1 /*
2  * Copyright (c) 2008-2009 Atheros Communications Inc.
3  *
4  * Permission to use, copy, modify, and/or distribute this software for any
5  * purpose with or without fee is hereby granted, provided that the above
6  * copyright notice and this permission notice appear in all copies.
7  *
8  * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
9  * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
10  * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
11  * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
12  * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
13  * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
14  * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
15  */
16 
17 #include "hw.h"
18 
19 static void ath9k_get_txgain_index(struct ath_hw *ah,
20 		struct ath9k_channel *chan,
21 		struct calDataPerFreqOpLoop *rawDatasetOpLoop,
22 		u8 *calChans,  u16 availPiers, u8 *pwr, u8 *pcdacIdx)
23 {
24 	u8 pcdac, i = 0;
25 	u16 idxL = 0, idxR = 0, numPiers;
26 	bool match;
27 	struct chan_centers centers;
28 
29 	ath9k_hw_get_channel_centers(ah, chan, &centers);
30 
31 	for (numPiers = 0; numPiers < availPiers; numPiers++)
32 		if (calChans[numPiers] == AR5416_BCHAN_UNUSED)
33 			break;
34 
35 	match = ath9k_hw_get_lower_upper_index(
36 			(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
37 			calChans, numPiers, &idxL, &idxR);
38 	if (match) {
39 		pcdac = rawDatasetOpLoop[idxL].pcdac[0][0];
40 		*pwr = rawDatasetOpLoop[idxL].pwrPdg[0][0];
41 	} else {
42 		pcdac = rawDatasetOpLoop[idxR].pcdac[0][0];
43 		*pwr = (rawDatasetOpLoop[idxL].pwrPdg[0][0] +
44 				rawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
45 	}
46 
47 	while (pcdac > ah->originalGain[i] &&
48 			i < (AR9280_TX_GAIN_TABLE_SIZE - 1))
49 		i++;
50 
51 	*pcdacIdx = i;
52 	return;
53 }
54 
55 static void ath9k_olc_get_pdadcs(struct ath_hw *ah,
56 				u32 initTxGain,
57 				int txPower,
58 				u8 *pPDADCValues)
59 {
60 	u32 i;
61 	u32 offset;
62 
63 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_0,
64 			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
65 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL6_1,
66 			AR_PHY_TX_PWRCTRL_ERR_EST_MODE, 3);
67 
68 	REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL7,
69 			AR_PHY_TX_PWRCTRL_INIT_TX_GAIN, initTxGain);
70 
71 	offset = txPower;
72 	for (i = 0; i < AR5416_NUM_PDADC_VALUES; i++)
73 		if (i < offset)
74 			pPDADCValues[i] = 0x0;
75 		else
76 			pPDADCValues[i] = 0xFF;
77 }
78 
79 static int ath9k_hw_def_get_eeprom_ver(struct ath_hw *ah)
80 {
81 	return ((ah->eeprom.def.baseEepHeader.version >> 12) & 0xF);
82 }
83 
84 static int ath9k_hw_def_get_eeprom_rev(struct ath_hw *ah)
85 {
86 	return ((ah->eeprom.def.baseEepHeader.version) & 0xFFF);
87 }
88 
89 static bool ath9k_hw_def_fill_eeprom(struct ath_hw *ah)
90 {
91 #define SIZE_EEPROM_DEF (sizeof(struct ar5416_eeprom_def) / sizeof(u16))
92 	struct ath_common *common = ath9k_hw_common(ah);
93 	u16 *eep_data = (u16 *)&ah->eeprom.def;
94 	int addr, ar5416_eep_start_loc = 0x100;
95 
96 	for (addr = 0; addr < SIZE_EEPROM_DEF; addr++) {
97 		if (!ath9k_hw_nvram_read(common, addr + ar5416_eep_start_loc,
98 					 eep_data)) {
99 			ath_print(ath9k_hw_common(ah), ATH_DBG_FATAL,
100 				  "Unable to read eeprom region\n");
101 			return false;
102 		}
103 		eep_data++;
104 	}
105 	return true;
106 #undef SIZE_EEPROM_DEF
107 }
108 
109 static int ath9k_hw_def_check_eeprom(struct ath_hw *ah)
110 {
111 	struct ar5416_eeprom_def *eep =
112 		(struct ar5416_eeprom_def *) &ah->eeprom.def;
113 	struct ath_common *common = ath9k_hw_common(ah);
114 	u16 *eepdata, temp, magic, magic2;
115 	u32 sum = 0, el;
116 	bool need_swap = false;
117 	int i, addr, size;
118 
119 	if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET, &magic)) {
120 		ath_print(common, ATH_DBG_FATAL, "Reading Magic # failed\n");
121 		return false;
122 	}
123 
124 	if (!ath9k_hw_use_flash(ah)) {
125 		ath_print(common, ATH_DBG_EEPROM,
126 			  "Read Magic = 0x%04X\n", magic);
127 
128 		if (magic != AR5416_EEPROM_MAGIC) {
129 			magic2 = swab16(magic);
130 
131 			if (magic2 == AR5416_EEPROM_MAGIC) {
132 				size = sizeof(struct ar5416_eeprom_def);
133 				need_swap = true;
134 				eepdata = (u16 *) (&ah->eeprom);
135 
136 				for (addr = 0; addr < size / sizeof(u16); addr++) {
137 					temp = swab16(*eepdata);
138 					*eepdata = temp;
139 					eepdata++;
140 				}
141 			} else {
142 				ath_print(common, ATH_DBG_FATAL,
143 					  "Invalid EEPROM Magic. "
144 					  "Endianness mismatch.\n");
145 				return -EINVAL;
146 			}
147 		}
148 	}
149 
150 	ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
151 		  need_swap ? "True" : "False");
152 
153 	if (need_swap)
154 		el = swab16(ah->eeprom.def.baseEepHeader.length);
155 	else
156 		el = ah->eeprom.def.baseEepHeader.length;
157 
158 	if (el > sizeof(struct ar5416_eeprom_def))
159 		el = sizeof(struct ar5416_eeprom_def) / sizeof(u16);
160 	else
161 		el = el / sizeof(u16);
162 
163 	eepdata = (u16 *)(&ah->eeprom);
164 
165 	for (i = 0; i < el; i++)
166 		sum ^= *eepdata++;
167 
168 	if (need_swap) {
169 		u32 integer, j;
170 		u16 word;
171 
172 		ath_print(common, ATH_DBG_EEPROM,
173 			  "EEPROM Endianness is not native.. Changing.\n");
174 
175 		word = swab16(eep->baseEepHeader.length);
176 		eep->baseEepHeader.length = word;
177 
178 		word = swab16(eep->baseEepHeader.checksum);
179 		eep->baseEepHeader.checksum = word;
180 
181 		word = swab16(eep->baseEepHeader.version);
182 		eep->baseEepHeader.version = word;
183 
184 		word = swab16(eep->baseEepHeader.regDmn[0]);
185 		eep->baseEepHeader.regDmn[0] = word;
186 
187 		word = swab16(eep->baseEepHeader.regDmn[1]);
188 		eep->baseEepHeader.regDmn[1] = word;
189 
190 		word = swab16(eep->baseEepHeader.rfSilent);
191 		eep->baseEepHeader.rfSilent = word;
192 
193 		word = swab16(eep->baseEepHeader.blueToothOptions);
194 		eep->baseEepHeader.blueToothOptions = word;
195 
196 		word = swab16(eep->baseEepHeader.deviceCap);
197 		eep->baseEepHeader.deviceCap = word;
198 
199 		for (j = 0; j < ARRAY_SIZE(eep->modalHeader); j++) {
200 			struct modal_eep_header *pModal =
201 				&eep->modalHeader[j];
202 			integer = swab32(pModal->antCtrlCommon);
203 			pModal->antCtrlCommon = integer;
204 
205 			for (i = 0; i < AR5416_MAX_CHAINS; i++) {
206 				integer = swab32(pModal->antCtrlChain[i]);
207 				pModal->antCtrlChain[i] = integer;
208 			}
209 
210 			for (i = 0; i < AR5416_EEPROM_MODAL_SPURS; i++) {
211 				word = swab16(pModal->spurChans[i].spurChan);
212 				pModal->spurChans[i].spurChan = word;
213 			}
214 		}
215 	}
216 
217 	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR5416_EEP_VER ||
218 	    ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
219 		ath_print(common, ATH_DBG_FATAL,
220 			  "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
221 			sum, ah->eep_ops->get_eeprom_ver(ah));
222 		return -EINVAL;
223 	}
224 
225 	return 0;
226 }
227 
228 static u32 ath9k_hw_def_get_eeprom(struct ath_hw *ah,
229 				   enum eeprom_param param)
230 {
231 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
232 	struct modal_eep_header *pModal = eep->modalHeader;
233 	struct base_eep_header *pBase = &eep->baseEepHeader;
234 
235 	switch (param) {
236 	case EEP_NFTHRESH_5:
237 		return pModal[0].noiseFloorThreshCh[0];
238 	case EEP_NFTHRESH_2:
239 		return pModal[1].noiseFloorThreshCh[0];
240 	case AR_EEPROM_MAC(0):
241 		return pBase->macAddr[0] << 8 | pBase->macAddr[1];
242 	case AR_EEPROM_MAC(1):
243 		return pBase->macAddr[2] << 8 | pBase->macAddr[3];
244 	case AR_EEPROM_MAC(2):
245 		return pBase->macAddr[4] << 8 | pBase->macAddr[5];
246 	case EEP_REG_0:
247 		return pBase->regDmn[0];
248 	case EEP_REG_1:
249 		return pBase->regDmn[1];
250 	case EEP_OP_CAP:
251 		return pBase->deviceCap;
252 	case EEP_OP_MODE:
253 		return pBase->opCapFlags;
254 	case EEP_RF_SILENT:
255 		return pBase->rfSilent;
256 	case EEP_OB_5:
257 		return pModal[0].ob;
258 	case EEP_DB_5:
259 		return pModal[0].db;
260 	case EEP_OB_2:
261 		return pModal[1].ob;
262 	case EEP_DB_2:
263 		return pModal[1].db;
264 	case EEP_MINOR_REV:
265 		return AR5416_VER_MASK;
266 	case EEP_TX_MASK:
267 		return pBase->txMask;
268 	case EEP_RX_MASK:
269 		return pBase->rxMask;
270 	case EEP_RXGAIN_TYPE:
271 		return pBase->rxGainType;
272 	case EEP_TXGAIN_TYPE:
273 		return pBase->txGainType;
274 	case EEP_OL_PWRCTRL:
275 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
276 			return pBase->openLoopPwrCntl ? true : false;
277 		else
278 			return false;
279 	case EEP_RC_CHAIN_MASK:
280 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
281 			return pBase->rcChainMask;
282 		else
283 			return 0;
284 	case EEP_DAC_HPWR_5G:
285 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20)
286 			return pBase->dacHiPwrMode_5G;
287 		else
288 			return 0;
289 	case EEP_FRAC_N_5G:
290 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_22)
291 			return pBase->frac_n_5g;
292 		else
293 			return 0;
294 	case EEP_PWR_TABLE_OFFSET:
295 		if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_21)
296 			return pBase->pwr_table_offset;
297 		else
298 			return AR5416_PWR_TABLE_OFFSET_DB;
299 	default:
300 		return 0;
301 	}
302 }
303 
304 static void ath9k_hw_def_set_gain(struct ath_hw *ah,
305 				  struct modal_eep_header *pModal,
306 				  struct ar5416_eeprom_def *eep,
307 				  u8 txRxAttenLocal, int regChainOffset, int i)
308 {
309 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
310 		txRxAttenLocal = pModal->txRxAttenCh[i];
311 
312 		if (AR_SREV_9280_10_OR_LATER(ah)) {
313 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
314 			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
315 			      pModal->bswMargin[i]);
316 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
317 			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
318 			      pModal->bswAtten[i]);
319 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
320 			      AR_PHY_GAIN_2GHZ_XATTEN2_MARGIN,
321 			      pModal->xatten2Margin[i]);
322 			REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
323 			      AR_PHY_GAIN_2GHZ_XATTEN2_DB,
324 			      pModal->xatten2Db[i]);
325 		} else {
326 			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
327 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
328 			   ~AR_PHY_GAIN_2GHZ_BSW_MARGIN)
329 			  | SM(pModal-> bswMargin[i],
330 			       AR_PHY_GAIN_2GHZ_BSW_MARGIN));
331 			REG_WRITE(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
332 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
333 			   ~AR_PHY_GAIN_2GHZ_BSW_ATTEN)
334 			  | SM(pModal->bswAtten[i],
335 			       AR_PHY_GAIN_2GHZ_BSW_ATTEN));
336 		}
337 	}
338 
339 	if (AR_SREV_9280_10_OR_LATER(ah)) {
340 		REG_RMW_FIELD(ah,
341 		      AR_PHY_RXGAIN + regChainOffset,
342 		      AR9280_PHY_RXGAIN_TXRX_ATTEN, txRxAttenLocal);
343 		REG_RMW_FIELD(ah,
344 		      AR_PHY_RXGAIN + regChainOffset,
345 		      AR9280_PHY_RXGAIN_TXRX_MARGIN, pModal->rxTxMarginCh[i]);
346 	} else {
347 		REG_WRITE(ah,
348 			  AR_PHY_RXGAIN + regChainOffset,
349 			  (REG_READ(ah, AR_PHY_RXGAIN + regChainOffset) &
350 			   ~AR_PHY_RXGAIN_TXRX_ATTEN)
351 			  | SM(txRxAttenLocal, AR_PHY_RXGAIN_TXRX_ATTEN));
352 		REG_WRITE(ah,
353 			  AR_PHY_GAIN_2GHZ + regChainOffset,
354 			  (REG_READ(ah, AR_PHY_GAIN_2GHZ + regChainOffset) &
355 			   ~AR_PHY_GAIN_2GHZ_RXTX_MARGIN) |
356 			  SM(pModal->rxTxMarginCh[i], AR_PHY_GAIN_2GHZ_RXTX_MARGIN));
357 	}
358 }
359 
360 static void ath9k_hw_def_set_board_values(struct ath_hw *ah,
361 					  struct ath9k_channel *chan)
362 {
363 	struct modal_eep_header *pModal;
364 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
365 	int i, regChainOffset;
366 	u8 txRxAttenLocal;
367 
368 	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
369 	txRxAttenLocal = IS_CHAN_2GHZ(chan) ? 23 : 44;
370 
371 	REG_WRITE(ah, AR_PHY_SWITCH_COM,
372 		  ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));
373 
374 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
375 		if (AR_SREV_9280(ah)) {
376 			if (i >= 2)
377 				break;
378 		}
379 
380 		if (AR_SREV_5416_20_OR_LATER(ah) &&
381 		    (ah->rxchainmask == 5 || ah->txchainmask == 5) && (i != 0))
382 			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
383 		else
384 			regChainOffset = i * 0x1000;
385 
386 		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
387 			  pModal->antCtrlChain[i]);
388 
389 		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
390 			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset) &
391 			   ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
392 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
393 			  SM(pModal->iqCalICh[i],
394 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
395 			  SM(pModal->iqCalQCh[i],
396 			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));
397 
398 		if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah))
399 			ath9k_hw_def_set_gain(ah, pModal, eep, txRxAttenLocal,
400 					      regChainOffset, i);
401 	}
402 
403 	if (AR_SREV_9280_10_OR_LATER(ah)) {
404 		if (IS_CHAN_2GHZ(chan)) {
405 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
406 						  AR_AN_RF2G1_CH0_OB,
407 						  AR_AN_RF2G1_CH0_OB_S,
408 						  pModal->ob);
409 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH0,
410 						  AR_AN_RF2G1_CH0_DB,
411 						  AR_AN_RF2G1_CH0_DB_S,
412 						  pModal->db);
413 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
414 						  AR_AN_RF2G1_CH1_OB,
415 						  AR_AN_RF2G1_CH1_OB_S,
416 						  pModal->ob_ch1);
417 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF2G1_CH1,
418 						  AR_AN_RF2G1_CH1_DB,
419 						  AR_AN_RF2G1_CH1_DB_S,
420 						  pModal->db_ch1);
421 		} else {
422 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
423 						  AR_AN_RF5G1_CH0_OB5,
424 						  AR_AN_RF5G1_CH0_OB5_S,
425 						  pModal->ob);
426 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH0,
427 						  AR_AN_RF5G1_CH0_DB5,
428 						  AR_AN_RF5G1_CH0_DB5_S,
429 						  pModal->db);
430 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
431 						  AR_AN_RF5G1_CH1_OB5,
432 						  AR_AN_RF5G1_CH1_OB5_S,
433 						  pModal->ob_ch1);
434 			ath9k_hw_analog_shift_rmw(ah, AR_AN_RF5G1_CH1,
435 						  AR_AN_RF5G1_CH1_DB5,
436 						  AR_AN_RF5G1_CH1_DB5_S,
437 						  pModal->db_ch1);
438 		}
439 		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
440 					  AR_AN_TOP2_XPABIAS_LVL,
441 					  AR_AN_TOP2_XPABIAS_LVL_S,
442 					  pModal->xpaBiasLvl);
443 		ath9k_hw_analog_shift_rmw(ah, AR_AN_TOP2,
444 					  AR_AN_TOP2_LOCALBIAS,
445 					  AR_AN_TOP2_LOCALBIAS_S,
446 					  pModal->local_bias);
447 		REG_RMW_FIELD(ah, AR_PHY_XPA_CFG, AR_PHY_FORCE_XPA_CFG,
448 			      pModal->force_xpaon);
449 	}
450 
451 	REG_RMW_FIELD(ah, AR_PHY_SETTLING, AR_PHY_SETTLING_SWITCH,
452 		      pModal->switchSettling);
453 	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ, AR_PHY_DESIRED_SZ_ADC,
454 		      pModal->adcDesiredSize);
455 
456 	if (!AR_SREV_9280_10_OR_LATER(ah))
457 		REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
458 			      AR_PHY_DESIRED_SZ_PGA,
459 			      pModal->pgaDesiredSize);
460 
461 	REG_WRITE(ah, AR_PHY_RF_CTL4,
462 		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
463 		  | SM(pModal->txEndToXpaOff,
464 		       AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
465 		  | SM(pModal->txFrameToXpaOn,
466 		       AR_PHY_RF_CTL4_FRAME_XPAA_ON)
467 		  | SM(pModal->txFrameToXpaOn,
468 		       AR_PHY_RF_CTL4_FRAME_XPAB_ON));
469 
470 	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3, AR_PHY_TX_END_TO_A2_RX_ON,
471 		      pModal->txEndToRxOn);
472 
473 	if (AR_SREV_9280_10_OR_LATER(ah)) {
474 		REG_RMW_FIELD(ah, AR_PHY_CCA, AR9280_PHY_CCA_THRESH62,
475 			      pModal->thresh62);
476 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
477 			      AR_PHY_EXT_CCA0_THRESH62,
478 			      pModal->thresh62);
479 	} else {
480 		REG_RMW_FIELD(ah, AR_PHY_CCA, AR_PHY_CCA_THRESH62,
481 			      pModal->thresh62);
482 		REG_RMW_FIELD(ah, AR_PHY_EXT_CCA,
483 			      AR_PHY_EXT_CCA_THRESH62,
484 			      pModal->thresh62);
485 	}
486 
487 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_2) {
488 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
489 			      AR_PHY_TX_END_DATA_START,
490 			      pModal->txFrameToDataStart);
491 		REG_RMW_FIELD(ah, AR_PHY_RF_CTL2, AR_PHY_TX_END_PA_ON,
492 			      pModal->txFrameToPaOn);
493 	}
494 
495 	if (AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_3) {
496 		if (IS_CHAN_HT40(chan))
497 			REG_RMW_FIELD(ah, AR_PHY_SETTLING,
498 				      AR_PHY_SETTLING_SWITCH,
499 				      pModal->swSettleHt40);
500 	}
501 
502 	if (AR_SREV_9280_20_OR_LATER(ah) &&
503 	    AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_19)
504 		REG_RMW_FIELD(ah, AR_PHY_CCK_TX_CTRL,
505 			      AR_PHY_CCK_TX_CTRL_TX_DAC_SCALE_CCK,
506 			      pModal->miscBits);
507 
508 
509 	if (AR_SREV_9280_20(ah) && AR5416_VER_MASK >= AR5416_EEP_MINOR_VER_20) {
510 		if (IS_CHAN_2GHZ(chan))
511 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
512 					eep->baseEepHeader.dacLpMode);
513 		else if (eep->baseEepHeader.dacHiPwrMode_5G)
514 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE, 0);
515 		else
516 			REG_RMW_FIELD(ah, AR_AN_TOP1, AR_AN_TOP1_DACIPMODE,
517 				      eep->baseEepHeader.dacLpMode);
518 
519 		udelay(100);
520 
521 		REG_RMW_FIELD(ah, AR_PHY_FRAME_CTL, AR_PHY_FRAME_CTL_TX_CLIP,
522 			      pModal->miscBits >> 2);
523 
524 		REG_RMW_FIELD(ah, AR_PHY_TX_PWRCTRL9,
525 			      AR_PHY_TX_DESIRED_SCALE_CCK,
526 			      eep->baseEepHeader.desiredScaleCCK);
527 	}
528 }
529 
530 static void ath9k_hw_def_set_addac(struct ath_hw *ah,
531 				   struct ath9k_channel *chan)
532 {
533 #define XPA_LVL_FREQ(cnt) (pModal->xpaBiasLvlFreq[cnt])
534 	struct modal_eep_header *pModal;
535 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
536 	u8 biaslevel;
537 
538 	if (ah->hw_version.macVersion != AR_SREV_VERSION_9160)
539 		return;
540 
541 	if (ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_MINOR_VER_7)
542 		return;
543 
544 	pModal = &(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
545 
546 	if (pModal->xpaBiasLvl != 0xff) {
547 		biaslevel = pModal->xpaBiasLvl;
548 	} else {
549 		u16 resetFreqBin, freqBin, freqCount = 0;
550 		struct chan_centers centers;
551 
552 		ath9k_hw_get_channel_centers(ah, chan, &centers);
553 
554 		resetFreqBin = FREQ2FBIN(centers.synth_center,
555 					 IS_CHAN_2GHZ(chan));
556 		freqBin = XPA_LVL_FREQ(0) & 0xff;
557 		biaslevel = (u8) (XPA_LVL_FREQ(0) >> 14);
558 
559 		freqCount++;
560 
561 		while (freqCount < 3) {
562 			if (XPA_LVL_FREQ(freqCount) == 0x0)
563 				break;
564 
565 			freqBin = XPA_LVL_FREQ(freqCount) & 0xff;
566 			if (resetFreqBin >= freqBin)
567 				biaslevel = (u8)(XPA_LVL_FREQ(freqCount) >> 14);
568 			else
569 				break;
570 			freqCount++;
571 		}
572 	}
573 
574 	if (IS_CHAN_2GHZ(chan)) {
575 		INI_RA(&ah->iniAddac, 7, 1) = (INI_RA(&ah->iniAddac,
576 					7, 1) & (~0x18)) | biaslevel << 3;
577 	} else {
578 		INI_RA(&ah->iniAddac, 6, 1) = (INI_RA(&ah->iniAddac,
579 					6, 1) & (~0xc0)) | biaslevel << 6;
580 	}
581 #undef XPA_LVL_FREQ
582 }
583 
584 static void ath9k_hw_get_def_gain_boundaries_pdadcs(struct ath_hw *ah,
585 				struct ath9k_channel *chan,
586 				struct cal_data_per_freq *pRawDataSet,
587 				u8 *bChans, u16 availPiers,
588 				u16 tPdGainOverlap, int16_t *pMinCalPower,
589 				u16 *pPdGainBoundaries, u8 *pPDADCValues,
590 				u16 numXpdGains)
591 {
592 	int i, j, k;
593 	int16_t ss;
594 	u16 idxL = 0, idxR = 0, numPiers;
595 	static u8 vpdTableL[AR5416_NUM_PD_GAINS]
596 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
597 	static u8 vpdTableR[AR5416_NUM_PD_GAINS]
598 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
599 	static u8 vpdTableI[AR5416_NUM_PD_GAINS]
600 		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
601 
602 	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
603 	u8 minPwrT4[AR5416_NUM_PD_GAINS];
604 	u8 maxPwrT4[AR5416_NUM_PD_GAINS];
605 	int16_t vpdStep;
606 	int16_t tmpVal;
607 	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
608 	bool match;
609 	int16_t minDelta = 0;
610 	struct chan_centers centers;
611 
612 	ath9k_hw_get_channel_centers(ah, chan, &centers);
613 
614 	for (numPiers = 0; numPiers < availPiers; numPiers++) {
615 		if (bChans[numPiers] == AR5416_BCHAN_UNUSED)
616 			break;
617 	}
618 
619 	match = ath9k_hw_get_lower_upper_index((u8)FREQ2FBIN(centers.synth_center,
620 							     IS_CHAN_2GHZ(chan)),
621 					       bChans, numPiers, &idxL, &idxR);
622 
623 	if (match) {
624 		for (i = 0; i < numXpdGains; i++) {
625 			minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
626 			maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
627 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
628 					pRawDataSet[idxL].pwrPdg[i],
629 					pRawDataSet[idxL].vpdPdg[i],
630 					AR5416_PD_GAIN_ICEPTS,
631 					vpdTableI[i]);
632 		}
633 	} else {
634 		for (i = 0; i < numXpdGains; i++) {
635 			pVpdL = pRawDataSet[idxL].vpdPdg[i];
636 			pPwrL = pRawDataSet[idxL].pwrPdg[i];
637 			pVpdR = pRawDataSet[idxR].vpdPdg[i];
638 			pPwrR = pRawDataSet[idxR].pwrPdg[i];
639 
640 			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);
641 
642 			maxPwrT4[i] =
643 				min(pPwrL[AR5416_PD_GAIN_ICEPTS - 1],
644 				    pPwrR[AR5416_PD_GAIN_ICEPTS - 1]);
645 
646 
647 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
648 						pPwrL, pVpdL,
649 						AR5416_PD_GAIN_ICEPTS,
650 						vpdTableL[i]);
651 			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
652 						pPwrR, pVpdR,
653 						AR5416_PD_GAIN_ICEPTS,
654 						vpdTableR[i]);
655 
656 			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
657 				vpdTableI[i][j] =
658 					(u8)(ath9k_hw_interpolate((u16)
659 					     FREQ2FBIN(centers.
660 						       synth_center,
661 						       IS_CHAN_2GHZ
662 						       (chan)),
663 					     bChans[idxL], bChans[idxR],
664 					     vpdTableL[i][j], vpdTableR[i][j]));
665 			}
666 		}
667 	}
668 
669 	*pMinCalPower = (int16_t)(minPwrT4[0] / 2);
670 
671 	k = 0;
672 
673 	for (i = 0; i < numXpdGains; i++) {
674 		if (i == (numXpdGains - 1))
675 			pPdGainBoundaries[i] =
676 				(u16)(maxPwrT4[i] / 2);
677 		else
678 			pPdGainBoundaries[i] =
679 				(u16)((maxPwrT4[i] + minPwrT4[i + 1]) / 4);
680 
681 		pPdGainBoundaries[i] =
682 			min((u16)AR5416_MAX_RATE_POWER, pPdGainBoundaries[i]);
683 
684 		if ((i == 0) && !AR_SREV_5416_20_OR_LATER(ah)) {
685 			minDelta = pPdGainBoundaries[0] - 23;
686 			pPdGainBoundaries[0] = 23;
687 		} else {
688 			minDelta = 0;
689 		}
690 
691 		if (i == 0) {
692 			if (AR_SREV_9280_10_OR_LATER(ah))
693 				ss = (int16_t)(0 - (minPwrT4[i] / 2));
694 			else
695 				ss = 0;
696 		} else {
697 			ss = (int16_t)((pPdGainBoundaries[i - 1] -
698 					(minPwrT4[i] / 2)) -
699 				       tPdGainOverlap + 1 + minDelta);
700 		}
701 		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
702 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
703 
704 		while ((ss < 0) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
705 			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
706 			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
707 			ss++;
708 		}
709 
710 		sizeCurrVpdTable = (u8) ((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
711 		tgtIndex = (u8)(pPdGainBoundaries[i] + tPdGainOverlap -
712 				(minPwrT4[i] / 2));
713 		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
714 			tgtIndex : sizeCurrVpdTable;
715 
716 		while ((ss < maxIndex) && (k < (AR5416_NUM_PDADC_VALUES - 1))) {
717 			pPDADCValues[k++] = vpdTableI[i][ss++];
718 		}
719 
720 		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
721 				    vpdTableI[i][sizeCurrVpdTable - 2]);
722 		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);
723 
724 		if (tgtIndex > maxIndex) {
725 			while ((ss <= tgtIndex) &&
726 			       (k < (AR5416_NUM_PDADC_VALUES - 1))) {
727 				tmpVal = (int16_t)((vpdTableI[i][sizeCurrVpdTable - 1] +
728 						    (ss - maxIndex + 1) * vpdStep));
729 				pPDADCValues[k++] = (u8)((tmpVal > 255) ?
730 							 255 : tmpVal);
731 				ss++;
732 			}
733 		}
734 	}
735 
736 	while (i < AR5416_PD_GAINS_IN_MASK) {
737 		pPdGainBoundaries[i] = pPdGainBoundaries[i - 1];
738 		i++;
739 	}
740 
741 	while (k < AR5416_NUM_PDADC_VALUES) {
742 		pPDADCValues[k] = pPDADCValues[k - 1];
743 		k++;
744 	}
745 
746 	return;
747 }
748 
749 static int16_t ath9k_change_gain_boundary_setting(struct ath_hw *ah,
750 				u16 *gb,
751 				u16 numXpdGain,
752 				u16 pdGainOverlap_t2,
753 				int8_t pwr_table_offset,
754 				int16_t *diff)
755 
756 {
757 	u16 k;
758 
759 	/* Prior to writing the boundaries or the pdadc vs. power table
760 	 * into the chip registers the default starting point on the pdadc
761 	 * vs. power table needs to be checked and the curve boundaries
762 	 * adjusted accordingly
763 	 */
764 	if (AR_SREV_9280_20_OR_LATER(ah)) {
765 		u16 gb_limit;
766 
767 		if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
768 			/* get the difference in dB */
769 			*diff = (u16)(pwr_table_offset - AR5416_PWR_TABLE_OFFSET_DB);
770 			/* get the number of half dB steps */
771 			*diff *= 2;
772 			/* change the original gain boundary settings
773 			 * by the number of half dB steps
774 			 */
775 			for (k = 0; k < numXpdGain; k++)
776 				gb[k] = (u16)(gb[k] - *diff);
777 		}
778 		/* Because of a hardware limitation, ensure the gain boundary
779 		 * is not larger than (63 - overlap)
780 		 */
781 		gb_limit = (u16)(AR5416_MAX_RATE_POWER - pdGainOverlap_t2);
782 
783 		for (k = 0; k < numXpdGain; k++)
784 			gb[k] = (u16)min(gb_limit, gb[k]);
785 	}
786 
787 	return *diff;
788 }
789 
790 static void ath9k_adjust_pdadc_values(struct ath_hw *ah,
791 				      int8_t pwr_table_offset,
792 				      int16_t diff,
793 				      u8 *pdadcValues)
794 {
795 #define NUM_PDADC(diff) (AR5416_NUM_PDADC_VALUES - diff)
796 	u16 k;
797 
798 	/* If this is a board that has a pwrTableOffset that differs from
799 	 * the default AR5416_PWR_TABLE_OFFSET_DB then the start of the
800 	 * pdadc vs pwr table needs to be adjusted prior to writing to the
801 	 * chip.
802 	 */
803 	if (AR_SREV_9280_20_OR_LATER(ah)) {
804 		if (AR5416_PWR_TABLE_OFFSET_DB != pwr_table_offset) {
805 			/* shift the table to start at the new offset */
806 			for (k = 0; k < (u16)NUM_PDADC(diff); k++ ) {
807 				pdadcValues[k] = pdadcValues[k + diff];
808 			}
809 
810 			/* fill the back of the table */
811 			for (k = (u16)NUM_PDADC(diff); k < NUM_PDADC(0); k++) {
812 				pdadcValues[k] = pdadcValues[NUM_PDADC(diff)];
813 			}
814 		}
815 	}
816 #undef NUM_PDADC
817 }
818 
819 static void ath9k_hw_set_def_power_cal_table(struct ath_hw *ah,
820 				  struct ath9k_channel *chan,
821 				  int16_t *pTxPowerIndexOffset)
822 {
823 #define SM_PD_GAIN(x) SM(0x38, AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##x)
824 #define SM_PDGAIN_B(x, y) \
825 		SM((gainBoundaries[x]), AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_##y)
826 	struct ath_common *common = ath9k_hw_common(ah);
827 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
828 	struct cal_data_per_freq *pRawDataset;
829 	u8 *pCalBChans = NULL;
830 	u16 pdGainOverlap_t2;
831 	static u8 pdadcValues[AR5416_NUM_PDADC_VALUES];
832 	u16 gainBoundaries[AR5416_PD_GAINS_IN_MASK];
833 	u16 numPiers, i, j;
834 	int16_t tMinCalPower, diff = 0;
835 	u16 numXpdGain, xpdMask;
836 	u16 xpdGainValues[AR5416_NUM_PD_GAINS] = { 0, 0, 0, 0 };
837 	u32 reg32, regOffset, regChainOffset;
838 	int16_t modalIdx;
839 	int8_t pwr_table_offset;
840 
841 	modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
842 	xpdMask = pEepData->modalHeader[modalIdx].xpdGain;
843 
844 	pwr_table_offset = ah->eep_ops->get_eeprom(ah, EEP_PWR_TABLE_OFFSET);
845 
846 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
847 	    AR5416_EEP_MINOR_VER_2) {
848 		pdGainOverlap_t2 =
849 			pEepData->modalHeader[modalIdx].pdGainOverlap;
850 	} else {
851 		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
852 					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));
853 	}
854 
855 	if (IS_CHAN_2GHZ(chan)) {
856 		pCalBChans = pEepData->calFreqPier2G;
857 		numPiers = AR5416_NUM_2G_CAL_PIERS;
858 	} else {
859 		pCalBChans = pEepData->calFreqPier5G;
860 		numPiers = AR5416_NUM_5G_CAL_PIERS;
861 	}
862 
863 	if (OLC_FOR_AR9280_20_LATER && IS_CHAN_2GHZ(chan)) {
864 		pRawDataset = pEepData->calPierData2G[0];
865 		ah->initPDADC = ((struct calDataPerFreqOpLoop *)
866 				 pRawDataset)->vpdPdg[0][0];
867 	}
868 
869 	numXpdGain = 0;
870 
871 	for (i = 1; i <= AR5416_PD_GAINS_IN_MASK; i++) {
872 		if ((xpdMask >> (AR5416_PD_GAINS_IN_MASK - i)) & 1) {
873 			if (numXpdGain >= AR5416_NUM_PD_GAINS)
874 				break;
875 			xpdGainValues[numXpdGain] =
876 				(u16)(AR5416_PD_GAINS_IN_MASK - i);
877 			numXpdGain++;
878 		}
879 	}
880 
881 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
882 		      (numXpdGain - 1) & 0x3);
883 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
884 		      xpdGainValues[0]);
885 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
886 		      xpdGainValues[1]);
887 	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
888 		      xpdGainValues[2]);
889 
890 	for (i = 0; i < AR5416_MAX_CHAINS; i++) {
891 		if (AR_SREV_5416_20_OR_LATER(ah) &&
892 		    (ah->rxchainmask == 5 || ah->txchainmask == 5) &&
893 		    (i != 0)) {
894 			regChainOffset = (i == 1) ? 0x2000 : 0x1000;
895 		} else
896 			regChainOffset = i * 0x1000;
897 
898 		if (pEepData->baseEepHeader.txMask & (1 << i)) {
899 			if (IS_CHAN_2GHZ(chan))
900 				pRawDataset = pEepData->calPierData2G[i];
901 			else
902 				pRawDataset = pEepData->calPierData5G[i];
903 
904 
905 			if (OLC_FOR_AR9280_20_LATER) {
906 				u8 pcdacIdx;
907 				u8 txPower;
908 
909 				ath9k_get_txgain_index(ah, chan,
910 				(struct calDataPerFreqOpLoop *)pRawDataset,
911 				pCalBChans, numPiers, &txPower, &pcdacIdx);
912 				ath9k_olc_get_pdadcs(ah, pcdacIdx,
913 						     txPower/2, pdadcValues);
914 			} else {
915 				ath9k_hw_get_def_gain_boundaries_pdadcs(ah,
916 							chan, pRawDataset,
917 							pCalBChans, numPiers,
918 							pdGainOverlap_t2,
919 							&tMinCalPower,
920 							gainBoundaries,
921 							pdadcValues,
922 							numXpdGain);
923 			}
924 
925 			diff = ath9k_change_gain_boundary_setting(ah,
926 							   gainBoundaries,
927 							   numXpdGain,
928 							   pdGainOverlap_t2,
929 							   pwr_table_offset,
930 							   &diff);
931 
932 			if ((i == 0) || AR_SREV_5416_20_OR_LATER(ah)) {
933 				if (OLC_FOR_AR9280_20_LATER) {
934 					REG_WRITE(ah,
935 						AR_PHY_TPCRG5 + regChainOffset,
936 						SM(0x6,
937 						AR_PHY_TPCRG5_PD_GAIN_OVERLAP) |
938 						SM_PD_GAIN(1) | SM_PD_GAIN(2) |
939 						SM_PD_GAIN(3) | SM_PD_GAIN(4));
940 				} else {
941 					REG_WRITE(ah,
942 						AR_PHY_TPCRG5 + regChainOffset,
943 						SM(pdGainOverlap_t2,
944 						AR_PHY_TPCRG5_PD_GAIN_OVERLAP)|
945 						SM_PDGAIN_B(0, 1) |
946 						SM_PDGAIN_B(1, 2) |
947 						SM_PDGAIN_B(2, 3) |
948 						SM_PDGAIN_B(3, 4));
949 				}
950 			}
951 
952 
953 			ath9k_adjust_pdadc_values(ah, pwr_table_offset,
954 						  diff, pdadcValues);
955 
956 			regOffset = AR_PHY_BASE + (672 << 2) + regChainOffset;
957 			for (j = 0; j < 32; j++) {
958 				reg32 = ((pdadcValues[4 * j + 0] & 0xFF) << 0) |
959 					((pdadcValues[4 * j + 1] & 0xFF) << 8) |
960 					((pdadcValues[4 * j + 2] & 0xFF) << 16)|
961 					((pdadcValues[4 * j + 3] & 0xFF) << 24);
962 				REG_WRITE(ah, regOffset, reg32);
963 
964 				ath_print(common, ATH_DBG_EEPROM,
965 					  "PDADC (%d,%4x): %4.4x %8.8x\n",
966 					  i, regChainOffset, regOffset,
967 					  reg32);
968 				ath_print(common, ATH_DBG_EEPROM,
969 					  "PDADC: Chain %d | PDADC %3d "
970 					  "Value %3d | PDADC %3d Value %3d | "
971 					  "PDADC %3d Value %3d | PDADC %3d "
972 					  "Value %3d |\n",
973 					  i, 4 * j, pdadcValues[4 * j],
974 					  4 * j + 1, pdadcValues[4 * j + 1],
975 					  4 * j + 2, pdadcValues[4 * j + 2],
976 					  4 * j + 3,
977 					  pdadcValues[4 * j + 3]);
978 
979 				regOffset += 4;
980 			}
981 		}
982 	}
983 
984 	*pTxPowerIndexOffset = 0;
985 #undef SM_PD_GAIN
986 #undef SM_PDGAIN_B
987 }
988 
989 static void ath9k_hw_set_def_power_per_rate_table(struct ath_hw *ah,
990 						  struct ath9k_channel *chan,
991 						  int16_t *ratesArray,
992 						  u16 cfgCtl,
993 						  u16 AntennaReduction,
994 						  u16 twiceMaxRegulatoryPower,
995 						  u16 powerLimit)
996 {
997 #define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6  /* 10*log10(2)*2 */
998 #define REDUCE_SCALED_POWER_BY_THREE_CHAIN   9 /* 10*log10(3)*2 */
999 
1000 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1001 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1002 	u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1003 	static const u16 tpScaleReductionTable[5] =
1004 		{ 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
1005 
1006 	int i;
1007 	int16_t twiceLargestAntenna;
1008 	struct cal_ctl_data *rep;
1009 	struct cal_target_power_leg targetPowerOfdm, targetPowerCck = {
1010 		0, { 0, 0, 0, 0}
1011 	};
1012 	struct cal_target_power_leg targetPowerOfdmExt = {
1013 		0, { 0, 0, 0, 0} }, targetPowerCckExt = {
1014 		0, { 0, 0, 0, 0 }
1015 	};
1016 	struct cal_target_power_ht targetPowerHt20, targetPowerHt40 = {
1017 		0, {0, 0, 0, 0}
1018 	};
1019 	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
1020 	u16 ctlModesFor11a[] =
1021 		{ CTL_11A, CTL_5GHT20, CTL_11A_EXT, CTL_5GHT40 };
1022 	u16 ctlModesFor11g[] =
1023 		{ CTL_11B, CTL_11G, CTL_2GHT20, CTL_11B_EXT, CTL_11G_EXT,
1024 		  CTL_2GHT40
1025 		};
1026 	u16 numCtlModes, *pCtlMode, ctlMode, freq;
1027 	struct chan_centers centers;
1028 	int tx_chainmask;
1029 	u16 twiceMinEdgePower;
1030 
1031 	tx_chainmask = ah->txchainmask;
1032 
1033 	ath9k_hw_get_channel_centers(ah, chan, &centers);
1034 
1035 	twiceLargestAntenna = max(
1036 		pEepData->modalHeader
1037 			[IS_CHAN_2GHZ(chan)].antennaGainCh[0],
1038 		pEepData->modalHeader
1039 			[IS_CHAN_2GHZ(chan)].antennaGainCh[1]);
1040 
1041 	twiceLargestAntenna = max((u8)twiceLargestAntenna,
1042 				  pEepData->modalHeader
1043 				  [IS_CHAN_2GHZ(chan)].antennaGainCh[2]);
1044 
1045 	twiceLargestAntenna = (int16_t)min(AntennaReduction -
1046 					   twiceLargestAntenna, 0);
1047 
1048 	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;
1049 
1050 	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX) {
1051 		maxRegAllowedPower -=
1052 			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);
1053 	}
1054 
1055 	scaledPower = min(powerLimit, maxRegAllowedPower);
1056 
1057 	switch (ar5416_get_ntxchains(tx_chainmask)) {
1058 	case 1:
1059 		break;
1060 	case 2:
1061 		scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
1062 		break;
1063 	case 3:
1064 		scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
1065 		break;
1066 	}
1067 
1068 	scaledPower = max((u16)0, scaledPower);
1069 
1070 	if (IS_CHAN_2GHZ(chan)) {
1071 		numCtlModes = ARRAY_SIZE(ctlModesFor11g) -
1072 			SUB_NUM_CTL_MODES_AT_2G_40;
1073 		pCtlMode = ctlModesFor11g;
1074 
1075 		ath9k_hw_get_legacy_target_powers(ah, chan,
1076 			pEepData->calTargetPowerCck,
1077 			AR5416_NUM_2G_CCK_TARGET_POWERS,
1078 			&targetPowerCck, 4, false);
1079 		ath9k_hw_get_legacy_target_powers(ah, chan,
1080 			pEepData->calTargetPower2G,
1081 			AR5416_NUM_2G_20_TARGET_POWERS,
1082 			&targetPowerOfdm, 4, false);
1083 		ath9k_hw_get_target_powers(ah, chan,
1084 			pEepData->calTargetPower2GHT20,
1085 			AR5416_NUM_2G_20_TARGET_POWERS,
1086 			&targetPowerHt20, 8, false);
1087 
1088 		if (IS_CHAN_HT40(chan)) {
1089 			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
1090 			ath9k_hw_get_target_powers(ah, chan,
1091 				pEepData->calTargetPower2GHT40,
1092 				AR5416_NUM_2G_40_TARGET_POWERS,
1093 				&targetPowerHt40, 8, true);
1094 			ath9k_hw_get_legacy_target_powers(ah, chan,
1095 				pEepData->calTargetPowerCck,
1096 				AR5416_NUM_2G_CCK_TARGET_POWERS,
1097 				&targetPowerCckExt, 4, true);
1098 			ath9k_hw_get_legacy_target_powers(ah, chan,
1099 				pEepData->calTargetPower2G,
1100 				AR5416_NUM_2G_20_TARGET_POWERS,
1101 				&targetPowerOfdmExt, 4, true);
1102 		}
1103 	} else {
1104 		numCtlModes = ARRAY_SIZE(ctlModesFor11a) -
1105 			SUB_NUM_CTL_MODES_AT_5G_40;
1106 		pCtlMode = ctlModesFor11a;
1107 
1108 		ath9k_hw_get_legacy_target_powers(ah, chan,
1109 			pEepData->calTargetPower5G,
1110 			AR5416_NUM_5G_20_TARGET_POWERS,
1111 			&targetPowerOfdm, 4, false);
1112 		ath9k_hw_get_target_powers(ah, chan,
1113 			pEepData->calTargetPower5GHT20,
1114 			AR5416_NUM_5G_20_TARGET_POWERS,
1115 			&targetPowerHt20, 8, false);
1116 
1117 		if (IS_CHAN_HT40(chan)) {
1118 			numCtlModes = ARRAY_SIZE(ctlModesFor11a);
1119 			ath9k_hw_get_target_powers(ah, chan,
1120 				pEepData->calTargetPower5GHT40,
1121 				AR5416_NUM_5G_40_TARGET_POWERS,
1122 				&targetPowerHt40, 8, true);
1123 			ath9k_hw_get_legacy_target_powers(ah, chan,
1124 				pEepData->calTargetPower5G,
1125 				AR5416_NUM_5G_20_TARGET_POWERS,
1126 				&targetPowerOfdmExt, 4, true);
1127 		}
1128 	}
1129 
1130 	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
1131 		bool isHt40CtlMode = (pCtlMode[ctlMode] == CTL_5GHT40) ||
1132 			(pCtlMode[ctlMode] == CTL_2GHT40);
1133 		if (isHt40CtlMode)
1134 			freq = centers.synth_center;
1135 		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
1136 			freq = centers.ext_center;
1137 		else
1138 			freq = centers.ctl_center;
1139 
1140 		if (ah->eep_ops->get_eeprom_ver(ah) == 14 &&
1141 		    ah->eep_ops->get_eeprom_rev(ah) <= 2)
1142 			twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
1143 
1144 		for (i = 0; (i < AR5416_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
1145 			if ((((cfgCtl & ~CTL_MODE_M) |
1146 			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1147 			     pEepData->ctlIndex[i]) ||
1148 			    (((cfgCtl & ~CTL_MODE_M) |
1149 			      (pCtlMode[ctlMode] & CTL_MODE_M)) ==
1150 			     ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))) {
1151 				rep = &(pEepData->ctlData[i]);
1152 
1153 				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
1154 				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1],
1155 				IS_CHAN_2GHZ(chan), AR5416_NUM_BAND_EDGES);
1156 
1157 				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
1158 					twiceMaxEdgePower = min(twiceMaxEdgePower,
1159 								twiceMinEdgePower);
1160 				} else {
1161 					twiceMaxEdgePower = twiceMinEdgePower;
1162 					break;
1163 				}
1164 			}
1165 		}
1166 
1167 		minCtlPower = min(twiceMaxEdgePower, scaledPower);
1168 
1169 		switch (pCtlMode[ctlMode]) {
1170 		case CTL_11B:
1171 			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
1172 				targetPowerCck.tPow2x[i] =
1173 					min((u16)targetPowerCck.tPow2x[i],
1174 					    minCtlPower);
1175 			}
1176 			break;
1177 		case CTL_11A:
1178 		case CTL_11G:
1179 			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
1180 				targetPowerOfdm.tPow2x[i] =
1181 					min((u16)targetPowerOfdm.tPow2x[i],
1182 					    minCtlPower);
1183 			}
1184 			break;
1185 		case CTL_5GHT20:
1186 		case CTL_2GHT20:
1187 			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
1188 				targetPowerHt20.tPow2x[i] =
1189 					min((u16)targetPowerHt20.tPow2x[i],
1190 					    minCtlPower);
1191 			}
1192 			break;
1193 		case CTL_11B_EXT:
1194 			targetPowerCckExt.tPow2x[0] = min((u16)
1195 					targetPowerCckExt.tPow2x[0],
1196 					minCtlPower);
1197 			break;
1198 		case CTL_11A_EXT:
1199 		case CTL_11G_EXT:
1200 			targetPowerOfdmExt.tPow2x[0] = min((u16)
1201 					targetPowerOfdmExt.tPow2x[0],
1202 					minCtlPower);
1203 			break;
1204 		case CTL_5GHT40:
1205 		case CTL_2GHT40:
1206 			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1207 				targetPowerHt40.tPow2x[i] =
1208 					min((u16)targetPowerHt40.tPow2x[i],
1209 					    minCtlPower);
1210 			}
1211 			break;
1212 		default:
1213 			break;
1214 		}
1215 	}
1216 
1217 	ratesArray[rate6mb] = ratesArray[rate9mb] = ratesArray[rate12mb] =
1218 		ratesArray[rate18mb] = ratesArray[rate24mb] =
1219 		targetPowerOfdm.tPow2x[0];
1220 	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
1221 	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
1222 	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
1223 	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];
1224 
1225 	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
1226 		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];
1227 
1228 	if (IS_CHAN_2GHZ(chan)) {
1229 		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
1230 		ratesArray[rate2s] = ratesArray[rate2l] =
1231 			targetPowerCck.tPow2x[1];
1232 		ratesArray[rate5_5s] = ratesArray[rate5_5l] =
1233 			targetPowerCck.tPow2x[2];
1234 		ratesArray[rate11s] = ratesArray[rate11l] =
1235 			targetPowerCck.tPow2x[3];
1236 	}
1237 	if (IS_CHAN_HT40(chan)) {
1238 		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
1239 			ratesArray[rateHt40_0 + i] =
1240 				targetPowerHt40.tPow2x[i];
1241 		}
1242 		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
1243 		ratesArray[rateDupCck] = targetPowerHt40.tPow2x[0];
1244 		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];
1245 		if (IS_CHAN_2GHZ(chan)) {
1246 			ratesArray[rateExtCck] =
1247 				targetPowerCckExt.tPow2x[0];
1248 		}
1249 	}
1250 }
1251 
1252 static void ath9k_hw_def_set_txpower(struct ath_hw *ah,
1253 				    struct ath9k_channel *chan,
1254 				    u16 cfgCtl,
1255 				    u8 twiceAntennaReduction,
1256 				    u8 twiceMaxRegulatoryPower,
1257 				    u8 powerLimit)
1258 {
1259 #define RT_AR_DELTA(x) (ratesArray[x] - cck_ofdm_delta)
1260 	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
1261 	struct ar5416_eeprom_def *pEepData = &ah->eeprom.def;
1262 	struct modal_eep_header *pModal =
1263 		&(pEepData->modalHeader[IS_CHAN_2GHZ(chan)]);
1264 	int16_t ratesArray[Ar5416RateSize];
1265 	int16_t txPowerIndexOffset = 0;
1266 	u8 ht40PowerIncForPdadc = 2;
1267 	int i, cck_ofdm_delta = 0;
1268 
1269 	memset(ratesArray, 0, sizeof(ratesArray));
1270 
1271 	if ((pEepData->baseEepHeader.version & AR5416_EEP_VER_MINOR_MASK) >=
1272 	    AR5416_EEP_MINOR_VER_2) {
1273 		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;
1274 	}
1275 
1276 	ath9k_hw_set_def_power_per_rate_table(ah, chan,
1277 					       &ratesArray[0], cfgCtl,
1278 					       twiceAntennaReduction,
1279 					       twiceMaxRegulatoryPower,
1280 					       powerLimit);
1281 
1282 	ath9k_hw_set_def_power_cal_table(ah, chan, &txPowerIndexOffset);
1283 
1284 	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
1285 		ratesArray[i] =	(int16_t)(txPowerIndexOffset + ratesArray[i]);
1286 		if (ratesArray[i] > AR5416_MAX_RATE_POWER)
1287 			ratesArray[i] = AR5416_MAX_RATE_POWER;
1288 	}
1289 
1290 	if (AR_SREV_9280_10_OR_LATER(ah)) {
1291 		for (i = 0; i < Ar5416RateSize; i++) {
1292 			int8_t pwr_table_offset;
1293 
1294 			pwr_table_offset = ah->eep_ops->get_eeprom(ah,
1295 							EEP_PWR_TABLE_OFFSET);
1296 			ratesArray[i] -= pwr_table_offset * 2;
1297 		}
1298 	}
1299 
1300 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
1301 		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
1302 		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
1303 		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
1304 		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));
1305 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
1306 		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
1307 		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
1308 		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
1309 		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));
1310 
1311 	if (IS_CHAN_2GHZ(chan)) {
1312 		if (OLC_FOR_AR9280_20_LATER) {
1313 			cck_ofdm_delta = 2;
1314 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1315 				ATH9K_POW_SM(RT_AR_DELTA(rate2s), 24)
1316 				| ATH9K_POW_SM(RT_AR_DELTA(rate2l), 16)
1317 				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1318 				| ATH9K_POW_SM(RT_AR_DELTA(rate1l), 0));
1319 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1320 				ATH9K_POW_SM(RT_AR_DELTA(rate11s), 24)
1321 				| ATH9K_POW_SM(RT_AR_DELTA(rate11l), 16)
1322 				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5s), 8)
1323 				| ATH9K_POW_SM(RT_AR_DELTA(rate5_5l), 0));
1324 		} else {
1325 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
1326 				ATH9K_POW_SM(ratesArray[rate2s], 24)
1327 				| ATH9K_POW_SM(ratesArray[rate2l], 16)
1328 				| ATH9K_POW_SM(ratesArray[rateXr], 8)
1329 				| ATH9K_POW_SM(ratesArray[rate1l], 0));
1330 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
1331 				ATH9K_POW_SM(ratesArray[rate11s], 24)
1332 				| ATH9K_POW_SM(ratesArray[rate11l], 16)
1333 				| ATH9K_POW_SM(ratesArray[rate5_5s], 8)
1334 				| ATH9K_POW_SM(ratesArray[rate5_5l], 0));
1335 		}
1336 	}
1337 
1338 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
1339 		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
1340 		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
1341 		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
1342 		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));
1343 	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
1344 		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
1345 		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
1346 		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
1347 		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));
1348 
1349 	if (IS_CHAN_HT40(chan)) {
1350 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
1351 			  ATH9K_POW_SM(ratesArray[rateHt40_3] +
1352 				       ht40PowerIncForPdadc, 24)
1353 			  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
1354 					 ht40PowerIncForPdadc, 16)
1355 			  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
1356 					 ht40PowerIncForPdadc, 8)
1357 			  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
1358 					 ht40PowerIncForPdadc, 0));
1359 		REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
1360 			  ATH9K_POW_SM(ratesArray[rateHt40_7] +
1361 				       ht40PowerIncForPdadc, 24)
1362 			  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
1363 					 ht40PowerIncForPdadc, 16)
1364 			  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
1365 					 ht40PowerIncForPdadc, 8)
1366 			  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
1367 					 ht40PowerIncForPdadc, 0));
1368 		if (OLC_FOR_AR9280_20_LATER) {
1369 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1370 				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1371 				| ATH9K_POW_SM(RT_AR_DELTA(rateExtCck), 16)
1372 				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1373 				| ATH9K_POW_SM(RT_AR_DELTA(rateDupCck), 0));
1374 		} else {
1375 			REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
1376 				ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
1377 				| ATH9K_POW_SM(ratesArray[rateExtCck], 16)
1378 				| ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
1379 				| ATH9K_POW_SM(ratesArray[rateDupCck], 0));
1380 		}
1381 	}
1382 
1383 	REG_WRITE(ah, AR_PHY_POWER_TX_SUB,
1384 		  ATH9K_POW_SM(pModal->pwrDecreaseFor3Chain, 6)
1385 		  | ATH9K_POW_SM(pModal->pwrDecreaseFor2Chain, 0));
1386 
1387 	i = rate6mb;
1388 
1389 	if (IS_CHAN_HT40(chan))
1390 		i = rateHt40_0;
1391 	else if (IS_CHAN_HT20(chan))
1392 		i = rateHt20_0;
1393 
1394 	if (AR_SREV_9280_10_OR_LATER(ah))
1395 		regulatory->max_power_level =
1396 			ratesArray[i] + AR5416_PWR_TABLE_OFFSET_DB * 2;
1397 	else
1398 		regulatory->max_power_level = ratesArray[i];
1399 
1400 	switch(ar5416_get_ntxchains(ah->txchainmask)) {
1401 	case 1:
1402 		break;
1403 	case 2:
1404 		regulatory->max_power_level += INCREASE_MAXPOW_BY_TWO_CHAIN;
1405 		break;
1406 	case 3:
1407 		regulatory->max_power_level += INCREASE_MAXPOW_BY_THREE_CHAIN;
1408 		break;
1409 	default:
1410 		ath_print(ath9k_hw_common(ah), ATH_DBG_EEPROM,
1411 			  "Invalid chainmask configuration\n");
1412 		break;
1413 	}
1414 }
1415 
1416 static u8 ath9k_hw_def_get_num_ant_config(struct ath_hw *ah,
1417 					  enum ieee80211_band freq_band)
1418 {
1419 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1420 	struct modal_eep_header *pModal =
1421 		&(eep->modalHeader[ATH9K_HAL_FREQ_BAND_2GHZ == freq_band]);
1422 	struct base_eep_header *pBase = &eep->baseEepHeader;
1423 	u8 num_ant_config;
1424 
1425 	num_ant_config = 1;
1426 
1427 	if (pBase->version >= 0x0E0D)
1428 		if (pModal->useAnt1)
1429 			num_ant_config += 1;
1430 
1431 	return num_ant_config;
1432 }
1433 
1434 static u16 ath9k_hw_def_get_eeprom_antenna_cfg(struct ath_hw *ah,
1435 					       struct ath9k_channel *chan)
1436 {
1437 	struct ar5416_eeprom_def *eep = &ah->eeprom.def;
1438 	struct modal_eep_header *pModal =
1439 		&(eep->modalHeader[IS_CHAN_2GHZ(chan)]);
1440 
1441 	return pModal->antCtrlCommon & 0xFFFF;
1442 }
1443 
1444 static u16 ath9k_hw_def_get_spur_channel(struct ath_hw *ah, u16 i, bool is2GHz)
1445 {
1446 #define EEP_DEF_SPURCHAN \
1447 	(ah->eeprom.def.modalHeader[is2GHz].spurChans[i].spurChan)
1448 	struct ath_common *common = ath9k_hw_common(ah);
1449 
1450 	u16 spur_val = AR_NO_SPUR;
1451 
1452 	ath_print(common, ATH_DBG_ANI,
1453 		  "Getting spur idx %d is2Ghz. %d val %x\n",
1454 		  i, is2GHz, ah->config.spurchans[i][is2GHz]);
1455 
1456 	switch (ah->config.spurmode) {
1457 	case SPUR_DISABLE:
1458 		break;
1459 	case SPUR_ENABLE_IOCTL:
1460 		spur_val = ah->config.spurchans[i][is2GHz];
1461 		ath_print(common, ATH_DBG_ANI,
1462 			  "Getting spur val from new loc. %d\n", spur_val);
1463 		break;
1464 	case SPUR_ENABLE_EEPROM:
1465 		spur_val = EEP_DEF_SPURCHAN;
1466 		break;
1467 	}
1468 
1469 	return spur_val;
1470 
1471 #undef EEP_DEF_SPURCHAN
1472 }
1473 
1474 const struct eeprom_ops eep_def_ops = {
1475 	.check_eeprom		= ath9k_hw_def_check_eeprom,
1476 	.get_eeprom		= ath9k_hw_def_get_eeprom,
1477 	.fill_eeprom		= ath9k_hw_def_fill_eeprom,
1478 	.get_eeprom_ver		= ath9k_hw_def_get_eeprom_ver,
1479 	.get_eeprom_rev		= ath9k_hw_def_get_eeprom_rev,
1480 	.get_num_ant_config	= ath9k_hw_def_get_num_ant_config,
1481 	.get_eeprom_antenna_cfg	= ath9k_hw_def_get_eeprom_antenna_cfg,
1482 	.set_board_values	= ath9k_hw_def_set_board_values,
1483 	.set_addac		= ath9k_hw_def_set_addac,
1484 	.set_txpower		= ath9k_hw_def_set_txpower,
1485 	.get_spur_channel	= ath9k_hw_def_get_spur_channel
1486 };
1487