		eep->baseEepHeader.checksum = word;
333 
334 		word = swab16(eep->baseEepHeader.version);
335 		eep->baseEepHeader.version = word;
336 
337 		word = swab16(eep->baseEepHeader.regDmn[0]);
338 		eep->baseEepHeader.regDmn[0] = word;
339 
340 		word = swab16(eep->baseEepHeader.regDmn[1]);
341 		eep->baseEepHeader.regDmn[1] = word;
342 
343 		word = swab16(eep->baseEepHeader.rfSilent);
344 		eep->baseEepHeader.rfSilent = word;
345 
346 		word = swab16(eep->baseEepHeader.blueToothOptions);
347 		eep->baseEepHeader.blueToothOptions = word;
348 
349 		word = swab16(eep->baseEepHeader.deviceCap);
350 		eep->baseEepHeader.deviceCap = word;
351 
352 		for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
353 			struct modal_eep_header *pModal =
354 				&eep->modalHeader[j];
355 			integer = swab32(pModal->antCtrlCommon);
356 			pModal->antCtrlCommon = integer;
357 
358 			for (i = 0; i < AR5416_MAX_CHAINS; i++) {
359 				integer = swab32(pModal->antCtrlChain[i]);
360 				pModal->antCtrlChain[i] = integer;
361 			}
362 			for (i = 0; i < 3; i++) {
363 				word = swab16(pModal->xpaBiasLvlFreq[i]);
364 				pModal->xpaBiasLvlFreq[i] = word;
365 			}
366 
367 			for (i = 0; i < AR_EEPROM_MODAL_SPURS; i++) {
368 				word = swab16(pModal->spurChans[i].spurChan);
369 				pModal->spurChans[i].spurChan = word;
370 			}
371 		}
372 	}
373 
374 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
375 	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
376 		ath_err(common, "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
377 			sum, ah->eep_ops->get_eeprom_ver(ah));
378 		return -EINVAL;
379 	}
380 
381 	/* Enable fixup for AR_AN_TOP2 if necessary */
382 	if ((ah->hw_version.devid == AR9280_DEVID_PCI) &&
383 	    ((eep->baseEepHeader.version & 0xff) > 0x0a) &&
384 	    (eep->baseEepHeader.pwdclkind == 0))
385 		ah->need_an_top2_fixup = true;
386 
387 	if ((common->bus_ops->ath_bus_type == ATH_USB) &&
388 	    (AR_SREV_9280(ah)))
389 		eep->modalHeader[0].xpaBiasLvl = 0;
390 
391 	return 0;
392 }
393 
394 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
395 				   enum eeprom_param param)
396 {
397 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
398 	struct modal_eep_header *pModal = eep->modalHeader;
399 	struct base_eep_header *pBase = &eep->baseEepHeader;
400 	int band = 0;
401 
402 	switch (param) {
403 	case EEP_NFTHRESH_5:
404 		return pModal[0].noiseFloorThreshCh[0];
405 	case EEP_NFTHRESH_2:
406 		return pModal[1].noiseFloorThreshCh[0];
407 	case EEP_MAC_LSW:
408 		return get_unaligned_be16(pBase->macAddr);
409 	case EEP_MAC_MID:
410 		return get_unaligned_be16(pBase->macAddr + 2);
411 	case EEP_MAC_MSW:
412 		return get_unaligned_be16(pBase->macAddr + 4);
413 	case EEP_REG_0:
414 		return pBase->regDmn[0];
415 	case EEP_OP_CAP:
416 		return pBase->deviceCap;
417 	case EEP_OP_MODE:
418 		return pBase->opCapFlags;
419 	case EEP_RF_SILENT:
420 		return pBase->rfSilent;
421 	case EEP_OB_5:
422 		return pModal[0].ob;
423 	case EEP_DB_5:
424 		return pModal[0].db;
425 	case EEP_OB_2:
426 		return pModal[1].ob;
427 	case EEP_DB_2:
428 		return pModal[1].db;
429 	case EEP_MINOR_REV:
430 		return AR5416_VER_MASK;
431 	case EEP_TX_MASK:
432 		return pBase->txMask;
433 	case EEP_RX_MASK:
434 		return pBase->rxMask;
435 	case EEP_FSTCLK_5G:
436 		return pBase->fastClk5g;
437 	case EEP_RXGAIN_TYPE:
438 		return pBase->rxGainType;
439 	case EEP_TXGAIN_TYPE:
440 		return pBase->txGainType;
441 	case EEP_OL_PWRCTRL:
442 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
443 			return pBase->openLoopPwrCntl ? true : false;
444 		else
445 			return false;
446 	case EEP_RC_CHAIN_MASK:
447 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
448 			return pBase->rcChainMask;
449 		else
450 			return 0;
451 	case EEP_DAC_HPWR_5G:
452 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
453 			return pBase->dacHiPwrMode_5G;
454 		else
455 			return 0;
456 	case EEP_FRAC_N_5G:
457 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
458 			return pBase->frac_n_5g;
459 		else
460 			return 0;
461 	case EEP_PWR_TABLE_OFFSET:
462 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
463 			return pBase->pwr_table_offset;
464 		else
465 			return AR5416_PWR_TABLE_OFFSET_DB;
466 	case EEP_ANTENNA_GAIN_2G:
467 		band = 1;
468 		/* fall through */
469 	case EEP_ANTENNA_GAIN_5G:
470 		return max_t(u8, max_t(u8,
471 			pModal[band].antennaGainCh[0],
472 			pModal[band].antennaGainCh[1]),
473 			pModal[band].antennaGainCh[2]);
474 	default:
475 		return 0;
476 	}
477 }
478 
479 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
480 				  struct modal_eep_header *pModal,
481 				  struct ar5416_eeprom_def *eep,
482 				  u8 txRxAttenLocal, int regChainOffset, int i)
483 {
484 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
485 		txRxAttenLocal = pModal->txRxAttenCh[i];
486 
487 		if (AR_SREV_9280_20_OR_LATER(ah)) {
488 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
489 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
490 			      pModal->bswMargin[i]);
491 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
492 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
493 			      pModal->bswAtten[i]);
494 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
495 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
496 			      pModal->xatten2Margin[i]);
497 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
498 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
499 			      pModal->xatten2Db[i]);
500 		} else {
501 			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
502 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
503 			   ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
504 			  | SM(pModal-> bswMargin[i],
505 			       AR_PHY_GAIN_2GHZ_BSW_MARGIN));
506 			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
507 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
508 			   ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
509 			  | SM(pModal->bswAtten[i],
510 			       AR_PHY_GAIN_2GHZ_BSW_ATTEN));
511 		}
512 	}
513 
514 	if (AR_SREV_9280_20_OR_LATER(ah)) {
515 		REG_RMW_FIELD(ah,
516 		      AR_PHY_RXGAIN + regChainOffset,
517 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
518 		REG_RMW_FIELD(ah,
519 		      AR_PHY_RXGAIN + regChainOffset,
520 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
521 	} else {
522 		REG_WRITE(ah,
523 			  AR_PHY_RXGAIN + regChainOffset,
524 			  (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
525 			   ~AR_PHY_RXGAIN_TXRX_ATTEN)
526 			  | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
527 		REG_WRITE(ah,
528 			  AR_PHY_GAIN_2GHZ + regChainOffset,
529 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
530 			   ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
531 			  SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
532 	}
533 }
534 
535 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
536 					  struct ath9k_channel *chan)
537 {
538 	struct modal_eep_header *pModal;
539 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
540 	int i, regChainOffset;
541 	u8 txRxAttenLocal;
542 
543 	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
544 	txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
545 
546 	REG_WRITE(ah, AR_PHY_SWITCH_COM, pModal->antCtrlCommon & 0xffff);
547 
548 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
549 		if (AR_SREV_9280(ah)) {
550 			if (i >= 2)
551 				break;
552 		}
553 
554 		if ((ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
555 			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
556 		else
557 			regChainOffset = i * 0x1000;
558 
559 		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
560 			  pModal->antCtrlChain[i]);
561 
562 		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
563 			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
564 			   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
565 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
566 			  SM(pModal->iqCalICh[i],
567 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
568 			  SM(pModal->iqCalQCh[i],
569 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
570 
571 		ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
572 				      regChainOffset, i);
573 	}
574 
575 	if (AR_SREV_9280_20_OR_LATER(ah)) {
576 		if (IS_CHAN_2GHZ(chan)) {
577 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
578 						  AR_AN_RF2G1_CH0_OB,
579 						  AR_AN_RF2G1_CH0_OB_S,
580 						  pModal->ob);
581 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
582 						  AR_AN_RF2G1_CH0_DB,
583 						  AR_AN_RF2G1_CH0_DB_S,
584 						  pModal->db);
585 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
586 						  AR_AN_RF2G1_CH1_OB,
587 						  AR_AN_RF2G1_CH1_OB_S,
588 						  pModal->ob_ch1);
589 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
590 						  AR_AN_RF2G1_CH1_DB,
591 						  AR_AN_RF2G1_CH1_DB_S,
592 						  pModal->db_ch1);
593 		} else {
594 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
595 						  AR_AN_RF5G1_CH0_OB5,
596 						  AR_AN_RF5G1_CH0_OB5_S,
597 						  pModal->ob);
598 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
599 						  AR_AN_RF5G1_CH0_DB5,
600 						  AR_AN_RF5G1_CH0_DB5_S,
601 						  pModal->db);
602 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
603 						  AR_AN_RF5G1_CH1_OB5,
604 						  AR_AN_RF5G1_CH1_OB5_S,
605 						  pModal->ob_ch1);
606 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
607 						  AR_AN_RF5G1_CH1_DB5,
608 						  AR_AN_RF5G1_CH1_DB5_S,
609 						  pModal->db_ch1);
610 		}
611 		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
612 					  AR_AN_TOP2_XPABIAS_LVL,
613 					  AR_AN_TOP2_XPABIAS_LVL_S,
614 					  pModal->xpaBiasLvl);
615 		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
616 					  AR_AN_TOP2_LOCALBIAS,
617 					  AR_AN_TOP2_LOCALBIAS_S,
618 					  !!(pModal->lna_ctl &
619 					     LNA_CTL_LOCAL_BIAS));
620 		REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
621 			      !!(pModal->lna_ctl & LNA_CTL_FORCE_XPA));
622 	}
623 
624 	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
625 		      pModal->switchSettling);
626 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
627 		      pModal->adcDesiredSize);
628 
629 	if (!AR_SREV_9280_20_OR_LATER(ah))
630 		REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
631 			      AR_PHY_DESIRED_SZ_PGA,
632 			      pModal->pgaDesiredSize);
633 
634 	REG_WRITE(ah, AR_PHY_RF_CTL4,
635 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
636 		  | SM(pModal->txEndToXpaOff,
637 		       AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
638 		  | SM(pModal->txFrameToXpaOn,
639 		       AR_PHY_RF_CTL4_FRAME_XPAA_ON)
640 		  | SM(pModal->txFrameToXpaOn,
641 		       AR_PHY_RF_CTL4_FRAME_XPAB_ON));
642 
643 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
644 		      pModal->txEndToRxOn);
645 
646 	if (AR_SREV_9280_20_OR_LATER(ah)) {
647 		REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
648 			      pModal->thresh62);
649 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
650 			      AR_PHY_EXT_CCA0_THRESH62,
651 			      pModal->thresh62);
652 	} else {
653 		REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
654 			      pModal->thresh62);
655 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
656 			      AR_PHY_EXT_CCA_THRESH62,
657 			      pModal->thresh62);
658 	}
659 
660 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
661 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
662 			      AR_PHY_TX_END_DATA_START,
663 			      pModal->txFrameToDataStart);
664 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
665 			      pModal->txFrameToPaOn);
666 	}
667 
668 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
669 		if (IS_CHAN_HT40(chan))
670 			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
671 				      AR_PHY_SETTLING_SWITCH,
672 				      pModal->swSettleHt40);
673 	}
674 
675 	if (AR_SREV_9280_20_OR_LATER(ah) &&
676 	    AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
677 		REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
678 			      AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
679 			      pModal->miscBits);
680 
681 
682 	if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
683 		if (IS_CHAN_2GHZ(chan))
684 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
685 					eep->baseEepHeader.dacLpMode);
686 		else if (eep->baseEepHeader.dacHiPwrMode_5G)
687 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
688 		else
689 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
690 				      eep->baseEepHeader.dacLpMode);
691 
692 		udelay(100);
693 
694 		REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
695 			      pModal->miscBits >> 2);
696 
697 		REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
698 			      AR_PHY_TX_DESIRED_SCALE_CCK,
699 			      eep->baseEepHeader.desiredScaleCCK);
700 	}
701 }
702 
703 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
704 				   struct ath9k_channel *chan)
705 {
706 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
707 	struct modal_eep_header *pModal;
708 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
709 	u8 biaslevel;
710 
711 	if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
712 		return;
713 
714 	if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
715 		return;
716 
717 	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
718 
719 	if (pModal->xpaBiasLvl != 0xff) {
720 		biaslevel = pModal->xpaBiasLvl;
721 	} else {
722 		u16 resetFreqBin, freqBin, freqCount = 0;
723 		struct chan_centers centers;
724 
725 		ath9k_hw_get_channel_centers(ah, chan, &centers);
726 
727 		resetFreqBin = FREQ2FBIN(centers.synth_center,
728 					 IS_CHAN_2GHZ(chan));
729 		freqBin = XPA_LVL_FREQ(0) & 0xff;
730 		biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
731 
732 		freqCount++;
733 
734 		while (freqCount < 3) {
735 			if (XPA_LVL_FREQ(freqCount) == 0x0)
736 				break;
737 
738 			freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
739 			if (resetFreqBin >= freqBin)
740 				biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
741 			else
742 				break;
743 			freqCount++;
744 		}
745 	}
746 
747 	if (IS_CHAN_2GHZ(chan)) {
748 		INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
749 					7, 1) & (~0x18)) | biaslevel << 3;
750 	} else {
751 		INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
752 					6, 1) & (~0xc0)) | biaslevel << 6;
753 	}
754 #undef XPA_LVL_FREQ
755 }
756 
757 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
758 				u16 *gb,
759 				u16 numXpdGain,
760 				u16 pdGainOverlap_t2,
761 				int8_t pwr_table_offset,
762 				int16_t *diff)
763 
764 {
765 	u16 k;
766 
767 	/* Prior to writing the boundaries or the pdadc vs. power table
768 	 * into the chip registers the default starting point on the pdadc
769 	 * vs. power table needs to be checked and the curve boundaries
770 	 * adjusted accordingly
771 	 */
772 	if (AR_SREV_9280_20_OR_LATER(ah)) {
773 		u16 gb_limit;
774 
775 		if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
776 			/* get the difference in dB */
777 			*diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
778 			/* get the number of half dB steps */
779 			*diff *= 2;
780 			/* change the original gain boundary settings
781 			 * by the number of half dB steps
782 			 */
783 			for (k = 0; k < numXpdGain; k++)
784 				gb[k] = (u16)(gb[k] - *diff);
785 		}
786 		/* Because of a hardware limitation, ensure the gain boundary
787 		 * is not larger than (63 - overlap)
788 		 */
789 		gb_limit = (u16)(MAX_RATE_POWER - pdGainOverlap_t2);
790 
791 		for (k = 0; k < numXpdGain; k++)
792 			gb[k] = (u16)min(gb_limit, gb[k]);
793 	}
794 
795 	return *diff;
796 }
797 
798 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
799 				      int8_t pwr_table_offset,
800 				      int16_t diff,
801 				      u8 *pdadcValues)
802 {
803 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
804 	u16 k;
805 
806 	/* If this is a board that has a pwrTableOffset that differs from
807 	 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
808 	 * pdadc vs pwr table needs to be adjusted prior to writing to the
809 	 * chip.
810 	 */
811 	if (AR_SREV_9280_20_OR_LATER(ah)) {
812 		if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
813 			/* shift the table to start at the new offset */
814 			for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
815 				pdadcValues[k] = pdadcValues[k + diff];
816 			}
817 
818 			/* fill the back of the table */
819 			for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
820 				pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
821 			}
822 		}
823 	}
824 #undef NUM_PDADC
825 }
826 
827 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
828 				  struct ath9k_channel *chan)
829 {
830 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
831 #define SM_PDGAIN_B(x, y) \
832 		SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
833 	struct ath_common *common = ath9k_hw_common(ah);
834 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
835 	struct cal_data_per_freq *pRawDataset;
836 	u8 *pCalBChans = NULL;
837 	u16 pdGainOverlap_t2;
838 	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
839 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
840 	u16 numPiers, i, j;
841 	int16_t diff = 0;
842 	u16 numXpdGain, xpdMask;
843 	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
844 	u32 reg32, regOffset, regChainOffset;
845 	int16_t modalIdx;
846 	int8_t pwr_table_offset;
847 
848 	modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
849 	xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
850 
851 	pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
852 
853 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
854 	    AR5416_EEP_MINOR_VER_2) {
855 		pdGainOverlap_t2 =
856 			pEepData->modalHeader[modalIdx].pdGainOverlap;
857 	} else {
858 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
859 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
860 	}
861 
862 	if (IS_CHAN_2GHZ(chan)) {
863 		pCalBChans = pEepData->calFreqPier2G;
864 		numPiers = AR5416_NUM_2G_CAL_PIERS;
865 	} else {
866 		pCalBChans = pEepData->calFreqPier5G;
867 		numPiers = AR5416_NUM_5G_CAL_PIERS;
868 	}
869 
870 	if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
871 		pRawDataset = pEepData->calPierData2G[0];
872 		ah->initPDADC = ((struct calDataPerFreqOpLoop *)
873 				 pRawDataset)->vpdPdg[0][0];
874 	}
875 
876 	numXpdGain = 0;
877 
878 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
879 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
880 			if (numXpdGain >= AR5416_NUM_PD_GAINS)
881 				break;
882 			xpdGainValues[numXpdGain] =
883 				(u16)(AR5416_PD_GAINS_IN_MASK - i);
884 			numXpdGain++;
885 		}
886 	}
887 
888 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
889 		      (numXpdGain - 1) & 0x3);
890 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
891 		      xpdGainValues[0]);
892 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
893 		      xpdGainValues[1]);
894 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
895 		      xpdGainValues[2]);
896 
897 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
898 		if ((ah->rxchainmask == 5 || ah->txchainmask == 5) &&
899 		    (i != 0)) {
900 			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
901 		} else
902 			regChainOffset = i * 0x1000;
903 
904 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
905 			if (IS_CHAN_2GHZ(chan))
906 				pRawDataset = pEepData->calPierData2G[i];
907 			else
908 				pRawDataset = pEepData->calPierData5G[i];
909 
910 
911 			if (OLC_FOR_AR9280_20_LATER) {
912 				u8 pcdacIdx;
913 				u8 txPower;
914 
915 				ath9k_get_txgain_index(ah, chan,
916 				(struct calDataPerFreqOpLoop *)pRawDataset,
917 				pCalBChans, numPiers, &txPower, &pcdacIdx);
918 				ath9k_olc_get_pdadcs(ah, pcdacIdx,
919 						     txPower/2, pdadcValues);
920 			} else {
921 				ath9k_hw_get_gain_boundaries_pdadcs(ah,
922 							chan, pRawDataset,
923 							pCalBChans, numPiers,
924 							pdGainOverlap_t2,
925 							gainBoundaries,
926 							pdadcValues,
927 							numXpdGain);
928 			}
929 
930 			diff = ath9k_change_gain_boundary_setting(ah,
931 							   gainBoundaries,
932 							   numXpdGain,
933 							   pdGainOverlap_t2,
934 							   pwr_table_offset,
935 							   &diff);
936 
937 			ENABLE_REGWRITE_BUFFER(ah);
938 
939 			if (OLC_FOR_AR9280_20_LATER) {
940 				REG_WRITE(ah,
941 					AR_PHY_TPCRG5 + regChainOffset,
942 					SM(0x6,
943 					AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
944 					SM_PD_GAIN(1) | SM_PD_GAIN(2) |
945 					SM_PD_GAIN(3) | SM_PD_GAIN(4));
946 			} else {
947 				REG_WRITE(ah,
948 					AR_PHY_TPCRG5 + regChainOffset,
949 					SM(pdGainOverlap_t2,
950 					AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
951 					SM_PDGAIN_B(0, 1) |
952 					SM_PDGAIN_B(1, 2) |
953 					SM_PDGAIN_B(2, 3) |
954 					SM_PDGAIN_B(3, 4));
955 			}
956 
957 			ath9k_adjust_pdadc_values(ah, pwr_table_offset,
958 						  diff, pdadcValues);
959 
960 			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
961 			for (j = 0; j < 32; j++) {
962 				reg32 = get_unaligned_le32(&pdadcValues[4 * j]);
963 				REG_WRITE(ah, regOffset, reg32);
964 
965 				ath_dbg(common, EEPROM,
966 					"PDADC (%d,%4x): %4.4x %8.8x\n",
967 					i, regChainOffset, regOffset,
968 					reg32);
969 				ath_dbg(common, EEPROM,
970 					"PDADC: Chain %d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d | PDADC %3d Value %3d |\n",
971 					i, 4 * j, pdadcValues[4 * j],
972 					4 * j + 1, pdadcValues[4 * j + 1],
973 					4 * j + 2, pdadcValues[4 * j + 2],
974 					4 * j + 3, pdadcValues[4 * j + 3]);
975 
976 				regOffset += 4;
977 			}
978 			REGWRITE_BUFFER_FLUSH(ah);
979 		}
980 	}
981 
982 #undef SM_PD_GAIN
983 #undef SM_PDGAIN_B
984 }
985 
986 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
987 						  struct ath9k_channel *chan,
988 						  int16_t *ratesArray,
989 						  u16 cfgCtl,
990 						  u16 antenna_reduction,
991 						  u16 powerLimit)
992 {
993 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
994 	u16 twiceMaxEdgePower;
995 	int i;
996 	struct cal_ctl_data *rep;
997 	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
998 		0, { 0, 0, 0, 0}
999 	};
1000 	struct cal_target_power_leg targetPowerOfdmExt = {
1001 		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
1002 		0, { 0, 0, 0, 0 }
1003 	};
1004 	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1005 		0, {0, 0, 0, 0}
1006 	};
1007 	u16 scaledPower = 0, minCtlPower;
1008 	static const u16 ctlModesFor11a[] = {
1009 		CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40
1010 	};
1011 	static const u16 ctlModesFor11g[] = {
1012 		CTL_11B, CTL_11G, CTL_2GHT20,
1013 		CTL_11B_EXT, CTL_11G_EXT, CTL_2GHT40
1014 	};
1015 	u16 numCtlModes;
1016 	const u16 *pCtlMode;
1017 	u16 ctlMode, freq;
1018 	struct chan_centers centers;
1019 	int tx_chainmask;
1020 	u16 twiceMinEdgePower;
1021 
1022 	tx_chainmask = ah->txchainmask;
1023 
1024 	ath9k_hw_get_channel_centers(ah, chan, &centers);
1025 
1026 	scaledPower = ath9k_hw_get_scaled_power(ah, powerLimit,
1027 						antenna_reduction);
1028 
1029 	if (IS_CHAN_2GHZ(chan)) {
1030 		numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1031 			SUB_NUM_CTL_MODES_AT_2G_40;
1032 		pCtlMode = ctlModesFor11g;
1033 
1034 		ath9k_hw_get_legacy_target_powers(ah, chan,
1035 			pEepData->calTargetPowerCck,
1036 			AR5416_NUM_2G_CCK_TARGET_POWERS,
1037 			&targetPowerCck, 4, false);
1038 		ath9k_hw_get_legacy_target_powers(ah, chan,
1039 			pEepData->calTargetPower2G,
1040 			AR5416_NUM_2G_20_TARGET_POWERS,
1041 			&targetPowerOfdm, 4, false);
1042 		ath9k_hw_get_target_powers(ah, chan,
1043 			pEepData->calTargetPower2GHT20,
1044 			AR5416_NUM_2G_20_TARGET_POWERS,
1045 			&targetPowerHt20, 8, false);
1046 
1047 		if (IS_CHAN_HT40(chan)) {
1048 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1049 			ath9k_hw_get_target_powers(ah, chan,
1050 				pEepData->calTargetPower2GHT40,
1051 				AR5416_NUM_2G_40_TARGET_POWERS,
1052 				&targetPowerHt40, 8, true);
1053 			ath9k_hw_get_legacy_target_powers(ah, chan,
1054 				pEepData->calTargetPowerCck,
1055 				AR5416_NUM_2G_CCK_TARGET_POWERS,
1056 				&targetPowerCckExt, 4, true);
1057 			ath9k_hw_get_legacy_target_powers(ah, chan,
1058 				pEepData->calTargetPower2G,
1059 				AR5416_NUM_2G_20_TARGET_POWERS,
1060 				&targetPowerOfdmExt, 4, true);
1061 		}
1062 	} else {
1063 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1064 			SUB_NUM_CTL_MODES_AT_5G_40;
1065 		pCtlMode = ctlModesFor11a;
1066 
1067 		ath9k_hw_get_legacy_target_powers(ah, chan,
1068 			pEepData->calTargetPower5G,
1069 			AR5416_NUM_5G_20_TARGET_POWERS,
1070 			&targetPowerOfdm, 4, false);
1071 		ath9k_hw_get_target_powers(ah, chan,
1072 			pEepData->calTargetPower5GHT20,
1073 			AR5416_NUM_5G_20_TARGET_POWERS,
1074 			&targetPowerHt20, 8, false);
1075 
1076 		if (IS_CHAN_HT40(chan)) {
1077 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1078 			ath9k_hw_get_target_powers(ah, chan,
1079 				pEepData->calTargetPower5GHT40,
1080 				AR5416_NUM_5G_40_TARGET_POWERS,
1081 				&targetPowerHt40, 8, true);
1082 			ath9k_hw_get_legacy_target_powers(ah, chan,
1083 				pEepData->calTargetPower5G,
1084 				AR5416_NUM_5G_20_TARGET_POWERS,
1085 				&targetPowerOfdmExt, 4, true);
1086 		}
1087 	}
1088 
1089 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1090 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1091 			(pCtlMode[ctlMode] == CTL_2GHT40);
1092 		if (isHt40CtlMode)
1093 			freq = centers.synth_center;
1094 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1095 			freq = centers.ext_center;
1096 		else
1097 			freq = centers.ctl_center;
1098 
1099 		twiceMaxEdgePower = MAX_RATE_POWER;
1100 
1101 		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1102 			if ((((cfgCtl & ~CTL_MODE_M) |
1103 			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1104 			     pEepData->ctlIndex[i]) ||
1105 			    (((cfgCtl & ~CTL_MODE_M) |
1106 			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1107 			     ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1108 				rep = &(pEepData->ctlData[i]);
1109 
1110 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1111 				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1112 				IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1113 
1114 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1115 					twiceMaxEdgePower = min(twiceMaxEdgePower,
1116 								twiceMinEdgePower);
1117 				} else {
1118 					twiceMaxEdgePower = twiceMinEdgePower;
1119 					break;
1120 				}
1121 			}
1122 		}
1123 
1124 		minCtlPower = min(twiceMaxEdgePower, scaledPower);
1125 
1126 		switch (pCtlMode[ctlMode]) {
1127 		case CTL_11B:
1128 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1129 				targetPowerCck.tPow2x[i] =
1130 					min((u16)targetPowerCck.tPow2x[i],
1131 					    minCtlPower);
1132 			}
1133 			break;
1134 		case CTL_11A:
1135 		case CTL_11G:
1136 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1137 				targetPowerOfdm.tPow2x[i] =
1138 					min((u16)targetPowerOfdm.tPow2x[i],
1139 					    minCtlPower);
1140 			}
1141 			break;
1142 		case CTL_5GHT20:
1143 		case CTL_2GHT20:
1144 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1145 				targetPowerHt20.tPow2x[i] =
1146 					min((u16)targetPowerHt20.tPow2x[i],
1147 					    minCtlPower);
1148 			}
1149 			break;
1150 		case CTL_11B_EXT:
1151 			targetPowerCckExt.tPow2x[0] = min((u16)
1152 					targetPowerCckExt.tPow2x[0],
1153 					minCtlPower);
1154 			break;
1155 		case CTL_11A_EXT:
1156 		case CTL_11G_EXT:
1157 			targetPowerOfdmExt.tPow2x[0] = min((u16)
1158 					targetPowerOfdmExt.tPow2x[0],
1159 					minCtlPower);
1160 			break;
1161 		case CTL_5GHT40:
1162 		case CTL_2GHT40:
1163 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1164 				targetPowerHt40.tPow2x[i] =
1165 					min((u16)targetPowerHt40.tPow2x[i],
1166 					    minCtlPower);
1167 			}
1168 			break;
1169 		default:
1170 			break;
1171 		}
1172 	}
1173 
1174 	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1175 		ratesArray[rate18mb] = ratesArray[rate24mb] =
1176 		targetPowerOfdm.tPow2x[0];
1177 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1178 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1179 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1180 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1181 
1182 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1183 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1184 
1185 	if (IS_CHAN_2GHZ(chan)) {
1186 		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1187 		ratesArray[rate2s] = ratesArray[rate2l] =
1188 			targetPowerCck.tPow2x[1];
1189 		ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1190 			targetPowerCck.tPow2x[2];
1191 		ratesArray[rate11s] = ratesArray[rate11l] =
1192 			targetPowerCck.tPow2x[3];
1193 	}
1194 	if (IS_CHAN_HT40(chan)) {
1195 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1196 			ratesArray[rateHt40_0 + i] =
1197 				targetPowerHt40.tPow2x[i];
1198 		}
1199 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1200 		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1201 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1202 		if (IS_CHAN_2GHZ(chan)) {
1203 			ratesArray[rateExtCck] =
1204 				targetPowerCckExt.tPow2x[0];
1205 		}
1206 	}
1207 }
1208 
1209 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1210 				    struct ath9k_channel *chan,
1211 				    u16 cfgCtl,
1212 				    u8 twiceAntennaReduction,
1213 				    u8 powerLimit, bool test)
1214 {
1215 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1216 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1217 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1218 	struct modal_eep_header *pModal =
1219 		&(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1220 	int16_t ratesArray[Ar5416RateSize];
1221 	u8 ht40PowerIncForPdadc = 2;
1222 	int i, cck_ofdm_delta = 0;
1223 
1224 	memset(ratesArray, 0, sizeof(ratesArray));
1225 
1226 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1227 	    AR5416_EEP_MINOR_VER_2) {
1228 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1229 	}
1230 
1231 	ath9k_hw_set_def_power_per_rate_table(ah, chan,
1232 					       &ratesArray[0], cfgCtl,
1233 					       twiceAntennaReduction,
1234 					       powerLimit);
1235 
1236 	ath9k_hw_set_def_power_cal_table(ah, chan);
1237 
1238 	regulatory->max_power_level = 0;
1239 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1240 		if (ratesArray[i] > MAX_RATE_POWER)
1241 			ratesArray[i] = MAX_RATE_POWER;
1242 		if (ratesArray[i] > regulatory->max_power_level)
1243 			regulatory->max_power_level = ratesArray[i];
1244 	}
1245 
1246 	ath9k_hw_update_regulatory_maxpower(ah);
1247 
1248 	if (test)
1249 		return;
1250 
1251 	if (AR_SREV_9280_20_OR_LATER(ah)) {
1252 		for (i = 0; i < Ar5416RateSize; i++) {
1253 			int8_t pwr_table_offset;
1254 
1255 			pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1256 							EEP_PWR_TABLE_OFFSET);
1257 			ratesArray[i] -= pwr_table_offset * 2;
1258 		}
1259 	}
1260 
1261 	ENABLE_REGWRITE_BUFFER(ah);
1262 
1263 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1264 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
1265 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1266 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1267 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1268 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1269 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
1270 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1271 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1272 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1273 
1274 	if (IS_CHAN_2GHZ(chan)) {
1275 		if (OLC_FOR_AR9280_20_LATER) {
1276 			cck_ofdm_delta = 2;
1277 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1278 				ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1279 				| ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1280 				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1281 				| ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1282 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1283 				ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1284 				| ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1285 				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1286 				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1287 		} else {
1288 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1289 				ATH9K_POW_SM(ratesArray[rate2s], 24)
1290 				| ATH9K_POW_SM(ratesArray[rate2l], 16)
1291 				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1292 				| ATH9K_POW_SM(ratesArray[rate1l], 0));
1293 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1294 				ATH9K_POW_SM(ratesArray[rate11s], 24)
1295 				| ATH9K_POW_SM(ratesArray[rate11l], 16)
1296 				| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1297 				| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1298 		}
1299 	}
1300 
1301 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1302 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1303 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1304 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1305 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1306 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1307 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1308 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1309 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1310 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1311 
1312 	if (IS_CHAN_HT40(chan)) {
1313 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1314 			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
1315 				       ht40PowerIncForPdadc, 24)
1316 			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1317 					 ht40PowerIncForPdadc, 16)
1318 			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1319 					 ht40PowerIncForPdadc, 8)
1320 			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1321 					 ht40PowerIncForPdadc, 0));
1322 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1323 			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
1324 				       ht40PowerIncForPdadc, 24)
1325 			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1326 					 ht40PowerIncForPdadc, 16)
1327 			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1328 					 ht40PowerIncForPdadc, 8)
1329 			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1330 					 ht40PowerIncForPdadc, 0));
1331 		if (OLC_FOR_AR9280_20_LATER) {
1332 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1333 				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1334 				| ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1335 				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1336 				| ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1337 		} else {
1338 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1339 				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1340 				| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1341 				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1342 				| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1343 		}
1344 	}
1345 
1346 	REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1347 		  ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1348 		  | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1349 
1350 	REGWRITE_BUFFER_FLUSH(ah);
1351 }
1352 
1353 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1354 {
1355 #define EEP_DEF_SPURCHAN \
1356 	(ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1357 	struct ath_common *common = ath9k_hw_common(ah);
1358 
1359 	u16 spur_val = AR_NO_SPUR;
1360 
1361 	ath_dbg(common, ANI, "Getting spur idx:%d is2Ghz:%d val:%x\n",
1362 		i, is2GHz, ah->config.spurchans[i][is2GHz]);
1363 
1364 	switch (ah->config.spurmode) {
1365 	case SPUR_DISABLE:
1366 		break;
1367 	case SPUR_ENABLE_IOCTL:
1368 		spur_val = ah->config.spurchans[i][is2GHz];
1369 		ath_dbg(common, ANI, "Getting spur val from new loc. %d\n",
1370 			spur_val);
1371 		break;
1372 	case SPUR_ENABLE_EEPROM:
1373 		spur_val = EEP_DEF_SPURCHAN;
1374 		break;
1375 	}
1376 
1377 	return spur_val;
1378 
1379 #undef EEP_DEF_SPURCHAN
1380 }
1381 
1382 const struct eeprom_ops eep_def_ops = {
1383 	.check_eeprom		= ath9k_hw_def_check_eeprom,
1384 	.get_eeprom		= ath9k_hw_def_get_eeprom,
1385 	.fill_eeprom		= ath9k_hw_def_fill_eeprom,
1386 	.dump_eeprom		= ath9k_hw_def_dump_eeprom,
1387 	.get_eeprom_ver		= ath9k_hw_def_get_eeprom_ver,
1388 	.get_eeprom_rev		= ath9k_hw_def_get_eeprom_rev,
1389 	.set_board_values	= ath9k_hw_def_set_board_values,
1390 	.set_addac		= ath9k_hw_def_set_addac,
1391 	.set_txpower		= ath9k_hw_def_set_txpower,
1392 	.get_spur_channel	= ath9k_hw_def_get_spur_channel
1393 };
1394